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Abstract

The logical foundations of game-theoretic solution concepts have so far
been explored within the confines of epistemic logic. In this paper we turn
to a different branch of modal logic, namely temporal logic, and propose to
view the solution of a game as a complete prediction about future play. We
extend the branching time framework by adding agents and by defining the
notion of prediction. We show that perfect information games are a special
case of extended branching time frames and that the backward-induction
solution is a prediction. We also provide a characterization of backward
induction in terms of the property of internal consistency of prediction.



1. Introduction

The logical foundations of game theory have been the object of a recent and
growing literature.! Most papers in this area make use (directly or indirectly)
of epistemic modal logic, that is, the logic of knowledge and belief, and try to
determine what assumptions on the beliefs and reasoning of the players are implicit
in various solution concepts. The task of this research program is to identify for
any game the strategies that might be chosen by rational and intelligent players
who know the structure of the game and the preferences of their opponents and
who recognize each other’s rationality and reasoning abilities.

In this paper we turn to a different branch of modal logic, namely temporal
logic?, and propose to view the solution of a game as a prediction about future
play.

The focus of this paper is on extensive games with perfect information®, which
are modeled in a natural way within the framework of branching time logic. In
the next section we extend the semantics of branching time by adding agents and
by defining the notion of prediction. A prediction can be thought of as a belief
about the future* and Sections 2 and 3 are devoted to the analysis of what logical
properties one should attribute to predictions in general.® In Section 4 we show
that extensive games with perfect information are a special case of branching
time frames and that the backward-induction solution of such games can indeed
be viewed as a prediction (that is, it satisfies the logic of prediction developed
in Section 3). In Section 5 we provide a syntactic characterization of backward
induction in terms of internal consistency of prediction, in the following sense. If
at some predicted future time Player i’s payoff is ¢ then, no matter what action
Player i takes, it will always be the case that if Player i’s payoff is, or is predicted
to be, r then r is not greater than ¢.%

'Extensive surveys of this literature are given in Battigalli and Bonanno (1998) and Dekel
and Gul (1997). These two papers provide a fairly comprehensive list of references.

2See, for example, van Benthem (1991), Burgess (1984), Goldblatt (1992) and Ghrstrem and
Hasle (1995).

3See, for example, Fudenberg and Tirole (1991) or Osborne and Rubinstein (1994).

4*When we make a non-trivial prediction about the future we select, among the conceivable
future descriptions of the world, those that appear to us to be most likely.

5The analysis presented in Sections 3 and 4 extends that of Bonanno (1998) where the logic
of prediction was first studied.

61t we think of the prediction as a “recommendation” to the players, then internal consistency
says that if the recommendation is that (the game be played in such a way that) Player ¢ get a
payoff of ¢ then it is not possible for Player i to take an action after which her payoff is greater



This notion of internal consistency (or stability) of a solution is not new:
it was first introduced within cooperative game theory by von Neumann and
Morgenstern (1947) and subsequently applied by Joseph Greenberg (1990) in his
all-encompassing theory of social situation. The novelty of this paper lies in the
interpretation of a solution as a prediction within the framework of branching-
time logic and in the proof that the implicit logic behind the backward induction
solution is that of an internally consistent prediction. As far as we know this is
also the first time that the tools of temporal logic have been used to analyze game
theoretic concepts.”

2. Agents in branching time

Definition 2.1. A branching-time frame with agents (BTA frame for short) is a
tuple <T, =<, N, A, {Rm}(i7a)€NxA> where
e T'is a set of moments or points in time or states

e < is a binary relation on 7' (representing the ordering of time) satisfying
the following properties:

(P.0) antisymmetry: if ¢; <ty then ¢y £ t;.
(Pl) transitivity: if t1 <ty and t9 < t3 then ¢; < 3.
(P.2) backward linearity: if t; < t3 and ty < t3 then either t; =t or t; < ¢,

e N ={1,...,n} is a finite set of agents

e Ais a finite set of actions

than ¢ or the recommendation is that (the game be played in such a way that) Player i get a
payoff greater than gq.

"The logic of agency in branching time has been studied extensively in the philosophical lit-
erature: see, for example, Belnap and Perloft (1988), Chellas (1992), Horty and Belnap (1995),
Horty (1996) and references therein. These papers, however, focus on philosophical issues con-
cerning the notion of action or ”seeing to it that” and there is no explicit consideration of game
theoretic issues. Furthermore, while we make use of view of standard tense logic, those papers
rely on the more complex ” Ockhamist” semantics, where the truth of a formula is not evaluated
at a single point in time, but at a pair consisting of a time point and a branch or history through
it; the future operator then refers to time points in this branch only and, therefore, the resulting
logic is that of linear time. A further operator is then added to capture the notion of historical
necessity and contingency.

or tQ < tl.



e forevery (i,a) € N x A, R;, is a binary relation on T satisfying the following
property:
(P.3) Ry, subrelation of < : if ¢; R;,ts then t; < to.

Properties (P.0)-(P.2) constitute the definition of branching time in temporal
logic.® In particular, (P.2) expresses the notion that, while a given moment may
have different possible futures, its past is settled. The interpretation of t; R;,ts is
that at time ¢, agent ¢ has available action a which leads from ¢; to t5. Property
(P.3) expresses the notion that actions can only affect the future. It is possible

that for some ¢ and ¢, R;,(t) = {t" € T : tR;,t'} is empty for all @ € A. In such a

case agent i does not have any actions available at time ¢. ?

For every i € N, let R; = wen Ria. Thus tR;t’ if and only if agent 7 has

available some action at t that leads from t to ¢'. 1V

Example 2.2. The following is a BTA frame: T = {t ts, ..., tz}, N = {1,2},
<={(t1,t2), (tr1, ta), (t1, 15), (2, a), (t2, 85), (ta, ts), (t1, L), (1, t7), (E3, Te), (Es, E7) },
A={a,b}, Rio = {(t1,t2)}, Ry = {(t1,3)}, Roa = {(ta,t4), (t3,%6)},

Ry, = {(to,t5), (t3,t7)}. This frame is shown in Figure 1 where an arrow from t
to t’ indicates that t < t' and all the arrows due to transitivity are deleted (thus
Figure 1 is the Hasse diagram of (T, <) ); furthermore the label i, a is assigned to
the arrow from t to t' if and only if (t,t') € Ry,.

8See, for example, Burgess (1984), Halpin (1988), GQhrstrom and Hasle (1995).

90ne could require actions to be deterministic, by imposing that if tR;,t" and tR;,t” then
t’ = t”. However, in general the effect of an action may depend on external factors. For example,
the action of opening the window may lead from state ¢ where the window is closed to either
state t’ where the window is open and it rains or to state t” where the window is open and
it does not rain. Requiring actions to be deterministic would then make it necessary to add
“Nature” to the set of agents (in the example, Nature would choose between rain and no rain).

Another possible requirement is that actions be ”time-deterministc” in the sense that if ¢t R;,t’
and tRi,t" then t' £t and t” A t'.

10Note that simultaneous actions are not ruled out, that is, it is possible that, for some t and

some ¢ and j with i # j, both R;(t) et {t' € T : tR;t'} and R;(t) are non-empty. In this case

restrictions need to be imposed to guarantee that the actions of different agents are compatible
with each other. For the purpose of this paper simultaneity of actions can be ignored.
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Figure 1

Every t € T should be thought of as a complete description of the world at time
t, and sets of dates represent propositions. In order to establish this interpretation
one needs to introduce a formal language and the notion of a model based on a
frame. This will be done in Section 3.

It will be shown in Section 4 that extensive forms with perfect information are
a special case of BTA frames.

Definition 2.3. Given a BTA frame, a prediction for it is a binary relation <,
on T satisfying the following properties:

P.4) <, subrelation of < : if t; <, t5 then t; < t,.

P.5) transitivity: if ¢; <, to and ¢y <, t3 then ¢; <, ts.

P.6) <, is serial if < is: Vt € T, if 3¢, s. t. t < t1, then Fty s. t. t <, to.

P7) time COIlSiStGIle: if t1 <ty , o < 13 and #; =p t3 then t; =p ty and to =p 3.

(

(P.4) expresses the notion that predicting the future consists in selecting a
subset of the conceivable future states (those that are believed to be most likely).

5



The interpretation of <, in terms of prediction (i.e. belief about the future)
makes (P.5) a natural requirement: it can be viewed as incorporating a principle
of coherence of belief close in spirit to van Fraassen’s Reflection Principle (van
Frassen, 1984). (P.6) requires that a prediction be complete, in the sense that a
prediction be made whenever possible: if there is a conceivable future of ¢ (that is,
if < is serial at ¢) then there must be a predicted future of ¢ (that is, <, is serial at
t). Property (P.7) says the following. Suppose that at time ¢; a conceivable future
development is represented by the path t1tot3 (that is, t; < t and ¢y < t3): this is
shown in Figure 2, where, as before, a continuous arrow from ¢ to ¢’ denotes that
t < t'. Suppose also that ¢3 lies in the predicted future of ¢; (that is, t; <, 3):
this is shown in Figure 2 by a dotted arrow from ¢; to ¢t3. Then (P.7) imposes the
following requirements:

(a) since reaching t3 requires going through t,, ¢, should lie in the predicted
future of ¢; (that is, t; <, t2), and

(b) since reaching ¢, is consistent with (is a partial realization of) the prediction
that t3 will be reached, the prediction should continue to hold at 5, that is,
t5 should be in the predicted future of ty (t2 <, 3).

t

G
Figure 2

Example 2.4. For the BTA frame of Example 2.2 (cf. Figure 1) the following
is a prediction according to Definition 2.3: <, = {(t1,t3), (t1,ts), (t3,ts), (t2, t5)}-

6



This is represented in Figure 3 by a dotted line next to an arrow that belongs to
both < and <,, omitting dotted lines that can be obtained by transitivity (thus
the dotted lines alone represent the Hasse diagram of (T, <,)).

t
@,

lLa

2,a

ta ts t6 t7

Figure 3

It will be shown in Section 4 that the backward induction solution of an ex-
tensive game with perfect information is a prediction in the sense of Definition

2.3.

Definition 2.5. An augmented BTA frame is a BTA frame together with a pre-
diction for it.

3. Syntax

We consider a propositional language with several modal operators:

e Tense and prediction operators: G, H, GG, and H,. The intended interpre-
tation is as follows:

G¢ :  “it is going to be the case at every future date that ¢”

H¢ :  “it has always been the case that ¢”

Gpo : ‘it is going to be the case in every predicted future that ¢”

H,¢ : “it has always been the case at every past date at which today
was predicted that ¢”



e Action operators: O,, (for every (i,a) € N x A), whose intended interpre-
tation is:

0,00 : “after agent ¢ takes action a, it is the case that ¢”

The formal language is built in the familiar way from the following compo-
nents: a countable set S of sentence letters (representing atomic propositions), the

connectives = and V (from which the other connectives A, — and « are defined

as usual) and the above modal operators.!! Let F¢ = -G-¢, Po = —H=¢,

F,¢ el b, Py def —H,—¢ and, for every i € N, 0;¢ =l Nuea Qiap. Thus

the intended interpretation is:

F¢ . “at some future date it will be the case that ¢ ”
P¢ : “at some past date it was the case that ¢ ”
F,¢ : “at some predicted future date it will be the case that ¢ ”

P,¢ : “at some past date at which today was predicted it was the case
that ¢ 7

0,0 : “no matter what action agent i takes, it will be the case that ¢”.

Remark 1. The notion that agent ¢ has the power to bring about that ¢ or has
control over ¢ can be expressed by the conjunction

<\/ Dia(b) A _‘Di¢

acA

(that is, the agent can bring about that ¢ with some action and it is not the case
that ¢ holds no matter what the agent does).'?

' The set ® of formulae is thus obtained from the sentence letters by closing with respect to
negation, disjunction and the operators G, H, G, Hp and O,4: (i) for every p € S, (p) € @, (ii)
if ¢, € ® then all of the following belong to ®: (=), (¢ V ¢), Gp, Hp, Gpd, Hpp and O;q¢p.

12Thus we side with Chellas (1992) in finding it more desirable not to include a negative
condition in the definition of “agent ¢ brings about (or sees to it) that ¢”. See, in particular,
the discussion in Horty and Belnap (1995, pp. 599-600).



Given an augmented BTA frame one obtains a model M based on it by adding
a function V : S — 27 (where 27" denotes the set of subsets of T') that associates
with every sentence letter p the set of dates at which p is true. For non-modal
formulae truth at a point in a model is defined as usual.'®* Validation for modal
formulae is as follows:'*

Mt = Goiff M, t' |= ¢ for all ' such that ¢ < t'.
Mt = Ho iff M, t" |= ¢ for all ¢ such that t” < ¢.
Mt = Gpo iff Mt |= ¢ for all ¢’ such that ¢ <, t'.
M, t = Hyo it M, t" |= ¢ for all t” such that " <, t.
Mt = D¢ iff Mt | ¢ for all ¢’ such that tR;,t'.

It follows from the definitions of O, and R; that
Mt =0 iff M, t' | ¢ for all ¢’ such that tR;t'.

A formula ¢ is wvalid in model M if M,t |= ¢ for all t € T; it is valid on a
frame if it is valid in every model based on it.

The semantics of augmented BTA frames can be axiomatized as follows. De-
note by Iy the basic system specified by the following axiom schemata and rules
of inference.

Aziom schemata: all the classical tautologies as well as the following

(A.0a) G(¢p — ) — (Go — GY) (A.Ob) Gy(¢ — ¥) — (Gpop — Gpy)
(A.0c) H(¢p — ) — (Hop — Hy) (A.0d) Hp(¢ — o) — (Hpp — Hypt)
(A.0e) DOia(¢ — ¥) — (Diap — Diat))

(A.0f) ¢ — GPo (A0g) ¢ — G, Py

(A.Oh) ¢ — HF (A0) ¢ — H,Fyo

13 M, t |= ¢ denotes that ¢ is true at time t in model M and M, t ¥ ¢ denotes that ¢ is false
at t. For a sentence letter p, M,t |= p iff ¢t € V(p); furthermore, M,t = —¢ iff M,t ¥ ¢ and
Mt = (¢ V) iff either M,t |E ¢ or M,t = 1. Tt follows that Mt = (¢ A ) iff Mt |E ¢
and M,t =9, and M, t = (¢ — ¢) iff M,t |= ¢ implies M, t = 9.

4 Thus

Mt = F¢ iff M,t' | ¢ for some ¢’ with ¢ < ¢/

Mt = Po iff M,t" = ¢ for some t” with ¢/ <t

Mt = F,¢ iff M,t' = ¢ for some ¢ with ¢t <, t/

M.t |= Pyop iff M,t" |= ¢ for some t” with ¢t <), t.

9



Rules of inference:
Modus Ponens: from ¢ and ¢ — 1 to infer 9,
Necessitation: from ¢ to infer G¢, Hop, Gpp, Hyp and O, 0.

Let IL; be the extension of Ly obtained by adding the following axiom schemata:'®

A formula ¢ is a theorem of L; iff it can be obtained in a finite number of
steps from the axioms using the rules of inference, that is, iff there is a sequence
(¢1, ..., }p,) such that (i) ¢,, = ¢ and (ii) each ¢; is either an axiom or is obtained
from one or more ¢, with k£ < j by using a rule of inference.

Proposition 3.1. (Soundness and Completeness). The following are equivalent:
(1) ¢ is a theorem of L,
(2) ¢ is valid on every augmented BTA frame.

We omit the proof of Proposition 3.1. Bonanno (1998) proves soundness and
completeness for the system without agents (thus, on the semantic side, for frames
without the relations R;, and, on the syntactic side, for a logic without the oper-
ators O;, and, therefore, without axioms (A.Oe) and (A.3)). The proof of Propo-
sition 3.1 is an extension of that result.

15The axioms have been numbered so as to correspond to the properties of frames. Thus, for
0 < j <6, axiom (A.j) corresponds to property (P.j) in the sense that a frame satisfies property
(P.j) if and only if axiom (A.j) is valid on that frame. Similarly, as shown in Bonanno (1998),
property (P.7) corresponds to the conjunction of (A.7a) and (A.7b).

10



4. Extensive games with perfect information

In this section we show that an extensive game with perfect information is a special
case of a BTA frame and that the backward induction solution is a special case of
a prediction. In Section 5 we provide a characterization of backward induction.

Recall that a rooted tree is a pair (T, —) where T is a set of nodes and — is
a binary relation on T' (if ¢t — ¢’ we say that t immediately precedes t' or that ¢/
immediately succeeds t) satisfying the following properties:

1. there is a unique node t; with no immediate predecessors; it is called the
1001,

2. for every node t € T'\{to} there is a unique path from ¢, to ¢, that is, there
is a unique sequence (1, ..., Tp,) in T with z; = ¢y, =, = ¢, and, for every
j = 1, ..M — 1, Tjr— Tjqq-

Given a rooted tree (T, —), a terminal node is a t € T which has no immediate
successors. Let Z C T denote the set of terminal nodes. It is easy to see that if
T is finite then Z # ().

Definition 4.1. A finite extensive form with perfect information is a tuple

(T, —, N, 1) where (T,—) is a finite rooted tree, N = {1, ...,n} is a set of players
and . :T\Z — N is a function that associates with every non-terminal or decision
node the player who moves at that node. If i = ((t) and t — t' we say that the
pair (t,t") is a choice of player i at node t.

Figure 4 below shows an example of an extensive form with perfect information
(ignoring payoffs).

Lemma 4.2. A finite extensive form with perfect information is a special case of
a BTA frame (cf. Definition 2.1).

Proof. Let < be the transitive closure of ~—, that is, t < ¢’ iff there is a path
from ¢ to t'. It is straightforward to show that < satisfies properties (P.0)-(P.3)
of Definition 2.1. Furthermore, let A be a set of labels which is in one-to-one
correspondence with — (viewed as a set of ordered pairs).! Given an arbitrary
(t,t') €—, if a € Ais the corresponding label and i = «(t), then (1) R;, = {(¢,t')}
and (2) for every j # i, Rj, = (). It is obvious that property (P.3) is satisfied. B

1 There are other ways in which the set A of actions could be defined, e.g. one could take a
set of labels with cardinality equal to the maximum outdegree among the nodes in 7.

11



Definition 4.3. Given a finite extensive form with perfect information one ob-
tains a perfect information game by adding, for every i € N, a payoff or utility
function u; : Z — Q (where Z is the set of terminal nodes and Q is the set of
rational numbers).

Figure 4 shows a perfect information game with three players. The vec-
tor (z1,x2,23) written next to a terminal node z represents the payoff vector
(u1(2),u2(z),u3(z)) and there is an arrow from ¢ to ¢’ if and only if ¢ — ¢'. For
every decision node t, the corresponding player ((t) is written next to it.

to
ti B
Z1 V4) Z3 Z4
4 1 2 () Player 1's payoff
0 1 0 3 Player 2's payoff
3 2 1 1 Player 3's payoff

Figure 4

A well-known procedure for solving a perfect information game is the backward
induction algorithm first used by Zermelo (1913) for the game of chess. The
algorithm starts at the end of the game and proceeds backwards towards the

root:

12



1. Start from a decision node ¢ whose immediate successors are only terminal
nodes (e.g. node t; in Figure 4) and select one choice that maximizes the
utility of player +(¢) (in the example of Figure 4, at ¢; player 2 would make
the choice that leads to node z, since it gives her a payoff of 1 rather than
0, which is the payoff that she would get if the play proceeded to node
z1). Delete the immediate successors of ¢ and assign to ¢ the payoff vector
associated with the selected choice.

2. Repeat step 1 until all the decision nodes have been exhausted.

Figure 5 shows a possible outcome of the backward induction algorithm for
the game of Figure 4. The choices selected by the algorithm are shown as dotted
lines next to the corresponding arrows.

1

to

Z1 V4) Z3 Z4

4 1 2 () Player 1's payoff

0 1 0 3 Player 2's payoff
y pay

3 2 1 1 Player 3's payoff

Figure 5

Note that the backward induction algorithm may yield more than one solu-
tion. Multiplicity may arise if there are players who have more than one utility-
maximizing choice. For example, in the game of Figure 4 at t, both choices are

13



optimal for Player 3. The selection of choice (%3, z3) leads to the solution shown in
Figure 5, while the selection of choice (9, z4) leads to a different solution shown
in Figure 6.

1

t
Zi Z2 VA Z4
4 1 2 () Player 1's payoff
0 1 0 3 Player 2's payoff
3 2 1 1 Player 3's payoff

Figure 6

Definition 4.4. A perfect information game is generic if no player is indifferent
between any two terminal nodes, that is, if Vi € N, Vz,2' € Z if ui(z) = u;(2)
then z = 2'.

Remark 2. In a generic game the backward induction algorithm yields a unique
solution.

The above examples suggest a similarity between solutions obtained using the
backward induction algorithm and the notion of prediction given in Definition 2.3.

14



We now show that indeed a backward-induction solution is a prediction. To do
this we need to give a more precise definition of backward-induction.

Definition 4.5. Given a finite perfect information game (T, N, v, {u;},cn),
the set T, C T of level k nodes (with k > 0) is defined recursively as follows:

(1) Ty = Z (that is, level 0 nodes are all and only the terminal nodes),

(2) for k > 1,t € Ty, iff (a) t € T\Z, (b) every immediate successor of t is a
node of level not greater than k — 1, and (c) at least one immediate successor of
t is of level k — 1.

We denote by £(t) the level of node ¢ (thus ¢t € Tyy)). Note that a node ¢ is

of level k iff k£ is the length of the maximal path from ¢ to a terminal node, as
illustrated in Figure 7.

level 4

level 0

level 2
level 1

level 1

level 0 level 0

level 0

level 0 level 0
Figure 7

Definition 4.6. Given a finite perfect information game (T,—, N, v, {u;},cn)
define, for k > 1, a binary relation %, on T and, for every i € N, the function

uk : T), — Q recursively as follows:

15



e definition of —k;:

(1) if t =}, t' then (a) t € Ty (that is, t is a level-1 node) and t — ', (b)
) (1) > wy)(t") for all t” such that t — t", (c) if t —p, t' and t —,; t”
then t' =t" and

(2) t 1}, t' for some t';'7

e definition of u} : T) — Q: u}(t) = vl (') where u{ = u; and t' is the unique
node such that t 1}, t';'®

e definition of —%,; for k > 1:
(1) if t =%, ¢’ then (a) t € Ty (that is, t is a level-k node) andt — t', (b)

Lg))(t’) é((;f))(t”) for all " such that t — t", (c) if t =%, t" and t —%, 1"

then t' =t" and
(2) t —%, t' for some t';
e definition of u® : Ty, — Q: u¥(t) = u'")(#') where t' is the unique node such

that t —%, t'.

For the example of Figure 6 above, we have: »,,= {(t1, 22), (t2, 24)} , —%,=
{(to,t1)}, (u1(t2), us(ta), uz(tz)) = (0,3,1), (uy(tr), uy(tr), uz(tr)) = (1,1,2),
(u%(to),u%(to),ug(to)) = (17 L, 2)'

Definition 4.7. Given a finite perfect information game (T, —, N, ¢, {u;}, N> a
binary relation gy on T' is called a backward induction relation if

£(to)

_ k
k=1
k

where the relations —7;,; are obtained according to Definition 4.6.

1"Thus L mimics the first step of the backward induction algorithm: for every “last decision
node” t, >—>11B ; associates with ¢ a unique immediate successor ¢’ which maximizes the payoff of
the player assigned to node t.

18 Thus, for every player i € N, u} associates with a level-1 decision node ¢ the payoff associated
with the terminal node ¢’ selected by ~—%,. This definition corresponds to the step in the
backward-induction algorithm of pruning the tree and making ¢ a terminal node with the payoff

vector associated with the terminal node that follows the choice selected at ¢.
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Thus, for the example of Figure 6, — gr= {(to, t1), (t1, 22), (t2, 24) }.'"Note that

a given perfect information game might have more that one backward-induction
relation. For example, for the game of Figure 4, one backward induction relation
is the one just described, which is illustrated in Figure 6, and a different one is
—pr= {(to, t2), (t1, 22), (t2, 23) }, which is illustrated in Figure 5.

The next lemma shows that a backward-induction relation of a perfect infor-
mation game can be viewed as a prediction according to Definition 2.3.

Lemma 4.8. Let (T,—, N, v, {u;},_ ) be a finite perfect information game and
—p; a backward induction relation for it. Let <, be the transitive closure of
—p1. Then <, is a prediction in the sense of Definition 2.3.

Proof. We need to show that <, satisfies properties (P.4)-(P.7) of Definition
2.3. First of all, it is clear from Definition 4.6 that <, is a subrelation of < (the
transitive closure of »—: see Lemma 4.2). By construction, <, is transitive. It is
easy to see from Definition 4.6 that ¢ is such that there is no ¢’ with ¢ <, ¢’ only if
t is a terminal node (which is also the only case where there is no ¢’ with ¢ < t');
thus property (P.6) is satisfied. Finally, if ¢, <, t3 and ¢; < 5 and ¢ < ¢3 then:
(1) by definition of <, there is a —-path from ¢; to t3 through t¢,, (2) by definition
of <,, there is a »— g;-path from ¢; to t3, which, since »—p; is a subrelation of »—,
is also a »—-path from t; to t3. By definition of tree, the »—-path from ¢; to t3 is
unique; hence the — g;-path from ¢; to ¢35 goes through t, . Thus, by definition of
<, we have that t; <, t» and t, <, t3, that is, property (P.7) is satisfied. B

Definition 4.9. Given a perfect information game <T, —, N, {ui}i€N>, a re-
lation <, on T is called a backward induction prediction if <, is the transitive
closure of a backward-induction relation — gy for that game.

Remark 3. Every finite perfect information game has at least one backward-
induction prediction, although, as noted above, it may have more than one. How-
ever, in generic games (cf. Definition 4.4) the is a unique backward-induction
prediction.

Remark 4. It is clear from Definitions 4.6, 4.7 and 4.9 that,

19Tn game-theoretic terms, — g corresponds to the strategy profile associated with a backward
induction solution.
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(a) if t <, ¢ and t <, t” and both ¢’ and ¢” are immediate successors of ¢ then
t, — t”,

(b) for every decision node ¢t € T\ Z, there is a unique z € Z such that t <, z.

5. A characterization of backward induction

The relationship between an extensive form with perfect information and a perfect
information game is similar to the relationship between a frame and a model.
Lemma 4.2 shows that an extensive form with perfect information is a special
case of a BTA frame. To view a perfect information game as a model (as defined
in Section 3) all we need to do is include in the set of sentences (or atomic
propositions) sentences of the form (u; = ¢) with ¢ € N and ¢ € Q, whose
intended interpretation is “player i’s utility (or payoff) is ¢”. We also need to add
the standard ordering of the rational numbers in the form of sentences of the form
(¢1 < gq2) whose intended interpretation is “the rational number ¢, is less than
or equal to the rational number ¢,”. A game language is a language obtained as
explained in Section 3 from a set of sentences S that includes atomic propositions
of the form (u; = q) and (¢; < @o).

Definition 5.1. Let G be a perfect information game and F be the corresponding
BTA frame (cf. Lemma 4.2). A game model is a model based on F (cf. Section
3) obtained in a game language by adding to F a valuation V : S — 21 satisfying
the following properties:

e if p € S is of the form (¢1 < g2) with g1, g2 € Q then
V(p) =T if ¢ < g2 and V(p) = () otherwise
e if p € S is of the form (u; = ¢) then
V(p) ={z€ Z:u(z) =q}.
Thus if M is a game model then, Vt € T, Mt = (@1 < o) if ¢; is less than or
equal to o and M, t = —=(q1 < o) otherwise; furthermore, M, t = (u; = q) if t is
a terminal node with w;(t) = ¢ and M, t = =(u; = q) if ¢ is either a decision node

or a terminal node with u,(t) # ¢. The valuation of the other atomic formulae
and of the non-atomic formulae is as explained in Section 3.
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Consider the following axiom scheme:

Fyplui = q) = O: (((us = 1) V Fp(us = 7)) = (r < q)) (IC)

(IC) says that if at some predicted future time Player i’s payoff is ¢ then, no
matter what action Player ¢ takes, it will be the case that if Player i’s payoff is, or
is predicted to be, r then r is not greater than ¢. It we think of the prediction as
a “recommendation” to the players, then (IC) says that if the recommendation is
that (the game be played in such a way that) Player ¢ get a payoff of ¢ then it is
not possible for Player i to take an action after which his payoff is greater than ¢ or
the recommendation is that (the game be played in such a way that) Player ¢ get a
payoff greater than ¢. Thus (IC) can be viewed as expressing a notion of internal
consistency of prediction or recommendation (hence the name IC), in the sense
that no player can increase his payoff by deviating from the recommendation,
using the recommendation itself to predict his future payoff after the deviation.?”

The following propositions show that axiom (IC) characterizes the notion of
backward induction.

Proposition 5.2. Let G be a perfect information game and <, a backward in-
duction prediction for G (cf. Definition 4.9). Then axiom (IC) is valid in every
game model based on the augmented frame (F, <,), where F is the BTA frame
associated with G (cf. Lemma 4.2).

Proof. Fix an arbitrary game model M based on (F,~<,). We have to show
that every instance of (IC) is true at every ¢t € T. If ¢ is a terminal node, then
{t eT:t=<,t'} =0 and therefore M,t |= —F,(u; = q) for all i € N and ¢ € Q.
Thus (IC) is true at t. If ¢ be a decision node and i # (t) then R;(t) = () and
therefore M, t |= O;¢ for every formula ¢; hence (IC) is true at t. Thus we only
need to consider the case where t is a decision node and i = «(t). Suppose that
(IC) is false at t. Then there are numbers ¢, € Q such that

Mt Fy(us = q) (5.1)
and M, t# O; (i =7)V Fy(u; =1)) — (r < q)), that is,

20 As remarked in the introduction, the notion of internal consistency is due to von Neumann
and Morgenstern (1947) and is central to Joseph Greenberg’s (1990) theory of social situations.
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It eT:tRt and M,t' | (i =7r)V Fpy(u; = 1)) A=(r < q)). (5.2)

By Remark 4 (Section 3) there is a unique z € Z such that ¢t <, z. By (5.1)
ui(z) = q. Let t" be the unique immediate successor of ¢ on the <,-path from ¢
to z. By definition of R; (cf. Lemma 4.2), the ¢’ of (5.2) is also an immediate
successor of t. Let 2z’ be the unique terminal node such that ¢ <, 2. Then, by
(5.2), u;(2") = r and r > q. Thus

ui(2') > u(2). (5.3)
By Definition 4.6, ue(t”)(t”) = u;(z), uf(tl)(t’) = u;(2") and ue(t”)(t”) > uf(t’)(t’),

i i

contradicting (5.3). W

The next proposition gives a converse to Proposition 5.2 for generic games (cf.
Definition 4.4).

Proposition 5.3. Let G be a generic perfect information game, F the associated
BTA frame and <, a prediction for F. Let M be any game model based on
(F,=<yp) (cf. Definition 5.1). If axiom (IC) is valid in M then <, is the backward
induction prediction.?!

Proof. First of all, by property (P.4) of Definition 2.3 (=<, subrelation of <), all
predictions coincide when restricted to the set of level 0 (or terminal) nodes (they
are equal to the empty set). Thus, in particular, <, restricted to 7i coincides
with the backward-induction prediction restricted to Tp. Now we show that <,
restricted to 77 (the set of level 1 nodes: cf. Definition 4.5) coincides with the
restriction of the backward-induction prediction to T;. Let t € Ty and let 7 =
{2 € Z :t — z}. By Properties (P.4) and (P.6) of Definition 2.3 (<, subrelation
of <, and <, serial if < is serial), Z N {t € T : { <, t} # 0. Fix an arbitrary
(e Zn{teT:t=<,t} Then, letting i = 1(f) and q = u,(2),

M, t = Fy(u; = q). (5.4)

21 Recall that in generic games there is a unique backward induction prediction. Note also
that the statements “(IC) is valid in a game model based on (F, <,)” and “(IC) is valid in every
game model based on (F, <,)” are equivalent, since (IC) is made up only of atomic propositions
of the form (u; = ¢) and (r > q) and the valuations of different models coincide on this class of
atomic propositions.
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Furthermore, it must be the case that

q>ui(z), Vze Z. (5.5)

In fact, suppose that, for some 2 € Z, ui(2') = r > q. Then M,z = (u; =
r) A =(r < q). Since tR;2', M,t = =0, ((u; =) — (r < q)). Thus, by (5.4) (IC)
would be false at ¢, contrary to the hypothesis that (IC) is valid in M. Since
the game is generic, if z € Z is such that z # 2 then, by (5.5), ui(z) < g; it
follows that {t € T : ¢ <, t} = {#}. Thus, restricted to T}, <, coincides with
the backward induction prediction. Next we show that if <, and the backward-
induction prediction coincide when restricted to U?:o Ty for kK > 1, then they
coincide when restricted to Ty, ;. Fix an arbitrary ¢ € Ty,1. By Property (P.6) of
Definition 2.3, 3t” € T such that ¢ =<, t". If t" is not a terminal node, let ¢’ be the
unique immediate successor of ¢ on the <-path from ¢ to ¢”. Then, by Property
(P.7) of Definition 2.3, ¢ <,, ¢'. Clearly, £(t') < k; hence, by our supposition that
<, coincides with the backward-induction prediction when restricted to U?:o Ty,

there is a unique 2’ € Z such that ¢’ <, 2. Let i = «(f)and q = u;(2").Then

Mt = Fy(u; = q). (5.6)

For every t € T such that t — ¢, if ¢ is not a terminal node let z be the unique
terminal node such that ¢ <, 2z, (once again, uniqueness is guaranteed by our
supposition; if ¢ is a terminal node, let z; = t). We want to show that

wi(zp) > ui(z), VteT :t st (5.7)

Suppose not. Then there exists a ¢ € T such that £ »—  and wi(z;) = r >
q = ui(z¢). Two cases are possible: (1)t € Z, or (2) t ¢ Z. In case (1),
Mt = (ui =) A=(r < q),while in case (2) M, = F,(u; =) A=(r < q). Thus
in either case M,t |= =0, (((u; = r) V E,(u; = 7)) — (r < q)). Hence, by (5.6),
(IC) is false at £, contradicting the hypothesis that (IC) is valid in M. Since the
game is generic, it follows from (5.7) that {z € Z : £ <, 2} = {2} and, therefore,
if ¢ is an immediate successor of £ and # <, t then t = #'. Thus the restriction
of <, to T}, coincides with the restriction to 7j;; of the backward induction
prediction. H

The reason why Proposition 5.3 is not true, as stated, for non-generic games
is that (cf. Remark 4), while a backward induction prediction is such that the
predicted future of any node t is always a unique path, in non-generic games it
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is possible to satisfy (IC) with a relation that includes more than one path out
of some nodes. This is illustrated in Figure 8 below, where (a) and (b) are the
only backward induction relations, while the relation illustrated in (c) is not a
backward-induction relation; however, it is easy to see that all three validate (IC)
in every model based on this game.

1 1

7 Y4 VA Zs Z1 Z2 Zs Zs
4 1 2 2 4 1 2
0 1 0 3 0 1 0 3
3 2 1 1 3 2 1 1

(a) (b)

Z V43 Z3 Zs
4 1 2 2
0 1 0 3
3 2 1 1

Figure 8
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In order to generalize Proposition 5.3 to non-generic games we need the fol-
lowing lemma.

Lemma 5.4. Let G be a perfect information game, F the corresponding BTA
frame and <, a prediction for F. Let M be a game model based on (F, <)
where axiom (IC) is valid. Then, Vt € T, Vq,qs € Q,

if M,t IZ Fp(ub(t) = ql) VAN Fp(ub(t) = qz) then q; = qo.
Proof. Fix an arbitrary ¢t € T' and let i = «(t). Suppose that
Since (IC) is true at ¢, for every r € Q,
Mt =D (v =)V Fy(u = 1)) — (r < q1)) (5.9)
and

Mt ED ((u=r)V Ey(u; =7)) = (r < ¢q2)) (5.10)
Furthermore, by (5.8), there exist 21, 22 € Z such that t <, z1,t <, 22, ui(21) = @1
and u;(22) = g2 For j = 1,2 let ¢; be the immediate successor of ¢ on the <-path
from ¢ to z;. Then

Furthermore, by Property (P.7) of Definition 4.9, either t; = z; or t; <, z; and
either ¢ = 29 or ty <, 22. Hence

and

Mty = (u; = qa) V Fp(u; = q2). (5.13)

It follows from (5.9), (5.11) and (5.12) that, for all r € Q, M,t; = (r < ¢1); in
particular, M, t; = (g2 < ¢1). Similarly, it follows from (5.10), (5.11) and (5.13)
that M, ts = (¢1 < q2). Hence, by Definition 5.1, ¢; = go. B
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Definition 5.5. Given a perfect information game (T, —, N, v, {u;};x ), let ¢,
be a subrelation of — and let — p; be a backward-induction relation (cf. Defini-
tion 4.7). We say that —, is equivalent to — g, if

(1) —., contains — p; and

(2) if (t,t') €4 and (t,t') ¢>—ps then, letting z be the unique terminal node
— pr-reachable from t and z' be the unique terminal node — g-reachable from t’,
w(t)(2) = e (2)-

Thus a super-relation of a backward-induction relation is equivalent to it if,
whenever an arrow from a node ¢ to one of its immediate successors is added to
the backward-induction relation, the player who moves at t is indifferent between
the terminal node reachable from ¢ by the backward-induction relation and any
other terminal node that becomes reachable due to the addition.

Definition 5.6. A prediction for a perfect information game is equivalent to a
backward-induction prediction if it is the transitive closure of a subrelation of —
which is equivalent to a backward-induction relation.

The following proposition generalizes Proposition 5.3 to perfect information
games that are not necessarily generic.

Proposition 5.7. Let G be a perfect information game, F the associated BTA
frame and <, a prediction for F. Let M be any game model based on (F,<,). If
axiom (IC) is valid in M then <, is equivalent to a backward induction prediction.

We omit the proof of Proposition 5.7 since it follows directly from Lemma 5.4
with an argument similar to the one used in the proof of Proposition 5.3.

6. Conclusion

The logical foundations of game-theoretic solution concepts have so far been de-
veloped within the confines of epistemic logic. The purpose of this paper was to
show that a different branch of modal logic, namely temporal logic, can offer new
insights on the logic of solution concepts. We proposed to view the solution of
a game as a complete prediction about future play. After having extended the
branching time framework by adding agents and by defining the notion of pre-
diction, we showed that perfect information games are a special case of extended
branching time frames and that the backward-induction solution can be viewed as
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a prediction. We concluded by providing a characterization of backward induction
in terms of the property of internal consistency of prediction.

The analysis in this paper was confined to perfect information games. In future
work we hope to extend this approach to general games in extensive form.
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