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Abstract 

How is econometric analysis (of partial adjustment models) affected by the fact that, 
while data collection is done at regular, fixed intervals of time, economic decisions are 
made at random intervals of time? This paper addresses this question by modelling 
the economic decision making process as a general point process. Under random- 
time aggregation: (1) inference on the speed of adjustment is biased - adjustments 
are a function of the intensity of the point procEss and the proportion of adjustment; (2) 
inference on the correlation with exogenous variables is generally downward biased; 
and (3) a non-constant intensity of the point process gives rise to a general class of 
regime dependent time series models. An empirical application to test the production- 
smoothing-buffer-stock model of inventory behavior illustrates, in practice, the effects 
of random-time aggregation. 



1 Introduction 

This paper deals with the observation that, while data collection is done at regular h e d  

intervals of time (every month, quarter, year, etc.), agents make decisions at irregular inter- 

vals of time. For example, in the stock market, the time between transactions often varies 

from less than a second to more than an hour. This statement pertains to many situations 

in economics and is particularly relevant in Partial Adjustment Models (P.A.M.), a popular 

model in economics used to describe inventory behavior, investment, short-run changes in 

employment, pricing policies, stock of money corrections, and other economic phenomena. 

In recent work by Caballero and Engel (1993, 1994), Caballero, Engei, and Haltiwanger 

(1994), macroeconomic relations with P.A.M. are modelled with close attention to micrcl- 

economic behavior and the effects of -egation across heterogeneous agents. However, the 

effects of the timing and duration of decision making on statistical inference and econometric 

modelling are generally overlooked. It is crucial to understand that data would need to be 

&aggregated not only by agent, but by decision. 

The usual approach in the analysis of temporal awegation is to proceed under the 

assumption that agents make decisions at  Gted intervals of time. However, the assumption 

that this interval coincides with the data sampling interval is abandoned. The goal of this 

'type of analysis is to evaluate !he consequences of the specification error that results when 

the agent's true decision interval is h e r  than the data sampling interval. Christian0 and 

Eichenbaum (1987) term this "Temporal Aggregation Bias." 

This paper takes this discussion one step funher. It is concerned with the s p d c a -  



tion error that results when the agent's decision interval is mndorn and, therefore, does not 

coincide with the data sampling interval: this phenomenon is termed '?'kindom-Time Ag- 

gregation." More specifically, this paper assumes that the economic decision process can be 

well described by a general point process. 

The following highlights the basic findings of this paper. When the decision-malang 

process is explicitly modelled, the correct specification of the speed of adjustment is shown 

to depend on the intensity of the decision process and the proportion of adjustment. The 

resulting values are compatible with a wide range of models of adjustment. This explains 

a basic puzzle in the empirical literature of partial adjustment models: the implausibly low 

speeds of adjustment that are estimated. While this is especially true in models of inventory 

behavior (such as Blinder 1981, 1986; Blinder and Maccini 1991 and Feldstein and Auerbach 

1976), it is also the case with other variables such as  employment and investment (see for 

example Sims 1974; Phipps 1975; Smyth 1986; Nickell 1986 and Hamermesh 1989). As 

a result, in general, it is not possible to distixghsh a convex from a non-convex cost of 

adjustment structure with the usual methods. 

In the same spirit, random-time a

ggr

egation affects correlations and causal relations. 

The downward biases that are introduced result in the failure to detect these relationships 

in practice. T ~ E  result is in marked contrast to  the conjectures advanced in Christiano and 

Eichenbaum (1987). The hamdwork is then generalized to allow for non-constant intensities 

of decision making. This generalization gives rise to  a class of reeme dependent models and 

yields a natural explanation for why errors 111 the model present a type of -4RCH structure. 

The last section of the paper provides an empirical application to glass containers inven- 



tories and shipments. The popular production smoothing buffer-stock model is tested on 

physicd, seasonally unadjusted data. A non-linear model designed to partially account for 

random time aggregation obtains speeds of adjustment compatible with the predictions of 

the theory. 

The paper is organized as follows: Section 2 introduces the notions of a counting process 

-and a point process; Section 3 introduces the benchmark mode1 for our discussion - a general 

partial adjustment model; Section 4 shows how theoretical models of adjustment give rise to 

Poisson point processes; Section 5 considers general models of inhomogeneous Poisson point 

processes; Section 6 suggests how to detect random-time -egation in practice; Section 

7 presents an empirical application; and Section 8 concludes and presents areas of future 

research. 

2 Preliminary Concepts 

This section introduces the concepts of a random point process, a counting process, and a 

Poisson process. A large amount of literature is dedicated to the study of these subjects with 

a high level of mathematical detail and rigor. Andersen, Borgan, Gill, and Keiding (1991) 

provide an in-depth analysis of counting processes. Snyder and Miller (1992) provide a good 

'introductory analysis of point processes and their applications. The aim of this section is to 
/ 

provide an intuitive and operational understanding of the main ideas. Much of the discussion 

that follows is based on Snyder and Miller (1991). 

X random point process is a mathematical model for a phenomenon (in ~ n i s  case, decision 

making) characterized by highly localized events (decisions), distributed randomly in time 



(in greater generality, a continuum space; time being an example of such a space). In the 

model, each event is represented by an idealized point representing the time at which the 

decision was made. A realization of a random point process on time is a set of pointsin-time. 

In practice, it is often of interest to count the number of points in an interval of time on 

which a point process is defined. A counting process is introduced for this purpose and can. 

be associated with every point process. 

Definition 1 . Counting process: Consider the process of counting events on some in- 

terval of time [ s ,u )  where {t : s < t < u )  and to 5 s . Then N ( { t  : s < t < u ) )  - N(s ,u )  

is defined as the number of points in the interval from s to u, possibly including a point in s 

but not at u. We introduce the stochastic process { N ( t )  : t 2 t o )  according to the definition: 

N ( t )  = N(to) + N(to ,  t) where N(to) is a non-negative integer that we will set to zem for 

convenience. We  will dl N(t) a counting process. 

Within the class of counting processes, we assume that the counting process is Poisson. 

Formal discussions of the conditions that a counting process has to meet in order for it to 

be Poisson and micro-economic models of adjustment that produce Poisson decision making 

processes are delayed to Section 4. Here, the main properties of the Poisson are stated. 

Definition 2 . Intensity: Define X(t)  as the instantaneous average rate that points occur 

at time t .  This is termed as the intensity function. When X(t) is a constant, independent of 

time, the corresponding Poisson process is said to be homogeneous, otherwise, it is t e n d  

inhomogeneous. Then: 



2. Pr(N(t) = a] = 5 (J, ~ ( u ) d u ) ~  exp {- ~ ( u ) d u )  

3 A Model of Adjustment 

This section analyzes the effects of random-time aggregation in partial adjustment models, 

relying on a reduced form model which is not derived here from first principIes. Rotemberg 

(1987) shows the equivalence of our formulation to a linear/quadratic model. Caballero 

and Engel (1994) use it as an emcopassing framework for the linear/quadratic and (S, s) 

economies. 

The following introduces the notation used in this paper. The subscript t in a variable 

is the usual time index and denotes the value of that variable in the sampling interval t. Let 

At r t - (t - 1) then At is a constant equivalent to  the length of the sampling interval (e-g. 

for quarterly data it is three months). Next, consider the event-time index T formally defined 

a s  r,(r, u) z r, which denotes the date within the interval [r,u) when event i = 1,2, ..., I takes 

place. In this paper, each event is equivalent to a decision made by an economic agent. At 

times, the subscript i will be dropped in which case it will be understood that r - 1 refers 

to the date of the decision immediately prior to the subsequent decision made at time 7. 

Under the assumption that the arrival of decisions per unit time is Poisson distributed with 

'intensity A, then A, G r - (r - 1) is an exponentially distributed random variabIe with mean 
/ 

1/X. 

Define y* as the target variable and y as the control variable. The agent can act upon y 

but not on y". The agent's objective is to keep the distance (y: - y,-ll as small as possible 

subject to a cost of adjustment. Depending on each particular situation, the agent might be 

5 



penalized by a fixed amount per decision. Additionally, there may be costs proportional to 

the size of the adjustment. These costs can be asymmetric in nature: positive adjustments 

may bear different costs than negative adjustments. For instance, consider a firm that tries 

to keep its labor force as close as possible to  the optimal level. Since there are costs of 

changing the labor force (firing costs such as severance payments; humg expenses such as 

screening and interviewing of new candidates; etc.), changes in the h ' s  employment level 

do not happen continuously, but rather at irregular intermls. 

The desired level y* will depend on several factors linked to expectations on the cost 

structure of the problem at hand. These factors will typically include expectations on real 

wages, real interest rates, prices of raw materials, future sales, prices, etc. The process for 

y* in general, can be expressed as the following It6 process: 

where w(t) is a vector of variables that determine y*;c(t) is assumed to be Gaussian with 

increments having mean 0 and covariance E [ e ( t ) ,  @(tl)] = dt if t = t' and equal 0 for t # t' 

(for a precise interpretation see Bergstrom 1984). In what follows, it will be assumed that 

p(y*( t ) ,  w(t),t] = p and a[y*(t), w(t), t] = a. This simplification makes the exposition of the 

central points clear but does not represent a fundamental assumption of the problem and 

/ 
can be relaxed in favor of richer expressions. Consequently, the stochastic process for the 

control, y is simply: 



where a E [0, I] and will be assumed constant throughout. Again, one can always complicate 

the analysis with asymmetries, non-constant expressions, etc. The parameter a is termed 

as the speed of adjvstment parameter. Expression 2 is spedied in terms of the event-time 

index 7. 

If a = 1 then there are only costs associated with mabang a decision, regardless of the size 

of the disequilibrium 13: - Y,-~( .  Traditionally, this corresponds to the framework found in 

menu-cost models and (S, s) economies. Linear/quadratic models are commonly associated 

with 0 < a < 1. Caballero and Engel (1994) consider the cases where a is a linear and then 

a quadratic function of y: - yT-1. 

Next defme z; y: - y,-1. Using equations 1 and 2 it is easy to see that 

From 2 

combining 3 and 4, the law of motion for z becomes: 

The focus of the analysis consists in estimating the parameter a. 



3.1 The Adjustment Process 

This section describes the adjustment process under the assumption that decision m&g 

follows a counting process well described by the Poisson. Let n be the number of decisions 

(adjustments) made per sampling interval [t - 1, t) , then: 

For the sake of clarity, consider a homogeneous Poisson process with intensity A(t) = A. 

X is the average number of decisions per sampling interval. If we were to consider quarterly 

data, 4X would be the average decision rate in a year and + A  in a month. 

Now let r,(t - 1, t )  = T, denote the time within the interval [t - 1, t) at which decision i is 

made. By convention, we assume TO = t - 1. Therefore, q= = T. -7i-l for i 2 1 is the duration 

of time between decisions in the interval [t - 1,t): a random variable. For a homogeneous 

Poisson process, 7, - &(A), where &(A) is the exponential distribution with parameter A. 

Consider the mechanics of the adjustment process expressed in terms of observables. If 

the number of decisions per sampling interval [t - 1, t )  is: 

and so on. 



The intuition behind this process is the following: When no adjustments are made in the 

interval [t - 1, t ) ,  zt (the disequilibrium variable) attains the same value as at the beginning 

of the period ( t  - 1) plus the disequilibrium accumulated in the interval. This disequilibrium 

is a reflection of how much the target has "travelled" since (i.e., ,u + CT kt @(r)). When one 

adjustment takes place sometime within [t - 1, t ) ,  the correction is made on the disequilibrium 

misting a t  the time of adjustment. This is the sum of the inherited disequilibrium, q-1, plus 

whatever the target has travelled by date TI. This is given by , q 1 +  oEI 4 ( r ) .  From this 

explanation, it is easy to see how we proceed with two, three, or more adjustments. 

In general, the process for zt can be described as follows: 

where kt is the number of adjustments in the interval [t - 1, t ) .  k = { I Q ) ~ ~  is a stochastic 

process hereby assumed to be Poisson distributed. E, = OR-:_, ~ ( T ) , E C ~ + I  = J:~ c&(T), 

therefore, Q - N(0,u2qi) .  In other words, the mean (given by the first term in brackets) 

and the autoregressive coefficients depend on kt which varies for each interval considered. The 

'error term, the second term in brackets, is the sum of non-identical, independent, normally 
/ 

distributed random variables: a normal random variable with zero mean, whose variance also 

depends on kt .  Note that kt is typically unobserved. 

In generd, we would like to model the joint probability distribution of zt and kt, condi- 

tional on the past. Let yt denote the history of observations through date t 



then, without loss of generality, this probability can be factored as the product of the condi- 

tional distribution times the marginal distribution, 

f (zt, ktlYt-1; Ql,Q2) = 9(ztllcr, Yt-1; Ql)q(ktlYt-l; '32) 

However, partial adjustment models are usually specified as: 

The implicit assumption here (at a minimum) is that kt = k Vt and therefore the marginal 

distrib~tion of kt collapses to 1. Estimation of Equation 9 by maximum likelihood say, is 

therefore equivalent to estimating Et-l (zt) unconditionally with respect to kt. Under the 

assumption that the kt are Poisson distributed, this expectation becomes, 

with Pi = Pr[kt = ilyt-l]. After some algebra reported in the Appendix, it can be shown 

that 



with: 

where 7, = &- (q). Empirically, the coefficient of interest is that associated with zt-l. 

From Equations 9 and 11 and assuming a constant intensity X(t) = A, it is easy to see that 

Pl = expi-dlaX). Therefore, when assuming kt = k = 1 Vt, the interpretation given to jjl is 

that of an estimate of (1 - a) which in light of Equation 11 is clearly incorrect. The bias in 

the structural interpretation of the adjustment parameter becomes, 

where a0 denotes the true value of a. The importance of this bias is best illustrated with 

an example. Let X = 1 with monthly data. This is the best case scenario, where the 

frequency with which our data is sampled coincides with the average frequency of decision 

making. Assume cro = 1 (non-convex costs of adjustment); then, Pl - 0.37. Under the 

traditional assumptions, this is interpreted as 6 = 0.63, thus incorrectly concluding that 

it takes 3 months to close 95% of any given disequilibrium. However, note that the real 

speed of adjustment is 100% per month on average. i.e. more than three times faster. As 

the hequency of adjustment (A) increases, the bias increases up to (1 - a~). Conversely, 



infrequent adjustments work in the opposite direction and the bias can achieve a value of 

--cro. Figure 1 displays the shape of this bias as a function of A. 

These results do not arise from using data sampled at a lower frequency than the decision- 

making process, but rather horn ignoring the temporal pattern of decision making altogether. 

PLS a consequence, inference on speed of adjustments can be severely incorrect. In addition, 

testing an (S,s) model against an alternative linear/quadratic model (for example) becomes 

c~omplicated unless one can jointly model adjustments and decisions. Therefore, rather than 

changing the sampling frequency of the data, ideally one would want data sampled per 

decision. 

3.2 A Link to Continuous-Time Models 

It; is instructive to compare the results in the previous section to the literature on time 

deformation introduced by Stock (1988). Stock's original formulation considers a time series 

model based on an "economic" time-scale and a time-scale transformation of the process 

into an observed, calendar-based time-scale. The basic ingredients of his kamework consist 

0.f a generic continuous time model and a "latent" process that evolves in operational time 

7 .  The process is observed in calendar time t however, which is related to the operational 

time-scale by a continuous transformation 7 = ~ ( t ) .  Now recall Equation 5, the basis of our 

discussion, 

Itis continuous time counterpart can be rewritten as the following Omstein-Wenbeck process, 



&(T) = ( p  - Q ~ z ( T ) )  dr  + CT*(T) 

which has the foilowing discrete-time representation (see Bergstrom (1984)), 

Let r = cp(t) and T - 1 = q(t - I ) ,  then the observable process in discrete time becomes, 

Equation 16 bears close similarity to I1 and 12. The model will generally exhibit time- 

varying covariates and heteroskedasticity that depend on the time-scale transformation. The 

frequency of decision-making per time interval (t - 1, tl is a natural candidate for the time- 

scale transformation Ay(t). After all, economic-time d depend on how often agents make 

economic decisions. Accordingly, setting &(t )  = J;-, X ( T )  d r ,  16 can be rewritten as, 

where E ( E ~ )  = 0; E(E:)  = (exp ( 2 0  J;-l A(r )d r )  - 1) /2a. Therefore, an adjustment process 

subject to random time awegation yields the same adjustment parameter function as a 

continuous time adjustment process subject to time deformation where the time-scale t rans  

formation is given by the intensity of economic decision-making, J,'_~ X(r)dr. 



3.3 Including Exogenous Variables 

Although Equation 5 is a useful characterization of the dynamics of disequilibria and it has 

been used in recent papers by, for example, Caballero and Engel (1994), Caballero, Engel, 

and Haltiwanger (1994), two modifkations of the previous analysis are considered. First, we 

analyze the effect of random-time aggregation on the inference of correlations and/or causal 

relations between variables. Second, we will introduce this generalization in the context of 

another popular specitication of the P.A.M., alternative to that used in Equation 5. 

Based on Equation 4, the partial adjustment model is sometimes specSed as, 

AYT = (y: - yr-1) + Pwr (18) 

Here a retains the same interpretation a s  before and fl captures the effect of w on changes 

in y. A good illustration of such a model is the production-smoothing model of inventories: 

= a (q - It) - b(St - SF) (19) 

where It is the stock of inventories; I; is the desired level of inventories and (St - Sf)  are 

sales surprises. Accordingiy, inventories change for two motives. The first corresponds to the 

term (I,' - I t )  and reflects anticipated inventory investment. Desired inventories will typically 

depend on expected sales, expeyed costs and current and expected real interest rates. The 

second term, (St - SF), corresponds to unanticipated inventory investment and captures 

the extent to which inventories buffer sales surprises to maintain production approximately 

constant. The empirical section of this paper will be based on this model. 



Assume that w follows a general continuous-time Markov process. Like before, one could 

think of w following a generic pth order stochastic differential equation. However, cumber- 

some derivations would detract from the central argument. Consequently, let, 

dw(t) = mdt + K ( t )  (20) 

-where C(t) is assumed Gaussian with increments having mean 0 and covariance E[K( t ) ,  4(t')] = 

a,dt for t  = t' and equal 0 for t # t'. Furthermore, E [ K ( t ) ,  4(t')] = 0 for all t  and t'. Under 

these assumptions, consider the adjustment process in terms of sampled observations. If the 

number of decisions made per interval of time ( t  - 1, t] is: 

none: Ayt = -p (wt-l + m + d<(r)) ; 

(1 - a)  [zt-l + pql+ el 4 ( t )  - P (wt-I+ mm + J;ll d ~ ( t ) ) ]  + 
two: Ayt = a 

+p112 + I,: W t )  - P (mT2 + s,: W ) )  

0 and so on. 

Recall ~i = ( T ~  - ~ ~ - 1 ) .  The intuition behind this adjustment process is clear. When no 

adjustments are made during the sampling interval [t- 1, t ) ,  y will change due to the evolution 

of w from t  - 1 to t .  If an adjustment takes place during the interval, the distquilibrium 

existing up to that point will be corrected. However, now the disequilibrium not only depends 

15 



on movements on the desired level y* but also on the impact of w. When two adjustments are 

made, the second correction is with respect to the proportion (1 - a) of the first correction 

plus any additional movements in z and w since and up to 72. It is easy to see how two or 

more adjustments would be done. Rewriting the observed adjustment process in a similar 

way to Equation 7, 

where k  = {kt):: is the same Poisson distributed stochastic process previously discussed; 

6 ( k t )  = 1 if kt > 0 and equals 0 otherwise. The intercept 7(lct) is, 

where 70 = 0, and the error term is, 

where TO = t. Despite the apparent complexity of the above equations, 21 is simply a linear 

equation with time-varying parameters that depend on k t .  The error term is the sum of non- 

identical, independently distributed normal random variables with mean zero and variance 

that depends on kt, i.e. ut - &(o, a , ( k t ) ) .  As kt increases, the coefficients associated with 

zt-1 and wt-1 will decrease toward zero, provided that a < 1. If cr = 1 then the coefficient 

associated with zt-1 is zero except for kt = 1 when it equals one. The coefficient associated 

with wt-1 is if kt = 0, is pa if kt = 1 and is zero otherwise. The effect on wt-1 is particularly 



interesting since it stems, not from time awegation per se, but rather from the mechanics 

of adjustment under random-time aggregation. 

In applied work, it is common to specify Equation 21 as, 

-For instance, Blanchard (1983) reports estimates of that range from 0.27 to 0.02 for 

monthly automobile inventory data. With quarterly data, Feldstein and Auerbach (1976) 

report 41 = 0.057 for manufacturing, nondurable inventory data. Blinder (1981) estimates 

similar specifications for several durable and non-durable manufacturing industries finding 

values of between 0.14 to 0.03. Estimates of "speeds of adjustment" in the labor literature 

are similar. Sargent (1978) and Meese (19F0) report $1 = 0.05 for quarterly U.S. unernpIoy- 

ment. For the U.K., Nickell (1984) finds = 0.15. Abraham and Housman (1993) obtain 

$1 E [0.06,0.19] for Germany, France and Belgium. Recent efforts by Hamemesh (1993) 

with micro-data for U.S. Manufacturing yield similar results, $1 = 0.16. 

Maximum likelihood estimation of Equation 24 implicitly assumes that kt = k (more 

specifically k = 1). Consequently, in the same spirit of our discussion in Section 3.1, this is 

equivalent to calculating Et-1(Ayt) unconditionally with respect to the distribution of kt .  

Under our maintained assumptions, this expectation becomes, 
/ 



A 

Accordingly, $1 = [a/( l  - a)] [ezp(-aA) - eq(-A)] (for a homogeneous Poisson) and h = 

[P/(l- a ) ]  [aexp(-crX) + (1 - 2a)exp(-A)] . However, these coefficients are typically inter- 

preted as & = a and & = -0. It is easy to calculate their biases, 

where cro and denote the true values of a and p. An example best illustrates the effects 

of these biases. Consider Feldstein and Auerbach's (1976) example, which used quarterly 

data. They report estimates of & = 0.057 and & = 0.044 with inventory data. For X = 4.5 

(a little over one adjustment per month) the speed of adjustment becomes a = 0.85 and 

the true effect of sales on inventories p = 0.61. As A grows, then BIAS, tends to -a0 and 

BIASp to -Po. Conversely, as X tends to 0, BIAS, tends to -a0 and BIASp to 0. Figure 

2 illustrates the shape of these biases as a function of A. 

4 The Poisson Point Process and tile Law of Rare Events 

This section justifies the generality of assuming the Poisson distribution in modeling decision- 

mahng processes by stating the Law of Rare Events (L.R.E.). As an illustration, the gener- 

/ 
ating process of decisions for an (S,s) rule is considered - an adjustment rule that naturally 

produces Poisson distributed decision rnakmg. The Law of Rare Events is a set of qualitative 

conditions for an arbitrary counting process to be a Poisson counting process. These condi- 

tions are stated in an intuitive way. For the formal mathematical statement of the theorem 



and its proof, the reader is referred to  Snyder and Miller (1991). Lancaster (1992) and Taylor 

and Karlin (1994) provide alternative statements although with less generality. 

Theorem 3 . The Law of Rare Events: Let { N ( t )  : t 2 t o )  be a counting process 

associated with a point process on [to, oo) . Suppose that: 

1. The point process is conditionally orderly. Informally, this means that points do not 

occur simultaneously i n  time. 

2. For all t > to and for an arbitrary event P associated with the random variables { N ( u )  : 

to 5 u 5 t ) ,  the limit 

P r [ N ( t ,  t + 6 )  = 1 ( P ]  
lim 

6 
= A(t)  

6-0 

exists, is finite, and is an integrable function o f t  alone, that is, J: X(u)du exists and is 

finite for all finite intervals [s ,  t ] ,  to 5 s 5 t. 

Then { N ( t )  : t 2 t o )  is a Poisson counting process with an absolutely continuous 

parameter function A ( t )  = J:~ :,X(u)du and 

/ 

Hypothesis 2 implies that the process {iV(t) : t >_ t o )  evolves infinitesimally without 

after-effects: If P and F are arbitrary events in the past and in the future respectively, the 

conditional probability of F given P, equals the unconditional probability of P for all t 2 t .  

In other words, the process { N ( t )  : t > t o )  has independent increments. The function X(t) 



is the instantaneous average rate at which points occur and is termed the intensity function. 

When the intensity is a constant independent of time, X(t) = A, the corresponding Poisson 

counting process is said to be homogeneous. In this case: 

The application of the L.R.E. is best illustrated in the context of (S,s) rules which are 

constructed horn formal microeconomic models of discontinuous and lumpy adjustment and 

are applied in a variety of topics in economics. While their origin can be traced back to the 

theory of inventory control, today they are also used to describe investment, cash balance 

adjustments, labor demand, technology upgrades, etc. Optimality of such rules is not proved 

here but rather the temporal pattern of adjustments is analyzed. 

There are several types of (S,s) rules: one sided, double sided, with double return points, 

etc. This section analyzes a one-sided (S,s) rule, described a s  follows: Let s < S and let y*(t) 

be a Brownian motion with drift p 2 0, where y*(O) = s. Whenever y*(t) 2 S ,  the process 

is restarted at s ,  that is, dy*(ts) = S - s ,  where ts is the first time the process reaches the 

level S.  Then, it can be shown that t s  has probability density function: 

Proof: Karlin and Taylor (1975), p. 363. 

Equation 27 is the inverse gaussian distribution and provides the waiting time density 

until the first decision. Note that the process restarts at the same level, s, each time the 

barrier S is crossed. Therefore, the inverse gaussian is in fact the density of all the waiting 



times between events. It is easy to verify that the counting process associated with the 

crossing times of this (S,s) rule is a Poisson process. Postulate 1 of the L.R.E. holds: The 

probability of two events occurring in the same time interval goes to zero as the size of the 

interval goes to zero whenever s < S. Postulate 2 holds because the process evolves without 

aftereffects: The probability of crossing the barrier S is independent of how long it took to 

previously cross it. Postulate 3 holds by construction: Pr[y*(O) = S] = 0 whenever s < S. 

Recall that from the definition of the Poisson ~ r o c e s s ,  Pr [S is not reached in the interval 

[0, t)] = Pr[N(t) = O] = exp {- $ X(u)du) . Therefore: 

from where, in general X(t) = X(t, s,  S, p, a) .  Each particular type of (S,s) rule produces 

inter-arrival times between decisions that are random variables. By inspecting whether the 

three postulates of the L.R.E. hold, one can justify that the associated counting process will 

be Poisson. 

5 General Specification of Decision-Making 

In the presence of random-time aggregation, we have determined that expressions of the 

form Et-l(yt) are, in genera1,'functions of past information, a parameter space, and the 

intensity of the decision process. T h s  section considers more general intensity specifications 

that will allow us to examine scenarios in which: the frequency of decision making is time 

dependent (inhomogeneous Poisson processes); intensities that are a mixture of processes 



(mixed Poisson processes); and decision making that depends on an auxiliary information 

process such as stage of the business cycle effects, interest rates, unemployment effects, etc. 

(doubly-stochastic Poisson processes). In each case, the properties of the particular process 

will dictate the appropriate time series representation and the properties that we should 

expect our model to have. 

The extensive literature on point processes (comprehensively surveyed in Snyder and 

Miller 1991) examines a wide variety of models and specifications. It usually considers 

the joint distribution of the Poisson process and its companion process (for example, the 

marks in a marked point process, the information process in a doubly stochastic process, 

etc.). Here, however, the focus is on the distribution of the Poisson Process, conditional 

on its companion process. In all instances, we will consider the case when this companion 

process is predetermined. By adopting this conditional approach, we simplify the problem 

tremendously and return the focus to the estimation of the partial adjustment model. 

5.1 Temporal Poisson Processes 

Consider the case where the intensity is a function of time. More generally: 

This specification is appropriate in scenarios where, for example. there is a period of 

learning. At the start of the adjustment process, decisions are made more frequently. As the 

learning process evolves, the intensity converges to some average value. A typical specification 

that captures this effect is: 



When y > 1, the process is explosive, when y = 1 yields a non-dependent process. For 

y < 1, the process converges to X as t -. co. Under this specification, estimation of the 

conditional expectation at time t - 1 of our variable of interest can be done by Non-Linear 

Least Squares (NLLS) where the variance of the residuals becomes tirne-dependent. 

Other popular specifications in the theory of point processes allow the intensity to depend 

on the number of past events (such as renewal processes, birth-death processes) and even 

their occurrence times (self-exciting point processes). However, in general, the sample path 

for the point process is not observed when data is sampled at regular intervals of time. 

Their usefulness is thus limited: these specifications involve unobserved latent processes that 

complicate matters considerably. 

5.2 Mixed Poisson Processes 

The possibility of asymmetric behavior is often considered in the literature of partial ad- 

justment models. In the context of price adjustments in an environment with inflation, for 

example, being above some "optimal" price level is not as costly as being below it. In such 

= cases, we should expect the frequency of positive corrections to differ from the frequency of 

negative corrections. Positive and negative disequilibria might not be the only two states 

that have different intensities. An appropriate specification for this type of problem is the 

mixed Poisson process. In general, the intensity of a mixed Poisson process can be expressed 

as: 



The simplest case is to allow the intensity to  have a constant value in each of the s states. 

The modelling stage can be approached from two angles: One is to allow X j  to depend 

on predetermined variables. For example, if zt-1 > 0 choose X ( t )  = XI; otherwise, choose 

X ( t )  = X z .  A more general approach however, is to  let the transition between states follow a 

Markov hidden process. In this case, we can use the Switching-regmes model proposed by 

Hamilton (1989). An example with two states of Equation 7 would be: 

P2 + P2Zt-1 + &2t if S t  = 2 

where we have allowed for two states with pi = expi-a&), i = 1,2. The variance of the 

error term will be also state dependent. The appeal of this approach is that we can obtain 

the identification of the transition probabilities directly from the estimation stage. 

5.3 Doubly Stochastic Poisson Processes 

An appealing specification of the P.A.M. is to allow the intensity of the decision-making 

process to depend on predetermined information. Decisions might be done more frequently 

in downturns than in expansions or when interest rates are low rather than high. Large 

disequilibria might be adjusted more frequently than small disequilibria. {iV(t) : t > t - 1) 

is a doubly stochastic Poisson process with intensity process {X(x(t), t )  : t > t - 1) if for 

almost every given path of the process {x(t) : t > t - I) ,  N ( . )  is a Poisson process with 



intensity function {X(x(t), t) : t 2 t - 1). In other words, {N(t) : t > t - 1) is conditionally 

a Poisson process with intensity {X(x(t), t) : t 2 t - 1) given {x(t) : t > t - 1). The process 

{x(t) : t > t - 1) is called the information process. In general: 

Pr[N(t) = n] = E (Pr[N(t) = nlx(u) : t - 1 5 u < t]) = (33) 

The expectation on the right hand side of Equation 33 is generally difficult, if not impos- 

sible, to evaluate. Therefore, we proceed by conditioning the Poisson process on the path of 

x(t). The literature of duration data is rich in specifications (see Lancaster (1990)). The two 

most hequently used specifications are the proportional intensity model and the generalized 

accelerated failure time model. 

1. Proport ional  Intensity Model: This parametrization allows separability of the ef- 

fect of the predetermined covariates from the underlying decision process. The intensity 

is specified as: 

Usually k(x) = exp{x'b), allowing the parameter space of 6 to be unconstrained. 

However, it is interesting to note that parametrizing k(x) = y(x - c ) ~  and Xo(t) = A, 

and specifying the model a s  in Equation 7 with zero constant (for simplicity), we have: 



This is the specification of Exponential Smooth Autoregressive Models (ESTAR) - a 

popular family of non-linear time series models. Tests for non-linearity against this 

alternative, specification, estimation, and evaluation procedures are well developed for 

this type of model (See Terikvirta 1994; Escribano and Jorda 1997). Under this speci- 

fication, the errors present heteroskedasticity conditional on the information process. 

2. Generalized Accelerated Failure Time Model (G.A.F.T.): an alternative speci- 

fication to the proportional intensity modeI, the G. A.F.T. is suitable to model situations 

in which the effect of the explanatory variables acts multiplicatively on the time scale. 

The general specification of the G.A.F.T. is: 

For many particular distributions (1ik.e the Exponential and the Weibull), the propor- 

tional intensity model and the G.A.F.T. produce similar specifications. 

6 Detecting Random Time Aggregation 

So far, we have shown that inference in the presence of random time agggegation can be 

severely biased and have given specific functional forms to these biases. However, is there a 

way to detect a priori random'time aggregation? To answer this question we need to refer 

back to Equations 7 and 21, reproduced here for convenience: 



A typical scenario will contain zt, y t ,  and wt as observable variables and kt as  an unob- 

servable or latent process. When kt = k V t  (the traditional type of time aggregation), the 

resulting equations are linear with constant variances and parameters, consequently virtu- 

ally indistinguishable horn a non-aggregated stochastic process. Unless the practitioner has 

ex-ante information regarding k, empirically there is not much that can be done. However, 

under the assumption that k is Poisson distributed, kt will attain different values at each 

date t which means that the model will have time-varying parameters and the error terms 

will most certainly be heteroskedastic. These two clues are useful in suspecting random-time 

aggregation. Unfortunately, for a highly aggregated series there will be little variation of the 

kt over time (by the properties of the Poisson) and the variance of the error terms will be 

relatively large, thus reducing the signal to noise ratio. 

The modeling strategy proposed here is to proceed conditionally on kt and use any of 

the inhomogeneous intensity specifications described in the previous section. The resulting 

time-series models are typically non-linear, a feature for which there generally exists a testing 

methodology. This is the strategy that will be used the following application to a model of 

inventories. 



7 Empirical Application: Inventory Adjustment 

Inventory research to this date has centered mainly in two microeconomic models of firm be- 

havior: the production smoothing model and the (S,s). The standard empirical specification 

since Love11 (1961) has been the stock adjustment equation briefly introduced in Section 3.2, 

which we reproduce here with slightly different notation: 

It - It-1 = $0 + 41 (El - It-1) - 4 2  (st-, - SLl) + U t  (37) 

where It = stock of inventories at time t ;  I; = desired level of inventories at time t;  St = sales 

and Sf = expected sales. While the predictions of this model are simple and intuitive, three 

major findings have clouded its success. First, adjustment speeds (given by &) are extremely 

low. W l e  even the wildest swings in inventory stocks amount to only a few days production, 

adjustment speeds are usually estimated to be less than 10% a month. Efforts to explain 

t h s  finding as a result of some econometric bias have had limited success. Economically, 

slow adjustment speeds could be explained by firms' desire to smooth production. However, 

two additional empirical findings also contradict this view. Production is found to be more 

volatile than sales and unanticipated sales shocks (i.e. St-l - SLl ) do not seem to lead to 

inventory disinvestment. 

In this section: a stock adjustment model similar to 37 is estimated. In particular, 
/ 

we analyze data on glass containers a s  provided by the Census Bureau's monthly survey: 

Manufacturers' Shipments, Inventories and Orders, otherwise known a s  the M-3 report. The 

data span from 1991 to 1996 at a monthly frequency. There are several advantages to this 



data set. First, it is obtained from a monthly survey of 16 known manufacturers, thereby 

reducing problems of awegation across firms with different cost structures. Second, the data 

is in physical units (more specifically in thousands of gross, one thousand gross = 144,000) 

which is helpful in view of Krane and Braun (1991) who report that different adjustments and 

accounting methods to value-based data typically introduce measurement error. Third, the 

data is not seasonally adjusted and therefore exempt of the distortions typical of conventional 

seasonal adjustment methods. 

We begn by reporting the basic properties of the data. Figure 3 displays the series of 

production, shipments and inventories. The series exhibit high seasonal fluctuations but 

appear otherwise stationary (an appreciation further confirmed by augmented Dickey-Fuller 

tests and Phillips-Perron tests that overwhelmingIy reject the null hypothesis of a unit root). 

Inventory dis/investment is relatively small compared to production (the largest of deviations 

approximately correspond to two days production). The ratio of the variance of production 

to sales is 0.90 which supports the notion that inventories are partly used to buffer sales 

fluctuations. Interestingly, if the data is deseasonalized (additively with a set of seasonal 

dummies), this ratio becomes 1.25 a frequent finding in the literature on inventories. Further 

support for the buffer role of inventories is provided in Figure 4. The top graph displays the 

seasonal means of Production and Shipments while the bottom graph displays their difference 

/ 

(i.e., inventory investment due to seasonal fluctuations). Seasonal fluctuations account for 

approximately 40% of the variation in inventory investment. Adjusting for the number of 

days in each month. production remains approximately constant from February to November 

and drops in December and January. On the other hand, shipments drop from November to 



February and are relatively higher during the summer months. 

With this is mind, consider estimation of Equation 37. Traditionally, it is assumed that 

the desired level of inventories can be approximated by a linear function of sales. In addition, 

sales expectations are also constructed on the basis of past observations on sales. Without 

imposing any restriction, 37 can then be rewritten as, 

where the parameter of interest is qjl, the speed of adjustment parameter. While this formula- 

tion is fully flexible, one cannot identify the "buffer" parameter unless coefficient restrictions 

are imposed. The dynamic structure of the error term stems from the fact that I,' is being 

approximated. In addition, ut is allowed to contain the seasonal component of inventory in- 

vestment described above. Table 1 reports the estimation results of the relevant parameters. 

A 

The estimate = 0.21 attains a relatively high value relative to what is common in this 

literature yet still low to be consistent with the theory and our preliminary findings. This 

point is best illustrated by calculating the number of days required to close 95% of a given 

disequilibrium. This quantity can be calculated as  T = 301og(O.O5)/log(l - $1) which for 

this example becomes 381 days. The seasonal pattern of matches that reported in Figure 
/ 

4. The seasonal variation is reduced to 76% of the original 

Next we want to check whether random-time aggregation might be driving these results. 

We propose a conditional. proportional hazard model similar to that proposed in Section 5.3: 



so that the stock adjustment model 37 becomes: 

which is a special case of smooth transition autoregressive model (introduced by TerGvirta 

1994) for which Escribano and Jordd (1997) have developed the specification tests that we use 

here. First we test the series of changes in inventories for evidence of this type of nonlinearity. 

The auxiliary regression then becomes, 

where the seasonal dummies (4 for i = 1,2, ..., 12) are included to avoid spurious detection 

of nonlinearities. The non-linearity test simply consists of jointly testing the significance of 

the coefficients 7ri (i = 1,2,3) and choosing d that minimizes the pvalue of this test for 

d = 1,2,3,4. A likelihood ratio test showed evidence of nonlinearity at the conventional 5% 

confidence level for d = 3. , 
Accordingly, Equation 39 was estimated by Weighted Non-linear Least Squares and 

White's covariance consistent estimates for the standard errors. is divided by its 

standard deviation for computational convenience). Table 2 reports the result or' this esti- 

mation. Unfortunately, the likelihood ratio test for the joint sigmficance of the extra two 
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regressors has a non-standard distribution (this problem is discussed in Escribano and Jorda 

1997) but the T-statistics on the additional parameters are highly significant. The residuals 

exhibit the same seasonal ?attern a s  before but the seasonal variation is further reduced to 

72% of the original. The most revealing feature is the estimate &ezp {-?(AL-~ - q2) , the 

time-varying speed of adjustment displayed in Figure 5. The associated speed of adjustment 

fluctuates quite remarkably often obtaining values circa 0.70, a number much more in line 

with the predictions of the stock-adjustment model. The average adjustment for the period 

is around 0.18, fairly close to the estimated 0.21 with the linear specification. While by no 

means an exhaustive analysis, this relatively simple approach illustrates how random-time 

a

ggr

egation impacts inference on adjustment speeds. Alternatively, one could view our ap- 

plication a s  resulting fiom a misspecification of the theoretical model in that the adjustment 

speed is not allowed to depend on previous inventory investment.. 

8 Conclusion 

This paper identified a new source of misspecification in econometric analysis: random-time 

aggregation. This misspecification arises when we abandon the assumption that the point-in- 

time sample intervals coincide precisely with the timing of agents' decisions. The bias arises 

from ignoring that economic decision making is done randomly in time while data collection 

is done at regular intervals of time. This common type of misspecification was analyzed 

in the context of partial adjustment models but is likely to affect many other situations in 

economics. 

Partial adjustment models, popular reduced-form models of economic behavior, pro- 
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vide formal micro-foundations of decision processes that evolve in random-time. This paper 

demonstrated that the decision-making process is best understood as a point process. In par- 

ticular, it was shown that (S,s) rules comply with the conditions of The Law of Rare Events, 

a theorem that states the conditions under which the Poisson appropriately represents the 

evolution of adjustments through time. 

With the decision process explicitly modelled, estimation of the partial adjustment model 

involves joint modelling of the distribution of adjustments and decisions. However, typical 

empirical analysis disregards the latter. Consequently, speeds of adjustment are biased - 

the misspecification arises because the time t - 1 expectation, unconditional with respect 

to the decision process, becomes a function of the intensity of this decision process and the 

proportion of adjustment. Correlations and/or causal relations are also incorrectly evaluated 

- as the intensity of decision making grows, so does the downward bias introduced, which in 

turn causes false rejections of these relations - due to the interaction between adjustments 

and aggregation. Random-time aggregation is not an artifact of low/hlgh frequency sampling: 

it is an artifact of fixed interval sampling. 

The models proposed are generalized to allow for varying decision-making intensities in 

three ways: First, time-dependent Poisson processes (useful to model learning effects) were 

. proposed; second, mixed Poisson processes were considered - Markov switching models pro- 

vided the appropriate technology for this type of generalization; and thlrd, doubly stochastic 

Poisson processes are analyzed - while several specifications are available in the literature 

of duration data, smooth transition regression models provide sufficient flexibility to model 

this type of behavior. 



An analysis of inventory behavior in the Glass Containers industry illustrates the prac- 

tical implications of the previous claims. A simple test for non-linearity indicates possible 

mispecification due to random-time aggregation. Using lagged inventory investment as an 

explanatory covariate for variable speeds of adjustment, the stock-adjustment model is shown 

to perform as predicted by the theory, 

Further areas of research span in two major directions - the effect of cross-sectional 

aggregation in the presence of random-time aggregation and the analysis of random-time 

aggregation in general time series models. The analysis in this paper focused on the effects 

of random-time aggregation at the level of the individual agent which is not independent 

of aggregation across heterogeneous agents. The message of this paper is clear: empirical 

analysis of economic behavior proceeds by adapting the economic model to the available data. 

Consistently ignoring the way that data is generated results in severe biases in structural in- 

ference of econometric models. This paper provides an example of how such mispecifications 

arise when we ignore the time dimension of the problem. 
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9 Appendix 

Detailed derivation of Equations 10 and 11 follow. Rom Equation 9: 

Therefore: 

where 

with Et-l(qi) = Ti; and 

Now, it is easy to see that: 



and Equation 11 immediately follows from 43. Note that since Et-l (J:-~ u(r)dr) = 

0 V i  = 0 ,1 ,2 ,  ... then Et-l(~~) = 0 ,  where: 

We state a theorem to calculate 5ji. 

Theorem 4 : Let 71, Q, ..-, be the occurrence times in a Poisson process of rate j\ > 0.  

Conditioned on  N ( t )  = n, the random variables 71, ..., rl, have joint probability density fine- 

tion: 

that is, they are jointly, unifonnly distributed. 

Proof: Taylor and Karlin (1  994) p.270 
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Figure 1: Shape of the Bias in the Speed of Adjustment Parameter 
Under Random Time Aggregation (Autoregressive Specification). 
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Figure 2: Shape of the Bias in the Alpha and Beta Parameters 
Under Random Time Aggregation (Specification includes 
Exogenous Variable) 
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Figure 3: Production, Shipments and Inventories of Glass 
Containers. SAMPLE: 1991 :I to 1 996:l2. NSA 
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Figure 4: Seasonal Means of Production, Shipments and Inventory 
Investment of Glass Containers. Sample: 1991 :I to l996:l2, NSA. 
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Figure 5: Estimated Adjustment Parameter from the 
Nonlinear Specification of the Stock Adjustment Model 
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Table 1 : Estimates of the Linear Stock Adjusment Mode1 for Inventories of Glass 
Containers. SampIe: 1991:l to 1996: 12, N.S.A. 

Coefficient Estimate ( S t d  Error) T S  tatistic 
co 13427.17 3.0477 

(4405.667) 
+I 0.2085 2.5006 

(0.0834) 
W1 -0.0007 0.0 102 

(0.0636) 
Wz -0.1781 2.7152 

(0.0656) 

P 0.4634 3.7549 
(0.1234) 

January 74 1.25 1.9995 
(370.72) 

February 830.23 2.2394 
(370.72) 

March -40.50 0.1 197 
(33 8.42) 

April -:300.08 0.8867 
(3 3 8 -42) 

May -69.77 0.2062 
(3 3 8 -42) 

June -780-79 2.3071 
(338.42) 

J ~ Y  659.79 1.9496 
(338.42) 

August -884.28 2.6129 
(338.42) 

September -302.99 0.8953 
(338.42) 

October 1098.38 3.2456 
(538.42) 

November 458.29 1 3542 
(338.42) 

December -1 209.34 3.5735 
/ (3 3 8.42) 

Log-Likelihood -563.1564 
SSR 35856715 

Durbin- Watson 1 8011 
R~ 0.60 

Standard Errors in parenthesis 



Table 2: Estimates of the Non-Linear Stock Adjustment Model for 
Inventories of Glass Containers. Sample: 199 1 : 1 to 1996: 12. 

- Coefficient Estimate T-Statistic 
Co 4 1369.68 3.6205 

( 1 1426.43) 
(PI 0.7444 2.7340 

(0.2723) 
W1 -0.0222 0.1500 

(0.1481) 
WZ -0.2659 2.0650 

(0.1288) 

P 0.2726 2.3377 
(0.1 166) 

Y 0.8722 1.8453 
(0.4727) 

6 1.6294 14.8792 
(0.1095) 

Januar~ -147.71 0.4340 
(1340.37) 

February 437.57 1.2856 
(1340.37) 

March -501.21 1.4725 
(1340.37) 

A P l  -321.36 0.9442 
(340.37) 

May -301.12 0.9691 
(13 10.72) 

June -866.62 2.7891 
(:3 10.72) 

J ~ Y  224.63 0.7229 
(:3 10.72) 

August -913.06 2.9386 
(3 10.72) 

September -572.70 1.843 1 
( 3  10.72) 

October (30 1.43 2.5 793 
( 3  10.72) 

November 897.62 2.8889 
( 3  10.72) 

December - 1447.97 4.6601 
( 3  10.72) 

I 

Log-Likelihood -54 1.0503 
SSR 324391 19 

Durbin-Watson 1.9436 
R' 0.67 

Standard Errors in parenthesis 


