A Service of

ECOMNZTOR pr

Make Your Publications Visible.

Leibniz-Informationszentrum
Wirtschaft

Leibniz Information Centre
for Economics

Bonanno, Giacomo

Working Paper

The Logic of Prediction

Working Paper, No. 98-12

Provided in Cooperation with:

University of California Davis, Department of Economics

Suggested Citation: Bonanno, Giacomo (1998) : The Logic of Prediction, Working Paper, No. 98-12,
University of California, Department of Economics, Davis, CA

This Version is available at:
https://hdl.handle.net/10419/189481

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor durfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dirfen die Dokumente nicht fiir 6ffentliche oder kommerzielle
Zwecke vervielféltigen, 6ffentlich ausstellen, 6ffentlich zugénglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfiigung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewahrten Nutzungsrechte.

WWW.ECONSTOR.EU

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

Mitglied der

Leibniz-Gemeinschaft ;


https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/189481
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

THE LOGIC OF PREDICTION

Giacomo Bonanno*
Department of Economics,
University of California,
Davis, CA 95616-8578 USA
e-mail: gfbonanno@ucdavis.edu

www.econ.ucdavis.edu/~bonanno

This version: September 23, 1998
(First draft: July 1998)

Keywords: tense logic, branching time, prediction, belief.

Abstract

When we make a non-trivial prediction about the future we select,
among the conceivable future descriptions of the world, those that appear
to us to be most likely. Within a branching-time framework we capture
this by means of two binary relations, <. and <,. If ¢; and ¢5 are different
points in time, we interpret ¢; <. t2 as saying that ¢5 is in the conceivable
future of t1, while t; <, 2 is interpreted to mean that ¢, is in the predicted
future of t1. We propose the following notion of “consistency of prediction-
s”. Suppose that at t; some future moment #9 is predicted to occur, then
(a) every moment ¢ between t; and t2 should also be predicted at t; and
(b) the prediction of ¢o should continue to hold at every ¢ between ¢; and
t2. We provide a sound and complete axiomatization for this notion of
consistency.

*I am very grateful to Johan van Benthem and Yde Venema for the extreme care with which
they read the first draft and for important suggestions on how to improve the paper. I also
benefited from comments by Patrick Blackburn, Joe Halpern, Maarten de Rijke, Richmond
Thomason and Frank Wolter.



1. Introduction

When we make a non-trivial prediction about the future we select, among the
conceivable future descriptions of the world, those that appear to us to be most
likely. Thus the concept of prediction involves (at least) three notions: (1) time
(predictions are about the future)!, (2) conceivable future states of the world and
(3) a selection from the set of conceivable states of those that are considered likely.
We propose a system of modal logic that incorporates these three elements. First
of all, the notion of a multiplicity of possible future states is captured by what
is known in temporal logic as branching time (see, for example, van Benthem,
1991, Burgess, 1984, Goldblatt, 1992, Halpin, 1988, @hrstrom and Hasle, 1995).
Secondly, to capture the distinction between conceivable and likely future possi-
bilities we introduce two binary relations, <. and <,. If ¢; and ¢, are different
points in time, we interpret t; <. to as saying that t, is in the conceivable future
of 1, while ¢; <, ¢, is interpreted to mean that ¢, is in the predicted future of .2

Figure 1

' A Chinese proverb says, ”Prediction is difficult, especially with regard to the future”.

2This dual framework is reminiscent of the joint treatment (in another branch of modal logic)
of knowledge and belief (see, for example, Halpern, 1991, Hintikka, 1962, van der Hoek, 1993,
Kraus and Lehman, 1988, Lenzen, 1978). Indeed making a prediction is essentially expressing a
belief about the future. The set of conceivable future states can be thought of as what we ”know”
about the future, while the set of likely future developments represents what we ”believe” about
the future.



The main question we address is what ”consistency” properties ought to be
imposed on the notion of prediction. We propose the following. Suppose that at
time t; a conceivable future development is represented by the path ¢;tot3 (that
is, t1 <. ty and ty <. t3). This is shown in Figure 1, where there is a (continuous)
arrow labelled ‘¢’ from ¢ to ¢ if and only if ¢t <. t'. Suppose also that t3 lies in
the predicted future of ¢; (that is, t; <, t3: this is shown in Figure 1 by a dotted
arrow labelled ‘p’ from ¢1to t5). Then we impose the following requirements:

e (a) since reaching t3 requires going through t,, ¢ should lie in the predicted
future of ¢; (that is, ¢ <, t2), and

e (b) since reaching ¢, is consistent with (is a partial realization of) the pre-
diction that ¢35 will be reached, the prediction should continue to hold at ¢,,
that is, t3 should be in the predicted future of ¢y (t2 <, t3).

We provide a sound and complete axiomatization of this notion of time con-
sistency. The semantics is studied in Section 2, while the syntax is developed in
Section 3, where the soundness and completeness theorems are proved. Section 4
discusses possible extensions, while Section 5 contains concluding remark.

2. Semantics

We consider what is known in philosophy as branching time. Let T be a set of time
instants (each instant will be interpreted as a state of the world at a time) and
<. and <, binary relations on T'. If ¢; <. t, we say that ¢, is in the conceivable
future of t;, while if ¢, <, {2 we say that ¢, is in the predicted future of t;.

Definition 2.1. A frame is a triple F = (T, <., <,) where T' is a (possibly infi-
nite) set and <. and <, are binary relations on T. A tree-frame is a frame that
satisfies the following properties: Vti,ty,t3 € T,

(R.0) antisymmetry of <.: if t; <.ty then ty 4. 11,
(R.1) transitivity of <.: if t; <.ty and ts <. t3 then t; <. t3,

(R.2) backward linearity of <.: ift; <. t3 and ty <. t3 then
either t; =ty or t] <.ty or ty <, t1,

(R.3) <, subrelation of <.: if t; <, ty then t, <. ta,
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(R.4) transitivity of <,: if t; <, ts and ty <, t3 then t; <, ts.

(R.0)-(R.2) constitute the definition of branching time in temporal logic.® In
particular, (R.2) expresses the notion that, while a given moment may have differ-
ent possible futures, its past is settled. (R.3) captures the notion that predicting
the future consists in selecting a subset of the conceivable future states: those
that are believed to be most likely. The interpretation of <, in terms of pre-
diction (i.e. belief about the future) makes (R.4) a natural requirement: it can
be viewed as incorporating a principle of coherence of belief very close in spirit
to van Fraassen’s Reflection Principle (van Frassen, 1984). If, now, I consider it
possible that at some future time Iraq shoots down a US reconnaissance plane
and in a state of affairs where this did happen I would consider it possible that
the US would retaliate with an air strike, then I must now consider possible a
future state of affairs where the US launches a retaliatory air strike on Iraq.*

Every ¢t € T should be thought of as a complete description of the world at
time ¢t. Furthermore, sets of dates ought to be thought of as propositions, which
in turn are the object of predictions about the future. In order to establish this
interpretation one needs to introduce a formal language and the notion of a model
based on a frame. This will be done in Section 3.

Given the interpretation of {t' € T : t <, t'} as the “predicted future of
t”, what further restrictions on the relations <. and <, should one impose? As
argued above, the following seems a natural “consistency” requirement: if 3 is in
the predicted future of ¢;, and ¢, is on the <.-path from ¢; to t3 then (i) ¢5 should
be in the predicted future of ¢; and (ii) ¢3 should be in the predicted future of ¢,.
Formally (‘CP’ stands for ‘Consistency of Prediction’),

(CP) \V/tl,tg,tg S T, if 1 =p t3 and t; <.ty and ty <, 3
then t1 =p to and ty =p t3

The following, more general, version of this principle is easily seen to be equiv-
alent to (CP) whenever <, is transitive.”

3See, for example, Burgess (1984), Halpin (1988), GQhrstrem and Hasle (1995).

4The only result where transitivity of ~p is used is Lemma (2.4). Thus it could easily be
dropped and the soundness and completeness proofs for the resulting weaker logic would be
simplified versions of the proofs given below.

5(CP) is a special case of (CP’) (the case where n = 3). To show that (CP) implies (CP’),
let t1,...,t, € T be such that t; <, ¢, and ¢; <. ;41 Vi =1,...,n — 1. Suppose that n > 3.
By transitivity of <., t; <c t,—1. Thus by (CP) t,_1 <, t, and t; <, t,—1. Thus we have
reduced to the case n — 1. If n — 1 = 3, the proof is completed by a second application of (CP).
If n —1 > 3 then the argument can be repeated until the sequence is reduced to three elements.
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(CP") If t,....,t, €T, are such that t; <, t, and t; <.t Vi=
1,...,n—1then t; <, tix1 Vi=1,..,n—-1

Lemma 2.2. If <. is antisymmetric and backward linear and <, is a subrelation
of <. then (CP) is equivalent to the conjunction of the following two properties:

(R.5) backward linearity of <, : if ty <, t3 and ty <, t3 then either t; = t,
or ty =p to or ty =p t1,

(R.6) if t, <, t3 and ty <. t3 then either (a) t; =ty or (b) ty <. t;
or (c) t1 <.ty and ty <, ts.

Proof. First we prove that (CP) implies (R.5). Let ¢; <, t3 and ¢, <, t3. Since
<, is a subrelation of <., t; <. t3 and ty <. t3. Thus by backward linearity of <.,
either ¢, =ty or t; <.ty or ty <. t1. If t; < ty then (since ty <. t5 and t; <, t3)
by (CP) t; <, to. If ty <. t; then (since ¢; <. t3 and ty <, t5) by (CP) ¢y <, t;.
Next we show that (CP) implies (R.6). Let ¢, <, t3 and t» <. t3. Then, since
<, is a subrelation of <., t; <. t3. It follows from backward linearity of <. that
either (a) t; =ty or (b) to <. t; or (c) t1 <. t2. In case (c) it follows from (CP)
that ty <, t3.

Finally we show that the conjunction of (R.5) and (R.6) implies (CP). Let ¢; <. to,
to <. t3 and t; <, t3. Since t; <. t,, by antisymmetry of <.

tl 7£ tQ and tQ 740 tl. (21)

Thus, by (R.6), t2 <, t3. Hence, by (R.5) and (2.1) t; <, t2 (the case t5 <, t; is
ruled out by (2.1) and the fact that <,, is a subrelation of <.). B

Corollary 2.3. In a tree-frame (CP’) is equivalent to (CP) which, in turn, is
equivalent to the conjunction of (R.5) and (R.6).

We view (CP) as a minimum requirement on the notion of prediction. The
purpose of this paper is to investigate the modal logic of the most basic system.
Depending on the application or interpretation one has in mind, further restric-
tions might be necessary. Some of them are discussed in Section 4. 6

61t is worth noting that one property which we have not imposed is that the predicted future
of t belong to the same future history, that is, we do not require forward linearity of <,: if
t1 <p t2 and 1 <, t3 then either tp = t3 or to <, t3 or t3 <, t2. Indeed, although sometimes
we make sharp predictions, often we do not.



We conclude this section by showing that (CP) incorporates a principle of
“minimum revision of prediction”.” Let C(t) = {t' € T : t <. t'} be the set of
< ~successors of ¢ (the conceivable future of t) and P(t) = {t' € T': t <, t'} the
set of <,-successors of ¢ (the predicted or likely future of ¢). The principle of
minimum revision of prediction states that if ¢, is in the conceivable future of ¢,
and the predicted future of ¢; has a non-empty intersection with the conceivable
future of to, then the predicted future of ¢, should coincide with that intersection.
Formally (‘MR’ stands for 'Minimum Revision’),

Lemma 2.4. If <, is transitive, (CP) implies (MR).

Proof. Assume that ¢; <. t2 and P(t;) N C(t2) # (). First we show that P(¢;) N
C(tg) Q P(tg) Let t3 S P(tl)ﬂC’(tg), that iS, tl '<p t3 and tQ <e t3. Then by (CP)
ty <, ts3, that is, t3 € P(t2). Next we show that P(t2) C P(t) N C(t2). Fix an
arbitrary t3 € P(t;) N C(t2) (there exists one, because P(t;) N C(tz) # (). Then
(since t; <. t2) by (CP) t; <, to. Fix an arbitrary ¢ € P(ty), that is, t, <, t. By
transitivity of <, t; <, t, that is, t € P(¢;). Hence P(t2) C P(t;). Finally, since
<, is a subrelation of <., P(t2) C C(t2). W

Thus in tree-frames (CP) implies (MR).®

3. Syntax

We consider a propositional language with four modal operators: G., H., G, and
H,. The intended interpretation is as follows:

G.¢ : “it is going to be the case in every conceivable future that ¢”
H.¢ : “it has always been the case that ¢”

Gp¢ : “it is going to be the case in every predicted future that ¢”

"In a different context (of knowledge and belief) this principle of minimum revision captures
the qualitative part of Bayes’ conditionalization rule and has been axiomatized in Battigalli and
Bonanno (1997).

80n the other hand, (MR) does not imply (CP), as the following example shows: 1T =
{tl,tg,tg,}, O(tl) == {tz,tg}, C(tz) == P(tl) == P(tz) == {t3}, O(tg,) == P(tg) == @ Here (I\’IR) is
satisfied but not (CP) since to ¢ P(t1).



H,¢ : “it has always been the case at every past date at which today
was predicted that ¢”.

The formal language is built in the familiar way from the following compo-
nents: a countable set S of sentence letters (representing atomic propositions),

the connectives — and V (from which the other connectives A, — and < are de-

fined as usual) and the modal operators G, H., G,, H,." Let F.¢ “ alo}

def def def

P.¢ = -H.~¢, F,¢p = ~G,~¢ and P,¢ = —H,~¢. Thus the intended interpre-

tation is:

F.¢ : “at some conceivable future date it will be the case that ¢ ”
P.¢ : “at some past date it was the case that ¢ ”
F,¢ : “at some predicted future date it will be the case that ¢ ”

P,¢ : “at some past date at which today was predicted it was the case
that ¢ 7.

Given a frame (T, <., <,) one obtains a model M based on it by adding a
function V : S — 27 (where 27 denotes the set of subsets of T') that associates
with every sentence letter g the set of dates at which ¢ is true. For every formula
¢, the truth set of ¢ in M, denoted by HQSHM, is defined as usual: if ¢ = (¢q) where
¢ is a sentence letter, then [[¢[|™ = V(g), =™ = T\ [[¢]™, ¢V ¢|I™ =
g™ U [l **and

1G.H|M = {t €T .V €Tift <.t thent € |\¢\|M}
|H oM = {t €TVt eTift" <.t thent ¢ HquM}
G, 8| M = {t ET: W €Tift <, then ' e |\¢||M}

9The set ® of formulae is thus obtained from the sentence letters by closing with respect to
negation, disjunction and the operators G., H., G, and Hy: (i) for every ¢ € S, (¢) € @, (ii) if
¢, € ® then all of the following belong to ®: (=), (¢ V V), G.p, Hed, Gp, and Hyo.
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|H, o™ = {t eT: W eTift" <, thent’ € |\¢||M} 10

If t € ||¢||™ we say that ¢ is true at time t in model M. An alternative notation
for t € ||¢||™ is M,t |= ¢ and an alternative notation for ¢ ¢ ||¢||™ is M, t ¥ ¢.
Thus G.¢ (resp. G,¢) is true at time t if ¢ is true at every conceivable (resp.
predicted) future of ¢, while F.¢ (resp. F,¢) is true at time ¢ if ¢ is true at some
conceivable (resp. predicted) future of ¢. Similarly for H.¢, H,¢, P.¢ and P,¢.

A formula ¢ is satisfiable in a frame if there is a model M based on it and a
time ¢ such that M, t = ¢. A formula ¢ is valid in model M if ||| = T, that
is, if ¢ is true at every date t € T. A formula ¢ is valid in a frame if it is valid in
every model based on it.

Consider the following axiom schemata:

(A1) G.p — G.G.¢

(A.2) Pep N Pep — Fe(¢ N )V Pe(@ A Pp) V Pe(Pep A1)
(A3) Gep — Giop

(A.4) Gpp — GLGpo

(A.5) B A By — Bp(¢ Ap) V By(¢p A Bpo) V Po(Bpp A 1))
(A.6) oo A P — Po(¢ AY)V Po(¢ N Pep) V Po(FPegp A 1))

The following characterization is straightforward.!!

10T hus
|Fo|I™M = {t €T:3 €T such that t <. ¢ and ¢/ € |\¢\|M}

| P ™ = {t €T :3t" € T such that ¢ <.t and £’ € |||
|E| ™M = {t €T:3 €T such that t <, ' and ¢’ € \|¢|\M}

1P| M = {t €T :3t" € T such that t” <, t and t € |||

UFor (a), (b), (c) and (e) see Burgess (1984). For (d) see van der Hoek (1983). To prove
(f), consider a frame that satisfies (R.6) and any model based on it. Fix an arbitrary t3 € T
and arbitrary formulae ¢ and 1. Suppose that t3 = Pp¢ A P.ip. Then there exist t; and ts
such that t1 <, t3, t2 <. t3, t1 = ¢ and t3 = ¥. By (R.6) either t; = t5 (in which case
ts = Py(d A ) or ta <. t1 (in which case t3 = Py(¢p A Potp)) or t; <, ta and t2 <, t3 (in
which case t3 = Pp,(P.¢ A ¢)). Conversely, consider a frame that violates (R.6). Then there
exist t1,t2,t3 € T such that t; =p t3, t2 <c t3, T1 75 to, t2 740 t1 and if ¢1 <. to then to 74;; t3.
Let ¢ and s be atomic sentences and consider a model based on this frame where ||q|| = {¢1}



Lemma 3.1. Let F = (T, <., <,) be an arbitrary frame (not necessarily a tree-
frame). Then

(a) F satisfies (R.1) if and only if (A.1) is valid in F.

(b) F satisfies (R.2) if and only if (A.2) is valid in F.

(c) F satisfies (R.3) if and only if (A.3) is valid in F.

(d) F satisfies (R.4) if and only if (A.4) is valid in F.

(e) F satisfies (R.5) if and only if (A.5) is valid in F.

(f) F satisfies (R.6) if and only if (A.6) is valid in F.

Definition 3.2. A P-frame is a tree-frame that satisfies (R.5) and (R.6).

We denote by L the basic system of temporal logic specified by the following
axiom schemata and rules of inference.
Axiom schemata: all the classical tautologies as well as the following

(AOa) Ge(¢ = ¥) = (Gep — Gep)  (AOb) G — ¥) — (Gpp — Gpo))
(A.0c) H.(¢ — ) — (Hep — He) (A.0d) Hp(¢p — ¢) — (Hpp — Hyt)
(A.0e) ¢ — G.P.p (AOf) ¢ — G,Py¢
(A.0g) ¢ — H.F.¢ (A.Oh) ¢ — H,F,¢
Rules of inference:

Modus Ponens: from ¢ and ¢ — 1 to infer 9,

Temporal Generalization: from ¢ to infer G.¢, H.¢, Gp¢, and H,¢.

Let L be the extension of Ly obtained by adding (A.1)-(A.6).

Theorem 3.3. (SOUNDNESS THEOREM). LL is sound with respect to the class
of P-frames, that is, every theorem of IL is valid in every P-frame.

Proof. It suffices to show that each axiom is valid and that each rule of inference
preserves validity. For a proof that the inference rules preserve validity and that
axioms (A.0a)-(A.Oh) are valid, see Burgess (1984). Validity of axioms (A.1)-(A.6)

follows from Lemma 3.1. W

and ||s|| = {t2}. Then t3 |= Pyg A P.s. Since t; # tg, there is no ¢ such that ¢ = g A s. Thus
t3 ¥ P,(gAs). Since ty Ac ti, there is no ¢ such that t |= g A P.s. Thus t3 ¥ P,(q A P.s). Finally,
since t = P.q A s if and only if t = toand t; <. t2 and since t; <. to implies o #Ap t3, we have
that t3 ¥ Py(P.q A s). Thus at t3 the instance of (A.6) with ¢ = ¢ and ¢ = s is false.



Theorem 3.4. (COMPLETENESS THEOREM). L is complete with respect to
the class of P-frames, that is, if a formula is valid in every P-frame then it is a
theorem of L.

In order to prove the completeness theorem we need some preliminary re-
sults.'? Let MaxL be the set of maximal L-consistent sets of formulae. Define
the following relations on Mazxl:

A —. B if and only if, for every formula ¢, if G.¢ € A then ¢ € B
A —, B if and only if, for every formula ¢, if G,¢ € A then ¢ € B

The next two lemmas are well-known (cf. Burgess 1984, Lemmas 1.6 and 1.7).

Lemma 3.5. Let A, B € MazLL. Then (1)-(4) below are equivalent and (i)-(iv)
below are equivalent:

(1) A— B,

(2) for every formula ¢, if ¢ € A then P.¢ € B,

(3) for every formula ¢, if € B then F.¢ € A,

(4) for every formula ¢, if H.¢) € B then ¢ € A.

(i) A—, B,

(ii) for every formula ¢, if ¢ € A then P,¢p € B,

(iii) for every formula ¢, if ¢ € B then F,¢ € A,
(iv) for every formula ¢, if H,¢ € B then ¢ € A.

Lemma 3.6. Let B € MazlL and ¢ be any formula. Then
(a) if F.¢ € B, then there exists a D € MazlL with B —. D and ¢ € D
(b) if P.¢ € B, then there exists an A € MaxlL with A -, B and ¢ € A
(c) if F,¢ € B, then there exists a D € MazL with B —, D and ¢ € D
(d) if P,¢ € B, then there exists an A € MazxlL with A —, B and ¢ € A.

Lemma 3.7. The following holds.
(a) By (A.1) the relation —». on MazlL is transitive.'®
(b) By (A.2) the relation —. on MaxlL is backward linear.**

12The completeness proof given below follows the approach put forward by Burgess (1984).

13More precisely, if I/ is any extension of Ly that contains axiom (A.1), then the relation —»,
on Maxl/ is transitive. A similar statement applies to (b)-(f).

4 That is, if A -, D and B —, D then either A= B or A -, Bor B —», A
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(c) By (A.3) —, is a subrelation of —»..'5
(d) By (A.4) the relation —, on MazL is transitive.
(e) By (A.5) the relation —, on MaxzLL is backward linear.*

(f) By (A.6) the relations —. and —,, satisfy the following property:

iof A=, D and B —.D then either A=B or B—».A
or (A—.B and B —, D)

Proof. For (a) and (d) see Burgess (1984, p. 103, first lemma). For (b) and (e)
see Burgess (1984, p. 103, second lemma, adapting the proof given for forward
linearity to the case of backward linearity). To prove (c), let A —, B and let
¢be an arbitrary formula and assume that G.¢ € A. We want to show that
¢ € B. By (A.3), (Gep — Gpp) € A. Thus G, € A. Hence by Lemma 3.5
(since A -, B) ¢ € B. We conclude by proving (f). Suppose that A —, D and
B —.D and A# B and B /».A (/. denotes the negation of —.). We need to
show that (A —. B and B —, D). We do this by showing that A /».B yields
a contradiction and B /+,D yields a contradiction. Since A # B, there exists a
¢ € A such that -¢ € B. Since B /».A, by Lemma 3.5 there exists a ¢ € B
such that =P € A. Thus

(b/\_'Pcw cA (31)
and

YAN-¢eB (3.2)

Suppose that A /».B. Then by Lemma 3.5 there exists § € A such that —-P.0 € B.
Then, using (3.1),

ONPN—-Pape A (3.3)

and

YAN-¢pN-FPbeB (3.4)
By (3.3) and Lemma 3.5, since A —, D,

5That is, if A —, B then A —», B
Y That is, if A —, D and B —», D then either A= B or A -, B or B —», A.

11



P,(0N¢pN—-Pap) e D (3.5)
By (3.4) and Lemma 3.5, since B —. D,

P.(Y N=¢p N=PO) €D (3.6)
Thus, by (3.5) and (3.6) and axiom (A.6), either

(i) P, (OANPNAN=Pap NpAN=¢pA-Ph) e D, or
(i) P,(6 ANpAN—PapNP.(p N=¢p AN-Ph)) € D, or
(iii) By (P. (O Ap AN =Pp) Np A —=¢p A —P.0) € D.

Case (i) is impossible because ¢ A —¢ is a contradiction. Case (ii) is impossible
because P. (1) A =¢ A =P.0) implies P.i), contradicting —P.1).!17 Case (iii) is im-
possible, since P. (0 A ¢ A —~FP.) implies P.0, contradicting —P.6. Hence it must
be that A —. B. Suppose now that B /»,D. Then by Lemma 3.5 there exists a
~ € B such that

-P,ye D (3.7)

Then, using (3.2),

YAYAN-pEB (3.8)
Since A —, D, by (3.1) and Lemma 3.5,

P, (¢ A=Pa) € D (3.9)
Since B —. D, by (3.8) and Lemma 3.5,

P.(yANY AN—=¢) € D (3.10)
Thus by (3.9) and (3.10) and axiom (A.6)either

1"More precisely, there would be a maximal consistend set E such that E —p D and 6 A
dN-Pap NP (Y N-pA-P) € E. Then =P,y € E and P, (Y A~ AN—P.0) € E. Since
P. (¢ AN —¢p A —P.0) — Peipis a theorem of Ly, we would have that P.ip € E. Thus P.yyA—P.1) €
FE, contradicting the definition of maximal consistent set.
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(i) Py(o AN=Payp Ay AN A—¢) € D, or
(ii) P, (¢ AN=Pap AN P.(y N AN—¢)) € D, or
(ili) B, (P. (¢ A=Pap) ANy ANy A—=¢) € D.

Case (i) is impossible because ¢ A —¢ is a contradiction. Case (ii) is impossible
because P, (y A A —¢) implies P.1i), contradicting —P.1). Case (iii) is impossible
because it implies P,y € D, contradicting (3.7). Thus it must be B —, D. R

Definition 3.8. A partial canonical frame is a quadruple (X, <., ~<,, f) such
that: (1) X is a finite set, (2) (X, <¢, <p) is a P-frame and (3) f : X — MazL.
A partial canonical frame is coherent if, Vx,y € X,

(1) if x <.y then f(z) —. f(y), and

(2) if v <, y then f(z) —, f(y).

Definition 3.9. Let ¢ be a formula and (X, <., <,, f) a partial canonical frame.
We say that

(a) F.¢ is not satisfied at x € X, if F.¢p € f(x) and there is noy € X such
that © <.y and ¢ € f(y).

(b) F,¢ is not satisfied at x € X, if F,¢ € f(z) and there is noy € X such
that x <, y and ¢ € f(y).

(c) P.¢ is not satisfied at x € X, if P.¢p € f(x) and there is noy € X such
that y <.z and ¢ € f(y).

(d) P,¢ is not satisfied at = € X, if P,¢ € f(x) and there is noy € X such
that y <, x and ¢ € f(y)

Definition 3.10. Given partial canonical frames (X, <., <p, f) and (X', <, =<0 i)
we say that the latter is an extension of the former if (viewing relations and func-
tions as sets of ordered pairs):

(1) X C X',

(2) =S <0

(3) <p € <5

(4) f<rf.

Lemma 3.11. EXTENSION LEMMA. Let (X, <., <y, f) be a coherent partial
canonical frame and let ¢ be a formula.

(a) Suppose that F.¢ is not satisfied at © € X. Then there exists a coherent
extension <X', <0 =<0 f’> of (X, =<¢, =y, f) and ay € X' such that x <! y and

¢ € fly).
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(b) Suppose that F,¢ is not satisfied at € X. Then there exists a coherent
extension (X', <, <! f') and ay € X' such that x <,y and ¢ € f(y).
(c) Suppose that P.¢ is not satisfied at x € X. Then there exists a coherent
extension (X', <., <!, f') and ay € X' such that y <., z and ¢ € f(y).
(d) Suppose that P,¢ is not satisfied at © € X. Then there exists a coherent
extension <X’, <0 =<0 f’> and a y € X' such that y <}, ¥ and ¢ € f(y).

Proof. (a) Let x € X and F.¢ € f(x). Then by Lemma 3.6 there is a B €
MazlL such that f(z) —. B and ¢ € B. Construct the following extension of
(X, <, <p, f) obtained by (i) adding a new point y, (ii) assigning the set B to
y, and (iii) adding the pair (z,y) to <. (and any new pair needed to preserve
transitivity), while no pairs are added to <,. Let y € W\ X (where W is a
proper superset of X, which we fix throughout this proof) and

X' =XU{y}

<e==c UW{(z,9)} U{(v,y) v <.z}
<,==p

= fu{ly. B)}.

That the new partial frame is coherent follows from transitivity of —. (cf. Lemma
3.7). It is also clear that the new frame is a P-frame, since the original frame was
a P-frame, transitivity of <. has been preserved and no <,-pairs have been added.

(b) Let z € X and F,¢ € f(z). Then by Lemma 3.6 there is a B € MaxL
such that f(z) —, B and ¢ € B. Construct the following extension obtained by
(i) adding a new point y, (ii) assigning the set B to y, and (iii) adding the pair
(x,y) (and any new pair needed to preserve transitivity) to both <. and <,,. Let
y € W\ X and

X'=XU{y}

<e==c U{(z,y)} U{(v,9) 1 v <. 2}

<= <y U{(z, )} U{(v,9) : v =, o}

f'=fu{ly, B)}.
That the new partial frame is coherent follows from Lemma 3.7 (—, subrelation
of —», transitivity of —. and —»,). It is also clear that, given that the original
frame was a P-frame, the new frame is also a P-frame: transitivity of both <. and
<, has been preserved, every new <,-pair is also a <.-pair and for every v € X, if
v <7,y then the entire <-path from v to y is also a < -path (if v = z this is true
by construction; if v <. z then v </ y requires v <, x hence, since the original
frame is a P-frame, the entire < -path from v to z was also a <,-path).

(c) Let P.¢ € f(x) and suppose there is no y € X such that y <. = and
¢ € f(y). We proceed by induction on the number n of <.-predecessors of z in
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X. Suppose n = 0. Since P.¢p € f(z), by Lemma 3.6 there exists a B € MaxL
such that B —. f(z) and ¢ € B. Construct the following extension obtained by
(i) adding a new point y, (ii) assigning the set B to y, and (iii) adding the pair
(y,x) to <. (and any new pair needed to preserve transitivity), while no pairs are
added to <,. Let y € W\ X and

X'=XU{y}

<e==c U{(y, )} U{(y,v) : & <c v}
=<, ==p

f=r5u{ly,B)}.

Coherence follows from transitivity of —.. It is also clear that the new frame is
a P-frame, since the original frame was a P-frame, transitivity of <. has been
preserved and no <,-pairs have been added.

Suppose now that n > 1. Let 2’ be the immediate <.-predecessor of x in X (recall
that X is finite). By our supposition, ¢ ¢ f(z'). If P.¢ € f(z') then we can reduce
(by appealing to transitivity of <. and —».) to the case n — 1 by replacing x with
x’. Assume therefore that P.¢ ¢ f(z'). Then, by definition of maximal consistent
set, (o A = P.¢) € f(z'). We need to distinguish two cases.

CASE 1: ' £, . By Lemma 3.6, since P.¢ € f(z) there exists a B € MazL

such that B —. f(z) and ¢ € B. Construct the following extension, obtained
by (i) inserting a new point y between 2’ and x and assigning it the set B , (ii)
adding the pairs (2/,y) and (y,x) to <. (and any new pair needed to preserve
transitivity), while no pairs are added to <, . Let y € W\ X and

X' =X U{y}

< == U{(",y), . 2)} U{(0,) s v <. 2/} U {(y,w) 7 <, w}
<,==p

f'=1U{(y,B)}.

To verify coherence, besides appealing to transitivity of —., we need to show
that f(2') —. B. By coherence of (X, <., <,, f), f(2') - f(z). Thus, since
B —. f(x), by backward linearity of —. (cf. Lemma 3.7) either (i) f(z') = B
or (ii) B —. f(2') or (iii) f(2') —. B. Case (i) is ruled out by ¢ € B and
¢ ¢ f(2'). Case (ii) is ruled out by ¢ € B and P.¢ ¢ f(2') (cf. Lemma 3.5). Thus
f(2') - B. Furthermore, it is clear that the new frame is a P-frame, since the
original frame was a P-frame, transitivity of <. has been preserved and inserting a
point between 2’ and = without adding any <,-pairs would have violated property
(CP) only if it had been the case that =’ <, z, contrary to our supposition.

CASE 2: ' <, z. By coherence of (X, <., <,, f), since (m¢ A =P.¢p) € f(z'),
P,(=¢ N =P.¢) € f(x) (cf. Lemma 3.5). Thus P,(—¢ A =P.¢) A P.¢p € f(x). By
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definition of maximal consistent set, axiom (A.6) belongs to f(x). Thus

P,(=¢p A =Pop ANP) V Py(=p N =Pop A Pogp) V Py(Pe(=d N —Pop) A §) € f(z)

But P,(=¢ A ~P.p N\ ¢) ¢ f(z) because (—¢ A ¢) is a contradiction. For the
same reason, P,(—¢ A ~FPep A Pepp) ¢ f(z). Thus By(P.(—¢p A =Pp) N\ ¢) €
f(x). Then by Lemma 3.6, there exists a D € MazlL such that D —, f(z)
and P.(—¢ A —P.¢) A ¢ € D. Construct the following extension, obtained by (i)
inserting a new point y between 2’ and = and assigning it the set D, (ii) adding
the pairs (2/,y) and (y,x) (and any new pair needed to preserve transitivity) to
both <. and <,. Let y € W\ X and

X'=XU{y}

<e==cU{(@,y), (y,2)} U{(v,y) 1 v < 2} U{(y,w) : 2 < w}

<7 = L@ 0), (1 2)} U () s 0 =p 27 U{ (3, w) : 2 =p w0}

f'=71u{(y, D)}
To verify coherence, besides appealing to transitivity of —». and —, and the
fact that —, is a subrelation of —., we need to show that f(z') —», D. Since
f(z') =, f(z) (by coherence of (X, <., <,, f)) and D —, f(z), by backward
linearity of —, (cf. Lemma 3.7) either (i) f(2') = D or (ii) D —, f(2') or (iii)
f(z") =, D. Case (i) is ruled out by ¢ € D and ¢ ¢ f(2). Suppose (ii) were the
case. Then, since ¢ € D, P,¢ € f(2'). But by (A.3) P,¢ — P.¢ € f(a'). Thus we
would get P.¢p € f(2'), contradicting the fact that =P.¢ € f(z’). Hence it must
be f(x') —, D. It is also clear that, given that the original frame was a P-frame,
the new frame is also P-frame: transitivity of both <. and <, has been preserved,
every new —,-pair is also a <.-pair and property (CP) is preserved since the new
path from 2’ to x is both a <,-path and a <.-path.

(d) Let P,¢ € f(z) and suppose there is no y € X such that y <, = and
¢ € f(y). We need to distinguish two cases.
CASE 1: z has no <.-predecessors (hence no <,-predecessors) in X. Since P,¢ €
f(z), by Lemma 3.6 there exists a B € MazL such that B —, f(z) and ¢ €
B. Construct the following extension obtained by (i) adding a new point y and
assigning it the set B, (ii) adding the pair (y,x) (and any new pair needed to
preserve transitivity) to both <. and <,. Let y € W\ X and

X'=XU{y}

<e==cU{(y,2)} U{(y,v) - © <. v}

<1 == U{( 2)} U{(y0) s 3 =y 0}

)
f'= Uiy, B)}.
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In this case coherence follows from transitivity of —». and —, and the fact that
—, is a subrelation of —. (cf. Lemma 3.7). It is also clear that, given that the
original frame was a P-frame, the new frame is also P-frame: transitivity of both
<. and <, has been preserved, every new <,-pair is also a <.-pair and property
(CP) is preserved since for every w € X if y </ w then the entire </ -path from
y to w is also a </ -path (if w = = this is true by construction; if z <. w then
y <, w requires x <, w hence, since the original frame was a P-frame, the entire
<~path from z to w was also a <,-path).

CASE 2: x has a < predecessor. Let 2’ be the immediate <.-predecessor of
z in X (recall that X is finite). We proceed by induction on the number n of
< ,-predecessors of z in X. Suppose n = 0. Then 2’ £, . If f(2') —, f(z) and
¢ € f(2'), then simply add {(2/,z)} U {(2,v) : <, v} to <,. If f(z') —, f(x)
and ¢ ¢ f(2') and P,¢p € f(2'), then add {(2',z)} U{(z/,v) : <, v} to <, and
restart by replacing x with «’. If f(2') —, f(z) and ¢ ¢ f(2') and P,¢ ¢ f(2'),
then add {(2/,z)} U {(2',v) : * <, v} to <, and apply to x in the new frame
the argument given below for the case where n > 1. Suppose therefore that
f(x') f»,f(x). Since P,¢ € f(x), by Lemma 3.6 there exists a B € MazL such
that

B —, f(z) and ¢ € B. (3.11)

Since x’ <. x, by coherence of (X, <., <,, f), f(2') =, f(z). Thus by (3.11) and
(f) of Lemma 3.7, given our supposition that f(z) /,f(z),

f(a') . B. (3.12)

Construct the following extension, obtained by (i) inserting a new point y between
x and 2’ and assigning it the set B, (ii) adding the pairs (2’,y) and (y,z) (and
any new pairs needed to preserve transitivity) to <., and (iii) adding only the pair
(y,z) (and any new pairs needed to preserve transitivity) to <,. Let y € W\ X
and

X'=XU{y}

<e==c U{(",9), (5, 2)} U{(v,y) s v <. 2"} U{(y,w) : & <. w}

<p==p U{(y, )} U{(y,v) 1 @ =, v}

f, = fU {(va)}
Coherence follows from (3.11) and (3.12), the fact that —, is a subrelation of
—. and transitivity of -, and —, (cf. Lemma 3.7). Furthermore, given that the
original frame was a P-frame, the new frame is also a P-frame. In fact, transitivity
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of both <. and <, has been preserved and every new <,-pair is also a <.-pair.
Moreover, given that we have not added (2,y) to <,, (CP) would be violated
only if z had a <,-predecessor in the original frame, contrary to our supposition.
Suppose now that n > 1 (recall that n is the number of <,-predecessors of z in
X). Let 2’ be the immediate <,-predecessor of x in X (recall that X is finite).
Since P,¢ is not satisfied at =, ¢ ¢ f(z’). If P,¢ € f(a') then we can reduce (by
appealing to transitivity of <, and —,) to the case n — 1 by replacing x with 2.
Assume therefore that P,¢ ¢ f(2'). Then, by definition of maximal consistent set,
(mpAN—P,p) € f(2'). Thus, by coherence of (X, <., <,, f), P,(mdAN=P,0) € f(x)
(cf. Lemma 3.5). Hence

By N By(=¢p A =Fp¢) € f(x)

By definition of maximal consistent set, axiom (A.5) belongs to f(z). Thus,

Pp(ﬁb/\_‘(ﬁ/\_‘PpQS)VPp<Pp¢/\_‘¢/\_‘Pp¢)\/PP(QS/\Pp(_‘Qb/\_‘Pp(/ﬁ) Ef@)

But P,(¢ A —¢ A =P,p) ¢ f(x) because (¢ A =¢) is a contradiction. For the
same reason, P,(P,p A =¢ N =P,p) ¢ f(z). Thus P,(¢ A P,(—¢ A =P,p)) €
f(z). Then by Lemma 3.6, there exists a D € MazlL such that D —, f(z)
and ¢ A P,(=¢ N = P,¢) € D. Construct the following extension, obtained by (i)
inserting a new point y between z’ and x and assigning it the set D and (ii) adding
the pairs (2',y) and (y,z) (and any new pairs needed to preserve transitivity) to
both <. and <,. Let y € W\ X and

X'=XU{y}

<= < U4 9), (1 2)} U (0,9) 0 <e 27} U () : & < w)

<7 = L@ ), (1 2)} UL () s 0 =p 27 U{ () : 7 =y w0}

f, = fU{(va)}
To prove coherence, besides appealing to transitivity of —». and —, and the fact
that —, is a subrelation of —., we have to show that f(z') —, D. Since f(z') —,
f(z) and D —, f(z), by backward linearity of —, (cf. Lemma 3.7) either (i)
f(z') =D or (ii) D —, f(2) or (iii) f(z') =, D. Case (i) is ruled out by ¢ € D
and ¢ ¢ f(2'). Case (ii) is ruled out by ¢ € D and —P,¢ € f(z’). Thus it must
be f(z') =, D. Finally, the new frame is a P-frame since the original frame was
a P-frame, all the new <,-pairs are also <.-pairs and property (CP) is preserved
since the new path from 2’ to x is both a <,-path and a <.-path. &

Definition 3.12. A perfect chronicle on a P-frame (T, <., <,) is a function f :
T — MazlL such that (T, <., <,, f) is coherent'® and furthermore, ¥Vt € T and

I8That is, t; <. t2 implies f(t1) —. f(t2) and t; <, to implies f(t1) —, f(t2).
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for every formula ¢,
(a) if F.¢ € f(t) then there exists a t' € T such that t <.t and ¢ € f(t'),
(b) if P.¢p € f(t) then there exists a t” € T such that t" <.t and ¢ € f(t"),
(c) if Fy¢ € f(t) then there exists at’ € T such that t <, t' and ¢ € f(t),
(d) if P,¢ € f(t) then there exists a t" € T such that t" <, t and ¢ € f(t").

—~ N~

The following lemma is proved in Burgess (1984, Lemma 1.9).

Lemma 3.13. If f is a perfect chronicle on (T, <., <,) then any member of any
f(t) is satisfiable in (T, <., <,) .

We can now prove the completeness theorem.

Proof. (Completeness Theorem). We have to show that if ¢ is an L-consistent
formula then it is satisfiable in a P-frame. By Lemma 3.13 it is sufficient to
construct a perfect chronicle (T, <., <,, f) such that ¢ € f(ty) for some t,. Let
W be a countably infinite set and let (to, @), (t1, ¢1), (t2, @5), ... be an enumeration
of W x ® (where ® is the set of formulae). Construct the following coherent partial
canonical frame: Ty = {to}, <0 =<0= 0, f(to) = A, where A is a maximal L-
consistent set that contains ¢. Let j; be the first integer such that <tj1, ¢j1> is not
satisfied in (Tp, <9, <9, fo) . Apply the Extension Lemma to obtain a coherent
partial canonical frame <T1, <1 411,, f1> that satisfies <tj1, ¢j1>. In general, let j,
be the first integer such that <tjn, ¢jn> is not satisfied in <Tn_1, <n-1 <Z’1, fn_1>
and let <T n =es =p fn> be the partial canonical frame obtained by applying the
Extension Lemma to ¢; in (T, 1, <077, <, fu-1) . Let (T, <, <p, f) be defined
as follows:

S 00 S 00
T = U TTL7 <= U _<Z: =p= U _<Zv f = U fn
n=0 n=0 n=0 n=0

Then (T, <., <,, f) is a perfect chronicle and ¢ € f(t;). W

9That is, tj, € To and ¢;, is equal to Feyp or Fpyp or Peyp or Py for some formula ¢ and ¢,
is not satisfied at ;.
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4. Some theorems of L and possible extensions

In this section we highlight some aspects of system L and discuss possible exten-
sions.
Consider the following axiom scheme:

(A7) Fch¢_’(¢VPc¢VFp¢)

Lemma 4.1. Let F be an arbitrary frame (not necessarily a tree frame). Then
(A.7) is valid in F if and only if F satisfies the following property: Yt to, t3 € T

(R.7) if t; <, t3 and ty <. t3 then either (a) t; = ta, or (b) ty <.ty or
(C) tl '<p tg.

Proof. Let F be a frame that satisfies (R.7) and consider an arbitrary model
based on it. Fix an arbitrary formula ¢ and an arbitrary date t;. Suppose that
t1 |= F,P.¢. Then there exist to,t3 € T such that ¢; <, t3, to <. t3 and t2 = ¢.
By (R.7) either t; = to, in which case t; |= ¢, or ty <. t1, in which case t; = P.¢,
or t; <, to, in which case t; = F,¢. Thus in all three cases t; = ¢ V P.¢p V
F,¢. Conversely, let F be a frame that does not satisfy (R.7). Then there exist
ti1,10,13 € T such that t1 =p ts, to <. t3, 11 # to, to 740 t; and ¢ 7417 ts. Let q be
a sentence letter and consider a model based on F where ||¢|| = {¢t2}. Then all of
the following are true at t1: F,P.q, =q (because t; # t5), ~FP.q (because ty 4. t1)
and —F,q (because t; 4, t2). Thus the following instance of (A.7) is false at #;:
F,P.q— (qV P.qV F,q). 1

Corollary 4.2. (A.7) is a theorem of L.

Proof. First we show that if <, is a subrelation of <. and <. is backward linear,
then (CP) implies (R.7). Let t; <, t3 and ty <. t3. Since <, is a subrelation
of <., t1 <. t3. Hence, by backward linearity of <., either (a) t; = t5, or (b)
to <. tyor (c) t; <. te. In case (c), it follows from (CP) that ¢; <, to. Thus every
P-frame satisfies (R.7). Hence, by Lemma 4.1, (A.7) is valid in every P-frame.
Thus by the completeness theorem, (A.7) is a theorem of L. W

In some applications it may make sense to require that, for every date ¢, the
predicted future of ¢ be non-empty, unless ¢ is a terminal date (i.e. it has no
< ~successors). Semantically this property can be expressed as the requirement
that <, be serial whenever <. is serial. The following lemma gives the axiom
scheme that characterizes this property.
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Lemma 4.3. Let F be an arbitrary frame (not necessarily a tree frame). Then
the following axiom scheme

(A.8)  Gpp A Fep — Fpo

is valid in F if and only if F satisfies the property that <, is serial whenever <.
is serial, that is,

(R.8) VteT,if 3t; such that t <. t,, then 3ty such that t <, ts.

Proof. Fix an arbitrary model based on a frame that satisfies the property that
<, is serial whenever <, is serial. Fix an arbitrary ¢ € T" and an arbitrary formula
¢. Suppose that ¢t = G,¢ A F.¢. Since t |= F.¢, Ity s.t. t <.t and t; = ¢. Thus
< is serial at t. By the assumed property, <, is serial at ¢, that is, 3ts s.t. t <, ts.
Hence, since t = G,¢, t2 = ¢. Thus t = F,¢. Conversely, fix a frame that does
not satisfy the above property. Then there exist t,¢; € T s.t. t <. t; and, Vt' € T,
t 4, t'. Consider a model based on this frame where, for some atomic sentence
¢, |l¢l] = {t1}. Then ¢ = F.q and, since ¢ has no <,-successors, t = G,q A = F,q.
Thus G,q N F.q — Fpq is false at t. W

Another possible extension of I can be obtained by adding the requirement
that predictions be "unique”, in the sense that the predicted future of any date
t consist of points on the same branch out of ¢. This requirement is captured by
the property of forward linearity of <,, whose characterizing axiom is given in the
following lemma (for a proof see Burgess, 1984).

Lemma 4.4. Let F be an arbitrary frame (not necessarily a tree frame). Then
the following axiom scheme

(A.9)  Fpp ANFyp — Fp(d A)V Fy(o A Fph) V Fy(Fp A1)
is valid in F if and only if F satisfies the property of forward linearity of <,:

R.9 vt1,t2,t3 € T, ift] <, te and t; < ts, then either ty = ts,
p p
or to =p t3 or ts =p to.

It can be shown that the system obtained by adding (A.8) (resp. (A.9)) to L
is sound and complete with respect to the class of P-frames that satisfy property
(R.8) (resp. (R.9)). Similarly, adding both (A.8) and (A.9) to L yields a system
that is sound and complete with respect to the class of P-frames that satisfy both
(R.8) and (R.9).
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5. Concluding remarks

The purpose of this paper was to isolate a minimal logic of prediction. Depending
on the application and/or interpretation one has in mind, it may be desirable to
extend the logic by adding further axioms. One such axiom, which was discussed
in the previous section, is that “prediction spreads forward”, in the sense that
<, is serial whenever <. is serial (cf. axiom (A.8)). This property, together with
(CP) and transitivity of <, implies that the predicted future of any moment ¢
consists of a set of branches (i.e. maximal <.-chains) through ¢. In this case,
instead of the Kripke-style semantics used in this paper, an alternative approach
is possible, namely the ”Ockhamist” approach in which the truth of a formula is
not evaluated at a single point in time, but at a pair consisting of a time point and
a branch through it; the future operator F' then refers to time points in this branch
only. It follows that the evaluation of temporal formulae obeys the laws of linear
time: the environment in which any such formula is evaluated is a single branch
(or history). Because of this, in order to express the manifoldness of the future,
a possibility operator ¢y is needed to enable one to quantify over the branches
through a given moment (cf. Thomason, 1984 and Zanardo, 1996). Extending
the analysis of this paper to the Ockhamist approach would require introducing
two possibility operators, ¢. and <,, with the following truth conditions within
each model (¢ denotes a time point and b a branch through ¢): (¢,b0) E .6 if
there is a conceivable branch b’ through ¢ such that (¢,0') = ¢, and (¢,0) = Opd
if there is a predicted branch b through ¢ such that (¢,V') | ¢.

Although the relation <, was interpreted in this paper as expressing the notion
of prediction, other interpretations are possible. For instance, if the logic L is
augmented with axioms (A.8) and (A.9), then one obtains a system where for
very instant ¢ the set {t' : ¢ <, ¢} gives a unique history after ¢: such a history
could be interpreted as the actual future of t. Thus this logic could be used as an
axiomatization of the point of view called Actualism: actualists hold that there
is a particular possible future of a given moment ¢, i.e. the actual future of ¢, to
which the future operator refers. In the logic I augmented with (A.8) and (A.9),
one would have two future operators: F), and F,. The interpretation of F},¢ would
be “it will be the case that ¢ in the actual future” while the interpretation of F.¢
would be “there is a conceivable future time at which ¢ will be true, although not
necessarily in the actual future”.
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