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ABSTRACT 

 
This paper is concerned with inference about the conditional quantile function in a nonparametric 

quantile regression model.  Any method for constructing a confidence interval or band for this function 
must deal with the asymptotic bias of nonparametric estimators of the function.  In estimation methods 
such as local polynomial estimation, this is usually done through undersmoothing or explicit bias 
correction.  The latter usually requires oversmoothing.  However, there are no satisfactory empirical 
methods for selecting bandwidths that under- or oversmooth.  This paper extends the bootstrap method of 
Hall and Horowitz (2013) for conditional mean functions to conditional quantile functions.  The paper 
also shows how the bootstrap method can be used to obtain uniform confidence bands.  The bootstrap 
method uses only bandwidths that are selected by standard methods such as cross validation and plug-in.  
It does not use under- or oversmoothing.  The results of Monte Carlo experiments illustrate the numerical 
performance of the bootstrap method. 
 
Key words:  Quantile regression; smoothing; confidence band; bootstrap 
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A BOOTSTRAP METHOD FOR CONSTRUCTING POINTWISE AND UNIFORM 
CONFIDENCE BANDS FOR CONDITIONAL QUANTILE FUNTIONS 

1.  INTRODUCTION 

This paper is concerned with inference about the unknown function g  in the nonparametric 

quantile regression model 

(1.1) ( ) ; ( 0)Y g X Pε ε τ= + ≤ = , 

where X  is an observed continuously distributed explanatory variable and ε  is an unobserved 

continuously distributed random variable that is independent of X  and whose τ  quantile ( 0 1τ< < ) is 0.  

Hall and Horowitz (2013) (hereinafter HH) describe a bootstrap method for constructing a pointwise 

confidence band for the unknown function ( ) ( | )m x E Y X x= =  in a nonparametric mean regression.  This 

paper extends the bootstrap method of HH to g  in the quantile regression model (1.1).  The paper also 

shows how the bootstrap method can be used to construct a uniform confidence band for g .  The method 

for constructing a uniform confidence band for g can be used to construct a uniform confidence band for 

m , but this is not done here. 

 Any method for constructing a pointwise or uniform confidence band for g  based on a 

nonparametric estimate must deal with the problem of asymptotic bias.  For example, a local polynomial 

estimate of g  with a bandwidth chosen by cross-validation or plug-in methods is asymptotically biased.  

Denote the estimate by ĝ . The expected value of ĝ  does not equal g , the asymptotic distribution of the 

scaled estimate is not centered at g , and the true coverage probability of an asymptotic confidence 

interval for g  that is constructed from the normal distribution in the usual way is less than the nominal 

probability.  This problem is usually overcome by undersmoothing or explicit bias reduction.  

Undersmoothing consists of making the bias asymptotically negligible by using a bandwidth whose rate 

of convergence is faster than the asymptotically optimal rate.  In explicit bias reduction, an estimate of the 

asymptotic bias is used to construct an asymptotically unbiased estimate of g .  Most explicit bias 

reduction methods involve some form of oversmoothing, that is using a bandwidth whose rate of 

convergence is slower than the asymptotically optimal rate.  Undersmoothing and explicit bias correction 

methods are also available for the conditional mean function m . 

 Methods based on undersmoothing or oversmoothing require a bandwidth whose rate of 

convergence is faster or slower than the asymptotically optimal rate.  As discussed by HH, there are no 

attractive, effective empirical ways to choose these bandwidths.  In addition, undersmoothing can produce 

very wiggly confidence bands, even for smooth conditional quantile or conditional mean functions.  
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Explicit bias correction methods that rely on estimation of derivatives can also produce wiggly confidence 

bands. 

  The method presented in this paper, like the method of HH, uses bandwidths chosen by standard 

empirical methods such as cross validation or a plug-in rule.  It does not under- or oversmooth and does 

not use auxiliary or other non-standard bandwidths.   Instead, the method uses the bootstrap to estimate 

the bias of ĝ .  The bootstrap estimate of the bias has stochastic noise that is comparable in size to the 

bias itself.   However, combining a suitable quantile of the “distribution” of the bootstrap bias estimate 

with  ĝ  enables us to obtain a pointwise confidence band with an asymptotic coverage probability that 

equals or exceeds 1 α−  for any given 0α >  at all but a user specified fraction of the possible values of 

x .  The exceptional points are in regions where the function g  has sharp peaks or troughs that cause the 

bias of ĝ  to be unusually large.  These regions are typically visible in a plot of ĝ  and can also be found 

through a theoretical analysis.  An asymptotic uniform confidence band that has no exceptional points is 

obtained by replacing the bootstrap bias estimate with an upper bound on the estimated  bias.  

 Methods that use undersmoothing have been described by Bjerve, Doksum, and Yandell (1985); 

Hall (1992); Hall and Owen (1993); Neumann (1995); Chen (1996); Neumann and Polzehl (1998); Picard 

and Tribouley (2000); Chen, Härdle, and Li (2003); Claeskens and Van Keilegom (2003); Härdle, Huet, 

Mammen, and Sperlich (2004); and McMurry and Politis (2008).   Methods based on oversmoothing have 

been described by Härdle and Bowman (1988); Härdle and Marron (1991); Hall (1992); Eubank and 

Speckman (1993); Sun and Loader (1994); Härdle, Huet, and Jolivet (1995); Xia (1998); and Schucany 

and Somers (1977).  Calonico, Cattaneo, and Farrell (2016) describe an explicit bias correction method 

for conditional mean functions that does not require oversmoothing or an auxiliary bandwidth.  It is not 

known whether this method can be extended to conditional quantile functions.  

 Section 2 of this paper presents an informal description of our method.  The method is similar in 

some respects to that of HH for conditional mean functions, but the non-smoothness of quantile 

estimators presents problems that are different from those involved in estimating conditional mean 

functions.  These require a separate treatment and modifications of parts of the method of HH.  Section 2 

also outlines the extension of our method to a heteroskedastic version of model (1.1).  Section 3 presents 

formal theoretical results.  Section 4 presents simulation results that illustrate the numerical performance 

of the method.  Conclusions are presented in Section 5.  The proofs of theorems are in the appendix, 

which is Section 6. 
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2.  INFORMAL DESCRIPTION OF THE METHOD 

 Let { , : 1,..., }i iY X i n=  denote an independent random sample of observations from the 

distribution of ( , )Y X  in model (1.1).   Let ˆ( )g x  denote a nonparametric estimator of ( )g x .  Denote the 

bias and variance of ˆ( )g x  by ˆ( ) [ ( )] ( )x E g x g xβ = −  and 2
ˆ ˆ( ) [ ( )]g x Var g xσ = , respectively.  Assume that 

ˆˆ ˆ{ ( ) [ ( )]} / ( ) (0,1)d
gg x E g x x Nσ− →  as n →∞ .  To minimize the complexity of the discussion in the 

remainder of this paper, we assume that X  is a scalar random variable and ĝ  is a local linear quantile 

regression estimator.  The main results of the paper continue to apply if X  is a vector or ĝ  is a local 

polynomial estimator of odd degree different from 1.  This paper does not treat series estimators.  The 

local linear quantile estimation procedure is described in Step 1 in Section 2.1.  To avoid boundary effects 

we restrict attention to a compact set   that is contained in an open subset of the support of X .  Let h  

denote the bandwidth used in local polynomial estimation of g .  

 If ( )xβ  were known, an asymptotic 01 α−  confidence interval for ( )g x  would be 

 ˆ ˆ1 /2 1 /2ˆ ˆ( ) ( ) ( ) ( ) ( )g gg x z x g x g x z xα ασ σ− −− ≤ ≤ + . 

where 1 /2z α−  is the 1 / 2α−  quantile of the standard normal distribution, 0( , )xα α α=  satisfies 

(2.1) ˆ ˆ1 /2 1 /2 0[ ( ) / ( )] [ ( ) / ( )] 1g gz x x z x xα αβ σ β σ α− −Φ − −Φ − − = − , 

and Φ  is the normal distribution function.  In applications, ( )xβ  and ˆ ( )g xσ  are unknown.  Let ˆˆ ( )g xσ  

be the estimate of ˆ ( )g xσ  that is described in Section 2.1.  Let ˆ( )xλ  denote the bootstrap estimate of 

ˆ( ) / ( )gx xβ σ that is obtained in Step 5 of the procedure described in Section 2.1, and let 0ˆ( , )xα α  denote 

the solution in α  to 

 1 /2 1 /2 0
ˆ ˆ[ ( )] [ ( )] 1z x z xα αλ λ α− −Φ − −Φ − − = − . 

For [0,1]ξ ∈ , let 0ˆ ( )ξα α  be the ξ  quantile of points in the set 0ˆ{ ( , ) : }x xα α ∈ .  Define 

0ˆ0 1 ( )/2ˆ( )z z
ξα αα −= .  Construct the pointwise confidence band 

 { }ˆ ˆ0 0 0ˆ ˆ ˆ ˆ ˆˆ ˆ[ ( )] ( , ) : ( ) ( ) ( ) ( ) ( ) ( )n g gx y g x z x y g x z xxα α α σ α σ= − ≤ ≤ + . 

It is shown in Section 3.3 that n  has asymptotic coverage probability equal to or greater than 01 α−  

except for a proportion ξ  of points x∈ .   

 To construct a uniform confidence band for g , define 

 max
ˆ ˆmax ( )

x
xλ λ

∈
=


 

and 
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min
ˆ ˆmin ( )

x
xλ λ

∈
=


. 

Let 1W  be the mean-zero Gaussian process defined in Section 3.1, and let Ût  satisfy 

 min 1 max 0
ˆ ˆˆ ˆ 1U U

xP t W t x
h

λ λ a  − − ≤ ≤ − ∀ ∈ = −  
  

 ,  

where h  is the bandwidth used for local linear quantile estimation of g .  It is shown in Section 3.3 that    

 ˆ ˆ0 ˆ ˆˆ ˆ ˆ ˆ( ) {( , ) : ( ) ( ) ( ) ( ); }U U g U gy x g x t x y g x t x xα σ σ≡ − ≤ ≤ + ∈   

is an asymptotic uniform confidence band for g  whose coverage probability equals or exceeds 01 α− . 

 2.1  The Estimation Procedure 

 This section provides a step-by-step explanation of the method for constructing n  and U .  

 Step 1:  Local linear estimation of g  and estimation of 2
ĝσ .  Let K  be a kernel function and h  

be a possibly random bandwidth.  For any real v , define ( ) ( / )hK v K v h= .  Define the check function 

 ( ) [ ( 0)]v v I vτρ τ= − ≤ , 

where 0 1τ< <  and I  is the indicator function.  The local linear estimator of ( )g x  is 0̂ˆ ( )g x b= , where 

 
0 1

0 1 0 1, 1

ˆ ˆ( , ) arg min [ ( )] ( )
n

i i h ib b i
b b Y b b X x K X xτr

=

= − − − −∑ . 

To obtain ˆˆ ( )g xσ , let ˆ ( )Xf x  be a consistent kernel nonparametric estimator of ( )Xf x , the 

probability density function of X  at x .  Let ˆ( )i i iY g Xε = −  be the residuals from estimating model (1.1), 

and let ˆ (0)fε  be a consistent kernel nonparametric estimator of (0)fε , the probability density of ε  at 0.  

Specifically, 

 1

1

ˆ (0) ( ) ( )
n

h i
i

f nh K
εε ε ε−

=
= ∑  ,  

where hε  is a bandwidth.  Define 

 2 ( )KB K v dv= ∫ . 

It is shown in Section 3.2 that the variance of the asymptotic distribution of ˆ( )g x  is 

 2
ˆ 2

(1 )( )
( ) ( )[ (0)]

K
g

X

Bx
nh f x fε

τ τσ −
=   

The variance of ˆ ( )g x  can be estimated by replacing ( )Xf x  and (0)fε  with their consistent estimators to 

obtain 
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 2
ˆ 2

(1 )ˆ ( ) ˆ ˆ( ) ( )[ (0)]
K

g
X

Bx
nh f x fε

τ τσ −
= . 

 Step 2:  Compute centered residuals.  Let nq   be the τ  quantile of the residuals { }iε .  That is 

 1

1
inf : ( )

n

n i
i

q q n I qε τ−

=

 
= ≤ ≥ 

  
∑  . 

The centered residuals are 

 î i nqε ε= − . 

The τ  quantile of centered residuals  is 0. 

 Step 3.   Construct the bootstrap resample.  The bootstrap resample is *{ , : 1,..., }i iY X i n= , where 

 * *ˆ ( )i i iY g X ε= +  

and the *
iε s are obtained by sampling the îε s randomly with replacement.  The iX s are not resampled.   

 Step 4:  Compute the bootstrap estimate of the asymptotic bias of ˆ ( )g x .  Let there be B  bootstrap 

resamples that are indexed by 1,...,b B= .  For resample b , define 

 { }* 1 1 *
0 1

1

ˆ ˆ( ) 1 ( ) ( )
n

nb i i h i
i

T x n I Y b b X x K X xτ− −

=

 = − ≤ + − − ∑ . 

Let * *( )nbE T  denote the bootstrap expectation of *
nbT  conditional on the data.  Estimate * *( )nbE T  by 

 1 *

1

ˆ ( ) ( )
B

n nb
b

T x B T x−

=

= ∑ . 

ˆ ( )nT x  converges almost surely to * *[ ( )]nbE T x  and can be made arbitrarily close to * *[ ( )]nbE T x  by making 

B  sufficiently large.  The bootstrap estimate of ˆ( ) ( ) ( )x Eg x g xβ = −  is  

 
1/2

ˆ1
1/2

ˆ ( )ˆ ˆ( ) ( )ˆ(1 ) [ ( )]
g

n
K X

x
x h T x

B f x

στβ
τ

−  
=  − 

. 

In contrast to HH, we do not form a bootstrap estimate of ( )g x .  Instead, we form a bootstrap estimate of 

the asymptotic form of ˆ( ) ( )Eg x g x−  from the analytic expression for this asymptotic form.  This 

expression is given by equation (3.4). 

The estimate ˆ( )xβ  has random noise whose order of magnitude is the same as that of 

ˆ( ) ( )E x xβ β− .  Therefore, ˆ( )xβ  is not consistent for ( )xβ .  The method for finding pointwise and 

uniform confidence bands for g  takes account of this inconsistency.  See Steps 5 and 6 below.  
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 Step 5:  Obtain the normalized estimate of the bias and effective significance level.  The 

normalized bias of ˆ ( )g x  is defined as ˆ( ) ( ) / ( )gx x xλ β σ=  and is estimated by ˆ
ˆ ˆ ˆ( ) ( ) / ( )gx x xλ β σ= .  The 

effective significance level at point x , 0ˆ ( , )xα α ,  is defined as the solution in  α  to the equation 

 /2 /2 0
ˆ ˆ[ ( )] [ ( )] 1z x z xα αλ λ α1− 1−Φ − −Φ − − = − . 

 Step 6:  Construct a pointwise confidence band for g .  Let [0,1]ξ ∈ .  Let 0ˆ ( )ξα α  be the ξ  

quantile of points in the set 0ˆ{ ( , ) : }x xα α ∈ .  Define 
0ˆ0 1 ( )/2ˆ( )z z

ξα αα −= .  Construct the pointwise 

confidence band 

 { }ˆ ˆ0 0 0ˆ ˆ ˆ ˆ ˆˆ ˆ[ ( )] ( , ) : ( ) ( ) ( ) ( ) ( ) ( )n g gx y g x z x y g x z xxα α α σ α σ= − ≤ ≤ + . 

It is shown in Section 3.3 that the pointwise band 0ˆ[ ( )]n ξα α   covers ( )g x  with probability at least 

01 α−  except for a proportion ξ  of points x∈ .  Specifically, for 0( , )xα α  as in (2.1), let 0( )ξα α  

denote the ξ  quantile of the points 0{ ( , ) : }x xα α ∈ .  Define the set 

(2.2) 0 0 0( ) { : ( , ) ( )}x xxx α α α α α= ∈ >  . 

Then  

 0 0ˆliminf {[ , ( )] [ ( )} 1nn
P x g x xα α α

→∞
∈ ≥ −  

for each 0( )x x α∈ .  

 Step 7:  Construct a uniform confidence band for g .  Define 

(2.3) max
ˆ ˆmax ( )

x
xλ λ

∈
=


 

and 

(2.4) min
ˆ ˆmin ( )

x
xλ λ

∈
=


. 

Let 1W  denote the mean-zero Gaussian process defined in Theorem 3.1 in Section 3.1.  Define Ût  as the 

solution in t  to 

(2.5) min 1 max 0
ˆ ˆ 1xP t W t x

h
λ λ a  − − ≤ ≤ − ∀ ∈ = −    

 . 

The asymptotic uniform confidence band is  

 ˆ ˆ0 ˆ ˆˆ ˆ ˆ ˆ( ) {( , ) : ( ) ( ) ( ) ( ); }U U g U gy x g x t x y g x t x xα σ σ≡ − ≤ ≤ + ∈  . 

The quantities *
maxβ  and *

minβ  can be computed by replacing   in (2.3) and (2.4) with a fine grid of 

equally spaced points.  The critical value Ût  can be computed by replacing   in (2.5) with the grid. 
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 2.2.  Heteroskedasticity 

 A heteroskedastic version of (1.1) is 

(2.6) ( ) ( ) ; ( 0)Y g X X Pσ ε ε τ= + ≤ = , 

where ( )σ ⋅  is a scale function and ε  is independent of X .  Identification of σ  requires normalizing the 

scale of ε .  This is done by setting the interquartile range (IQR) of ε  equal to 1.  Then 

 ( ) ( | )x IQR Y X xσ = = . 

Let ˆ ( )g x  be the local linear quantile regression estimate of ( )g x  and ˆ ( )xσ  be a consistent nonparametric 

estimate of ( | )IQR Y X x= .  The residuals of model (2.5) are 

 
ˆ ( )

ˆ ( )
i i

i
i

Y g X
X

ε
σ
−

= . 

The centered residuals of (2.6) are as in Step 2 after replacing iε  with iε
 .  The estimate of the variance of 

of the estimate of ( )g x  in (2.6) is 

 
2

2
ˆ 2

ˆ ( ) (1 )ˆ ( ) ˆ ˆ( ) ( )[ (0)]
K

g
X

x Bx
nh f x fε

σ τ τ
σ

−
= , 

where f̂ε  is now based on the iε
 s.  Bootstrap sampling is done by setting 

 * *ˆ ˆ( ) ( )i i i iY g X Xσ ε= + , 

where the *
iε s are sampled randomly with replacement from the centered iε

 s.  Steps 4-6 for construction 

of pointwise and uniform confidence bands remain as in Section 2.1 but with the foregoing modifications 

of 2
ˆˆ ( )g xσ  and the bootstrap sampling procedure. 

3.  THEORETICAL RESULTS 

 This section presents theorems giving conditions under which the pointwise and uniform 

confidence bands constructed in Steps 5-6 of Section 2.1 have the claimed coverage properties when ĝ  is 

a local linear quantile regression estimator.  We make the following assumptions: 

 Assumption 1:  (i) The data { , : 1,..., }i iY X i n=  are an independent random sample from model 

(1.1);  (ii) X  in (1.1) has compact support;  (iii) ε  in (1.1) is independent of X  and ( 0)P ε τ≤ =  for 

some (0,1)τ ∈ .  

 Assumption 2:  (i) The distribution of X  is absolutely continuous with respect to Lebesgue 

measure with probability density function Xf ; (ii) Xf  is bounded away from 0 on supp( )X  and twice 

continuously differentiable on the interior of supp( )X . 
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 Assumption 3:  The distribution of ε  is absolutely continuous with respect to Lebesgue measure 

with probability density function fε ;  (ii)  fε  is twice continuously differentiable and (0) 0fε > . 

 Assumption 4:  The function g  in (1.1) is three times continuously differentiable on the interior 

of supp( )X ;  (ii) ĝ  is a local linear quantile regression estimator of g .  (iii)  There is a compact set 

2∈  such that [ ( ), ( )]g x g x′ ∈  for each x . 

 Assumption 5:  The kernel K  is a probability density function with support [ 1,1]− , symmetrical 

around 0, and twice continuously differentiable on ( 1,1)− . 

 Assumption 6:  The bandwidth h  used to construct ĝ  satisfies: 

 (i)  1/5ˆh dn−= , where d̂  is a function of the data { , : 1,..., }i iY X i n=  and 0
ˆ pd d→  as n →∞  for 

some finite constant 0 0d > . 

 (ii)  There exists a finite constant 1 0D >  such that 

 ( )1
0

ˆ| | 0DP d d n−− > →  as n →∞ . 

 (iii)  There are constants 2D  and 3D  such that 2 30 1D D< < <  and 

 ( ) ( )3 2 1D D CP n h n O n− − −≤ ≤ = −  

as n →∞  for all finite 0C > . 

 Assumption 1 defines the data generation process.  Assumptions 2-4 are smoothness assumptions.  

Assumption 5 specifies standard properties of K .  Assumption 6 is satisfied by standard bandwidth 

choice methods such as cross-validation and plug-in methods.  Under assumptions 1-6, local linear 

estimates of g  obtained using the random bandwidth h  and the deterministic bandwidth 0h  are 

asymptotically equivalent.  See Lemma 6.1 in Section 6. 

 3.1  Asymptotic Approximations to 1/2 ˆ( ) [ ( ) ( )]nh g x g x−  and the Bootstrap Bias Estimate 

 The asymptotic coverage probabilities of the pointwise and uniform confidence bands defined in 

Steps 5 and 6 of Section 2.1 depend on strong asymptotic approximations to 1/2 ˆ( ) [ ( ) ( )]nh g x g x−  and the 

bootstrap estimate of ˆ ( ) ( )Eg x g x− .  These approximations are given by the following theorems. 

 Theorem 3.1:  Let assumptions 1-6 hold.  Define 

 
1/2

0 1/2
[ (1 ) ]( )

( ) (0)
K

X

Bx
f x fε

τ τ
ψ

−
= , 

2
2 ( )v K v dvκ = ∫ , 
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and 1/5
0 0h d n−= .  There exists a Gaussian process 1( )W x  defined on the same probability space as the 

data such that 1[ ( )] 0E W x =  for all x∈ , 2
1[ ( )] 1E W x =  for all x∈ , and for any 0η >  

 
5/2

1/2 0 2
0 1

0
ˆlim sup ( ) [ ( ) ( )] ( ) ( ) 0

2n x

d xP nh g x g x g x x W
h

κ
ψ h

→∞ ∈

    ′′− − + > =   
     

.    

 It follows from Theorem 3.1 that for each x∈ , 

(3.1) 1/2 ˆ( ) [ ( ) ( )] [ , ( )]d
g gnh g x g x N V xµ− → , 

where 

(3.2) 
5/2
0 2 ( )

2g
d g xκ

µ ′′=  

and  

(3.3) 2
0( ) ( )gV x xψ= . 

Moreover, asymptotically, 

(3.4) 
2
0 2ˆ ( ) ( ) ( )
2

hEg x g x g xκ ′′− =  

and 

(3.5) 2
ˆ 2

0

(1 )ˆ[ ( )] ( )
( ) ( )[ (0)]

K
g

X

BVar g x x
nh f x fε

τ τσ −
= = . 

Properties (3.1)-(3.5) were obtained previously by Fan, Hu, and Truong (1994) and Yu and Jones (1997).   

 ˆ[ ( )]Var g x  can be estimated consistently by replacing ( )Xf x  and (0)fε  on the right-hand sides 

of (3.3) and (3.5) by the consistent estimators ˆ ( )Xf x  and ˆ (0)fε .  Bootstrap estimation of ˆ ( ) ( )Eg x g x−  

relies on the strong approximation given by the following theorem. 

 Theorem 3.2:  Let assumptions 1-6 hold.  Let *E  denote the bootstrap expectation conditional on 

the data.  Define 
1 5/2

1 0( ) (0) ( )XA x d f f xετ −=  

and 

 
1/2

2
1( ) ( )K XA x B f xτ
τ
− =   

. 

Then 

 (i)  For all x∈ , and any 0η >  
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1/2

* * 1 2
2 1

0

( )lim sup [ ( )] ( ) ( ) 0
2nbn x

A xn xP E T x g x A x W
h h

κ h
→∞ ∈

     ′′+ − > =    
     

. 

 (ii)  There exists a Gaussian process ( )x∆  such that [ ( )] 0E x∆ =  for all x∈ , 2[ ( )] 1E x∆ =  for 

all [0,1]x∈ , and for any 0η >  

 
ˆ

( )ˆlim sup ( ) ( ) 0
( )n x g

xP x x
x

βl η
s→∞ ∈

   − + ∆ > =  
    

.    

 For any (0,1)α ∈  and x∈ define 

 1 /2 1 /2
ˆ ˆˆ( , ) ( ) ( )x z x z xα απ α λ λ− −   = Φ − −Φ − −    . 

The following corollary to Theorem 3.2 is used to establish the asymptotic coverage probabilities 

of the confidence bands constructed in Steps 5 and 6 of Section 2.1. 

 Corollary 3.3:  Let assumptions 1-6 hold.  Then for any 0η >  and 0 1α< <  

 /2 /2
ˆ ˆ

( ) ( )ˆlim sup ( , ) ( ) ( ) 0
( ) ( )n x g g

x xP x z x z x
x xα α

β βp α η
ss 1− 1−

→∞ ∈

      − Φ − − ∆ −Φ − − − ∆ > =               
.    

 3.3  Coverage Probabilities of Confidence Bands 

 This section shows that the pointwise and uniform confidence bands constructed in Steps 5 and 6 

of Section 2.1 have asymptotic coverage probabilities of at least 01 α− .  We use the following notation.  

Let 0 (0,1 / 2)α ∈ .  Define 0ˆ( , )xα α  as in Step 5.  Define 0( , )T x α  as the solution in T  to   

 0
ˆ ˆ

( ) ( )( ) ( ) 1
( ) ( )g g

x xT x T x
x x

β β α
σ σ

   
Φ − − ∆ −Φ − − − ∆ = −   
      

. 

Define  

 0 0( , ) 2{1 [ ( , )]}A x T xα α= −Φ  

As in (2.1), define and 0( , )xα α  to be the solution in a  to 

 1 /2 1 /2 0
ˆ ˆ

( ) ( ) 1
( ) ( )a a

g g

x xz z
x x

β β a
σ σ− −

   
Φ − −Φ − − = −   
      

. 

Let 0( )ξα α  denote the ξ -level quantile of points in the set 0{ ( , ) : }x xα α ∈ .  Define 0( )ξ α  as in 

(2.2).   The following corollary gives the asymptotic coverage probability of the pointwise confidence 

band constructed in Step 5. 

 Theorem 3.4:  Let assumptions 1-5 hold.  For all 0C >  and 0η > , 
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 (i) 0 0
, | ( )|

ˆlim sup ( , ) ( , ) 0
n x x C

P x A xα α α η
→∞ ∈ ∆ ≤

 
− > = 

 
. 

 (ii) 0 0ˆlim ( ) ( ) 1
n

P ξ ξα α α α
→∞

 ≤ =    

 (iii) { }0 0ˆliminf [ , ( )] [ ( )] 1nn
P x g x xα α α

→∞
∈ ≥ −  for each 0( )x x α∈ . 

Theorem 3.4(iii) shows that the pointwise band 0ˆ[ ( )]n ξα α   covers ( )g x  with probability at least 01 α−  

except for a proportion ξ  of points x∈ . 

 Now consider the uniform confidence band constructed in Step 6 of Section 2.1.  It follows from 

Theorem 3.1 that up to asymptotically negligible terms 

 
1/2

1
ˆ ˆ 0

ˆ( ) [ ( ) ( )] ( )
( ) ( )g g

nh g x g x x xW
x x h

β
σ σ

 −
= +  

 
 

uniformly over x∈ .  Recall that ˆ( ) ( ) / ( )gx x xλ β σ= .  If ( )xλ  were known, an asymptotic uniform 

01 α−  confidence band for g  would be  

 1
0

( )U U
xt x W t
h

λ
 

− ≤ + ≤ 
 

, 

where Ut  is the solution in t  to 

 1 0
0

( ) ( ) 1xP t x W t x x
h

λ λ α
  
− − ≤ ≤ − ∀ ∈ = −  
   

 . 

Define  

 max max ( )
x

xλ λ
∈

=


 

and 

 min min ( )
x

xλ λ
∈

=


. 

Then 

 min 1 max 1
0 0

( ) ( )U U U U
x xP t W t x P t x W t x x
h h

λ λ λ λ
      
− − ≤ ≤ − ∀ ∈ ≤ − − ≤ ≤ − ∀ ∈      
         

  . 

Therefore, asymptotically 

(3.6) 
1/2

0
ˆ

ˆ( ) [ ( ) ( )] 1
( )U U

g

nh g x g xP t t x
x

α
σ

 −
− ≤ ≤ ∀ ∈ ≥ − 
  

  

if Ut  is chosen so that 
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 min 1 max 0
0

1U U
xP t W t x
h

λ λ a
  
− − ≤ ≤ − ∀ ∈ = −  
   

 . 

The quantities maxλ  and minλ  are unknown in applications.  A feasible confidence band can be 

obtained by replacing them with the bootstrap estimates  

 max
ˆ ˆmax ( )

x
xλ λ

∈
=


 

and 

min
ˆ ˆmin ( )

x
xλ λ

∈
=


. 

Similarly, the unknown quantities ˆ ( )g xσ  and 0h  can be replaced with ˆˆ ( )g xσ  and h , respectively.  The 

critical value Ut  is replaced by Ût , which is the solution in t  to 

(3.7) min 1 max 0
ˆ ˆ 1xP t W t x

h
λ λ a  − − ≤ ≤ − ∀ ∈ = −    

 , 

where maxλ̂  and minλ̂  are treated as non-stochastic constants, not random variables, when calculating the 

probability on the right-hand side of (3.7).  The resulting uniform confidence band is  

 
1/2

ˆ

ˆ( ) [ ( ) ( )]ˆ ˆ ;
ˆ ( )U U

g

nh g x g xt t x
xσ
−

− ≤ ≤ ∀ ∈ . 

The following theorem establishes the asymptotic coverage probability of this interval. 

 Theorem 3.5:  Let assumptions 1-6 hold.  Then 

 
1/2

0
ˆ

ˆ( ) [ ( ) ( )]ˆ ˆliminf ; 1
ˆ ( )U Un g

nh g x g xP t t x
x

α
σ→∞

 −
− ≤ ≤ ∀ ∈ ≥ − 
  

 .    

 The covariance function of 1W  can be estimated consistently.  See equation (6.13) in the 

appendix.  The probability on the right-hand side of (3.7) can be computed by simulation with arbitrary 

accuracy by replacing the covariance function of 1W  with the consistent estimate and the continuum   

with a grid of equally spaced points. 

4.  NUMERICAL EXPERIMENTS 

 This section reports the results of a set of Monte Carlo experiments that illustrate the finite-

sample performance of the method described in Section 2.    

 4.1  Design 

Data { , : 1,..., }i iY X i n=  were generated from the models 

 ( ) ; 1,2,3,jY g X jε= + =   
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where  

 1( ) 5 (10 ),g x x xφ= +  

 2 2
sin(1.5 )( )

1 18 [sgn( ) 1]
xg x

x x
π

=
+ +

, 

3 2
sin(1.5 )( )

1 2 [sgn( ) 1]
xg x

x x
π

=
+ +

, 

φ  is the standard normal probability density function, and ~ [ 1,1]X U − .   The distribution of ε  is 

( ,1)N τµ  for 0.25τ = , 0.5τ = , and 0.75τ = , respectively, where 0.25 0.6745µ = , 0.50 0µ = , and 

0.75 0.6745µ = − .   Thus, ( 0)P ε τ≤ =  for each value of τ .  The functions jg  were used in numerical 

experiments by HH and other authors.  Graphs of these functions are shown in Figure 1.  The function 1g   

has a sharp peak and is the most challenging for our method.  The function 2g  is less challenging than 

1.g  The function 3g  is the smoothest and least challenging. 

The sample sizes in the experiments were n =  100, 500, and 1000.  The kernel function was 
2( ) 0.75(1 ) (| | 1)K v v I v= − ≤ .  

The bandwidth h  for local linear estimation of the jg s was chosen using the plug-in method of Yu and 

Jones (1998).  Bandwidths for estimating ( )Xf x   and (0)fε   were chosen by Silverman’s rule of thumb.    

To avoid boundary effects, the set   was chosen so that its boundaries were at least one bandwidth from 

the boundaries of [ 1,1]− .  This resulted in [ 0.9,0.9]= −  for experiments with 1g  and 2g  and   

[ 0.85,0.85]= −  for experiments with 3g .     is narrower for the experiments with 3g  because that 

function is smoother than 1g  and 2g  and has a larger bandwidth.  We set 0 0.05α =  and 1 0.95ξ− = .   

Pointwise confidence bands were computed using an equally spaced grid of points x∈  with a spacing 

of 0.05.  The grid spacing was 0.02  for uniform confidence bands.  There were 1000 Monte Carlo 

replications in each experiment. 

 We also computed pointwise confidence bands using undersmoothing and the explicit bias 

correction method of Schucany and Sommers (1977).  There are no satisfactory empirical methods for 

choosing an undersmoothing bandwidth or the auxiliary bandwidth required for explicit bias correction.  

Therefore, for undersmoothing, we set the bandwidth equal to 1hγ , where h  is the bandwidth selected by 

the method of Yu and Jones (1998) and 1 1γ ≤  is a constant.  For explicit bias correction, we set the 

auxiliary bandwidth equal to 2 /5d̂n γ− , where 2 1γ ≤  is a constant and d̂  is as in assumption 6.  The values 

of 1γ  and 2γ  were chosen to achieve coverage probabilities of at least 0.95 for as large a proportion of 
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values of x  in the grid as possible.  This approach cannot be used in applications and gives an advantage 

to undersmoothing and explicit bias correction.  Nonetheless, it will be seen in Section 4.2 that the 

performance of these methods is poor compared to that of the method of Section 2.1.   

 4.2  Results of the Experiments 

 Tables 1-3 show properties of pointwise confidence bands for 0.25τ = , 0.50 and 0.75, 

respectively.  At all quantiles and sample sizes, the bootstrap method described in Section 2.1 has much 

higher proportions of values of x  for which the probability of covering of ( )g x  exceeds 0.95 than do the 

undersmoothing and explicit bias correction methods.  When 100n = , the bootstrap method’s proportions 

are exceed 0.70 for 1j =  and 2, and 0.95  for 3j = .  When 1000n = , the bootstrap method’s proportions 

exceed 0.92 for all values of j .  By contrast, the proportion of values of x  for which undersmoothing 

achieves a coverage probability of at least 0.95 is below 0.65 for all values of n  and j .  The absolute 

error in the coverage probability (column 5 of Tables 1-3) is the absolute value of the difference between 

the actual coverage probability and the nominal probability of 0.95.  Thus, the absolute error increases 

when the actual coverage probability exceeds 0.95 as well as when the actual coverage probability is less 

than 0.95. 

The proportion of values of x  for which explicit bias correction achieves a coverage probability 

of at least 0.95 is below 0.20 for all values of n  and j .  Undersmoothing and explicit bias correction 

perform poorly despite choosing the bandwidth for undersmoothing and the auxiliary bandwidth for 

explicit bias correction to achieve optimal performance of these methods.  

 The relatively low proportions of points at which the coverage probability of the bootstrap 

method equals or exceeds 0.95 for 1g  are due to the sharp peak of this function in the vicinity of 0x = , 

which causes the bias of 1ĝ  to be especially large.  HH provide a theoretical explanation for why the 

bootstrap method performs poorly in regions of unusually high bias.  The phenomenon is illustrated in 

Table 4, which shows the proportion of points for which the bootstrap confidence band covers 1( )g x  with 

probability exceeding 0.95 when the interval [ 0.05,0.05]−  containing the peak is excluded from  .  The 

proportions of points for which the coverage probability equals or exceeds 0.95 is at least 0.94 when 

500n =  or 1000n =  except for 500n =  and 0.25τ = , when the proportion is 0.91.  The function 2g  has 

peaks and troughs at 0.15x =  and 0.35x = − , but these are  not as sharp as the peak of 1g .  

Consequently, they have little effect on the coverage probabilities for 2g  when 500n ≥ .  

 Table 5 shows the coverage probabilities of uniform confidence bands obtained with the 

bootstrap method.  The coverage probabilities for 2g  and 3g  at all quantiles equal or exceed 0.95 if 
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500n ≥  and 0.93 if 100n = .  The coverage probabilities for 1g  with 500n ≥  equal or exceed 0.94 

except for 500n =  and 0.25τ = , when the coverage probability is 0.92. 

5.  CONCLUSIONS 

This paper has described a bootstrap method for constructing pointwise and uniform confidence 

bands for a conditional quantile function that is estimated nonparametrically.  The method is based on 

local polynomial estimation and uses only a bandwidth that can be selected using standard methods such 

as cross validation or plug-in.  In contrast to other methods for constructing confidence bands, the 

bootstrap method does not require bandwidths that under- or oversmooth the nonparametric function 

estimator.  This is an important advantage of the bootstrap method, because there are no satisfactory 

empirical methods for selecting bandwidths that under- or oversmooth a nonparametric estimator.  The 

bootstrap method presented here is an extension of the method of Hall and Horowitz (2013) for 

conditional mean functions to conditional quantile functions and uniform confidence bands.  The results 

of Monte Carlo experiments have illustrated the good finite-sample performance of the bootstrap method 

and the poor performance of methods based on under- or oversmoothing. 

6.  MATHEMATICAL APPENDIX:  PROOFS OF THEOREMS 

 Assumptions 1-6 hold throughout this appendix.  We use linear functional notation.  For any 

function f   

 ( ) ( ); ( ) ( )n nf f x dP x f f x dP x= =∫ ∫  , 

where   and n , respectively, are the distribution function and empirical distribution function of 

( , ).Y X  

6.1  Replacing the random bandwidth h  with the non-stochastic bandwidth 0h . 

 For any bandwidth s  and any x∈  , define 

 1
0 1 0 1

1
( , , , ) [ ( )] ( )

n

n i i s i
i

Q x b b s n Y b b X x K X xτρ
−

=

= − − − −∑ . 

Let 0d  be as in assumption 6 and 1/5
0 0h d n−= .  The following lemma shows that replacing the random 

bandwidth h  with the non-stochastic bandwidth 0h  has an asymptotically negligible effect on the local 

linear estimator of ( )g x .   

 Lemma 6.1:  Define 



 

16 
 

 
0 1

0 1 0 1( , )
ˆ ˆ( , ) arg min ( , , , )h h nb b
b b Q x b b h

∈
=


 

and 

 
0 0

0 1
0 1 0 1 0( , )

ˆ ˆ( , ) arg min ( , , , )h h nb b
b b Q x b b h

∈
=


. 

For each x∈  and 0j =  or 1 , 
0

2/5ˆ ˆ ( )jh jh pb b o n−− =    

 Proof:  Let 1D  be as in assumption 6(ii).  Define  

4

1/2

0

logD
n

na n
nh

−  
=  

 
, 

where 4 10 D D< < .  Let   be an open neighborhood of 
0 00 1

ˆ ˆ( , )h hb b  such that 

 
0 0

0 1
0 1 0 0 1 0( , ) \

ˆ ˆmin ( , , , ) ( , , , )n n n h hb b
a Q x b b h Q x b b h

∈
= −

 
. 

The proof takes place in three steps.  Step 1 shows that if  

(6.1) 
0 1

0 1 0 1 0
( , )

sup | ( , , , ) ( , , , ) | / 2n n n
b b

Q x b b h Q x b b h a
∈

− <
<

, 

then 0 1
ˆ ˆˆ ( , )h h hb b≡ ∈b  .  Step 2 shows that (6.1) holds with probability approaching 1 as n →∞ .  Step 3 

shows that 
0

2/5
0 0

ˆ ˆ ( )h h pb b o n−− =  if ĥ ∈b  . 

 Step 1: Let nA  be the event  

0 1

0 1 0 1 0
( , )

sup | ( , , , ) ( , , , ) | / 2n n n
b b

Q x b b h Q x b b h a
∈

− <
<

. 

Then 

(6.2) 0 1 0 1 0
ˆ ˆ ˆ ˆ( , , , ) ( , , , ) / 2n n h h n h h nA Q x b b h Q x b b h a⇒ > −  

and 

(6.3) 
0 0 0 00 1 0 0 1

ˆ ˆ ˆ ˆ( , , , ) ( , , , ) / 2n n h h n h h nA Q x b b h Q x b b h a⇒ > − . 

But 
0 00 1 0 1

ˆ ˆ ˆ ˆ( , , , ) ( , , , )n h h n h hQ x b b h Q x b b h≤ .  Therefore, it follows from (6.3) that 

(6.4) 
0 00 1 0 0 1

ˆ ˆ ˆ ˆ( , , , ) ( , , , ) / 2n n h h n h h nA Q x b b h Q x b b h a⇒ > − . 

Substituting (6.2) into (6.4) yields 

(6.5) 
0 00 1 0 0 1 0

ˆ ˆ ˆ ˆ( , , , ) ( , , , )n n h h n h h nA Q x b b h Q x b b h a⇒ > − , 

Equivalently, 

(6.6) 
0 00 1 0 0 1 0

ˆ ˆ ˆ ˆ( , , , ) ( , , , )n n h h n h h nA Q x b b h Q x b b h a⇒ − < . 

Therefore, 0 1
ˆ ˆ( , )n h hA b b⇒ ∈  because 

0 00 1 0 0 1 0
ˆ ˆ ˆ ˆ( , , , ) ( , , , )n h h n h h nQ x b b h Q x b b h a− ≥  if 0 1

ˆ ˆ( , )h hb b ∉ . 
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Step 2:  A Taylor series expansion of 0 1( , , , )nQ x b b h  about 0ĥ h=  yields 

0 0
0 1 0 1 0 0 1

0 1

0 0
0 12

0

0 0
0 12

0

1( , , , ) ( , , , ) [ ( )]

[ ( )]

( ) [ ( )]

n
i

n n i i
i

i
i i

i
n i i

h X x h hQ x b b h Q x b b h Y b b X x K
nhh h h

h X x h hY b b X x K
hhh

h X x h hY b b X x K
hhh

τ

τ

τ

ρ

ρ

ρ

=

− −  ′− = − − −   
  

  − −  ′= − − −   
    

− − ′+ − − − −  
 

∑
  









  ,
  
 
  

where h  is between 0h  and h .  By assumption 6 and Theorem 2.37 of Pollard (1984) 

 1

1/21
. .0 0

0 12
0 0

(log )( ) [ ( )] Da si
n i i

h X x h h nY b b X x K O n
h nhhh

ε

τρ
+

−
    − −    ′− − − − =               




   

for any 0ε > .  Standard calculations for kernel estimators combined with assumption 3 yield the result 

that  

 ( )1 20 0
0 1 02

0
[ ( )] Di

i i
h X x h hY b b X x K O n h

hhh τρ
−  − −  ′− − − =   

    


 . 

Therefore, 

 0 1 0 1 0| ( , , , ) ( , , , ) | / 2n n nQ x b b h Q x b b h a− <  

almost surely for all sufficiently large n . 

 Step 3:  It follows from Theorem 2.37 of Pollard (1984) that

 
0 0 0

. .
0 1 0 0 1 0 0 0

ˆ ˆ ˆ( , , , ) ( , , , ) ( )( ) (1)a s
n n h h hQ x b b h Q x b b h x b b o− = − + , 

where   is a non-zero function that does not depend on n .  Therefore, ĥ ∈b   implies that 

0

2/5
0 0

ˆ ˆ ( ).h h pb b o n−− =    Q.E.D. 

 6.2  Proofs of Theorem 3.1, Theorem 3.2, and Corollary 3.3 

 Proof of Theorem 3.1:  The constraint 0 1( , )b b ∈  in Lemma 6.1 is non-binding with probability 

approaching 1 as n →∞ .  Therefore, it suffices to consider the local linear estimator of ( )g x  obtained in 

Section 2.1 with the non-stochastic bandwidth 0h  in place of h .  Denote this estimator by ˆ xg .  Denote 

the estimator of ( )g x′  by xg′ .  Let 2 2( ) /xg d g x dx′′ = .  Then  
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{ }

0
0 1

0
0 1

1
0 1, 1

0 1,

ˆ ˆ(6.7) ( , ) arg min [ ( )] ( )

arg min [ ( )] ( ) .

n

x x i i h ib b i

n hb b

g g n Y b b X x K X x

Y b b X x K X x

τ

τ

r

r

−

=

′ = − − − −

= − − − −

∑



 

For each x∈ , define 0 1( , )x x xb b ′=b  to be an arbitrary 2 1×  vector.   An argument similar to that used 

to prove Lemma A.2 of Ruppert and Carroll (1980) shows that he first-order conditions for (6.7) are 

(6.8) { }
00 1 0[ ( ) 0] ( ) ( / )n x x h pI Y b b X x K X x O h nτ − − − − ≤ − = .  

(6.9) { }
00 1 0[ ( ) 0] ( ) ( ) ( / )n x x h pI Y b b X x X x K X x O h nτ − − − − ≤ − − = . 

As is shown below, the asymptotic form of ˆ x xg g−  depends only on (6.8).  Therefore, only (6.8) is 

treated in the remainder of the proof.  Define 

 { }
01( ) [ ( ) 0] ( )n x x hT x I Y g g X x K X xτ ′= − − − − ≤ − ,  

 { }
02 ( ) ( ) [ ( ) 0] ( )n n x x hT x I Y g g X x K X xτ ′= − − − − − ≤ −  , 

 { }
03 0 1( , ) [ ( ) 0] [ ( ) 0] ( )n x x x x x hT x I Y b b X x I Y g g X x K X x′= − − − ≤ − − − − ≤ −b  ,  

and 

 { }
04 0 1( , ) ( ) [ ( ) 0] [ ( ) 0] ( )n x n x x x x hT x I Y b b X x I Y g g X x K X x′= − − − − ≤ − − − − ≤ −b   . 

In these definitions, xb  is an arbitrary, non-stochastic vector.  Then 

 { }
00 1 1 2 3 4[ ( ) 0] ( ) ( ) ( ) ( , ) ( , )n x x h n n n x n xI Y b b X x K X x T x T x T x T xτ − − − − ≤ − = + + +b b . 

We now derive the asymptotic forms of 1nT , 2nT , 3nT , and 4nT .   

 Analysis of 1( )nT x :  Let Fε  denote the distribution function of ε  in (1.1).  Then a Taylor series 

expansion yields 

( )

01

3
40 2
0

( ) [ ( ) ( )] ( ) ( )

(6.10) ( ) (0)
2

n x x h X

X x

T x F g z g g z x K z x f z dz

h f x f g O h

ε

ε

τ

κ

′= − − − − −

′′= +

∫
 

uniformly over x∈ . 

 Analysis of 2 ( )nT x :  Define 

 { }0 02
1

( ) ( ) [ ( )]
n

n a h i h i
i

T x K X x E K X x
n
τ

=

= − − −∑ , 
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0 0

1
2

1
( ) { ( 0) ( ) [ ( 0) ( )]}

n

n b i h i i h i
i

T x n I K X x E I K X xε ε−

=

= ≤ − − ≤ −∑ , 

and 

{(

{ )

0

0

2
1

( ) [ ( )] ( 0)} ( )}

[ ( )] ( 0)} ( )} .

i

i

n

n c i x X x i i h i
i

i x X x i i h i

T x I g g g X x I K X x
n

E I g g g X x I K X x

τ ε ε

ε ε

=

′= ≤ − + − − ≤ −

′− ≤ − + − − ≤ −

∑
  

Then  

 2 2 2 2n n a n b n cT T T T= + + .  

Let XF  and nXF  and, respectively, denote the distribution and empirical distributions functions of X .  

Define the stochastic process 1/2( ) [ ( ) ( )]nx nX XZ x n F x F x= − .  Define the limit process 0( )xZ x  by 

0( ) ( )nx xZ x Z x  as n →∞ .  Then a change of variables and integration by parts yields 

 

1/2
2

0

0

0 0
0 0 0

1/2 (1) 1/2 (2)
0 02 2

( ) ( )

( ) ( )

( ) ( ) [ ( ) ( )] ( )

( , ) ( , ).

n a nx

nx

x nx x

n a n a

v xn T x K dZ v
h

Z x h K d

Z x h K d Z x h Z x h K d

n T x h n T x h

τ

τ xxx 

τ xxx   τ xxxx  

 −
=  

 

′= − +

′ ′= − + − + − +

≡ +

∫

∫

∫ ∫
   

It follows from Theorem 3 of Komlós, Major, and Tusnády (1975) that there are processes nxZ  and 0
xZ

having the same distributions as nxZ  and 0
xZ  such that  

 20 1/2
1sup | ( ) ( ) | log C

nx x
x

P Z x Z x C n n n−−

∈

 − > <  
 


, 

where 1C  and 2C  are constants.  Therefore, 1/2
0 2( / ) ( )n an h T x  can be approximated by the mean-zero 

Gaussian process 1/2 (1)
0 02( / ) ( , )n an h T x h  in the sense that 

(6.10) 21/2 1/2 (1) 1/2
0 2 0 0 3 02sup | ( / ) ( ) ( / ) ( , ) | ( ) log C

n a n a
x

P n h T x n h T x h C nh n n−−

∈

 − > <  
. 

 Now consider 2n bT .  Let xFε  denote the distribution function of ( , )Xε  and n xF ε  denote the 

empirical distribution function.  Define 1/2( , ) [ ( , ) ( , )]n x n x xZ x n F x F xε ε εε ε ε= − , and let 0 ( , )xZ xε ε  denote 

the limiting Gaussian process of ( , )n xZ xε ε .  Integration by parts and a change of variables yields 
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1/2
2

0

0 0
0 0 0

(1) (2)1/2 1/2
0 02 2

( ) ( 0) ( , )

(0, ) ( ) [ (0, ) (0, )] ( )

( , ) ( , ).

n b n x

x n x x

n b n b

v xn T x I s K dZ s v
h

Z x h K d Z x h Z x h K d

n T x h n T x h

ε

ε ε εxxxxxxx     

 −
= ≤  

 

′ ′= − + − + − +

≡ +

∫

∫ ∫  

To bound (2)1/2
2n bn T , let 0n̂  denote the number of observations for which 0iε ≤ .  Assume without 

loss of generality that these are the first 0n̂  observations.  The corresponding iX ’s are a random sample 

of X , because X  and ε  are independent.  We have 

 
0

0

1

1

ˆ
10

0
1

0
ˆ

(0, ) ( 0) ( )

ˆ ˆ ( )

ˆ
( ).

n

n x i i
i

n

i
i

n x

F x n I I X x

n n I X x
n

n F x
n

ε ε−

=

−

=

= ≤ ≤

= ≤

≡

∑

∑  

Moreover, because ε  and X  are independent, 

 

0

0 0

0 0

0
ˆ

0
ˆ ˆ

1/2 0 1/2 1/2 1/2
ˆ ˆ0 0 1 2

ˆ
(0, ) (0, ) ( ) (0) ( )

ˆ
(0)[ ( ) ( )] (0) ( )

ˆ ˆ(0) ( ) ( ) (0) ( ) (0) ,

n x x n x x

n n x x n x

x n n n x n

nF x F x F x F F x
n

nF F x F x F F x
n

F n Z x n F x F n r x F n r

ε ε ε

ε ε

ε εx− − − −

− = −

 = − + −  

= + + +

 

where ~ (0, )N Vξξ , (0)[1 (0)]V F Fξ ε ε= − ,  

1/2 0ˆ (0) dnn F
n ε ξ − →  

, 

 
0

1/2 0
ˆ1 0ˆ( ) [ ( ) ( )] ( )n n x x xr x n F x F x Z x= − − , 

and  

1/2 0
2

ˆ
(0)n U

nr n F
n

ξ = − −  
. 
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By Theorem 3 of Komlós, Major, and Tusnády (1975), there are a version 1( )nr x of 1( )nr x  and constants 

4C  and 5C  such that 

 51/2
1 4sup | ( ) | log C

n
x

P r x C n n n−−

∈

 > < 
 




. 

A similar result applies to 2 ( )nr x .  Therefore, 1/2
0 2( / ) ( )n bn h T x  can be approximated by the mean-zero 

Gaussian process (1)1/2
0 02( / ) ( , )n bn h T x h  in the sense that there are finite constants 6C  and 7C  such that 

(6.11) 71/2 1/2 (1) 1/2
0 2 0 0 6 02sup | ( / ) ( ) ( / ) ( , ) | ( ) log C

n b n b
x

P n h T x n h T x h C nh n n−−

∈

 − > <  
. 

 It follows from Theorem 2.37 of Pollard (1984) that  

(6.12) 
1/2

. . 3/2 1/2
2 0

0
( ) [ (log ) ]a s

n c
n T x o h n
h

δ+ 
= 

 
 

uniformly over x∈  for any 0δ > .  Combining (6.10)-(6.12) yields the result that 1/2
0 2( / ) ( )nn h T x  can 

be approximated by the mean-zero Gaussian process (1) (1)1/2
0 0 02 2( / ) [ ( , ) ( , )]n a n bn h T x h T x h+ .  The sample 

paths of this process are uniformly continuous in 0h  (Dudley 1967).  A straightforward but lengthy 

calculation shows that the covariance function of this process converges to  

(6.13) 1 2 1
1( , ) ( ) ( ) ( )XC x x f x K K dτ ζ ζ d ζ
τ
− = + 

  ∫ , 

where 1 2 0( ) /x x hδ = − .  Let 1( )W ⋅  denote the mean-zero Gaussian process whose covariance function is 

1 2 1 1( , ) / ( , )C x x C x x .  Then it follows from Theorem 5.8 of Boucheron, Lugosi, and Massart (2013) and 

criterion B of Loève (1978, p. 268) that for any 0η >   

(6.14) 
1/2 1/2

2 1
0 0

1lim sup ( ) ( ) 0n X Kn x

n xP T x f x B W
h h

τ h
τ→∞ ∈

    −   − > =             
. 

 Analysis of 3nT .  We have 

{ }
0

0

3 0 1

0 1

( , ) [ ( ) 0] [ ( ) 0] ( )

(6.14) { [ ( )] [ ( )]} ( ) ( ) .

n x x x x x h

x z x x z x h X

T x I Y b b X x I Y g g X x K X x

F b g b z x F g g g z x K z x f z dzε ε

′= − − − ≤ − − − − ≤ −

′= − + − − − + − −∫

b 

 

Suppose there is a constant 1C < ∞  such that  

(6.15) 
1/2

0
0

logsup | |x x
x

nb g C
nh∈

 
− ≤  

 
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and 

(6.16) 
1/2

1 2 3
0

logsup | |x x
x

nb g C
nh∈

 
′− ≤   

 
. 

Define 

{ : (6.15) and (6.16) hold for all }x x= ∈b�  . 

Then the change of variables 0( ) /z x hx = −  and Taylor series expansions about zero of the Fε  terms in 

the integral on the right-hand side of (6.15) yield 

(6.17) 3 0 0 2
;

logsup | ( , ) (0) ( )( ) |
x

n x X x
x

nT x h f f x b g C
nε

∈ ∈

 − − ≤  
 b

b
 

   

for some constant 2C < ∞  and all sufficiently large n .   It follows from Proposition 2 of Guerre and 

Sabbah (2012) that 

(6.18) 
1/2

0

logˆsup | |x x p
x

ng g O
nh∈

   − =  
   

 

and 

(6.19) 
1/2

3
0

logˆsup | |x x p
x

ng g O
nh∈

   ′ ′− =      
. 

Let ˆ ˆ ˆ( , )x x xg g′=b .  Then (6.17)-(6.19) imply that 

(6.20) 3 0 0
logˆˆsup | ( , ) (0) ( )( ) |n x X x p

x

nT x h f f x b g O
nε

∈

  − − =     
b


. 

 Analysis of 4nT .  We have 

 

{ }
0

0

0 1

0 1

0 1

[ ( ) 0] [ ( ) 0] ( )

{ [ ( ) ( )]

[ ( ) ( )]} ( ).

x x x x h

x X x x X x

x X x x X x h

I Y b b X x I Y g g X x K X x

I g g g X x b g b X x

I b g b X x g g g X x K X x

ε

ε

′− − − ≤ − − − − ≤ −

′= − + − < ≤ − − −

′− − − − < ≤ − + − −

 

Let (6.15) and (6.16) hold.  Then, 

 { }( )0

2 2 0
0 1

log[ ( ) 0] [ ( ) 0] ( )x x x x h
h nI Y b b X x I Y g g X x K X x C

n
 ′− − − ≤ − − − − ≤ − ≤  
 

  

for some C < ∞  and all sufficiently large n .  It follows from Theorem (2.37) of Pollard (1984) that 

 
3/4

1/4
4 0

,

logsup | ( , ) |
x

n x
x

nT x h
n∈ ∈

 
 
 b

b 0

 
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almost surely.  Therefore, it follows from (6.18) and (6.19) that  

(6.21) 
3/4

1/4
4 0

logˆ( , )n x p
nT x O h

n

  =   
   

b . 

 Now combine (6.10), (6.14), (6.20), and (6.21) to obtain 

{ }

( )

0

3
0 2

0 1

1/21/2
40

1 0 0
0

1/2 3/4
1/40
0

ˆ ˆ[ ( ) 0] ( ) ( ) (0)
2

1 ˆ( ) (0) ( )( ) |

log log

n x x h X x

X K X x x

p p p

hI Y b b X x K X x f x f g

h xf x B W h f f x g g O h
n h

n h nO o O h
n n n

ε

ε

κτ

τ
τ

′′− − − − ≤ − =

 −    + + − +           

        + + +                   



1/21/2 1/23
0 2 0 0

1 0
0

1 ˆ(6.22) ( ) (0) ) ( ) (0) ( )( ) |
2 X x X K X x x p

h h x hf x f g f x B W h f f x g g o
n h nε ε

κ τ
τ





  −      ′′= + + − +                    
uniformly over x∈ .  The theorem follows from combining (6.8) and (6.22).  Q.E.D. 

Proof of Theorem 3.2:  Define * *( ) ( ).n nbT x E T x=   By definition,  

ˆ ˆ
j jj j n i X X nq g g qε ε ε= − = + − − .   

Then conditional on the original data,  

 
0

2 1

1 1

ˆ ˆ ˆ ˆ( ) [1 ( ( ) )] ( )
j j

n n

n j X X x X x i n h i
i j

T x n I g g g g g X x q K X xτ ε− −

= =

′= − ≤ − + − + − + −∑∑ . 

By construction, 

 1 1 1

1

ˆ[1 ( 0)] ( )
n

j p
j

n I O nτ ε− − −

=

− ≤ =∑ , 

so 
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0

0

2
1 1

1

( , )
1

1

1 ˆ ˆ ˆ ˆ( ) { [ ( ) )]

ˆ( )} ( ) ( )

1 ˆ ˆ ˆ ˆ{ ( ( ) )]

ˆ( )} ( ) ( ),

j j i

j j

i

n n

n j X X x X x i n
i j

j X X n h i p

n

n Z Z Z x X x i n
i

Z Z n h i p

T x I g g g g g X x q
n

I g g q K X x O n

I g g g g g X x q
n

I g g q K X x O n

ε

ε
τ

ε

ε
τ

ε

= =

−

=

−

′= − ≤ − + − + − +

− ≤ − + − +

′= − − ≤ − + − + − +

− ≤ − + − +

∑∑

∑



  

where ( , )n Zε  is the empirical measure of ( , )Xε  and this notation is used instead of ( , )n Xε  to avoid 

confusion with the data { : 1,..., }jX j n= .  Define 

 ˆ( )Z Zv g gε= − − , 

and let v  and nv , respectively, denote the population and empirical measures of v .  Then,   

0

0

0

1

1

1

1 ˆ ˆ ˆ( ) { ( ( ) )] ( )} ( ) ( )

1 ˆ ˆ ˆ(6.23) { ( ( ) )] ( )} ( )

1 ˆ ˆ ˆ( ){ ( ( ) )] ( )} (

i

i

i

n

n nv x X x i n n h i p
i

n

v x X x i n n h i
i

nv v x X x i n n h i

T x I v g g g X x q I v q K X x O n
n

I v g g g X x q I v q K X x
n

I v g g g X x q I v q K X x
n

τ

τ

τ

−

=

=

′= − − ≤ − + − + − ≤ − +

′= − − ≤ − + − + − ≤ −

′+ − − ≤ − + − + − ≤ −

∑

∑

 



  1

1
) ( ).

n

p
i

O n−
=

+∑
The summands on the right-hand side of (6.23) are non-zero only if | |i nX x h− ≤ , ( )g x  is continuous, 

and ˆ( ) ( ) 0pg x g x− →  uniformly over x∈  by Proposition 2 of Guerre and Sabbah (2012).  In addition, 

the empirical process ( ) ( ) ( )n nv vt I v tϕ = − ≤   is stochastically equicontinuous.  Therefore, the second 

term on the right-hand side of (6.23) is 1/2
0( )pO h n− , and  

0

1/2
0

1

1 ˆ ˆ ˆ( ) { ( ( ) )] ( )} ( ) ( )
i

n

n v x X x i n n h i p
i

T x I v g g g X x q I v q K X x O h n
nτ

−

=

′= − − ≤ − + − + − ≤ − +∑  . 

Because ε  and X  are independent, 

0

1

1/2
0

1 ˆ ˆ ˆ ˆ(6.24) ( ) { ( ( ) )]

ˆ( )} ( ) ( ).

i

n

n Z Z Z x X x i n
i

Z Z n h i p

T x I g g g g g X x q
n

I g g q K X x O h n

ε ε
τ

ε

=

−

′= − − ≤ − + − + − +

− ≤ − + − +

∑  

 

Define 
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 1
ˆ ˆ ˆ ˆ ˆ( , , ) ( )

ii Z Z x X x i nA x X Z g g g g g X x q′= − + − + − +  

and 

 2
ˆ ˆ( ) Z Z nA Z g g q= − + . 

We have 1/2 1/2
0ˆ| ( ) ( ) | [( ) (log ) ]pg x g x O nh n−− =  and 3 1/2 1/2

0ˆ| ( ) ( ) | [( ) (log ) ]pg x g x O nh n−′ ′− =  uniformly 

over x∈ .  Moreover, in the summand on the right-hand side of (6.24), only terms for which 

0| |iX x h− ≤  are non-zero.  Therefore, arguments like those used to obtain (6.24) show that  

 

0

1/2
1 2 0

1

1/2
0

(0) ˆ ˆ( ) [ ( , , ) ( )] ( ) ( )

( ) ( ) ( ),

n

n Z i h i p
i

na nb p

fT x A x X Z A Z K X x O h n
n

T x T x O h n

ε
τ

−

=

−

= − − − +

≡ + +

∑

 



 

where 

 
0

1

(0)( ) [ ( )] ( )
i

n

na x X x i h i
i

fT x g g g X x K X x
n

ε
τ =

′= − − + − −∑  

and 

 
0

1

(0) ˆ ˆ ˆ( ) [( ) ( ) ( )( )] ( )
i i

n

nb x x X X x x i h i
i

fT x g g g g g g X x K X x
n

ε
τ =

′ ′= − − − − + − − −∑ . 

Standard calculations for kernel estimators show that 

 
3

42 0
0

(0) ( ) ( )( ) ( )
2

X
na

h f g x f xT x O hεκ
τ
′′

= − + , 

uniformly over x∈  and 

(6.25) 
1/2 5/2

2 0
0

0

(0) ( ) ( ) ( )
2

X
na

n d f g x f xT O h
h

εκ
τ

  ′′
= − + 

 
  

uniformly over x∈ . 

 Now consider ( )nbT x .  It follows from Theorem 3.1 that 

 

5/2
1/2 1/20 2

0 0 0 1
0

1/2 1/2
0 0 1 0

0

ˆ ˆ( ) ( ) ( ) [ ( ) ( )] ( ) ( )
2

( ) ( ) [( ) ].

i ix x X X i

i
i p

d xg g g g nh g x g X nh x W
h

Xnh X W o nh
h

κ ψ

ψ

− −

− −

 
′′ ′′− − − = − +  

 

 
− + 

 

 

Combining this result with assumption 4 yields  
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0 0

0

1/2
0 0 1

01 1

1/2
1/2 0

0 0 1
01

1/2
0 0

1
0

(0) (0)ˆ ˆ[( ) ( )] ( ) ( ) ( ) ( )

(0) ( ) ( ) ( )

(0) ( ) ( )

i i

n n

x x X X h i h i
i i

n
i

i h i p
i

X
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uniformly over x∈ .  Therefore, 
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uniformly over x∈ .  In addition, 3 1/2 1/2
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almost surely uniformly over x∈  by Theorem 2.37 of Pollard (1984).  Therefore, 
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uniformly over x∈ .  This proves part (i) of the theorem.  Part (ii) is an immediate consequence of part 

(i), uniform consistency of ˆ ( )Xf x , and consistency of ˆ (0)fε .  Q.E.D. 

 Proof of Corollary 3.3:  A Taylor series expansion of ˆ( , )xπ α  about ˆ( ) ( )x xλ λ=  yields 

 1 /2 1 /2
ˆˆ( , ) [ ( ) ( )] [ ( ) ( )] ( )[ ( ) ( )]nx z x x z x x r x x xα απ α λ λ λ λ− −= Φ − − ∆ −Φ − − − ∆ + − ,  

where 
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 1 /2 1 1 /2 2( ) [{ [ ( ) ( )] [ ( ) ( )]}nr x z x x z x xα αφ λ φ λ− −= − + ∆ − − + − ∆   

and 1( )xλ  and 2( )xλ  are between ˆ( )xλ  and ( )xλ .  The corollary now follows from Theorem 3.2(ii) and  

boundedness of ( )nr x .  Q.E.D.   

 6.3  Proofs of Theorems 3.4 and 3.5 

 Proof of Theorem 3.4:  Part (i) follows from Corollary 3.3.  The process ( )∆ ⋅  is a non-stochastic 

multiple of 1W  and has uniformly continuous sample paths (Dudley 1967).  Parts (ii) and (iii) of the 

theorem follow from arguments identical to those used to prove results (4.12) and (4.13) of HH.  Q.E.D. 

 Proof of Theorem 3.5:  It suffices to show that asymptotically, max
ˆ max ( )x xλ λ∈≥   and 

min
ˆ min ( )x xλ λ∈≤  .  We prove that max

ˆ max ( )x xλ λ∈≥   asymptotically.  The proof for minλ̂  is similar.  

 To show that max
ˆ max ( )x xλ λ∈≥   asymptotically, observe that ( )xλ  is a continuous function on 

the compact interval  .  Therefore, there is a point *x ∈  such that *max ( ) ( )x x xλ λ∈ = .  Assume that 

*x  is unique.  The proof for a unique *x  holds with minor modifications if *x  is not unique.  Given any 

0ε > , choose 0δ >  so that 

 *| ( ) ( ) |x xλ λ ε− <  

whenever 

 *| |x x δ− ≤ . 

Because 

 
*| |

ˆ ˆsup ( ) sup ( )
x x x

x x
δ

λ λ
∈ − ≤

≥


, 

it suffices to show that  
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*

| |

ˆsup ( ) ( )
x x

x x
δ
λ λ
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≥ . 

By Theorem 3.2(ii)  

 
ˆ

( )ˆ( ) ( )
( )g

xx x
x

βλ
σ

= + ∆ .  

If * *[ , ]x x xδ δ∈ − + , then  
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*
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ˆ ˆ ˆ

( ) ( ) ( )ˆ( ) ( ) ( ) ( )
( ) ( ) ( )g g g

x x xx x x x
x x x

β β βε λ ε λ
σ σ σ

∆ > ⇒ = + ∆ > + > = . 

Therefore, ( )x ε∆ >  for some * *[ , ]x x xδ δ∈ − +  implies that *
max

ˆ ( )xλ λ≥ .  To prove that ( )x ε∆ >  for 

some * *[ , ]x x xδ δ∈ − + , let 0 ,...,
nJx x  be a set of points such that 
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 * *
0 1 ...

nJx x x x xδ δ− = < < < = + . 

Let 1 02j jx x h−− >  for each 1,..., nj J=  and nJ →∞  as n →∞ .  This is possible because 0 0h →  and δ  

remains fixed as n →∞ .  Then 0( ),..., ( )
nJx x∆ ∆  are independent random variables that are normally 

distributed with means of 0 and variances that are bounded away from 0 as n →∞ .  Let 
2
min[ ( )] 0Var x σ∆ ≥ > ,  Then as n →∞ , 

 1
min

0
[ ( ) ] [ ( / )] 0

n
n

J
J

j
j

P x ε ε σ +

=

  ∆ ≤ ≤ Φ → 
  


, 

and 

 *
max

ˆ[ ( )] 1P xλ λ≥ → . 
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TABLE 1:  SIMULATION RESULTS FOR τ = 0.25 
 

 
Method n  j  Prop. 

with 
Cov. 
Prob. 

0.95≥  

Av. Abs. 
Error of 
Cov. Prob. 

Av. Width 

Bootstrap 
method of 
Sec. 2.1 

100 1 0.76 0.034 1.76 

  2 0.73 0.022 1.57 
  3 0.97 0.024 1.26 
 500 1 0.89 0.049 1.01 
  2 1.0 0.033 0.83 
  3 1.0 0.028 0.59 
 1000 1 0.92 0.051 0.80 
  2 0.95 0.032 0.62 
  3 0.94 0.026 0.44 
      
Undersmooth 100 1 0 0.097 1.24 
  2 0 0.07 1.18 
  3 0.03 0.04 1.16 
 500 1 0.30 0.065 0.68 
  2 0.22 0.016 0.71 
  3 0.35 0.01 0.66 
 1000 1 0.32 0.062 0.52 
  2 0.41 0.014 0.57 
  3 0.40 0.009 0.56 
      
Bias Corr. 100 1 0 0.18 1.38 
  2 0 0.19 1.37 
  3 0 0.15 1.31 
 500 1 0 0.11 1.07 
  2 0.08 0.052 0.91 
  3 0.06 0.036 0.078 
 1000 1 0 0.068 0.88 
  2 0.08 0.14 0.81 
  3 0.09 0.018 0.059 
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TABLE 2:  SIMULATION RESULTS FOR τ = 0.50 
 

 
Method n  j  Prop. 

with 
Cov. 
Prob. 

0.95≥  

Av. Abs. 
Error of 
Cov. Prob. 

Av. Width 

Bootstrap 
method of 
Sec. 2.1 

100 1 0.73 0.034 1.64 

  2 0.76 0.022 1.48 
  3 0.97 0.024 1.17 
 500 1 0.89 0.048 0.95 
  2 1 0.035 0.79 
  3 0.95 0.027 0.56 
 1000 1 0.92 0.056 0.74 
  2 0.97 0.035 0.58 
  3 0.94 0.029 0.41 
      
Undersmooth 100 1 0 0.075 1.20 
  2 0 0.053 1.19 
  3 0.06 0.026 1.17 
 500 1 0.27 0.021 0.78 
  2 0.41 0.016 0.62 
  3 0.51 0.094 0.57 
 1000 1 0.49 0.025 0.56 
  2 0.51 0.011 0.51 
  3 0.63 0.099 0.43 
      
Bias Corr. 100 1 0 0.14 1.38 
  2 0 0.12 1.35 
  3 0 0.092 1.26 
 500 1 0 0.069 1.01 
  2 0.11 0.028 0.86 
  3 0.17 0.019 0.69 
 1000 1 0.05 0.038 0.80 
  2 0.11 0.025 0.63 
  3 0.20 0.013 0.51 
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TABLE 3:  SIMULATION RESULTS FOR τ = 0.75 
 

 
Method n  j  Prop. 

with 
Cov. 
Prob. 

0.95≥  

Av. Abs. 
Error of 
Cov. Prob. 

Av. Width 

Bootstrap 
method of 
Sec. 2.1 

100 1 0.76 0.032 1.74 

  2 0.89 0.023 1.58 
  3 0.94 0.020 1.20 
 500 1 0.86 0.045 0.98 
  2 1 0.033 0.78 
  3 0.91 0.022 0.57 
 1000 1 0.86 0.046 0.76 
  2 0.97 0.035 0.62 
  3 0.94 0.026 0.42 
      
Undersmooth 100 1 0 0.092 1.20 
  2 0 0.071 1.10 
  3 0 0.045 0.90 
 500 1 0.27 0.056 0.68 
  2 0.27 0.025 0.62 
  3 0 0.033 0.45 
 1000 1 0.35 0.055 0.52 
  2 0.32 0.024 0.46 
  3 0.11 0.028 0.34 
      
Bias Corr. 100 1 0 0.011 1.07 
  2 0 0.019 1.37 
  3 0 0.015 1.31 
 500 1 0 0.0.068 0.89 
  2 0.08 0.05 0.91 
  3 0.06 0.036 0.78 
 1000 1 0 0.068 0.89 
  2 0.08 0.048 0.81 
  3 0.09 0.018 0.59 
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TABLE 4:  THE BOOTSTRAP METHOD’S COVERAGE PROBABILITIES FOR 1g  WHEN 
THE INTERVAL [-0.05,0.05] IS REMOVED FROM S  

 
n  τ  Prop. 

with 
Cov. 
Prob. 

0.95≥  

Av. 
Abs. 
Error 
of Cov. 
Prob. 

Av. 
Width 

100 0.25 0.76 0.020 1.71 
 0.50 0.79 0.022 1.62 
 0.75 0.85 0.021 1.75 
500 0.25 0.91 0.033 0.92 
 0.50 1.0 0.039 0.88 
 0.75 0.94 0.035 0.94 
1000 0.25 0.94 0.034 0.70 
 0.50 1.0 0.041 0.67 
 0.75 0.94 0.035 0.71 
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TABLE 5:  COVERAGE PROBABILITIES OF UNIFORM CONFIDENCE BANDS OBTAINED 
BY THE BOOTSTRAP METHOD 

 
τ  n  j  Cov. Prob. 
0.25 100 1 0.84 
  2 0.94 
  3 0.95 
 500 1 0.92 
  2 0.99 
  3 0.97 
 1000 1 0.94 
  2 1 
  3 0.98 
    
0.50 100 1 0.85 
  2 0.95 
  3 0.93 
 500 1 0.95 
  2 1 
  3 0.97 
 1000 1 0.95 
  2 1 
  3 0.98 
0.75 100 1 0.86 
  2 0.96 
  3 0.96 
 500 1 0.94 
  2 1 
  3 0.97 
 1000 1 0.95 
  2 1.0 
  3 0.97 
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Figure 1:  Conditional quantile functions.  Solid line is 1( )g x .  Long dashes are 2( )g x .  Short dashes are 

3( )g x .    
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