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Abstract

In this paper we explore a new approach to estimation for autoregressive
panel data models, based on projecting the unobserved individual effects on
the vector of observations on the lagged dependent variable. This approach
yields estimators which coincide with known generalised method of mo-
ments (GMM) estimators for models where stationarity is not imposed on
the initial conditions and for models which satisfy mean stationarity. Our
approach allows us to obtain a simple linear estimator for models which
satisfy covariance stationarity, which although not fully efficient performs
very well in simulations.
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1. Introduction

In this paper we explore a new approach to estimation for autoregressive panel
data models, based on projecting the unobserved individual effects on the vector
of observations on the lagged dependent variable. This approach yields estimators
which coincide with known generalised method of moments (GMM) estimators for
models where stationarity is not imposed on the initial conditions (cf. Arellano
and Bond, 1991) and for models which satisfy mean stationarity (cf. Blundell
and Bond, 1998). Our approach allows us to obtain a simple linear estimator
for models which satisfy covariance stationarity, which although not fully efficient
performs very well in simulations.

Projection estimators for static panel data regression models with correlated
individual effects were proposed by Chamberlain (1980, 1982, 1984). The basic
idea is to consider the reduced form equations relating the endogenous variable in
each period to the whole time series of observations on the exogenous variables.
Parameters of interest are identified by imposing restrictions on this matrix of
reduced form coefficients (the ‘TI matrix’), and can be estimated using minimum
distance methods. Recently Ruud (2000) has shown how the parameters of inter-
est can be estimated more simply from a single least squares regression, in which
the endogenous variable (y;;) is regressed on the exogenous variables (z;) as well
as each of the observations x;1, z;9, ..., x;7, with identification achieved simply by
imposing the constancy of parameters through time. This approach yields an
estimator that can be implemented using a standard regression package.

Projection estimators for autoregressive panel data models with individual
effects were suggested by Chamberlain (1980), and discussed in Sevestre and
Trognon (1996) and Crépon and Mairesse (1996). These estimators are based

on the projection of the individual effects on the initial conditions (y;;). In this



case the reduced form equations for each period relate y;; to the observation on
y;1 only, and estimation again proceeds by imposing restrictions on this matrix of
reduced form coefficients using minimum distance.

Our approach is based instead on the projection of the individual effects on the
whole time series of observations on the lagged dependent variable. As in Ruud
(2000), this allows the parameters of interest to be estimated simply from a single
linear regression. In our case y;; is regressed on the lagged dependent variable
(yit—1) as well as each of the observations ¥, ...,y; 7—1. Consistent estimates of
the autoregressive parameter of interest can be obtained from a simple two-stage
least squares (2SLS) estimator, although since the model is over-identified (for
T > 3) a more efficient linear GMM estimator is also available. These estimators
can be implemented using standard regression packages for panel data such as
DPD (Arellano and Bond, 1998), and TSP (Hall and Cummins, 1999).

We consider three different models for the initial conditions. In the first, no
restrictions are imposed on the initial conditions except that they are uncorre-
lated with later shocks to the autoregressive process. In this case our projection
estimator coincides with the first-differenced GMM estimator for autoregressive
panel data models, developed in Holtz-Eakin, Newey and Rosen (1988) and Arel-
lano and Bond (1991). In the second model, the initial conditions are assumed
to satisfy mean stationarity. In this case our projection estimator coincides with
the ‘system’ GMM estimator developed in Arellano and Bover (1995), Ahn and
Schmidt (1995) and Blundell and Bond (1998). In the third model, the initial
conditions are assumed to satisfy covariance stationarity. In this case we obtain
a projection estimator that exploits the covariance stationarity restriction, and
which is non-linear in the parameters of interest. We also suggest a simpler linear
projection estimator for the covariance stationary model which, although not fully

efficient, is shown to perform very well in simulations.



The remainder of the paper is structured as follows. Section 2 describes the
three models we consider. Section 3 reviews the GMM estimators that have been
proposed for these models. Section 4 introduces the projection estimators that
we consider. Section 5 reports a Monte Carlo study which investigates the finite
sample properties of these estimators, and presents some asymptotic variance

comparisons. Section 6 concludes.

2. Models

Consider the simple dynamic AR(1) panel data model

Yit = QYir—1 + Ut

Ui = N + Vi,

fori =1,...., Nandt = 2,...,T; N is large, T is fixed and |«| < 1. The observations

are independent across individuals and the error term satisfies
E(m) =0, E(vy) =0 fori=1,..,Nandt=2,....T

and

E (vivis) =0 fori=1,..,N and t # s.

In this paper we consider three models that impose different restrictions on the
initial conditions y;; and/or the error term.

The first model, Model 1, only assumes that the v;; are uncorrelated with y;;:
E (yivye) =0 fori=1,...,Nandt=2,....,T.

This model is similar to Model 1 of Alonso-Borrego and Arellano (1999).!

Model 1 of Alonso-Borrego and Arellano (1999) makes the stronger assumption
E (vitlyi1, viz, --Yie—1) = 0.



The second model, Model 2, imposes an error components structure on the

error term, and mean stationarity on the process, implying that

Emwvyg)=0 fori=1,..,Nandt=2,..T

yﬂ:LjLEi fori=1,...N
11—«

and

E(g)=FE(ne)=0 fori=1,...,N.
See for example Arellano-Bover (1995) and Blundell-Bond (1998). Our Model 2
is the same as Model 2 in Alonso-Borrego and Arellano (1999).

Finally, Model 3 further imposes homoskedasticity and covariance stationar-

ity,? implying that

E(n}) = op fori=1,..,N (2.1)

(v) = o2 fori=1,.,Nandt=2,.,T (2.2)
0,2

E(e]) = — fori=1_.N. (2.3)
—

3. GMM Estimation

3.1. Model 1

In Model 1, there are the following (7" — 1) (T' — 2) /2 linear moment conditions
available for the estimation of a by GMM

E (yisAuy) =0 fort=3,....T and s=1,....t—2, (3.1)

2We impose homoskedasticity across individuals i = 1,..., N for simplicity, although only
homoskedasticity of the v; disturbances over time is strictly required for the results presented
below.



where Auy = wy —u;1—1 = Ay —aAy; 1, see for example Arellano-Bond (1991).

Specifying the instrument set as

y1 0 O ... 0 ... 0
o o o .0 ...0
0 0 0 cee Yo o YiT—2

the GMM estimator minimises
<i i Z(Au->,WN <i i Z{Au)
N NS
where Au; = [Augg, A, . .., Augr), and Wy is a positive definite weight matrix
that converges to a matrix W as N — oo. Under homoskedasticity of the v;;, the
optimal weight matrix which results in the minimum asymptotic variance of the
GMM estimator for o, based on these moment conditions, is given by

1 -

i=1

where H is a (T — 2) square matrix which has 2’s on the main diagonal, —1’s
on the first subdiagonals and zeros elsewhere. Under more general conditions, an

optimal two-step estimator is based on the weight matrix
—1

1 X —
where ELZ are the residuals based on an initial consistent estimator for .
Simulation studies which have investigated the finite sample properties of this

estimator include Blundell-Bond (1998) and Alonso-Borrego and Arellano (1999),
and this differenced GMM estimator has been used in many applied studies.

3.2. Model 2

In Model 2 there are the following extra (T' — 2) linear moment conditions avail-
able
E (uitAyi,t—l) =0 fort= 3, ceey T, (32)

5



see Arellano-Bover (1995), Ahn-Schmidt (1995) and Blundell-Bond (1998). The
‘system’ GMM estimator for « is obtained by stacking the residuals from the

differenced and level equations, and extending the instrument matrix to

Z; 0 .- 0
75 _ 0 Ay - 0
0 0 T Ayz’,T—l

There is no feasible optimal one-step weight matrix for this model, except for the
special case in which the v;; are homoskedastic and n; = 0 for + = 1, ..., N. In that

case the optimal weight matrix is given by
1 X -
Wy = (N ; Zf’AZf)
where
e

with H defined above, I the identity matrix of order (T" — 2), and C' a (T' — 2)
square matrix with 1’s on the main diagonal, —1’s on the first lower subdiagonal,
and zeros elsewhere.

The finite sample properties of this estimator are investigated in Blundell-Bond
(1998) and Alonso-Borrego and Arellano (1999). Blundell-Bond (2000) provide an
application to production function data, and Bond-Hoeffler-Temple (2001) provide

an application to empirical growth models.
3.3. Model 3

In Model 3, there are (7' — 2) additional linear moment conditions due to the

homoskedasticity (through time) of v;;, given by

E (yz-tuz-t — yz-7t_1uz-7t_1) =0 for t= 3, caey T. (33)



Ahn and Schmidt (1997) derive the following non-linear moment condition which

is valid under the further assumption (2.3) of covariance stationarity

(3.4)

A, U;3U4
E[y?1+yz 3 32]:

l1-ao? (1-a)
Recently, Kruiniger (2000) has shown that the non-linear moment condition

(3.4) can be replaced by the linear moment condition

The full set of 0.5 x T'(T'+ 1) — 2 linear moment conditions for Model 3 con-
sists then of (3.1), (3.2), (3.3) and (3.5). The GMM estimator for this model
is obtained by again stacking the residuals from the differenced and level equa-
tions, augmented by the residual (Ayi2)2 +2Ayi0Ayiz — (Ayi2)2. The instrument

matrix is then given by

[ Z; 0 0 0 0 0
0 0 oo oo 0 —g O e e 0
0 Ay - -- 0 Yis  —Yi3 :

cs : . .
Z;7 = : : i : 0 Yia

: : " 0 : : =Y
O 0 - 0 Ayra O 0O - wyr O

| O o --- 0 0 0 0o .- 0 1 ]

Unlike the GMM estimators for Models 1 and 2, there is no feasible optimal one-
step weight matrix for this model, even in the case when 072] = 0, and the v; are
homoskedastic.

We are not aware of any Monte Carlo study that has investigated the small
sample properties of this GMM estimator for the covariance stationary model, or

indeed of any applied study that has utilised the extra moment condition (3.5).



4. Projection Estimation

In this section we analyse the properties of a projection approach. The projection

of the individual effects conditional on ¥;1, ¥i2, ..., ¥; 7—1 is given by

Proj (milyi, Yiz, -, Yir—1) = 611 + 62Yiz + ... + dr_1¥i -1, (4.1)

where Proj (z|x) represents the population least squares projection of a variable
z on a set of variables x, see Chamberlain (1982).

Projection estimators for static panel data regression models were proposed
by Chamberlain (1980, 1982, 1984). One class of estimators that extend this
approach to autoregressive models project 7; on the initial conditions y;; only (see
Chamberlain, 1980, Sevestre-Trognon, 1996, and Crépon-Mairesse, 1996). These
estimators require non-linear restrictions to be imposed on the reduced form, using
minimum distance techniques. Our approach allows estimates to be calculated by
imposing simple restrictions in a 2SLS regression, and can be implemented easily
using regression packages for panel data, such as DPD (Arellano and Bond, 1998)
and TSP (Hall and Cummins, 1999). Our projection approach is similar in spirit
to that suggested by Ruud (2000, pp. 630-635) for static panel data regression

models.

4.1. Model 1

Model 1 does not impose any structure on the relationship between y;; and 7;.
Therefore there are no implicit restrictions on the § parameters in (4.1). The

projection estimator is obtained from specifying the model as

Yie = QU1+ (5’27”1 +uy fori=1,...,Nandt=2,..T (4.2)

Ui = 1 + Vi,



where § = [61,0s,...,67_1], giT_l = [yi1, Yo, - - - ,yz-yT_l]’ and 7, = 1; — 6’giT_1. The
important point is that, unlike the original 7;, here 7; is uncorrelated with y—*
by construction, so that suitably lagged levels of y; can be used as instruments
in (4.2) without further transformation.

We consider estimating (4.2) by 2SLS, using the sequential instruments Z
defined as

ypa 0 0 ... 0 ... 0
P _ 0 Y Ui 0 0
" lo 0 0 .0 ...0

0O 0 0 ... ya ... YT

A necessary condition for the identification of « is that 7" > 3. As shown in
the Appendix this 2SLS estimator of « is numerically identical to the differenced
GMM estimator that uses the optimal weight matrix under homoskedasticity of
v;.> The model is over-identified when T > 3, and an efficient two-step estimator

can be obtained using the weight matrix

-1
Wy = <% iZf@ﬁ;ZlP> :
i=1
where @, are the one-step residuals. This two-step estimator of « is also numer-
ically identical to the two-step differenced GMM estimator described in section
3.1, when the corresponding one-step estimator is used to estimate the weight

matrix.

4.2. Model 2

Model 2 imposes (17" — 2) restrictions on the § parameters, which can easily be

imposed as follows. Under the assumptions that specify Model 2, E (y;n;) is

3The OLS estimator for a in equation (4.2) coincides with the familiar within groups esti-
mator, as also shown in the Appendix.



constant over time, and here we define?
E (yum:) =k for t=1,...,T.

Let ¢ be a vector of 1’s of order (7" — 1). The projection parameters § are then

given by
-1
§ = E <gT1 (ﬂfl)/> E(y 'm)
—1
= kE (giT_l (giT_l)/> L.
Letting Y 1 = |y] "y ™%, g%‘l}/, the model incorporating the restrictions is

specified as
1 ! N
Yit = Qi1 + K’ <NYL1Y1> gffl + 1 + Vit

and the parameters a and k are estimated by 2SLS, using the same instruments
ZF. As shown in the Appendix, the resulting estimator of « is numerically iden-
tical to the system GMM estimator described in section 3.2, using the optimal
initial weight matrix for the case when the v; are homoskedastic and 7; = 0 for
i=1,...,N. In order to calculate the correct (robust) asymptotic standard errors
and optimal two-step GMM estimator, the residuals @;; = y;x — @y; 1 have to be
used. In that case, the two-step projection estimator and two-step system GMM

estimator are also numerically identical.’

*If the 7; were homoskedastic across individuals, we would have k = 02/ (1 — a), where
072, = E (n?) as for Model 3.

>The addition of other regressors to the model, with a corresponding extension of the pro-
jection, does not alter these equivalence results. This is discussed in the Appendix.

10



4.3. Model 3

Under the assumptions that specify Model 3, E <g;tp_1 (g;tp_l)/> is given by

]_ o . e OéTiQ
E (-1 (47-1)) = & J o, o I : 43
v e)) s gt e | . 49
aT_Z o 1

where Jpr_; is a (T — 1) square matrix of ones. The projection parameters § are

here given by
g, 2 N1
=B (s (1)) s

C1l-«

Using (4.3) it follows that the elements of § are related in the following way®

where
2

Iy

B (1—a)
T_l—a<ﬁ«T—D—aH¥8»+ﬁu—aJ'

Therefore, the specification that incorporates all the restrictions on the projection

parameters ¢ arising from covariance stationarity is

T-2

Yit = Wi + 7 (Y + Yir—1) + (1 — @) T > yis + i + v (4.5)
s=2

The parameters o and 7 can be estimated from (4.5) using a non-linear GMM

estimator based on the moment conditions

EZ] (7 +va)| =0 fort=2,..T

This suggests that a simple test of whether the series satisfy covariance stationarity can be
obtained by testing these restrictions on the projection parameters § in model (4.2). See Bond,
Bowsher and Windmeijer (2001) and Bond and Windmeijer (2002) for a discussion of various
test procedures for linear restrictions in dynamic panel data models.

11



The resulting estimators of o do not coincide with either of the GMM estimators
for Model 3, described in section 3.3. A comparison of the asymptotic variances
presented in the next section confirms that this projection estimator is not as-
ymptotically efficient. The finite sample properties of these alternative estimators
for Model 3 will be investigated in our Monte Carlo simulations.
This projection approach also allows consistent estimation of the parameter of
interest « using a simpler linear 2SLS or GMM estimator in the model
T—2
Yit = Y1+ 7 (Y + Yir—1) +7 22 Yis + 1 + Vig, (4.6)
again using the instrument matrix ZZ. Clearly, there will be some further loss of

efficiency from not exploiting the non-linear restriction relating v to o and 7, the

extent of which will also be investigated in the next section.

5. Monte Carlo and Asymptotic Variance Comparisons

In this section we investigate the performance of the projection estimators in the
three models. As the finite sample properties of the estimators we obtain for
Model 1 and Model 2 are relatively well known,” the main contribution of this
study is to assess the relative performance of the projection estimators we have
proposed for Model 3 and further to compare them with the linear GMM estimator
for this model discussed in section 3.3.

The covariance stationary process is generated as follows:

Yit = QYit—1+ N+ Vit
nm ~ N (O,ai), v ~ N (O,aﬁ)

. 2
Yi1 = L + &, €Z~~N<O _ o )

11—« "1 —a?

"See, for example, Blundell and Bond (1998) and Alonso-Borrego and Arellano (1999).

12



Tables 1 and 2 report estimation results for 62 = o = 1, T' = 4, various values
of o, and N = 100 and N = 500 respectively. Tables 3 and 4 report results for
T = 7. We report the means and standard deviations of the empirical distribu-
tions of the estimators in our experiments, as well as the means of the calculated
asymptotic standard errors for these estimators, and their root mean squared er-
rors (rmse). Reported summary statistics are based on 5000 replications. The
one-step estimators are computed using the weight matrices described above, and
hence can be obtained as linear 2SLS estimators in the relevant projection spec-
ifications, except for the non-linear projection estimator we consider for Model
3.

Results for Model 1 are very similar to those reported in Blundell-Bond (1998)
and Alonso-Borrego and Arellano (1999), as the design and estimators are iden-
tical. Compared to these studies, results for Model 2 are slightly different, as
the projection based 2SLS estimator is equivalent to the one-step system GMM
estimator using the optimal weight matrix when v;; is homoskedastic and n; = 0
for : = 1,..., N, whereas the one-step system GMM estimator considered in the
previous two studies used (% S 70 7Y >_1 as the weight matrix.

The reduction in bias, especially at high values of a, and the increase in
precision of the estimators of a that impose the restrictions implied by the mean
stationarity of the process, are apparent.® For both models, the estimated robust
asymptotic standard errors are close to the observed standard deviations for the
one-step estimators. For the two-step estimators, the estimated standard errors
can be much smaller than the empirical standard deviations, especially when N

is small and T is large.”?

2
8The estimates for K = il& in Model 2 are downward biased and estimated imprecisely,

1—
especially for high values of « and small sample size V.
“Windmeijer (2000) develops a finite sample correction for the variance of two-step GMM

estimators that addresses this problem.

13



Table 1. T"'=4, N = 100, 05 =1, 02 = 1, mean,
standard deviation, [mean of estimated s.e.], and rmse,

5000 replications

Model 1 Model 2

« One-Step Two-Step One-Step Two-Step
0.0 -0.0074 -0.0074 0.0171 0.0138
0.1230 0.1274 0.1084 0.1008

(0.1200]  [0.1169] 0.1058)  [0.0858]

0.1252 0.1276 0.1097 0.1017

0.3 0.2800 0.2829 0.3153 0.3189
0.1814 0.1886 0.1289 0.1211

0.1793]  [0.1747] 0.1320  [0.1049)]

0.1824 0.1894 0.1298 0.1225

0.5 0.4547 0.4599 0.5151 0.5207
0.2646 0.2753 0.1429 0.1344

0.2573]  [0.2503)] 0.1465]  [0.1151]

0.268 0.2781 0.1436 0.1360

0.8 0.4741 0.4545 0.8439 0.8346
0.6836 0.6951 0.1520 0.1589

0.6990]  [0.6640] 0.1688]  [0.1186]

0.7572 0.7762 0.1582 0.1626

0.9 0.2505 0.2256 0.9612 0.9519
0.8477 0.8777 0.1157 0.1540

[1.0012]  [0.9210] 0.1522]  [0.0917]

1.0679 1.1068 0.1308 0.1625

For the covariance stationary Model 3, Tables 1 to 4 present estimation results
for the projection estimators described in section 4.3. The estimator labelled
‘Non-Linear’ is the projection estimator where the full set of restrictions on ¢
arising from the structure of E <g;f1 (g;tpl)l> are imposed, as in model (4.5).
The estimator labelled ‘Linear’ is the simple linear projection estimator of model
(4.6). For this model we also present results for the linear GMM estimator that
exploits the additional moment conditions (3.3) due to homoskedasticity and (3.5)

14



due to covariance stationarity of the initial observations.

Table 1 cnt’d. T =4, N =100, 07 = 1, 05 = 1, mean, standard deviation,

[mean of estimated s.e.], and rmse, 5000 replications

Model 3
Projection GMM
Nonlinear Linear Linear

a One-Step Two-Step One-Step Two-Step One-Step Two-Step
0.0 -0.0043 -0.0036 -0.0045 -0.0030 0.0059 0.0085
0.0933 0.0963 0.0926 0.0954 0.1383 0.1018

(0.0001]  [0.0848]  [0.0895]  [0.0861] 0.1343]  [0.0777]

0.0934 0.0964 0.0927 0.0955 0.138 0.1021

0.3 0.2887 0.2921 0.2890 0.2920 0.3092 0.3151
0.1047 0.1074 0.1048 0.1069 0.1482 0.1182

(0.1033]  [0.0973]  [0.1032]  [0.0994] 0.1477]  [0.0878)

0.1053 0.1076 0.1054 0.1072 0.1485 0.1192

0.5 0.4853 0.4910 0.4864 0.4912 0.5099 0.5227
0.1131 0.1169 0.1145 0.1180 0.1574 0.1322

0.1090]  [0.1031]  [0.1100]  [0.1062] 0.1533]  [0.0892]

0.1141 0.1173 0.1153 0.1183 0.1577 0.1341

0.8 0.7799 0.7894 0.7830 0.7900 0.8251 0.8372
0.1181 0.1233 0.1224 0.1264 0.1474 0.1376

0.1143]  [0.1091]  [0.1179]  [0.1145] 0.1430]  [0.0639)]

0.1198 0.1237 0.1235 0.1268 0.1495 0.1425

0.9 0.8798 0.8907 0.8818 0.8900 0.9352 0.9375
0.1318 0.1350 0.1234 0.1272 0.1160 0.1125

(0.1149]  [0.1099]  [0.1197]  [0.1164] 0.1080]  [0.0409)]

0.1333 0.1353 0.1247 0.1276 0.1212 0.1186

15



Table 2. T =4, N =500, 07 = 1, 0, = 1, mean,
standard deviation, [mean of estimated s.e.], and rmse,

5000 replications

Model 1 Model 2
« One-Step Two-Step One-Step Two-Step
0.0 -0.0013 -0.0013 0.0036 0.0028
0.0550 0.0554 0.0505 0.0429
0.0546]  [0.0543)] 0.0497)  [0.0408]
0.0550 0.055 0.0506 0.0429
0.3 0.2974 0.2980 0.3024 0.3047
0.0816 0.0822 0.0639 0.0543
(0.0808]  [0.0804] 0.0633]  [0.0518]
0.0816 0.0822 0.0639 0.0545
0.5 0.4923 0.4939 0.5014 0.5058
0.1140 0.1153 0.0720 0.0625
0.1145]  [0.1139)] 0.0716]  [0.0601]
0.1142 0.1154 0.0720 0.0628
0.8 0.7438 0.7442 0.8033 0.8029
0.3030 0.3071 0.0819 0.0733
(0.3000]  [0.2979) 0.0855]  [0.0687]
0.3082 0.3122 0.0820 0.0733
0.9 0.6387 0.6194 0.9204 0.9145
0.6375 0.6625 0.0899 0.0959
0.6380]  [0.6202] 0.0995]  [0.0664]
0.6889 0.719/ 0.0921 0.0969
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Table 2 ecnt’d. T =4, N = 500, 072] =1, 02 = 1, mean, standard deviation,
[mean of estimated s.e.], and rmse, 5000 replications

Model 3

Projection GMM

Nonlinear Linear Linear
a One-Step Two-Step One-Step Two-Step One-Step Two-Step
0.0 -0.0008 -0.0006 -0.0009 -0.0005 0.0028 0.0019
0.0418 0.0416 0.0415 0.0415 0.0628 0.0411
(0.0411]  [0.0401]  [0.0408]  [0.0403] 0.0619]  [0.0383)]
0.0418 0.0416 0.0415 0.0415 0.0629 0.0411
0.3 0.2981 0.2990 0.2982 0.2991 0.3036 0.3037
0.0474 0.0474 0.0473 0.0473 0.0692 0.0473
(0.0471]  [0.0460]  [0.0469]  [0.0463] 0.0689]  [0.0441]
0.0475 0.0474 0.0473 0.0473 0.0693 0.0475
0.5 0.4976 0.4991 0.4978 0.4990 0.5021 0.5061
0.0511 0.0509 0.0514 0.0513 0.0733 0.0521
(0.0500]  [0.0490]  [0.0503]  [0.0498] 0.0730]  [0.0469)]
0.0512 0.0509 0.051/ 0.0513 0.0733 0.0525
0.8 0.7980 0.8008 0.7986 0.8006 0.8072 0.8169
0.0523 0.0528 0.0537 0.0541 0.0763 0.0625
(0.0520]  [0.0514]  [0.0537]  [0.0533] 0.0750]  [0.0444]
0.0523 0.0528 0.0537 0.0541 0.0767 0.0647
0.9 0.8984 0.9013 0.8987 0.9007 0.9117 0.9199
0.0761 0.0770 0.0550 0.0553 0.0688 0.0615
(0.0521]  [0.0516]  [0.0544]  [0.0541] 0.0688]  [0.0327]
0.0761 0.0770 0.0550 0.0553 0.0698 0.0646

17



Table 3. T'="7, N = 100, 05 =1, 02 = 1, mean,
standard deviation, [mean of estimated s.e.], and rmse,

5000 replications

Model 1 Model 2
« One-Step Two-Step One-Step Two-Step
0.0 -0.0135 -0.0138 0.0371 0.0145
0.0624 0.0689 0.0642 0.0585
0.0617]  [0.0540)] 0.0613]  [0.0402]
0.0658 0.0702 0.0742 0.0603
0.3 0.2733 0.2742 0.3495 0.3239
0.0788 0.0870 0.0744 0.0662
0.0775]  [0.0678] 0.0725]  [0.0439)]
0.0852 0.0908 0.0893 0.0704
0.5 0.4539 0.4551 0.5616 0.5365
0.0959 0.1076 0.0781 0.0746
0.0955]  [0.0835] 0.0768)  [0.0459)]
0.1064 0.1166 0.0995 0.0830
0.8 0.6128 0.5916 0.8854 0.8656
0.1784 0.2159 0.0581 0.0715
(0.1721]  [0.1489) 0.0575]  [0.0378]
0.2586 0.3000 0.1033 0.0971
0.9 0.5190 0.4398 0.9725 0.9645
0.2481 0.3241 0.0352 0.0516
0.2372]  [0.1967] 0.0340]  [0.0235]
0.4546 0.5628 0.0806 0.0826
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Table 3 ecnt’d. T'=7, N = 100, 072] =1, 02 = 1,mean, standard deviation
[mean of estimated s.e.], and rmse, 5000 replications

Model 3

Projection GMM

Non Linear Linear Linear
a One-Step Two-Step One-Step Two-Step One-Step Two-Step
0.0 -0.0074 -0.0070 -0.0074 -0.0060 -0.0038 -0.0024
0.0509 0.0563 0.0507 0.0563 0.0902 0.0653
(0.0500]  [0.0411]  [0.0498]  [0.0415] 0.0873]  [0.0373]
0.051/ 0.0568 0.0513 0.0566 0.0903 0.0653
0.3 0.2891 0.2918 0.2890 0.2927 0.2964 0.3004
0.0543 0.0590 0.0544 0.0594 0.0986 0.0712
(0.0536]  [0.0440]  [0.0536]  [0.0450] 0.0062]  [0.0393)]
0.0554 0.0596 0.0555 0.0599 0.0987 0.0712
0.5 0.4875 0.4921 0.4873 0.4930 0.5022 0.5063
0.0548 0.0601 0.0555 0.0610 0.1026 0.0762
(0.0547]  [0.0449]  [0.0552]  [0.0464] 0.1007]  [0.0389)]
0.0562 0.0606 0.0570 0.0614 0.1026 0.0764
0.8 0.7812 0.7870 0.7814 0.7885 0.8245 0.8275
0.0540 0.0597 0.0568 0.0628 0.0909 0.0830
(0.0545]  [0.0454]  [0.0570]  [0.0486] 0.0803]  [0.0277]
0.0572 0.0612 0.0598 0.0638 0.0941 0.0874
0.9 0.8791 0.8868 0.8790 0.8861 0.9386 0.9387
0.0537 0.0728 0.0574 0.0631 0.0634 0.0632
(0.0536]  [0.0450]  [0.0574]  [0.0492] 0.0601]  [0.0147]
0.0576 0.0740 0.0611 0.0646 0.0742 0.0741
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Table 4. T =7, N =500, 0; = 1, 07 = 1,mean,
standard deviation, [mean of estimated s.e.], and rmse,
5000 replications

Model 1 Model 2
« One-Step Two-Step One-Step Two-Step
0.0 -0.0024 -0.0024 0.0080 0.0016
0.0285 0.0294 0.0287 0.0236
0.0283]  [0.0275] 0.0281]  [0.0213]
0.0286 0.0295 0.0298 0.0236
0.3 0.2944 0.2947 0.3107 0.3018
0.0364 0.0374 0.0360 0.0266
0.0358]  [0.0349] 0.0352)  [0.0237]
0.0368 0.0378 0.0375 0.0267
0.5 0.4901 0.4907 0.5139 0.5038
0.0445 0.0461 0.0395 0.0291
0.0446]  [0.0434] 0.0399]  [0.0260]
0.0456 0.0470 0.0419 0.0293
0.8 0.7539 0.7536 0.8249 0.8128
0.0880 0.0926 0.0398 0.0378
0.0875]  [0.0852] 0.0417)  [0.0295]
0.0993 0.1036 0.0470 0.0399
0.9 0.7566 0.7418 0.9371 0.9233
0.1518 0.1741 0.0311 0.0373
0.1491]  [0.1443] 0.0316]  [0.0230]
0.2088 0.2352 0.0484 0.0439
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Table 4 ecnt’d. T' =7, N = 500, 072] =1, 02 = 1,mean, standard deviation,
[mean of estimated s.e.], and rmse, 5000 replications

Model 3
Projection GMM
Non linear Linear Linear

a One-Step Two-Step One-Step Two-Step One-Step Two-Step
0.0 -0.0008 -0.0007 -0.0008 -0.0004 -0.0006 0.0004
0.0229 0.0237 0.0228 0.0236 0.0417 0.0240

0.0227]  [0.0216]  [0.0226]  [0.0217] 0.0407]  [0.0209]

0.0229 0.0237 0.0228 0.0236 0.0417 0.0240

0.3 0.2978 0.2986 0.2978 0.2987 0.3001 0.3005
0.0246 0.0250 0.0246 0.0253 0.0462 0.0255

(0.0244]  [0.0231]  [0.0244]  [0.0234] 0.0457]  [0.0223)]

0.0247 0.0251 0.0247 0.0253 0.0462 0.0255

0.5 0.4977 0.4988 0.4977 0.4991 0.5009 0.5013
0.0251 0.0255 0.0253 0.0259 0.0485 0.0263

0.0249]  [0.0236]  [0.0252]  [0.0242] 0.0492)  [0.0227]

0.0252 0.0255 0.025 0.0259 0.0485 0.0263

0.8 0.7962 0.7981 0.7963 0.7984 0.8060 0.8069
0.0246 0.0251 0.0260 0.0267 0.0518 0.0319

0.0247]  [0.0237)  [0.0259]  [0.0250] 0.0518]  [0.0215]

0.0249 0.0252 0.0262 0.0268 0.0521 0.0326

0.9 0.8956 0.8977 0.8953 0.8975 0.9168 0.9163
0.0238 0.0287 0.0257 0.0265 0.0456 0.0380

0.0241]  [0.0233]  [0.0260]  [0.0252] 0.0452]  [0.0159]

0.0242 0.0288 0.0261 0.0266 0.0486 0.041/4
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The two projection estimators are found to be very similar in their perfor-
mance. Both provide a significant improvement in root mean squared error com-
pared to the estimators for Model 2, particularly at high values of . For both
estimators the one-step version is generally found to have a smaller variance than
the two-step version in these experiments, particularly at N = 100. Again we find
that the estimated standard errors are reliable for the one-step estimators.

The GMM estimator for Model 3 also provides an improvement over that for
Model 2. In contrast to the two projection estimators for Model 3, there appears to
be a serious loss in precision from not using the optimal weight matrix. However,
even the optimal two-step GMM estimator is generally found to have a slightly
larger small sample variance and root mean squared error than the projection
estimators in these experiments. This is perhaps surprising given that this GMM
estimator is asymptotically efficient in the class of estimators that make use of
second moment information.!’

To investigate this further, Figure 1 presents plots of the asymptotic standard
deviations of these two-step estimators for Model 3, calculated for the design as in
the Monte Carlo experiments with 7" = 4 and for various values of a.. As expected,
the two-step GMM estimator for Model 3 does have a slightly smaller asymptotic
standard deviation than the non-linear projection estimator, with the difference
diminishing for increasing values of a. The simple linear projection estimator
has a slightly larger asymptotic standard deviation than the non-linear projection
estimator, with the difference getting smaller for low values of a. Nonetheless,
the results in Tables 1-4 suggest that this simple linear estimator performs as
least as well as the asymptotically more efficient alternatives in samples of the

size commonly encountered in empirical work.

10See Ahn and Schmidt (1995) and Kruiniger (2000).
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Figure 1. Asymptotic Standard Deviation of v Na, two-step.

To conclude this section we investigate how well the finite sample empirical
distributions of these estimators for Model 3 are approximated by their asymptotic
counterparts.!! Figures 2a and 2b present p-value plots which compare the actual
and nominal sizes of Wald tests of the null hypothesis that « is equal to the true
value in our Monte Carlo designs. Results are presented for N = 500, T' = 7 and
a = 0.3 in Figure 2a, and a = 0.9 in Figure 2b. We focus on Wald tests based on
the one-step estimators to avoid the problems associated with the estimation of
the two-step standard errors. It is clear that for low values of o, the empirical size
is well approximated by the nominal size for tests based on all three estimators.
In contrast, for a = 0.9, the test based on the GMM estimator is considerably
oversized, whereas those based on the two projection estimators have much better

size properties.

1Bond and Windmeijer (2002) study finite sample inference using the GMM estimators for
Models 1 and 2 in greater detail.
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Figure 2b. P-value plot, o = 0.9

6. Conclusions

In this paper we have explored a new approach to estimation for autoregressive
panel data models, based on projecting the unobserved individual effects on the
vector of observations on the lagged dependent variable. The resulting projection
estimators coincide with known linear GMM estimators for models where station-
arity is not imposed on the initial conditions and for models which satisfy mean
stationarity, the differenced GMM and system GMM estimators respectively. We
have proposed two new estimators for models which satisfy covariance stationar-
ity, based on the projection approach. One estimator imposes all the restrictions
on the projection parameters that are implied by covariance stationarity. The
second estimator only imposes simple linear restrictions on the projection para-
meters. Although the latter is not fully efficient, it is shown in a Monte Carlo
study to perform well in terms of small sample bias and precision. This estima-
tor can be implemented straightforwardly using standard regression packages for
panel data and in some cases offers a considerable improvement on the system

GMM estimator in terms of bias and efficiency.
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A. Proof that the projection OLS estimator in Model 1 co-
incides with the within groups estimator

Stack the observations in such a way that the projection model (4.2) can be
written as

y=ay1+(®Y_1)é6+n+v

where Y., = |y] 7, ...,g%‘l}, isan N x (T — 1) matrix, y_ 1 = vec (Y 1) and ¢ is

a vector of ones of order 7' — 1. The projection of y ; on (¢t ® Y ;) is given by

1
1 <LL, ®Y_, (YL1Y—1) Y’1> Y—1.

But

_ 1 _
—— (LL' @Yo (YY) YL1> g, = 1 (Lu @Yo (YY) YL1> vee (Y 1)

= T_lvec(Y_lLL')

1 1
= (/' @ I,)vec (Y 1) = (v @ I)y-1.

T-1 T-1
Therefore using standard results for partitioned regression the OLS estimator of
« in the projection model is numerically identical to the within groups estimator.
Note that this result does not depend on the fact that the regressor considered
here is the lagged dependent variable. In the more general specification with a
vector of regressors x;;
Yie = B'Tir + 1 + Vit
with associated projection model
T
Vi = BT + Z iy + i + Vi, (A.1)
j=1
a similar argument shows that the OLS estimator for § in (A.1) is equivalent to

the within groups estimator.
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B. Proof that the projection 2SLS estimator in Model 1
coincides with the one-step differenced GMM estimator
using the optimal weight matrix when the v; are ho-
moskedastic

A one-step differenced GMM estimator can be obtained by 2SLS as
(v.,DZ4(2,D'DZp) ™" Z;lD'y_l)_1 y \DZ4(Z'D'DZ,)"" Z\D'y

= (y'_lngy—l)_l v Pry

where
[ —Iy O 0 0 7
0 Y1 Y2 0 0 0 0
0 0 0 .0 0 0 0 0 I
0 0 0 O _ TN
Y1 Yr—2 0 0 0 Iy |

Z% = DZy and Py = A(A’A)™" A’ for some matrix A. Note that D’'D = H ® Iy
and so (Z,D'DZ,) " is the optimal weight matrix when the v;; are homoskedastic.

The 2SLS projection estimator is OLS in the model
y=oy_i + X647+

where

X\:PZP(L®Y,1)

[z 0
IS

The 2SLS projection estimator for « is given by

with

(y’_lng—l)_l Y Mgy

where



As
(PZ; - M)?) y-1=0,
the two estimators are the same.

Proof:
The prediction of X is given by

I U Py1y2 Py1y3 Py1y4 Py1yT—1
vy1 Y2 Pnys Py Py,yr1
Yy Y2 ys Py Py,yr 1
X=|%n ¥ Ys Ya Py,yr
Py, _,yr 1
L Y1 Y2 Ys Ya Tt Yr2 Yr—1

where Y, = [y1, ..., Y], and therefore
Z¥X =0.
From this it follows that

(PZ;—i—P)?)j(\ = X
(Pzy +Pg) 25 = Zi.

Denote QQ = Py: + Pg, then it follows from (B.1)

Q(r—2a®@uy1) = (tr—2 ® 1) ,

where 1_9 is a vector of ones of order T'— 2, and from (B.2)

QD (Ir—2®@y1) =D (Ir—2 @ 1)

Combining (B.3) with (B.4), it follows that

QUr—2®@y1) = Ir—2®y1).
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From the second column of X , we get

Pyly2 ] _ [ Py1y2
tr—3 Q@ Y2 | | tr—3 D Y2
but from (B.5) we already know that
Py1y2 ] _ [ Py1y2
Q[ 0 | o |0
and therefore )
0 0
— . B.6
Q_¢T3®?/2] [LT3®3/2] (B.6)
From (B.2) we have that
[ 0 0
D =D B.7
@ _IT3®3/2] [IT3®y2] (B.7)

and again, combining (B.6) and (B.7) we get

0 0 - 0
It 3@ yo It 3@y |
Repeating these steps, we get the result that
(Pz; + Pg) 2, = 7,
or

(Pry — Mg) 2, =0,

d X

from which it follows that
<PZ; - Mi) Y1 = 0.

C. Proof that the projection 2SLS estimator in Model 2 co-
incides with the one-step system GIMM estimator using
the efficient weight matrix when the v;; are homoskedas-
ticand n,=0fori=1,.... N

The restricted model is

1 ~1
Yy=ay_1+ <L QY 4 (NYIlY_1> L> K+ 77 + 0.
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The one-step system estimator can be obtained as

(v152.(2,8'S2.)7 Z,8'y1) " 187, (Z,5'S2.) 7 Z.S"y

= (y’_le;«y—l)_l o1 Pryy

where
[ Z, 0 0 0 0o [ —Iy O 0 0 0O 0 0
0 Ay, 0 0 0 In —In 0 0 Iy 0 O
Z,=|1 0 0 Ay 0 0 S = 0 Iy 0 0 Iy O
0 0 0o . 0 0 0 . —Iy 0 0 .
00 0 0 Ay L 0 0 0 Iy 0 0 0
and Z; = SZ,.

Note that $’S = A ® Iy and so (Z.5'SZ,) " is the optimal weight matrix
when the v;; are homoskedastic and n; =0 for i =1, ..., N.

The 2SLS projection estimator is OLS in the model
U=y +Tk+0+0.

where

1
i =Py <L ® Y., (NYilY—1> L>

The 2SLS projection estimator for « is given by

(ylflM/m\ryfl) - ?/L1M2Ty

where
Mg, = In-1) — B3,

As
(P = M, )y 1 =0,

which can be shown analogously to the proof in the previous section, the two

estimators are the same.
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D. A model with an additional regressor

The model we consider here is
Yit = OYip1 + BTy + ;i + Vi,

for t = 2,...,T. The projection model is specified either as

Yit = g1 + B + 6yl L+ SLal + 7 + v, (D.1)
or
Yit = i1 + B + 6y 4 Shai L+ T+ va, (D.2)
where g;fp*l = (a1, Yiz, ---,yz',T—l)/> 2;[ = (i1, Tiz, ---,xz'T)/ and L-T_l = (i1, Tiz, -~-,$i,T—1)/~

Which of these projections is appropriate depends on the correlation between
z;; and v;s and hence on the values of the z;; series that are used as instruments
for estimating these projection models by 2SLS or GMM. For example, if z;; is
endogenous such that F (vyzy) # 0, but E (vygz;s) = 0 for s < t, then x;r is
not available as an instrument in the projection model for period T' (or for any
earlier periods). In this case, only z;1,...,z;r—1 are used as instruments and the
projection specification (D.2) is appropriate. Notice that in this case, z; and y;;
are treated symmetrically. On the other hand, if x;; is predetermined such that
E (vizmis) = 0 for s < t (or strictly exogenous such that E (vix;s) = 0 for all
s, t) then z;r will be used as an instrument in the projection model for period
T (or for all periods in the strictly exogenous case) and therefore the projection
specification (D.1) is required to ensure that 7; is orthogonal to the complete set
of instruments. A proof similar to that in section B can be used to establish that
the 2SLS estimators for these projection models coincide with the corresponding
one-step differenced GMM estimators, described in Arellano and Bond (1991),

when the optimal weight matrix under homoskedasticity of v;; is used.!?

2Implicitly, equation (A.1) defines a third projection specification for this model, where 7; is
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To impose mean stationarity on the projection model, we can proceed as fol-

lows. Assuming that both x;; and y;; are mean stationary we define'®

E(zyn) = kg

E(yitm) = Ry,

for t =1,...,T. The projection parameters 6, and 0, are given by
!/ /!
T (i T €

—1
6y ?/~T_177¢
=F FE <4 ,
( ba > e (") 2 (2h) ( ;"
where R = T or R = T — 1, depending on whether the projection specification
(D.1) or (D.2) is used. Let

E Fl_ vy, vix o
F G XY, XX |

Y, = [ng_l, ...,gﬁ_l}/ and X = [@f, ...,gﬂl, then the projection model which

imposes the mean-stationarity restrictions is
o , 1) R -1\ R ~
Yit = QYit—1+ 0T +kKy (gz. ) Ev+z;"F'u )+ kR, (gl ) Fo+ z;"Gu | +1; +vy.

The parameters «, 3, k,, and k, are estimated by 2SLS or GMM using the appro-
priate instruments, which will again depend on the assumed correlation between
x; and v;,, as discussed above. A proof similar to that in section C can be used to
establish that the 2SLS estimators for these projection models coincide with the
corresponding one-step system GMM estimators, when the optimal weight matrix

under homoskedasticity of v;; and n; =0 for ¢ = 1, ..., N is used.

projected on y?_l and (22, ..., z;7). As shown in section A, OLS on this projection specification
coincides with the within groups estimator. It can also be shown that OLS on (D.1) coincides
with within groups, but the same is not true for OLS on (D.2).

IBIf for example x;; = VTit—1 + & + €4, with 7; and & homoskedastic across individuals,

o2 o,
Eni) =02, E(&) = (7? and E (n:&;) = opg, then k, = 7% and £y = 775 + uf—/i)(]ii_w)
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