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Abstract

We consider interactive epistemic models where individuals are described by

both their “knowledge” and their “beliefs”. Three intersubjective consistency

conditions are examined: Intersubjective Caution (if an individual believes something

to be common belief then he knows it to be common belief), Truth of Common Belief

(only true facts are commonly believed) and Qualitative Agreement. These conditions

are employed in characterizations of the following properties which describe either

the extent of intersubjective truth and/or the logic of  common belief: common belief

in no error, common knowledge of common belief, negative introspection of common

belief, coincidence of common knowledge and common belief, and collapse of

individual belief and knowledge. We also discuss to what extent the three

fundamental conditions can be viewed as intersubjective rationality conditions.
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1.   Introduction

We consider interactive epistemic models where individuals are described by both their

“knowledge” and their “beliefs”. Knowledge is distinguished from belief by its higher degree of

subjective “certainty” (whatever is known is also believed, but not vice versa) and of veridicality.

In an intersubjective context, imposing the truth axiom on knowledge is a strong assumption: not

only are individuals never mistaken in what they know, but also this very fact is common

knowledge among them; this implies, in particular, that agent i  must know event E whenever he

knows that some other agent j knows E.
1
 Such “common knowledge of no error of knowledge” is

a prominent example of an intersubjective consistency condition on epistemic states, and plays a

prominent role in the foundations of game theory (cf. Ben Porath, 1997, Morris, 1994, Stalnaker,

1994, 1996, Stuart, 1997, Bonanno and Nehring, 1996, 1997ab). While this assumption might be

considered plausible for beliefs with the highest epistemic commitment (knowledge), the

distinguishing feature of the notion of belief proper is precisely the possibility of error. In

particular, individuals may come to believe other individuals to have mistaken beliefs. In this

paper, we will investigate various weaker intersubjective consistency properties and relate

“macro” properties of the interactive system (properties of the common belief and common

knowledge operators) to “micro” properties of individual belief hierarchies. It will be shown that

the assumption of common belief in no error of belief can be derived from intersubjective

consistency conditions which involve belief, knowledge and their interplay. In Section 5 we will

also offer an evaluation of the extent to which the various conditions can be justified by some

appeal to “intersubjective rationality”.

Integrated epistemic systems that jointly consider knowledge and belief have been

studied in philosophy (Hintikka, 1962, Lentzen, 1978), artificial intelligence and computer

science (Halpern, 1991,   van der Hoek, 1993,   van der Hoek and Meyer, 1995,   Kraus and

                                               

1
 In the technical part of the paper, we will in fact make use of a much weaker axiom, namely that individuals are

correct in what they know to be common knowledge. For simplicity of exposition, however, in the introduction
we shall assume that individual knowledge satisfies the Truth Axiom.
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Lehmann, 1978), economics and game theory (Battigalli and Bonanno, 1997, Dekel and Gul,

1997, Geanakoplos, 1994). The philosophy and artificial intelligence literature has dealt mainly

with single-agent systems and the focus has been on the tendency of belief to collapse into

knowledge as the result of plausible-looking axioms. In game theory a study of systems of

knowledge and belief arises naturally in the context of extensive form games from the attempt to

model beliefs after counterfactual histories of play (at “unreached” information sets). Our work

ties in with both literatures: as in the former, there is the possibility of a somewhat surprising

collapse of belief into knowledge; the link to the latter is established by the above-mentioned

fine-grained analysis of the assumption of common belief in no error (of belief) which plays a

crucial role in the “construction” of the Common Prior Assumption under Incomplete

Information (Bonanno and Nehring, 1996)  and  in the justification of backward induction for

interesting classes of perfect information games (Ben Porath, 1997, Stalnaker, 1996, Stuart,

1997).

Emphasizing a “macro” rather than a “truth” perspective, one can also read this paper as

an account of how and when common belief differs qualitatively from common knowledge. This

is of interest particularly since common belief, in contrast to common knowledge, may exhibit

epistemically counterintuive properties. The next section provides a road map of the paper by

describing the specific questions that are asked and the results obtained (a visual summary is

given in Figure 3). By focusing on very simple yet qualitatively contrasting examples, it is hoped

that this section serves also the purpose of fleshing out the notions of common belief and

common knowledge to readers only minimally acquainted with the growing literature on

interactive epistemology.
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2.   Overview

§1. While common knowledge obeys the formal logic of agents’ knowledge

(semantically, common knowledge inherits the partitional structure from individual agents’

knowledge
2
),  common belief may fail to obey the formal logic of belief. In particular, the event

that E is not commonly believed need not be itself commonly believed (technically, common

belief may violate the axiom of Negative Introspection; cf. Colombetti, 1993, Lismont and

Mongin, 1994, 1995), and −  even more strikingly −  whereas individuals always know what they

believe (Transparency
3
), this is not necessarily so at the “common” level: it may well be that the

agents don’t commonly know what they commonly believe (we will say that Common

Transparency is violated). To see this, consider the following example.

EXAMPLE 1 .  Individual 1 is a philosopher who knows the correct spelling of his

name (Rabinowicz). Individual 2 mistakenly believes that the spelling is Rabinowizc. She even

believes this spelling to be common belief between them. These beliefs are represented by state

α in Figure 1, where the (thick) rectangles represent the knowledge partitions and the (thin)

ellipses represent the belief sets.
4

Insert Figure 1 

                                               

2
 The notion of common knowledge was introduced by Lewis (1969) and Aumann (1976).

3
 Our terminology; there does not seem to be an established one.

4
 For more details on the graphical representation of knowledge and belief see the next section.
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Figure  1

Let E be the event that represents the proposition “the spelling is Rabinowizc”, that is, E = {β}.

Then, at state α, although E is not commonly believed (because individual 1 believes the spelling

to be Rabinowicz), it is not common belief that E is not commonly believed (because of

individual 2’s belief that E is common belief). Furthermore, at state β, E is commonly believed,

but it is not common knowledge that it is commonly believed (because individual 2’s knowledge

set at β  contains state α where E is not commonly believed).

Can one understand the properties of the common belief operator in terms of properties of

individual beliefs? This question is answered by the first main result of the paper which provides

a simultaneous characterization of the public (= commonly known) versions of these conditions

in terms of a condition on individual belief hierarchies called Intersubjective Caution (Theorem

1). An agent is “intersubjectively cautious” (at some state) if, for any event E, he only believes E

to be commonly believed if he in fact knows E to be commonly believed, that is, he does not

open himself to the epistemic risk of being mistaken about what is commonly believed. Note that

in Example 1, individual 2 fails to be intersubjectively cautious at either state.
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EXAMPLE 2 .  In the modification of Example 1 illustrated in Figure 2, at state α

individual 2 still mistakenly believes the spelling to be Rabinowizc, but no longer believes this to

be commonly believed: at state α she considers it possible (according to her beliefs) that the true

state is β  where individual 1 believes that the spelling is Rabinowicz.

Insert Figure 2 
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Figure  2

In Example 2 both agents are cautious at every state; as implied by Theorem 1, both Negative

Introspection of Common Belief and Transparency are satisfied at every state. (Indeed, in

Example 2, the only event that is commonly believed at any state is the universal event and

common belief and common knowledge come to coincide.)

§2.  Example 2 illustrates that it is quite easy for common knowledge and common belief

to coincide even though individual knowledge and belief differ substantially. When exactly is

this the case?  First, such coincidence clearly requires Transparency at the common-level,

because any event that is common knowledge is commonly known to be common knowledge. In

addition −  since any event that is commonly believed is commonly believed to be true −

anything that is commonly believed must in fact be commonly known to be true. Intuitively, this
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expresses agents’ knowledge that the group can never be wrong collectively in their beliefs while

they can be wrong individually. Building on Theorem 1, Theorem 2 asserts also the public

converse, characterizing the equality of common belief and common knowledge in terms of

public intersubjective caution plus public truth of common belief.
5

§3.  In Example 2, the agents “disagree” about state β : it is common belief that agent 1

believes for sure that β won’t occur and that agent 2 believes that state β might occur (she is not

certain of its non-occurrence). This opens the possibility of extreme forms of betting among the

agents, even if they are risk-averse: agent 2 might promise agent 1 a high payoff if state β does

not occur, in exchange for an extremely high payoff if it does occur;  note that it is common

knowledge among the two agents that such bets are acceptable. If agents’ utility-functions are

unbounded, then arbitrarily large gains from trade (measured in terms of expected utility) can be

achieved through such bets. In Bonanno and Nehring (1997b) it has been shown that there are at

most bounded gains from trade for “moderately risk-averse” individuals if and only if it is not

commonly believed that there is no common belief in the truth of agents’ beliefs (a property

which we shall call Qualitative Agreement). In Theorem 4 we show that adding Qualitative

Agreement to the assumptions of Theorem 2 leads to the collapse of belief into knowledge for

every individual. One thus encounters an intersubjective version of the “collapse problem”

known from the single-agent literature (Hintikka, 1962, Lenzen, 1978, van der Hoek, 1993, van

der Hoek and Meyer, 1995). Here, it is resolved by reading Theorem 4 as follows: if agents are

publicly intersubjectively cautious, and if “the group is always correct”, then any gap between

belief and knowledge results in disagreement.  This reading suggests that the assumption of

common knowledge of the truth of common belief is the least plausible.

                                               

5
 Theorem 2 is proved for the weakest possible system, where no veridicality assumptions of any sort are imposed

on agents’ knowledge.
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 §4. Finally, we explore the consequences of assuming only Qualitative Agreement and

public Intersubjective Caution. Theorem 3 characterizes these as equivalent to common belief in

the correctness of agents’ beliefs plus Transparency.  In view of the degeneracy uncovered by

Theorem 4, these conditions arguably define the strongest plausible integrated intersubjective

logic of  knowledge and belief. Since Qualitative Agreement is motivated most compellingly via

the absence of infinite gains from betting, it applies to belief rather than knowledge; as a result,

Theorem 3 reveals that there is a sense in which the assumption of common belief in the

correctness of agents’ beliefs is easier to justify at the level of belief proper than at the level of

knowledge.

 Figure 3 contains a summary of the results proved in this paper.
6

Insert Figure 3 

§5. Section 5 concludes by providing an assessment of the three fundamental conditions

as conditions of intersubjective rationality. In a nutshell, we argue in favor of the intersubjective

rationality of Qualitative Agreement, in qualified favor for that of Intersubjective Caution, and in

disfavor with respect to truth of common belief.

                                               

6
 For grater clarity some of the arrows in Figure 3 point only in one direction. However, all the results proved are

full characterizations.
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3.   Interactive systems of knowledge and belief

Let Ω  be a (possibly infinite) non-empty set of states. The subsets of Ω  are called events.

Let N be a set of individuals. For each individual i ∈ N we postulate a belief operator

B
i
 : 2

Ω
 → 2

Ω
 (where 2

Ω
  denotes the set of subsets of Ω ) and a knowledge operator K

i
 : 2

Ω
 → 2

Ω
.

For E ⊆ Ω, B
i
E (respectively, K

i
E) is the event that individual i believes (resp. knows) E.

7
  These

operators are assumed to satisfy the following properties (¬ denotes complement): ∀ i ∈ N,

∀E, F ∈ 2
Ω

Necessity: B
i
Ω = Ω   and  K

i
Ω = Ω. (Ax.1)

Monotonicity : if E ⊆ F then B
i
E ⊆ B

i
F   and   K

i
E ⊆ K

i
F. (Ax.2)

Conjunction: B
i
(E ∩ F) = B

i
E ∩ B

i
F    and   K

i
(E ∩ F) = K

i
E ∩ K

i
F. (Ax.3)

Consistency: B
i
E ⊆ ¬B

i
¬E  and K

i
E ⊆ ¬K

i
¬E. (Ax.4)

Positive Introspection: B
i
E ⊆ B

i
B

i
E    and   K

i
E ⊆ K

i
K

i
E. (Ax.5)

Negative Introspection: ¬B
i
E ⊆ B

i
¬B

i
E    and    ¬K

i
E ⊆ K

i
¬K

i
E. (Ax.6)

Priority of knowledge: K
i
E ⊆ B

i
E. (Ax.7)

Transparency: B
i
E ⊆ K

i
B

i
E. (Ax.8)

                                               

7
 Belief and knowledge pertain to propositions. Events, that is, subsets of Ω should be thought of as representing

propositions. In order to establish the interpretation of events as propositions one needs to introduce a formal
language and a procedure for associating an event with every formula in the language: see, for example, Battigalli
and Bonanno (1997, pp. 41-48).
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We call a tuple �Ω,  N, {B
i
}

i∈N
 , {K

i
}

i∈N
 � where the operators B

i
 and K

i
 satisfy (Ax.1)-(Ax.8) a

 �-system. Note that (unlike negative introspection) positive introspection of belief is redundant,

since it can be deduced from the other properties
8
.

Systems for knowledge and belief have been studied by philosophers  (cf. Hintikka, 1962,

Lenzen, 1978,), computer scientists (cf. Halpern, 1991, van der Hoek, 1993, van der Hoek and

Meyer, 1995, Kraus and Lehmann, 1988), as well as economists and game theorists (cf. Battigalli

and Bonanno, 1997, Dekel and Gul, 1996, Geanakoplos, 1994). In this literature it is customary to

impose the Truth Axiom for knowledge  (K
i
E ⊆ E) so that −while incorrect beliefs are allowed −

only true facts can be known. In our analysis veridicality of knowledge is required only for a

small class of events (cf. (Ax.9) below).

We shall denote by % : Ω → 2
Ω
  (respectively, .  : Ω → 2

Ω 
) the possibility

correspondence associated with the belief operator B
i
 (resp. the knowledge operator K

i
). Thus,

∀α ∈ Ω,  % (α) = �ω∈Ω : α ∈ ¬B
i
¬{ ω}   and  . (α) = �ω∈Ω : α ∈ ¬K

i
¬{ ω} .

REMARK 1 .     It is well-known (cf. Chellas,  1984) that, for all α ∈ Ω and

E ⊆ Ω,  α ∈ B
i
E (resp. α ∈ K

i
E) if and only if % (α) ⊆ E (resp. . (α) ⊆ E). Furthermore, B

i

satisfies consistency if and only if %  is serial (∀ω∈Ω, % (ω) ≠ ∅), it satisfies positive

introspection if and only if %  is transitive (∀ α, β ∈ Ω, if β ∈ % (α) then % (β) ⊆ % (α)) and it

satisfies negative introspection if and only if %  is euclidean (∀α, β ∈ Ω, if  β ∈ % (α) then

                                               

8
 By (Ax.8) B

i
E ⊆ K

i
B

i
E; by (Ax.7) K

i
B

i
E ⊆ B

i
B

i
E. Thus B

i
E ⊆ B

i
B

i
E. On the other hand, since we have not

assumed the Truth Axiom for knowledge, negative introspection of beliefs cannot be deduced from the other
properties, as the following example shows: Ω = {α, β, γ}, K{ β,γ} = KΩ = Ω and KE = ∅ for every other event
E, B{γ} = { β,γ}, B{ β,γ} = BΩ = Ω  and BE = ∅ for every other event E.  In this example K satisfies (Ax.1)-
(Ax.6), B satisfies (Ax.1)-(Ax.5) and they jointly satisfy (Ax.7)-(Ax.8). However, B fails to satisfy (Ax.6):

lettting E = {γ}, we have that ¬BE = {α} ¼ B¬BE = ∅.

     When the truth axiom is postulated for K
i
 then both positive and negative introspection of B

i
 become

redundant (cf. Kraus and Lehmann, 1988, and Meyer and vand der Hoek, 1995).
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% (α) ⊆ % (β)). The same is true of K
i
 and .  . It is also well-known (cf. van der Hoek, 1993)

that (Ax.7) is equivalent to % (ω) ⊆ . (ω), ∀ ω ∈ Ω, and (Ax.8) is equivalent to the following:

∀α, β, γ ∈ Ω, if β ∈ % (α) and γ ∈ .  (β) then γ ∈ % (α).

The common belief operator B
*
 and the common knowledge operator K

*
 are defined as

follows. First, for every E⊆ Ω, let B
e
E  = B Ei

i N∈
�  and K

e
E  = K Ei

i N∈
�  , that is, B

e
E (resp. K

e
E)

is the event that everybody believes (resp. knows) E. The event that E is commonly believed is

defined as the infinite intersection:

B
*
E = B

e
E  ∩  B

e
B

e
E  ∩ B

e
B

e
B

e
E  ∩  ...

Similarly,  K
*
E = K

e
E  ∩  K

e
K

e
E  ∩ K

e
K

e
K

e
E  ∩  ...

Let %
*
: Ω → 2

Ω
 
 and  .

*
: Ω → 2

Ω
 
 be the corresponding possibility correspondences:

∀α∈Ω,  %
*
(α) = �ω ∈ Ω : α ∈ ¬B

*
¬{ ω}  and .

*
(α) = �ω ∈ Ω : α ∈ ¬K

*
¬{ ω}  . It is well

known
9
  that  %

 *
 can be characterized as the  transitive closure  of  % i

i N∈
� , that is,

 ∀α,β ∈ Ω,   β ∈ %
*
(α)  if and only if there is a sequence  � i

1
, ... i

m
� in N (the

set of individuals) and a sequence �η
0
, η

1
, ..., η

m
� in Ω (the set of states) such

that: (i) η
0
 = α,  (ii) η

m
 = β and (iii) for every  k = 0, ..., m−1,  η ηk i kk+ ∈

+1 1
% ( ) .

Similarly, .  
*
 is the transitive closure of  . i

i N∈
� .

                                               

9
 See, for example, Bonanno (1996), Fagin et al (1995), Halpern and Moses (1992), Lismont and Mongin (1994,

1995). These authors also show that the common belief (knowledge) operator can be alternatively defined by
means of a finite list of axioms, rather than as an infinite conjunction.
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Although we do not require individual knowledge to satisfy the Truth Axiom, for most of

the results we do require a weakening of it, namely the assumption that individuals cannot be

mistaken in what they know to be common knowledge:  ∀ i ∈ N, ∀E ∈ 2
Ω
,

K
i
K

*
E  ⊆  K

*
E (Ax.9)

It is shown in the Appendix (Lemma A.3) that (Ax.9) amounts to assuming Negative

Introspection of common knowledge (¬K
*
E ⊆ K

*
¬K

*
E). A  �-system that satisfies (Ax.9) will

be called a  �
�

-system. Note that in such a system individuals might have (not only incorrect

beliefs but also) incorrect knowledge of any event which is not a common knowledge event. Thus

the logic of knowledge is still KD45 (using the terminology of Chellas, 1984) as is the case with

beliefs.

REMARK 2 .    In a  �
�

-system (a fortiori in a  �-system) the properties of

individual beliefs / knowledge are not inherited by  common belief / knowledge. In particular,

negative introspection of common belief (¬B
*
E ⊆ B

*
¬B

*
E) and Common Transparency (the

counterpart to (Ax.8): B
*
E ⊆ K

*
B

*
E) are not satisfied in general, as the following example

shows: N = {1, 2}, Ω = {α, β}, . 
1
(α) = % 

1
(α) = {α}, . 

1
(β) =  % 

1
(β) = {β}, . 

2
(α) = . 

2
(β) =

{ α, β}, % 
2
(α) = % 

2
(β) = {β}. Thus . 

*
(α) = . 

*
(β) = {α, β},  % 

*
(α) = {α, β} and  % 

*
(β) =

{ β}. This is illustrated in Figure 4 (which extends the representation of Figure 1 by adding the

common belief/knowledge correspondences)  according to the following convention which will

be used throughout the paper. States are denoted by dots and a (individual or common) belief

possibility correspondence  %  : Ω → 2
Ω
 is represented by thin arrows and thin ellipses as

follows: ω′ ∈ % (ω) if and only if either ω′  and ω are enclosed in the same ellipsis  or there is an

arrow from ω, or from the ellipsis containing ω, to the ellipsis containing ω′ . Similarly, a

(individual or common) knowledge possibility correspondence .  : Ω → 2
Ω
 is represented by

thick arrows and thick rectangles using the same convention: ω′ ∈ .  (ω) if and only if either
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ω′  and ω a re enclosed in the same rectangle or there is an arrow from ω, or from the rectangle

containing ω, to the rectangle containing ω′ .
10

Insert Figure 4 

α β

α β

(1's beliefs/knowledge)

(2's beliefs/knowledge)

1:

2:

(common belief/knowledge)

∗ :

Figure  4

Let E = {β}. Then B
*
E = {β}, ¬B

*
E = {α} and B

*
¬B

*
E = ∅. Thus Negative Introspection of

common belief  fails: ¬B
*
E ¼ B

*
¬B

*
E. Furthermore, K

*
B

*
E = ∅. Thus Common Transparency

fails at the intersubjective level: B
*
E ¼ K

*
B

*
E.  [Note that (Ax.9) is satisfied, that is, the system

of Figure 4 is indeed a  �
�

-system since in this example individual knowledge satisfies the

Truth Axiom, in other words .  
i
 is partitional.]

Given two events E and F, we denote by  (E → F) ⊆ Ω  the following event

E F
def

E F→ = ¬ ∪ .

                                               

10
 In most of the examples, for simplicity, each .  

i
 will be a partition, that is, the Truth Axiom for knowledge will

be satisfied (hence, a fortiori, (Ax.9)).
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Thus α ∈ (E → F) if and only if α ∈ E implies α ∈ F (hence E ⊆ F is equivalent to (E → F) =

Ω).  Furthermore, let

E F
def

E F F E↔ = → →∩1 6 1 6 .

Thus α ∈ (E ↔ F) is equivalent to “α ∈ E if and only if α ∈ F” (thus E = F if and only if

(E ↔ F) = Ω ).

4. Results

The following events capture important intersubjective properties of beliefs/knowledge

(throughout the paper, events that represent properties of beliefs / knowledge are denoted by

bold-face capital letters). Let

Negative Introspection of common belief NIB
* 
 =  ¬ → ¬

∈

B E B B E
E

* * *1 6
2Ω
�

Common Transparency TRN
*
  =  B E K B E

E
* * *→

∈

1 6
2Ω
�

Intersubjective caution ICAU   =  B B E K B Ei i
Ei N

* *→
∈∈
1 6

2Ω
��

Truth of common belief TB
* 
 =  B E E

E
* →

∈

1 6
2Ω
�

Equivalence of common belief and
common knowledge

EQU
* 
 =  B E K E

E
* *↔

∈

1 6
2Ω
�

Thus ω ∈ NIB
*
 if and only if, for every event E, if ω ∈ ¬B

*
E then ω ∈ B

*
¬B

*
E;  ω ∈ TRN

*
 if

and only if, for every event E, if ω ∈ B
*
E then ω ∈ K

*
B

*
E;  ω ∈ ICAU if and only if, for every

individual i and every event E, if ω ∈ B
i
B

*
E then ω ∈ K

i
B

*
E;   ω ∈ TB

*
 if and only if, for every
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event E, if ω ∈ B
*
E then ω ∈ E; finally, ω ∈ EQU

*
 if and only if, for every event E, if ω ∈ B

*
E

then ω ∈ K
*
E and vice versa.

NIB
*
 is the analogue, for common belief, of (Ax.6) for individual beliefs, while TRN

*
 is

the analogue, for common belief and knowledge, of property (Ax.8) of individual

beliefs /knowledge. ICAU , on the other hand, captures the notion of intersubjective caution of

individual beliefs: individuals are cautious in what they believe to be common belief, in the sense

that, while −  in general − they allow for the possibility that they have incorrect beliefs, such

mistakes are ruled out for common belief events. TB
* 
captures the property that only true facts

are commonly believed and EQU
*
 the property that common belief and common knowledge

coincide.

Lemma 1 gives the semantic properties that characterize these five events. For example,

in the  �
�

-system of Figure 4, NIB
*
 = {β }, TRN

*
= {α }, ICAU  = ∅, TB

*
 = Ω  and EQU

*
 =

{ α}. That ICAU  = ∅ can be seen directly by noting that at every state individual 2 believes that

E = {β} is common belief (B
2
B

*
E = Ω ), but she does not know this, since . 

2
(ω) = Ω, for every

ω, while B
*
E = {β}.

All the proofs are contained in the appendix.

LEMMA 1 .  In a  �-system (thus without assuming (Ax.9)) the following holds for
every α ∈ Ω:

(i) α ∈ NIB
*
 if and only if  % 

*
 is euclidean at α, that is, ∀β, γ ∈ % 

*
(α), γ ∈% 

*
(β).

(ii)  α ∈ TRN
*
 if and only if, ∀β,γ ∈Ω,  if β ∈ .  

*
(α) and γ ∈ % 

*
(β) then γ ∈ % 

*
(α).

(iii)  α ∈ ICAU  if and only if the following property holds:

(P
ICAU

)  ∀β, γ ∈ Ω,  if β ∈ .  
i
(α) and γ ∈ % 

*
(β) then there exists a δ ∈% 

i
(α) such that

γ ∈ % 
*
(δ).

(iv) α ∈ TB
*
 if and only if  α ∈ % 

*
(α).

(v) α ∈ EQU
*
 if and only if  % 

*
(α) = . 

*
(α).
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The following Theorem states that at the public (= common knowledge) level the three

properties of Negative Introspection of common belief, Common Transparency and

Intersubjective Caution coincide (although locally they typically do not).

T HEOREM 1 .    In a  �
�

-system the following holds:

K
*NIB

*
  =  K

*TRN
*
  =  K

*ICAU .

The next theorem shows that if one adds to common knowledge of intersubjective

caution the hypothesis that it is common knowledge that only true facts are commonly believed,

one obtains the collapse (both locally and globally) of common belief into common knowledge.

This theorem, unlike the others, holds in general systems where no veridicality assumptions of

any sort are imposed on the knowledge of individuals.

T HEOREM 2 .  In a  �-system (thus without assuming (Ax.9)) the following holds:

K
*ICAU  ∩  K

*TB
* 

  =  EQU
*
 ∩  K

*EQU
*
  =   K

*EQU
*

In both Theorems 1 and 2 (as well as in the ones to follow), common knowledge of the

events under consideration is crucial. For instance, in Figure 4, at state β, while there is common

knowledge of the truth of common belief, there is only intersubjective caution but not common

knowledge of it; in line with Theorems 1 and 2, common transparency  fails at that state (and

thus of necessity common knowledge and common belief fail to coincide); similar

counterexamples can be constructed in each case.
11

                                               

11
 Note also that, although K

*
EQU

*
 ⊆ EQU

*
,  in general, EQU

*
 ¼ K

*
EQU

*
 as the example of Figure 4 shows,

where  EQU
*
 = {α} and K

*
EQU

*
 = ∅.
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REMARK 3 .    None of the properties of beliefs /knowledge introduced so far embody

agreement-type restrictions on individual beliefs, as the following example (illustrated in Figure

5) shows. : N = {1, 2}, Ω = {α, β}, . 
1
(ω) = . 

2
(ω) = {α, β}, for all ω ∈ Ω,  % 

1
(α) = % 

1
(β) =

{ β}, % 
2
(α) = % 

2
(β) = {α}. Thus . 

*
(ω) = % 

*
(ω) = Ω,  for all ω ∈ Ω.

Insert Figure 5 

1:

2:

∗ :

α β

α β

Figure  5

Here NIB
*
 = TRN

*
 = ICAU  = TB

*
 = EQU

*
 = Ω  and yet the two individuals “agree to strongly

disagree” in the sense that, at every state, it is common knowledge and common belief that

individual 1 believes E = {β } while individual 2 believes ¬E.

We now introduce two more properties of beliefs, one of which captures the property of

Agreement. Let

Truth of individuals’ beliefs TB
i 
 =  

i N
i

E

B E E
∈ ∈

→� �1 6
2Ω

Qualitative Agreement QA  =  ¬B
*
¬B

*
TB

i
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Thus α ∈ TB
i
 if no individual has any false beliefs at α, that is, for every i ∈ N and every

E ⊆ Ω, if α ∈ B
i
E then α ∈ E.  It is well-known (see Chellas, 1984) that α ∈ TB

i
 if and only if,

∀ i ∈ N, α ∈ %  
i
(α).  The event B

*
TB

i
 captures a property known in the game theoretic literature

as common belief in no error (cf. Ben Porath, 1997, Stalnaker, 1994, 1996, Stuart, 1997). QA is

a weaker property than this in that it only requires the common possibility of common belief in

no error, that is, α ∈ QA if and only if for some  β ∈ % 
*
(α), β ∈ B

*
TB

i
. Qualitative Agreement

has been shown (Bonanno and Nehring, 1997b) to capture the notion of Agreement in two

equivalent ways: (1) α ∈ QA if and only if at α unbounded gains from betting are impossible

(assuming moderately risk-averse preferences), (2) α ∈ QA if and only if at α  the individuals

cannot “agree to disagree” about “union consistent” qualitative belief indices (a generalization of

the Agreement property introduced by Aumann, 1976).

The following theorem shows that adding Qualitative Agreement to common knowledge

of intersubjective caution yields common belief in no error.  Indeed the conjunction of the former

two properties is equivalent to the conjunction of common belief in no error and common

knowledge of common transparency
12

.

T HEOREM 3 .    In a  �
�

-system the following holds:
13

QA  ∩  K
*ICAU    =   B

*TB
i
  ∩  K

*TRN
*
.

                                               

12
 Lemma A.8 in the appendix shows that, in turn,  common knowledge of common transparency  implies common

transparency,  that is, K
*
TRN

*
 =  TRN

*
 ∩ K

*
TRN

*
.

13
 In a  �-system (i.e. if (Ax.9) is not satisfied) in general QA  ∩  K

*
ICAU

 
 ¼  B

*
TB

i
, as can be seen by modifying

the example of Figure 4 in such a way that knowledge and belief coincide also for individual 2:  N = {1, 2}, Ω =
{ α, β}, . 

1
(α) = % 

1
(α) = {α}, . 

1
(β) = % 

1
(β) = {β}, . 

2
(α) = . 

2
(β) = % 

2
(α) = % 

2
(β) = {β}. Thus . 

*
(α) =

% 
*
(α) = {α, β} and . 

*
(β) = % 

*
(β) = {β}. In this example, QA = ICAU = K

*
ICAU  = Ω, while B

*
TB

i
 = {β}

(since TB
i
 = {β}).
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The following theorem shows that putting together the three conditions of Qualitative

Agreement, common knowledge of Intersubjective Caution and common knowledge that only

true facts are commonly believed leads to the collapse (both locally and globally) of belief into

knowledge for every individual. The theorem also states that such collapse of individual belief

into knowledge is brought about also by the hypothesis of common knowledge that every

individual has correct beliefs.

Let

Caution (coincidence of belief and
knowledge for every individual) CAU

 
 =  

i N
i i

E

B E K E
∈ ∈

↔� �1 6
2Ω

Thus α ∈ CAU if and only if, for every individual i and event E, at α individual i

believes E (α ∈ B
i
E) if and only if she knows E (α ∈ K

i
E).

T HEOREM 4 .    In a  �
�

-system the following holds:
14

QA  ∩  K
*ICAU

 
∩  K

*TB
*   

=  CAU ∩  K
*CAU ∩  QA  =  K*TB

i
.

                                               

14
 In a  �-system Theorem 4 does not hold. For instance, in the example of Footnote 13,  CAU ∩  K

*
CAU ∩  QA

¼ K
*
TB

i
  since CAU ∩  K

*
CAU = QA = { α,β}   while TB

i
 = K

*
TB

i
 = {β}.
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5.   Conclusion: On the intersubjective rationality of the three

fundamental consistency conditions

The analysis of this paper has spanned the intersubjective gap between belief and

knowledge by three intersubjective consistency conditions: Qualitative Agreement,

Intersubjective Caution, and Common knowledge that only true facts are commonly believed.

How plausible are these conditions? Can they perhaps even be viewed as “intersubjective

rationality”  conditions?

As a reference point, it is instructive to consider the condition of “common belief in no

error” (corresponding to the event B
*
TB

i
). Prima facie, a case for it as a requirement of

“intersubjective rationality” can be made by viewing it as an intersubjective generalization of

secondary reflexivity
15

: every agent is willing to underwrite epistemically  every other agent’s

beliefs to the extent that he knows about them.

However, a reinterpretation of Example 1 shows that this condition cannot be always

applicable, which casts some doubt on the intersubjective rationality interpretation.  Consider the

following augmentation of the story underlying Example 1. At date zero, both the philosopher

and his counterpart took it for granted that his name was spelled “Rabinowizc”; however, after

having per chance a private look at his birth certificate, he discovers to his great surprise that the

correct spelling is “… cz”. Formally, this can be described in a two-state universe augmenting

Figure 1; the (non-augmented) figure now describes individuals’ beliefs at date 1, after the (one-

sided) inspection of the birth certificate. There are now two additional “epistemic agents”

describing the individuals’ beliefs at date 0; these in fact coincide with individual 2’s beliefs at

date 1. At date 0, both individuals’ beliefs coincide and thus satisfy any meaningful

intersubjective rationality condition. Individuals’ beliefs at date 1, in particular the philosopher’s

                                               

15
 Secondary reflexivity of individual beliefs is the property that each individual believes not to be mistaken in his
own beliefs (the individual believes that if he believes E then E is true). Secondary reflexivity is implied by
Negative Introspection (cf. Remark A.2 in the appendix).
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 certainty  of  the falsity of his counterparts’ beliefs, are a necessary result of the information

received in the interim; thus neither individual’s beliefs at date 1 can be criticized for lack of

intersubjective rationality.

Qualitative Agreement (¬B
*
¬B

*
TB

i
) can be viewed as an appropriate weakening of

common belief in no error (B
*
TB

i
) : if the epistemic assessments of an event E (that E is

believed or that E is not believed, and more generally of a “qualitative belief index”) of both

agents are common belief, they must coincide. If any intersubjective consistency can stake a

claim on rationality, it would seem to be Qualitative Agreement: its equivalence to the absence

of unbounded gains form betting (cf. Bonanno and Nehring, 1997b) lends it strong normative

appeal. Moreover, it is not subject to the contingencies of history, as it restricts agent’s beliefs

only when they are jointly commonly known. In Example 1, for instance, only trivial beliefs are

jointly commonly known
16

. It would even make perfect sense to require Qualitative Agreement

after counterfactual histories in a game!

Intersubjective Caution, by contrast, is exposed to the same problems in a dynamic

setting that plague common belief in no error; note that it fails even within individual 1 who at

date 0 took the wrong spelling for granted (and believed that he would continue to take it for

granted), recognizing the possibility (in terms of knowledge) that he might live to change his

mind. On the other hand, while not categorical, Intersubjective Caution seems highly reasonable

as a constraint on how individuals “initially” construct their intersubjective belief hierarchies,

prior to the receipt of specific private information (but incompletely informed of each other’s

beliefs), for example prior to the actual play of the game. This would be sufficient to justify the

striking Stalnaker-Stuart justification of non-cooperative play in the repeated prisoner’s dilemma

game (Stalnaker, 1996, Stuart, 1997) which preempts the “maintained rationality” critique of  the

backward induction solution in extensive form games.

                                               

16
 Note that while individual 2’s beliefs about the event {β} are commonly known, 1’s beliefs about {β} are not.
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Common knowledge of the truth of common belief clearly has the flavor of an empirical

rather than a rationality assumption. It seems implausible as the latter; note, for example, that

applied to a group of one, it coincides with caution
17

. In view of Theorem 2, and taking into

account the plausibility of both QA and ICAU , it seems implausible even as an empirical

assumption, in spite of the appeal to the reasonable intuition that a group’s beliefs may enjoy

higher epistemic dignity than any individual’s beliefs.

                                               

17
 By contrast, both QA and ICAU  are automatically satisfied in this case.
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Appendix

PROOF OF LEMMA 1 .  (i) and (iv) are well-known (see Chellas, 1984);
(ii) follows from Theorem 4.3 (c) in van der Hoek (1993, p. 183) and (v) is straightforward.
Thus we shall only prove (iii).

(Not P
ICAU

 at α ⇒ α ∉ ICAU ). Suppose P
ICAU

 does not hold at α . Then there exist

β, γ ∈ Ω  such that β ∈ .  
i
(α), γ ∈ % 

*
(β) and, ∀  δ ∈% 

i
(α),   γ ∉% 

*
(δ). Let

E = { ω ∈ Ω : ω ∈ % 
*
(ω′ ) for some ω′ ∈ % 

i
(α)}.

Then
γ ∉ E (1)

and, by construction,
α ∈ B

i
B

*
E (2)

By (1), since γ ∈ % 
*
(β), β ∉ B

*
E. Hence, since β ∈ .  

i
(α), α ∉ K

i
B

*
E. Thus, by (2),

α ∉ (B
i
B

*
E → K

i
B

*
E). Hence α ∉ ICAU .

(α ∉ ICAU  ⇒ Not P
ICAU

 at α). Suppose that α ∉ ICAU . Then there exist E ⊆ Ω  and

i ∈ N such that α ∈ B
i
B

*
E ∩ ¬K

i
B

*
E. Since α ∈ ¬K

i
B

*
E, there exist β, γ ∈ Ω such that

β ∈ .  
i
(α) and γ ∈ % 

*
(β) ∩ ¬E. Since α ∈ B

i
B

*
E,  ∀δ ∈ %  

i
(α), δ ∈ B

*
E, that is,

% 
*
(δ) ⊆ E. Hence γ ∉ % 

*
(δ). Thus  P

ICAU
 does not hold at α.  �

The proof of Theorem 1 will be carried out in three steps. The first step is given by
Lemma A.1, which holds for all   �-systems (thus without assuming (Ax.9)). The second step
is given by Proposition A.1, which is a restatement of Theorem 1 for  �-systems that satisfy an
additional property. The third and final step is given by Lemma A.3 which shows that this
additional property is equivalent to (Ax.9).

Let (VB
i*
 stands for “Veridicality of individual belief about common belief”)

VB
i*
  =  B B E B Ei

Ei N
* *→

∈∈
1 6

2Ω
�� .

Thus ω ∈ VB
i*
 if and only if for every individual i and event E, if ω ∈ B

i
B

*
E then

ω ∈ B
*
E, that is, at ω no individual has mistaken beliefs about what is commonly believed.
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REMARK A.1 .  For every α ∈ Ω, α ∈ VB
i*
 if and only if ∀ i∈N,

∀γ ∈% 
*
(α), ∃δ ∈ % 

i
(α) such that γ ∈% 

*
(δ). For a proof see Lemma 2 in Bonanno and Nehring

(1997b).
18

LEMMA A.1 .   In a  �-system (thus without postulating (Ax.9)) the following
holds:

K
*
NIB

*
  ⊆  K

*
VB

i*
  ⊆  K

*
ICAU  ⊆  K

*
TRN

*
.

Proof. (K
*
NIB

*
 ⊆ K

*
VB

i*
). First we show that NIB

*
 ⊆ VB

i*
. Let α ∈ NIB

*
. Fix an

arbitrary i ∈N and E ⊆ Ω. We want to show that α ∈ (B
i
B

*
E → B

*
E), or, equivalently, that α ∈

(¬B
*
E → ¬B

i
B

*
E). Since α ∈ NIB

*
, α ∈ (¬B

*
E → B

*
¬B

*
E). Suppose that

α ∈ ¬B
*
E. Then α ∈ B

*
¬B

*
E. By definition of B

*
,  B

*
¬B

*
E ⊆ B

i
¬B

*
E.  By Consistency of i’s

beliefs (cf. Ax.4), B
i
¬B

*
E ⊆ ¬B

i
B

*
E. Thus B

*
¬B

*
E  ⊆ ¬B

i
B

*
E. Hence

α ∈ ¬B
i
B

*
E. Thus NIB

*
 ⊆ VB

i*
.  By Monotonicity of K

*
, it follows that K

*
NIB

*
 ⊆ K

*
VB

i*
.

(K
*
VB

i*
 ⊆ K

*
ICAU ). Let α ∈ K

*
VB

i*
 and fix an arbitrary β ∈ . 

*
(α). We want to show

that β ∈ ICAU . Fix arbitrary i ∈ N and E ⊆ Ω  such that β ∈ B
i
B

*
E. Fix an arbitrary γ ∈ .

i
(β).

We need to show that γ ∈ B
*
E. Since B

i
B

*
E ⊆ K

i
B

i
B

*
E (cf. Ax.8),  β ∈ K

i
B

i
B

*
E hence

γ ∈ B
i
B

*
E. By definition of . 

*
 , since β ∈ . 

*
(α) and γ ∈ .

i 
(β),  γ ∈ . 

*
(α). Thus, since

α ∈ K
*
VB

i*
,  γ ∈ VB

i*
.  Hence, since γ ∈ B

i
B

*
E,  γ ∈ B

*
E.

(K
*
ICAU   ⊆  K

*
TRN

*
). Let α ∈ K

*
ICAU . Fix an arbitrary β ∈ . 

*
(α). We want to show

that β ∈ TRN
*
. Fix arbitrary E ⊆ Ω  such that β ∈ B

*
E. We need to show that

β ∈ K
*
B

*
E. Fix arbitrary sequences �i

1
, …, i

m
� in N and �β

0
, β

1
, …, β

m
� in Ω such that β

0
 = β

and, for every k = 1, …, m, β
k
 ∈ . 

i
k
(β

k−1
). We need to show that β

m
 ∈ B

*
E. First of all, note

that, since β ∈ .
*
(α), by definition of . 

*
 , β

k
 ∈ . 

*
(α)   for all k = 0, …, m. Hence, since

α ∈ K
*
ICAU ,

β
k
 ∈ ICAU for all k = 0, …, m. (3)

Since β
0
 = β ∈ B

*
E and, by definition of B

*
, B

*
E ⊆ B

i
1
B

*
E, β

0
 ∈ B

i
1
B

*
E. Hence, by (3),

β
0
 ∈ K

i
1
B

*
E. Thus, since β

1
 ∈ .

i
1
(β

0
),  β

1
 ∈ B

*
E. Since B

*
E ⊆ B

i
2
B

*
E, β

1
 ∈ B

i
2
B

*
E.  Hence, by

                                               

18
 There the event VB

i*
 is denoted by T

CB
 and the possibility correspondence % 

*
 (resp. % 

i
 ) is denoted by I

*
 (resp.

I
i
).
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(3), β
1
 ∈ K

i
2
B

*
E. Thus, since β

2
 ∈ .

i
2
(β

1
),  β

2
 ∈ B

*
E. Repeating this argument m times we get

that β
m
 ∈ B

*
E.  �

REMARK A.2 .  A possibility correspondence 3 : Ω → 2
Ω
 is secondary reflexive if

∀α,β ∈ Ω, β ∈ 3(α) implies β ∈ 3(β). Secondary reflexivity is implied by euclideanness.
Hence, for every i∈N, %

i
 and . 

i
 are secondary reflexive. It follows from the definition of %

*

and . 
*
 that both %

*
 and . 

*
 are secondary reflexive.

Let (NIK
*
 stands for “Negative Introspection of common knowledge”)

NIK
* 
 =  ¬ → ¬

∈

K E K K E
E

* * *1 6
2Ω
� .

REMARK A.3 .  Analogously to (i) of Lemma 1, it can be shown that

β ∈ NIK
*
 if and only if  . 

*
 is euclidean at β, that is, ∀γ, δ ∈ . 

*
(β), δ ∈. 

*
(γ).

PRO POSIT ION A.1 .  In a  �-system satisfying K
*
NIK

*
 = Ω  the following holds:

K
*
NIB

*
  =  K

*
VB

i*
  =  K

*
ICAU  =  K

*
TRN

*
.

Proposition A.1 follows directly from Lemma A.1 and the following lemma which can be
viewed as a  generalization of Lemma 2.2 in Kraus and Lehmann (1988) to the case where
individual knowledge satisfies the KD45 (rather than the S5) logic.

LEMMA A.2 .  In a  �-system the following holds:

K
*
NIK

*
  ∩  K

*
TRN

*  
⊆  K

*
NIB

*
.

Proof. Let α ∈ K
*
NIK

*
 ∩ K

*
TRN

* 
and fix an arbitrary β ∈ . 

*
(α). We need to show

that β ∈ NIB
*
, that is (cf. (i) of Lemma A.1), for all δ, γ ∈ % 

*
(β), δ ∈ % 

*
(γ). Fix arbitrary

δ, γ ∈ % 
*
(β). By secondary reflexivity of % 

*
 (cf. Remark A.2),

δ ∈ % 
*
(δ) (4)

Since, for all ω ∈ Ω, %
*
(ω) ⊆ . 

*
(ω),  γ, δ ∈ . 

*
(β). Since β ∈ . 

*
(α) and α ∈ K

*
NIK

*
,

β ∈ NIK
*
. Hence (cf. Remark A.3),

δ ∈ . 
*
(γ) (5)

Since β ∈. 
*
(α) and γ ∈. 

*
(β), by transitivity of . 

*
 ,  γ ∈. 

*
(α). Thus, since  α ∈ K

*
TRN

*
,

γ ∈ TRN
*
. (6)

It follows from (4)-(6) and (ii) of Lemma 1 that δ∈% 
*
(γ). �
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Let (VK
i*
 stands for “Veridicality of individual knowledge about common knowledge”)

VK
i*
  =  K K E K Ei

Ei N
* *→

∈∈
1 6

2Ω
�� .

Thus ω ∈ VK
i*
 if and only if for every individual i and event E, if ω ∈ K

i
K

*
E then

ω ∈ K
*
E, that is, at ω no individual has mistaken knowledge about what is commonly known.

LEMMA A.3 .  In a  �
�

-system NIK
*
 = Ω .

Proof. Note that in a  �
�

-system VK
i*
 = Ω , since (Ax.9) is equivalent to VK

i*
 = Ω . We

want to show that, in turn, VK
i*
 = Ω  is equivalent to  NIK

*
 = Ω . We show this to be true in

general, for any “common” operator. Let {B
i
 : 2

Ω
 → 2

Ω
}

i∈N
 be any collection of individual

operators satisfying (Ax.1) − (Ax. 6) (that is, Necessity, Monotonicity, Conjunction, Consistency,
Positive and Negative Introspection) and let B

*
 be the corresponding common operator. We want to

show that VB
i*
 = Ω  if and only if NIB

*
 =

Ω .
19

  Let % 
i
 : Ω → 2

Ω
 be the possibility correspondence associated with B

i
. For every

i ∈ N construct the possibility correspondence . 
i
 : Ω → 2

Ω
 as follows: ∀ω, ω′∈Ω,

ω′ ∈. 
i
(ω) if and only if % 

i
(ω′) = % 

i
(ω). Then . 

i
  gives rise to a partition of Ω, that is,

∀ ω, ω′ ∈ Ω,  ω ∈ . 
i
(ω) and if ω′ ∈ . 

i
(ω) then . 

i
(ω′) = . 

i
(ω) (in the economics and game-

theory literature this partition is called the type partition of individual i). Let K
i
 be the associated

knowledge operator of individual i. The system so constructed is a  �-system (it is straightforward

to verify that (Ax.1)-(Ax.8) are satisfied). Let . 
*
 : Ω → 2

Ω
 be the transitive closure of  . i

i N∈
�

and K
*
 the associated common knowledge operator (∀E ∈ 2

Ω
, K

*
E = {ω ∈ Ω : . 

*
(ω) ⊆ E}). Then

. 
*
 also gives rise to a partition of Ω  and therefore is euclidean, that is (cf. Lemma 1), NIK

*
 = Ω .

Thus we can invoke Proposition A.1 and conclude that

K
*
NIB

*
  =  K

*
VB

i*
(7)

Furthermore, since . 
*
 is partitional, K

*
 satisfies the Truth Axiom, that is, ∀E ∈ 2

Ω
,

K
*
E ⊆ E. Hence

∀E ∈ 2
Ω
, K

*
E = Ω  if and only if  E = Ω (8)

                                               

19
 This result can also be proved as a Corollary to Theorem 1 in Bonanno and Nehring (1997a).
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Suppose now that VB
i*
 = Ω . Then, by Necessity, K

*
VB

i*
 = Ω.  Thus, by (7), K

*
NIB

*
 = Ω  and,

by (8), NIB
*
 = Ω . By the same argument, if NIB

*
 = Ω  then  VB

i*
 = Ω. �

PROOF OF THEOREM 1. By Lemma A.3, in a  �
�

-system NIK
*
 = Ω . Thus, by

Monotonicity of K
*
, K

*
NIK

*
 = Ω . Hence Theorem 1 follows from Proposition A.1. �

The proof of Theorem 2 is split into several steps, given by Lemmas A.4-A.6.

LEMMA A.4 .    In a  �-system K
*
EQU

*
 ⊆ EQU

*
.

Proof.  Let α ∈ K
*
EQU

*
. We want to show (cf. (v) of Lemma 1) that . 

*
(α) =  % 

*
(α),

that is (since % 
*
(ω) ⊆ . 

*
(ω) ∀ ω ∈ Ω ),  that . 

*
(α) ⊆ % 

*
(α). Fix an arbitrary  γ ∈ . 

*
(α).

Then there exist i ∈ N and β ∈ .  
i
(α) such that γ ∈ .  

*
(β) [in the case where γ ∈ .  

i
(α) we

can take β = γ and use secondary reflexivity of .  
*
]. Since .  

i
(α) ⊆ . 

*
(α), β ∈. 

*
(α) and,

therefore (since α ∈ K
*
EQU

*
),  β ∈ EQU

*
. Thus, by (v) of Lemma 1, . 

*
(β) = % 

*
(β). Hence

(since γ ∈ .  
i
(β) ⊆ . 

*
(β))

γ ∈ % 
*
(β). (9)

By seriality of % 
i
 (cf. Remark 1), %

i
(α) ≠ ∅. Fix an arbitrary δ ∈%

i
(α). Since %

i
(α) ⊆ .  

i
(α),

δ ∈ .  
i
(α). Thus β, δ ∈ .  

i
(α); hence, by euclideanness of .  

i 
, β ∈ .  

i
(δ). Thus, since .  

i
(δ)

⊆ . 
*
(δ)

β ∈ .  
*
(δ). (10)

Since δ ∈ .  
i
(α) ⊆ . 

*
(α) and α ∈ K

*
EQU

*
,  δ ∈ EQU

*
. Hence, by (v) of Lemma 1,

. 
*
(δ) = % 

*
(δ). Thus, by (10),

 β ∈ %  
*
(δ). (11)

Since δ ∈%
i
(α) and %

i
(α) ⊆ % 

*
(α), δ ∈ % 

*
(α). It follows from this and (11), by transitivity of

% 
*
,  that β ∈ %  

*
(α). Using this and (9) (and transitivity of % 

*
) we conclude that γ ∈%  

*
(α).

Since γ ∈ . 
*
(α) was chosen arbitrarily, we have shown that  . 

*
(α) ⊆ %  

*
(α).   �

The following two lemmas are one-operator results.
20

                                               

20
 In the case where the cardinality of N is 1, Lemma A.5 states that adding to Transparency the assumption that the
individual knows his beliefs to be correct leads to the collapse of knowledge and beliefs. In the philosophy
literature an alternative way in which this collapse can take place has been discussed, namely adding to
Transparency the assumption that if the agent believes something he believes that he knows it (cf. Hintikka, 1962,
Lentzen, 1978; see also van der Hoek, 1993 and van der Hoek and Meyer, 1995): this is the content of Lemma
A.6 (i).
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LEMMA A.5 .   In a  �-system (thus without assuming (A.9))

TRN
*
  ∩  K

*
TB

*
  ⊆  EQU

*

Proof. Let α ∈ TRN
*
 ∩ K

*
TB

*
. We want to show that . 

*
(α) ⊆ % 

*
(α). Fix an arbitrary

β ∈ . 
*
(α). Then, since α ∈ K

*
TB

*
, β ∈ TB

*
. Thus (cf. (iv) of Lemma 1)  β ∈% 

*
(β). Since

α ∈ TRN
*
, β ∈ . 

*
(α) and β ∈% 

*
(β), by (ii) of Lemma 1 (with γ = β) it follows that

β ∈ % 
*
(α).  �

REMARK A.4 .   By transitivity and secondary reflexivity of % 
*
 and . 

*
, for every

event E,  B
*
E = B

*
B

*
E  and  K

*
E = K

*
K

*
E.

COROLL ARY A. 1 .  In a  �-system (thus without assuming (A.9))

K
*
TRN

*
 ∩  K

*
TB

*
  ⊆  K

*
EQU

*

Proof. By Lemma A.5 and monotonicity of K
*
, K

*
TRN

*
  ∩  K

*
K

*
TB

*
  ⊆ K

*
EQU

*
. By

Remark A.4, K
*
K

*
TB

*
 = K

*
TB

*
.  �

LEMMA A.6 .   In a  �-system (thus without assuming (A.9)) ∀E⊆Ω, ∀ i∈N

(i)  B
i
K

i
E ⊆ K

i
E    and    (ii)  B

i
K

*
E = K

i
K

*
E.

Proof. (i) From ¬K
i
E ⊆ K

i
¬K

i
E  (Ax.6) and K

i
¬K

i
E  ⊆ B

i
¬K

i
E ((Ax.7) applied to the

event ¬K
i
E) we get ¬K

i
E ⊆ B

i
¬K

i
E, which is equivalent to ¬B

i
¬K

i
E ⊆ K

i
E. This, in

conjunction with B
i
K

i
E ⊆ ¬B

i
¬K

i
E ((Ax.4) applied to the event K

i
E), yields  B

i
K

i
E ⊆ K

i
E.

(ii) Since (by definition of K
*
) K

*
E ⊆ K

i
K

*
E, by monotonicity of B

i
,  B

i
K

*
E ⊆ B

i
K

i
K

*
E  and, by

(i), B
i
K

i
K

*
E ⊆ K

i
K

*
E. Thus B

i
K

*
E ⊆ K

i
K

*
E. On the other hand, by (Ax. 7) K

i
K

*
E ⊆ B

i
K

*
E. �

COROLL ARY A. 2 .   In a  �-system (thus without assuming (A.9))

K
*
EQU

*
 ⊆  ICAU .

Proof. Let α ∈ K
*
EQU

*
. Fix arbitrary i ∈ N and E ⊆ Ω  such that α ∈ B

i
B

*
E. We want

to show that α ∈ K
i
B

*
E. First we show that α ∈ B

i
K

*
E. Fix an arbitrary β ∈%

i
(α). Then

β ∈ B
*
E. Since %

i
(α) ⊆ .  

i
(α) ⊆ . 

*
(α), β ∈. 

*
(α) and therefore β ∈ EQU

*
. Hence, since

β ∈ B
*
E,  β ∈K

*
E. Thus α ∈ B

i
K

*
E.  By (ii) of Lemma A.6, α ∈ K

i
K

*
E. Now choose an
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arbitrary γ ∈ .  
i
(α). Then γ ∈ K

*
E. Furthermore, since  .  

i
(α) ⊆  . 

*
(α), γ ∈. 

*
(α) and

therefore γ ∈ EQU
*
. Thus, since γ ∈ K

*
E, γ ∈ B

*
E. Hence  α ∈ K

i
B

*
E.  �

PROOF OF THEOREM 2. (K
*
ICAU  ∩ K

*
TB

*
 ⊆  K

*
EQU

*
) By Lemma A.1, K

*
ICAU

∩  K
*
TB

*
  ⊆  K

*
TRN

*
 ∩  K

*
TB

*
 and by Corollary A.1, K

*
TRN

*
 ∩  K

*
TB

*
  ⊆  K

*
EQU

*
.

(K
*
EQU

*
 ⊆ K

*
ICAU

 
) By Corollary A.2 and Monotonicity of K

*
,  K

*
K

*
EQU

*
 ⊆

K
*
ICAU .  By Remark A.4, K

*
K

*
EQU

*
 = K

*
EQU

*
.

(K
*
EQU

*
 ⊆ K

*
TB

*
). Let α ∈K

*
EQU

*
 and fix an arbitrary β ∈ . 

*
(α). We want to show

that β ∈ TB
*
. Since α ∈K

*
EQU

*
, β ∈ EQU

*
. Thus, by (v) of Lemma 1, % 

*
(β) = . 

*
(β).  Since

β ∈ . 
*
(α), by secondary reflexivity of . 

* 
(cf. Remark A.2), β ∈ . 

*
(β). Thus β ∈ %

*
(β).

Hence, by (iv) of Lemma 1, β ∈ TB
*
.

Finally, by Lemma A.4, K
*
EQU

*
 ⊆ EQU

*
 hence EQU

*
 ∩ K

*
EQU

*
 = K

*
EQU

*
.�

The proof of Theorem 3 makes use of the following lemma.

LEMMA A.7 .    In a  �-system (thus without assuming (Ax.9)) the following holds:

QA ∩ K
*
ICAU  ∩ NIK

*
  ⊆  B

*
TB

i

Proof.  Let α ∈ QA ∩ K
*
ICAU  ∩ NIK

*
. Since α ∈ QA, there exists a β ∈ % 

*
(α) such

that β ∈ B
*
TB

i
. Suppose that α ∉ B

*
TB

i
.  Then there exists a γ ∈ % 

*
(α) such that

 γ ∉ B
*
TB

i
. (12)

Since % 
*
(α) ⊆ . 

*
(α),  β, γ ∈ . 

*
(α). Since α ∈ NIK

*
, . 

*
 is euclidean at α, hence

 γ ∈ . 
*
(β). (13)

Since α ∈ K
*
ICAU  and β ∈ . 

*
(α) and, by Lemma A.1, K

*
ICAU  ⊆ K

*
TRN

*
,  β ∈ TRN

*
.

Thus, since β ∈ B
*
TB

i
, β ∈ K

*
B

*
TB

i
. Hence, by (13), γ ∈B

*
TB

i
, contradicting (12).  �
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PROOF OF THEOREM 3.  (QA ∩ K
*
ICAU ⊆ B

*
TB

i
 ∩ K

*
TRN

*
) By Lemmas A.3

and A.7, QA ∩ K
*
ICAU  ⊆ B

*
TB

i
. By Lemma A.1, K

*
ICAU  ⊆ K

*
TRN

*
.

(B
*
TB

i
 ∩ K

*
TRN

* ⊆ QA ∩ K
*
ICAU) . By Remark A.4, B

*
TB

i
 = B

*
B

*
TB

i
 and by seriality of

% 
*
, B

*
B

*
TB

i
 ⊆ ¬B

*
¬B

*
TB

i
 = QA. Thus B

*
TB

i
 ⊆ QA.  By Theorem 1, K

*
TRN

* ⊆ K
*
ICAU .   �

REMARK A.5 .  Although QA ∩ K
*
ICAU   ⊆  B

*
TB

i
 ∩ TRN

*
,  the converse is not

true as the following example, illustrated in Figure A.1, shows. N = {1,2}, Ω  = {α, β, γ},
.  

1
(α) = .  

1
(γ) = {α, γ}, .  

1
(β) = %  

1
(β) = {β}, %  

1
(α) = %  

1
(γ) = {γ},  .  

2
(α) = .  

2
(β) =

{ α,β}, .  
2
(γ) = %  

2
(γ) = {γ}, %  

2
(α ) = %  

2
(β ) = {β }. Thus,  ∀ω ∈ Ω, %  

*
(ω) = {β,γ} and

.
*
(ω) = Ω.

Insert Figure A.1 

1:

∗ :

β

β

α

α

γ

γ

2:

Figure  A.1

Here we have that TB
i
 = {β, γ},  B

*
TB

i
 = Ω  and TRN

*
 = {α}. Thus B

*
TB

i
 ∩ TRN

*
 = {α}. On

the other hand, ICAU  = K
*
ICAU  = ∅.

The following lemma highlights an interesting property of common transparency.

LEMMA A.8 .   In a  �-system (thus without assuming (Ax.9))

K
*
TRN

*
 ⊆ TRN

*
.
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Proof.  Let α ∈ K
*
TRN

*
 and suppose by contradiction that α ∉ TRN

*
. Then there exists

an event E such that

α ∈ B
*
E (14)

and
α ∈ ¬K

*
B

*
E (15).

By (15) there exists a β ∈. 
*
(α) and a γ ∈% 

*
(β) such that

γ ∈ ¬E (16).

Since β ∈. 
*
(α), by definition of . 

*
 there exist i ∈ N and δ ∈ Ω such that

δ ∈ . 
i 
(α) (17)

and
β ∈ . 

* 
(δ) (18)

[in the case where β ∈ . 
i 
(α) we can take δ = β and invoke secondary reflexivity of  . 

*
]. By

seriality of %
i
 (cf. Remark 1), 

 
% 

i 
(α) ≠ ∅. Fix an arbitrary η ∈% 

i 
(α). Since  % 

i 
(α) ⊆ . 

i 
(α),

η ∈ . 
i 
(α) (19).

By (17), (19) and euclideanness of . 
i 
,

δ ∈ . 
i 
(η) (20).

Since δ ∈ . 
i 
(α) ⊆ . 

*
(α) and α ∈ K

*
TRN

*
, δ ∈ TRN

*
. Thus by (ii) of Lemma 1, since

β ∈ . 
* 
(δ) (cf. (18)) and γ ∈% 

*
(β),

γ ∈ % 
*
(δ) (21).

Since η ∈ % 
i 
(α) ⊆ . 

i 
(α) ⊆ . 

*
(α)  and α ∈ K

*
TRN

*
, η ∈ TRN

*
. Hence by (20) [using the

fact that . 
i 
(η) ⊆ . 

*
(η)] and (21) and (ii) of Lemma 1, γ ∈ % 

*
(η). Thus, by definition of % 

*

[since η ∈ % 
i 
(α)],  γ ∈ % 

*
(α). Hence, by (16), α ∈ ¬B

*
E, contradicting (14).  �

PROOF OF THEOREM 4.  First we prove that

K
*
TB

i
 ⊆ QA ∩ K

*
ICAU

 
∩ K

*
TB

*
. (22)

First note that K
*
TB

i
 ⊆ B

*
TB

i
 and, as shown in the proof of Theorem 3, B

*
TB

i
 ⊆ QA. Thus

K
*
TB

i
 ⊆ QA. Furthermore, since TB

i
 ⊆ TB

*
, by Monotonicity of K

*
,  K

*
TB

i
 ⊆ K

*
TB

*
. Finally,

since TB
i
 ⊆ VB

i*
, by Monotonicity of K

*
,  K

*
TB

i
 ⊆ K

*
VB

i*
. By Proposition A.1 and Lemma

A.3, K
*
VB

i*
 =  K

*
ICAU .

Next we prove that
QA ∩ K

*
ICAU

 
∩ K

*
TB

*
 ⊆  K

*
TB

i
(23)
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Let α ∈ QA ∩ K
*
ICAU  ∩ K

*
TB

*
. By Theorems 2 and 3, α ∈ B

*
TB

i
 ∩ EQU

*
. Hence

α ∈ K
*
TB

i
.

Thus, by (22) and (23),

QA ∩ K
*
ICAU

 
∩ K

*
TB

*
 =  K

*
TB

i
. (24)

Next we prove that

K
*
TB

i
  ⊆  CAU (25)

Let α ∈ K
*
TB

i
. Fix arbitrary i ∈ N and E ⊆ Ω  and suppose that α ∈ B

i
E. We need to show that

α ∈ K
i
E. Fix an arbitrary β ∈ . 

i 
(α). We have to prove that β ∈ E. Since  α ∈ B

i
E ⊆ K

i
B

i
E and

β ∈ . 
i 
(α),

β ∈ B
i
E.  (26)

Since α ∈ K
*
TB

i
 and β ∈ . 

i 
(α) ⊆ . 

*
(α),  β ∈ TB

i
. Hence, by (2),  β ∈ E.

By (25) and Monotonicity of K
*
,  K

*
K

*
TB

i
 ⊆ K

*
CAU. By Remark A.4, K

*
K

*
TB

i
 = K

*
TB

i
.  Thus

K
*
TB

i
 ⊆ K

*
CAU. It follows from this and (25) that

K
*
TB

i
  ⊆  CAU ∩ K

*
CAU

 
(27)

From (24) we get (by intersecting both sides with QA) that QA ∩ K
*
ICAU

 
∩ K

*
TB

*
 =  QA ∩

K
*
TB

i
 and from (27) QA ∩ K

*
TB

i
  ⊆  CAU ∩ K

*
CAU

 
∩ QA. Thus

QA ∩ K
*
ICAU

 
∩ K

*
TB

*
 ⊆ CAU ∩ K

*
CAU

 
∩ QA (28)

We conclude the proof by showing that

CAU ∩ K
*
CAU

 
∩ QA  ⊆  K

*
TB

i
. (29)

Let α ∈ CAU ∩ K
*
CAU

 
∩ QA. By Lemma A.3, NIK

99

 =  Ω. Since α ∈ CAU ∩ K
*
CAU, NIK

99

=  NIB
99

. Thus α ∈ NIB
99∩ QA. By definition of QA,  NIB

99∩ QA ⊆ B
*
TB

i
.  Thus α ∈ B

*
TB

i
.

Since α ∈ CAU ∩ K
*
CAU,  α ∈ B

*
TB

i
 if and only if   α ∈ K

*
TB

i
.   �
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