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Abstract

Wegivean introductionto theliterature on the epistemic foundations o
solution conceptsin game theory. Only normal-form games are considered. The
solution conceptsanalyzed are rationalizability, strong rationalizability, correlated
equilibriumand Nash equilibrium. Theanalysisis carried out locally in termsof
properties o the beief hierarchies. Several examplesare used throughout to
illustrate definitionsand concepts.



1 Introduction

Theobjective of the literature on the epistemic foundations of solution conceptsin games
is to determine what assumptions on the beliefs and reasoning of the players are implicit in
various solution concepts. This is a recent line of inquiry in game theory and one that is gaining
momentum. In this paper we give an introduction to the general approach and review some of the
main contributions. We will provide a selective, rather than encompassing, survey. For a more
ambitious and more comprehensive review of the issues dealt with in the literature on the

epistemic foundations of game theory see Dekel and Gul (1997).

Why worry about the epistemic foundations of solution concepts? A common view is that
results that relate epistemic conditions (such as common belief in rationality) to a particular
solution concept help explain how introspection alone can lead players to act in accordance with
it. The task of this research program is to identify for any game the strategies that might be
chosen by rational and intelligent players who know the structure of the game and the

preferencesof their opponents and who recognize each other's rationality and knowledge.

Although severa of the papers in the literature deal with the case of knowledge and
common knowledge, we will take a more general point o view where the primitive concept is
that of belief (and knowledge can be viewed as a particular form of belief: cf. Stalnaker, 1994,
1996).

V4

The paper is devoted mainly to the analysis of normal-form (or strategic-form) games,

although the implications for extensive games are sometimes discussed.” In Section 2 wediscuss

" There is, however, a very recent literature that deals with the epistemic foundations of solution concepts for
extensive games, in particular backward induction in perfect-information games. See, for example. Aumann,



Bayesian and qualitative frames and their propertiesand in Section 3 we use them to define the
notion of a model for a normal-form game In Section 4 we consider the notions of
rationalizability and strong rationalizability, while Sections 5 and 6 are devoted to the epistemic

foundationsd correlated equilibrium and Nash equilibrium, respectively.

2. Bayedan and qualitativeframesand their properties

DEFINITION 1. Aninteractive Bayesian frame (or Bayesian frame, for short)2 isa
tuple

B = (N @1 {pl)

where
N = {1, .., n} isafiniteset of individuals.
e Q isafinitesat of states (or possibleworlds)3. Thesubsetsd @ arecalled events.

e 1 52 isthe"true" or "actua" state4.

for every individud i€ N, p, : 22— A(Q) (where A(Q) denotesthe set of probability

distributionsover Q) isafunction that specifies herprobabilistic beiefs, satisfying the
following property [we use the notation p,  rather than p.(a)]: Va,Be L,

if p,,(8)>0 then p,4=p (1

La

(1995, 1996), Battigalli (1997), Battjgalli and Siniscalchi (1997), Ben Porath (1997), Stalnaker (1996, 1997),
Stuart (1997).

* Foras milar definitionsee, for example, Aumann and Brandenburger (1995), Dekd and Gul (1997) and Stainaker
(1994, 1996).

’ Finiteness of © is acommon assumption in the literature (cf. Aumann, 1987, Aumann and Brandenburger, 1995,
Deke and Gul, 1997, Moms, 1994, Stalnaker, 1994, 1996).



Thus P o A(R) isindividual i’s subjective probability distribution at state aand condition
(2)says that every individual knows her own beliefs. Wedenoteby ||p, = p. I theevent
loe Q:p, =p,} Itisclearthat theset { llp,=p, Il : 0 e Q}isapartitionof Q;itis

often referred to as individua i's typepartition.

DEFINITION 2. GivenaBayesian frame 23 itsqualitative frame (or frame, for

short) isthetuple @ = (N, @, r, {P.}._. ) where N, Q, and r are asin Definition 1 and

e foreveryindividua ieN, P,: Q— \@ isi'spossibility correspondence, derived fromi's
probabilistic beliefsas follows: >
P.() = supp(p, ).

Thus, for every ae @, P.(a) istheset of states that individual i considers possible at a.

REMARK 1. It followsfrom condition (1) of Definition 1 that the possibility
correspondence of every individual i satisfies the following properties (whoseinterpretation is
given in Footnote 7): ¥V e €2,

Transitivity: if e Pa) then P(B) c P(a),
Euclideanness: if Be P(a) then P.(a) C P,(B).

REMARK 2 (Graphical representation). A non-empty-valued and transitive

possibility correspondenceP: 2 — ZQ can be uniquely represented (see Figures below) asan

* Wehave included the true state in the definition of an interactive Bayesian mode in order to stressthe
interpretation of the model asarepresentationof a particular profileof hierarchiesof beliefs.

’ If ue A(R), supp(u) denotesthesupport of u, that is, the set of Statesthat are assigned positive probability by p.



asymmetric directed grath whose vertex set consists of digoint events (called cells and
represented as rounded rectangles) and states, and each arrow goes from, or points to, either a
cell or astate that does not belong to acell. In such a directed graph, o’ € P(w) if and only if
either w and w’ belong to the samecell or thereisan arrow from w, or the cell containing w, to
w’, or the cell containing w’. Conversely, given a transitive directed graph in the above class
such that each state either belongs to acell or hasan arrow out of it, there exists a unique non-
empty-valued, transitive possibility correspondence which is represented by the directed graph.

The possibility correspondence iseuclidean if and only if all arrows connect states to cells and
no state is connected by an arrow to more than one cell.

Finally, if — inaddition — the possibility correspondence is reflexive, then one obtains a

partition model where each state is contained in acell and there are no arrows between cells.

Given aframe and an individual i, i’s belief (or certainty) operator B, : 2% 00 is

defined asfollows: VE ¢ Q, BE = {we  : P.(w) < E}. B.E can be interpreted as the event that

(i.e. the set of states at which) individual i believes for sure that event E has occurred (i.e.
attaches probability 1 to E).”

Notice that we have allowed for false beliefs by not assuming reflexivity of the
possibility correspondences (V ae 2, ae P.(a)), which —asiswell known (Chellas, 1984, p.

164) - isequivaent to the Truth Axiom (if the individual believes E then E is indeed true):

6 . . . . .
A directed graph isasymmetric if, whenever thereisan arrow from vertex v to vertex v' then thereisno arrow
fromV' tov.

" Thus Condition (1) of Definition 1 can be stated asfollows: V ie N, VaeQ, Ilpi = pl.all = Billpi = piall.



VEC®, BECE .

The common belief operator B, isdefined as follows. First, for every EcC Q, let BE =
N BiE , that is, B,E is the event that everybody believes E. The event that E is commonly
ieN
believed is defined as the infinite intersection:

BE=BE N BBE NnBBBE N ..
The corresponding possibility correspondenceP, is then defined asfollows: for every a e Q,

P,(a) ={ @ Q:ae —B,~{w}}. It is well known that P, can be characterized as the transitive

closure of | J P ,thatis,

ieN
Vo€ Q, B Pla) if andonly if thereisasequence (i,..i )inNanda
sequence{n,, N, - M) in @ such that: () n,=av (ii)n_=p and (iii) for every k =0,
wm=1, 1 € Pim(nk).

Note that, although P, is always non-empty-valuedand transitive, in general it need not

be euclidean (despitethe fact that the individual possibility correspondencesare; recall that — cf.
Footnote 7 — P, iseuclideanif and only if B, satisfies Negative Introspection).

With reference to qualitative frames, we now define events that capture important

propertiesd beliefs.

® It iswell known (seeChellas, 1984, p. 164) that non-empty-valuednessof the possibility correspondenceis
equivalent to consistency o bdliefs (an individual cannot simultaneously believeE and not E): vV E < £,
BE c —-B—E (where for every event F, —F denotesthe complement of F). Transitivity of the possibility
correspondenceis equivalent to positive introspection of beliefs (if the individual believesE then she believes
that she believesE): VEg Q, BiE cBBE. Finally, euclideannessd the possibility correspondenceis
equivalent to negative introspection of beliefs (if the individual does not believeE, then she believesthat she
doesnot believeE): VEC R, -BE ¢ Bi—.BiE.



Event

Corresponding property of beliefs

ieN Ee2®

Noindividual has falsebeliefs:
Foeveryac 2, ae Tif andonly if no
individual has any false beliefs at a (for every
ieN andforevery ECQ, if e BE then

acE)

B,T

«Common belief in noerror:
Foeveryace &, ac BT ifandonly if at a it

iscommon belief that no individual has any
ffalse beliefs

Q=-B,—B,T

«Quas-coherenceof bdliefs:

Foreveryac @, ae Qif andonly if a aitis
sommonly possible that it is common belief
that no individual has any false beliefs

Truthd common bdief:

acT if and only if a awhatever iscommonly
believed is true (for every event E, if ae BE

thenaekE)

T, = () () ~(BBEN-BE
ieN Ee2®

Truth about common belief:

ae T, if andonly if, for every event E and
every individual i, if, a a,individual i
Ibelieves that E is commonly believed, then, at
a, Eisindeed commonly believed (if
aeBB,E thenaeB,E)

NI = (] (B,EUB,-B,E)
Ee2®

Negative I ntrogpection of common belief:
ae N if andonly if — forevery event E -
whenever a a it is not common belief that E,
then, a @, it iscommon bdief that E is not
commonly believed (if ae —B,E thena

eB,—B.E)

Thefollowing propositions establish the relationship between some o these properties.




PROPOSITION 1 (Bonanno and Nehring, 1997a). NI = T, N B, T,

PROPOSITION 2. (Bonannoand Nehring, 1997b). TN B,T = T NnBT_ N Q.

3. Modesof normal-form games

Throughout this paper we shall restrict: attention to finite games. A finite normal-form or

strategic-form game is a tuple G = (N, {S;},_. {u}._.) where N = {1, 2, ..., n} is aset of
players, S, istheset of strategiesof playeriandu, - S— R (whereS=S, X ... xS_and R isthe
set o red numbers) is player i’s von Neumann Morgenstern payoff (or utility) function. This
(standard) definition of game represents only a partia description in that it determines the
choices that are available to the players and the preferences that motivate the choices, but does

not specify the players beliefs about each other or their actual choices. The notion of  model

provides away of completing the description.

DEFINITION 3. Fix a norma-foom game G. A modd d G is a par
M=(B {o}_,)wheeB =(N, g, . {pi}ieN) isaBayesian frame and, for every player
i, 0. : & — §, isafunction that specifiesfor every state the choice made by player i & that state

subject to therestriction that player i knows her own strategy:
VieN,VafeS, if p,,= Pip then o,(a) = o,(B).

For every statew € &, let o(w) = (o,(w), ..., o_(w)) be the strategy profile played at w and, for
every player i, denote by o _ ()= (01(00),...,0,._l ®),0,,, ®),...,0, @) the strategies played by

the players other than i.

The addition of a strategy profileat every state is what gives content to the beliefsof the
players.



DEFINITION 4. Playeriisrational at statea e %2 if her choice at amaximizes her
expected utility, given her beliefsa a: fordlx € S,

>y (5,0 @)p,, @)= Y u,(x,0_ ) p,, @)

weP (a) weP (@)

where 57 =0, (@) (recal thati's own strategy is thesame &t every O € P.(a)). Let RAT, be the
set of states where player i is rational and RAT = [} RAT, the event that al players are

ieN

rational.

EXAMPLE 1. Figure | b shows amodd o the two-person gameillustrated in Figure
la. Here we have that RAT, = {1, B} and RAT, = Q; hence RAT = {r, 3}. Note also that

B,RAT = {r, 8}, B,RAT = {1} and B,RAT = O.

| Insert Figure 1]
Player 2
L R
Player T 4,6 3,2 8,0
1 M 0,9 0,0 4,12
B 8,3 2,4 0,0

Figure la



TR Ry
T B Y o

2 ) [mowe [
5 Y o

P*: C ’ }ﬂ

01: B B M M
02: C L L R
Figure Ib

REMARK 3. Note that, for every player i, BRAT, = RAT,, that is, no player can

have false beliefs about her own rationality and if she is rational then she knows it.9 It follows

that B,RAT ¢ RAT, that is, if itis common belief that al the players are rational, then they are

indeed rational. . On the other hand, as Example 1 shows, in general RAT ¢ B,RAT.

4. Rationalizability and Strong Rationalizability

The first solution concept we consider is rationalizability (Bemheim, 1984, Pearce,

1984). ,

“Ifae BRAT, then § € RAT, for all B e Ii(a). It follows that a e RAT, sincei's beliefs and drategy are the

sameat aasa any f € Lla). Theconversefollowssimilarly.

“Foralie N, B,RAT C BRAT C BRAT, = RAT.,

10



DEFINITION 5. For every player i, let A(S) be the set of probability distributions
over §; (theset of player i’s mixed strategies). If p, € A(S) and s, € S, we denote by u.(s) the
probability assigned to s, by .. A strategy s, € S, isstrictly dominated by p, € A(S) if, for all

se S, ulu, s ) >ufls, s ), whereu(u, s ) = Z u, (x) u; (x,s_,). lFor example, in the
xeS;

game of Figure 2a, strategy B of piayer 1isstrictly dominated by the mixture (1 A, %D)]. Given

agameG, let G bethe game obtained by eliminating the strictly dominated strategies of every
player; let G bethe game obtained from G by eliminating the strictly dominated strategies of
every player, etc. Let G be the game obtained from G after the iterative deletion of strictly
dominated strategies and S~ the set of strategy profiles of G . The profiles in S are called
rationalizable. For the game of Figure 2a, the games G , G’ and G =G are shown in Figures
2b-d. In the game of Figure la, $”= {(T,L), (T,C), (B,L), (B,C)}, sincefor Player 1 M isdtrictly
dominated by T and —after deletion of M - for Player 2 R kecomes strictly dominated by both L
and C.

{Insert Figure 2|

- O D e Y
oo
j—y
[y
o
[\
p—
[

(S

Figure 2a
The game G: B isstrictly dominated by (§ A, D).

11



D 0,3 1,0 3,2

Figure 2b

The game G:nowb is strictly dominated by c.

Player 2

a c
P
1
a A 3,0¢10,1
y
e
; C (0,0]2,2
1 D |0.3]3,2

Figure 2c
The game GZ: now C isstrictly dominated by (%A, ZD)

Player 2

A 3,0(0,1
Player 1

D 0,31]3,2

Figure 2d

Thegame G no strategy isstrictly dominated; thus G=G andS = {(A,a), (A,0), (D,a), (D, ¢)}.



The following proposition was established by Bernheim (1984) and Pearce (1984) and
proved more formally in an epistemic context by Brandenburger and Dekel (1987), Tan and
Werlang (1988), Stalnaker (1994). Given agame G and amodel 77 of it, with slight abuse of
notation let S~ be the event that a strategy profile that survives iterated deletion of strictly
dominated strategies is played: S ={we Q:olweS }. For example, in the model of Figure
1b,S = {x,B).

P'ROPOSITION 3. LetGbeagameand 77 amodel of it. Then

B,RAT C S NB,S .

That is, it' at a state there is common belief in rationality then the strategy profile played at that
state is rationalizable and it iscommon belief that only rationalizable strategy profiles are played.

Proposition 3isaconsequence of thefact that astrategy s. € S, isabest response to some
belief on (probability distribution over) S . if and only if it is not strictly dominated. Thus if
ac B, RAT thenae RAT (since B,LRAT < RAT: see Remark 3) hence no player ischoosing

a strategy which is strictly dominated in G. Since, for every i, B_RAT < BRAT, a a every

player believes that no player has chosen a strictly dominated strategy in G. Hence no player is
choosing astrategy which isstrictly dominated in Gl, etc.

The converse o Proposition 3 does not hold. To see this, consider the following model of
the game of Figure 2 @ = {t}, P,(t) = P,(x) = {t}, o(v) = (A,a). Thent € S nBS  hut

RAT2 = O and hence B,RAT = O. The following proposition gives a partial converse to

Proposition 3 and shows that the notion of common belief in rationality is not stronger than the

notion of rationalizability.

P'ROPOSITION 4. LetGbeagameands e S . Then there is a model 7/ of G
such that: (1) t € B,RAT, and (2) o(t) =s.



In constructing the model of Proposition 4 one can take Q = S~ and use the fact that for
every strategy s, of player i in game G thereisa probability distribution over the strategies of
the opponents relative to which s, isa best reply.

Propositions 3 and 4 are not based on any assumption of correctness of players beliefs.
Thus a player can be mistaken in the strategy choices and/or beliefs she attributes to the other
players. A natural question to ask is whether ruling out incorrect beliefsfurther reduces the set of
strategy profiles that can be played when there is common belief in rationality. The answer is
affirmative, as Stalnaker (1994) shows (see also Bonanno and Nehring, 1996b). The following
algorithm is similar to the iterative deletion of strictly dominated strategies, but differs from the

latter in that it requires the iterative deletion of profiles rather than strategies.

DEFINITION 6. Given a normal-form game G, a strategy profile xeX < S is
inferior relative to X if there exists a player i and a (possibly mixed) strategy u, of player i

(whosesupport can be any subset of S, not necessarily the projection of X onto S)) such that:
(1) u®& <uly,x_)and
() fordls_ e S  suchthat(x,s )e X, ulx,s ) <ulu,s ).

[Thus if X = S then x is inferior if and only if there is a player i for whom x, is weakly
dominated by some strategy s, such that u.(s, x_) > u,(x).] For every k 2 0, define SE ¢ Sand

D: c S as follows: S = S, Dl,( is the set of profiles that are inferior relative to Sl,( and

s'= s\D!. LetSF = ()S: . Thestrategy profilesin S, arecalled strongly rationalizable.

k=1

/

EXAMPLE 2. For the gameillustrated in Figure 3, S; = {(D.,d), (D,a), (A,d)}. In

fact, (A, @ ¢ S, sinceitisinferior relativeto S (for Player 1 A is weakly dominated by D and
u (A, &) =0 < u ((D, 8)=1). Notethat, on theother hand, S =S (that is, all strategy profiles

are rationalizable) since no player has any strictly dominated strategies.

14



Player

Player

A

[ Insert Figure 3|

Player 2

d
D 1,1 1,1
A 1,1 0,0
Figure 3

that S~ = Ssince no player has any strictly dominated strategies.

lInsert Figure 4]

Player 2
D E F
2,0 2,2 0,2
2,2 1,2 5,1
2,0 1,0 1,5
Figure 4a

S? =S,D; ={(a, D), (C,F)

EXAMPLE 3. Inthe game of Figure 4a, the first step in the algorithm leads to the
profiles shown in Figure 4b [for Player 2 D is weakly dominated by E and for Player 1 C is
weakly dominated by B], the second step leads to the profiles shown in Figure 4c [now F is
dominated by E and C is dominated by A] and the third and final step to the profiles shown in
Figure 4d [now B is dominated by A]. Thus S, = {(B,D), (C,D), (A,E), (A,F)}. Note again that

15



Player 2

D E F

Player A'Z,Z 0,2

1 B 2,2 1,2 5,1
Figure 4b

S. = {(A, B), (A, F), (B,D), B, E), (B, F), (C, D), (C, E)}
D! = {(C, F), (B, F)}

Player 2
D E F
Player A
1 B 2,
c | 2,

Figure 4c
2 ={(A,E), (A,F), BD), B,E), (C,D) }, D’ = {(B, B)}.

Player 2
D E F
Player A
/
1 B 2,
C 2,

Figure 4d
s} =S {(A,E), (A, F),BD), (C,D)}, D =@.

16



Given agame G and amodel 777 of it, with slight abuse of notation let S, be the event

that astrongly rationaizablestrategy profileisplayed: S, ={we Q:olw) < S, }.

PROPOSITION 5 (Stanaker, 1994; see also Bonanno and Nehring, 1996b)."" Let
Gbeagameand 77 amodel of it. Then

() B,TNBRAT ¢ B,S, and

) T NB,TABRAT C S_ NB,S,.

That is, ,f thereiscommon belief in no error and common belief in rationality, then it is common
belief that only strongly rationalizable profiles are played. If, furthermore, Truth of common
belief also holds, then it is also true that the strategy profile actually played is strongly
rationalizable.

Proof. Fix anarbitrarya< B,T n B,RAT. (1) Forevery w € P () definej(w) as
follows: j() = if olw) € S, andj(w) =k € N (whereN istheset of non-negative integers) if
o) e 3¢ and olw) ¢ St . Clearly j(w) iswell defined, since o(w) € S, for al w e 8.Let £

be the minimum of {j(w)} . Supposethat P,(a) € {we Q:olw) € S, }. Then & <o, Let

we P, (a)

@ e P,(x) besuch that j(@ ) = K. Then o(@ )e D!, that is, o(& ) isinferior relativeto S* .

Thus there isa player i and a (possibly mixed) strategy p. of player i such that:
u(y,s )2 ulo(@),s )fordls e S  suchthat(c(®),s_,) e S*,and (1)
u(p, S_(@)) >ulo(®)). (2)

Since @ e P,(a) anda € B,T, @  P,(&), whichimpliesthat p,; @) > 0. By definition of P,,
P(@) < P,(®). By transitivity d P, since @ € P,(a), P (@) < P (). By definitionof 5

| o0
" Stalnaker (1994, p. 63) incorrectly statestheresult asB,T N B,RAT ¢ S_ . Bonanno and Nehring (1996b) give
acounterexampleand provetheresultsas stated in Proposition 5.

17



P,(a) lwe Q: olwe SFY. HenceP(&) cfoe Q:olw) e S*}. Itfollowsfrom thisand
(Dand (2) that

Z Pis O, (o () < z Pig O, (0, (),

yeb @) B @)

[recall that, for all y € P.(@ ), 0,(y) = 0,(&@)] that is, player i is not rational a @ . Hencet ¢
B,RAT,, yieldingacontradiction. Part (2) followsdirectly from (1) and the definition of T.. [

To seethat, ingeneral, B,T NB,RAT & S, consider the model of the gamedf Figure

3illustrated in Figure 5. It iseasy to check that RAT =5 (indeed, for x € {f, v}, o(x) isaNash
equilibrium). Hence at t (indeed at every state) it iscommon belief that all the players are

rationa Furthermorethereis common belief (at t, indeed at every state) that no player hasfalse
beliefs, that is, B,T =52 However, whiletre B,T nB,RAT, o(v) =(A,a) ¢ S, .

| Insert Figure 5|

1 (e o e
& T Y
2: [efe—o 0
§ T Y

P,; [oc— o— e

o: (D,a) (A,a) (A,d)

Figure 5

18



4 partial converse to Proposition 5 is given by the following result.

PROPOSITION 6. LetGbeagameandse S . Then there is a model 7 of G
suchtha: (I)te T nB,T nB,RAT, and (2) o(v) =5

The example of Figure 4 shows that strong rationalizability isconsiderably stronger than
rationalizability. To stress this point, consider the extensive game of Figure 6a, whose normal

form isshown in Figure 6b.

[Insert Figure 6|

»e 2
l )
3
0

[y

¥

3

Player 1's payoff

)
oS- et e
(o
o o 6L T

Player 2's payoff

Figure 6a

19



d a
DG 1,0 1,0
P
I
a DC 1,0 1,0
Yy
€
r AG 0,21]3,0
1
AC 0,2 2,2

Figure 6b

For the normal form, S =S (that is, ali the strategy profiles are rationalizable), since no
strategy of any player isstrictly dominated. Henceevery outcome is compatible with common
belief in rationality. On the other hand, S, = {(DG, d), (DG, a), (DC, d), (DC, a)) 2 and all the

strategy profilesin S, give riseto the Nash equilibrium outcome, namely the payoff vector

(1,0).

One might wonder whether the above example can be generalized to the claim that in the
normal form of an extensive game with perfect information strong rationalizability impliesthe

play of a Nash equilibrium outcome. . Theanswer is negative, as the following example

* |n the first round (AG, a) and (AC,a) are eliminated [the first becaused weakly dominates a, the second because
AG weakly dominates AC]; in the second round (AG, d) and (AC, d) are eliminated (because 1’s strategy is
dominated by DG).

* Stalnaker (1994, p. 64, Theorem 4) incorrectly makesthisclaim.
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shows." Figure 7b showsamodel of the normal form of the extensivegame of Figure 7a. At the

true state: the players choose (A, d, G), which is not a Nash equilibrium; furthermore, thereis no

Nash equilibrium that gives rise to the outcome (2,2,2). Notethatt€ T N B, T n RAT N
B,RAT (in particular, Player 1’s choiceof A isrational, given his belief that Player 2 playsd and

awith equal probability).

Insert Figure 7

1 2 3
A a C
6
d G i ¢
0
0
0

DA O

2 Player 1's payoff

2 Player 2's payoff

2 Player 3's payoff
Figure 7a

“This xample isdue to Battigalli (1996, private communication).For a similar example see Bonanno and Nehring
(19¢6b).
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Figure 7b

""he extensive game of Figure 7a has several Nash equilibria and more than one Nash
equilibr um outcome. Does strong rationalizability imply Nash equilibrium outcome if thereis a
unigue such outcome? Once again, the answer is negative as the following modification of the
gamed Figure 7a shows. ° Here thereis a unique Nash equilibrium outcome, namely the payoff

vector (7, 7, 7, 7). Yet in the model shown in Figure 8b at t© the realized outcome is (2, 2, 2, 10)
despite befact that t€ T N B,T N RAT NnB,RAT.

Insert Figure8

e Thise::ample isdue to Stalnaker (1996, private communication).
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5. Corrdated equilibrium

We now turn to the notion of correlated equilibrium which was introduced by Aumann

(1974, 1987).

DEFINITION 7. Let G be a normal-form game. A correlated equilibrium

distribution 1S a probability distribution p over the set S of strategy profiles such that, for every
player i and every functiond, : S, — S,

D u(s) pls) 2y u,(d;(s,).5_) p(s) ()
ses ses

EXAMPLE 4. Consider the game of Figure 9 (discussed by Aumann, 1974) and the
following distribution: p(U,L) = p(D,R) = % Consider Player 1. The left-hand side of (2) is

equal to 3 5+ 1 1=3. Thepossiblefunctionsd: {U, L} — {U, L} are the identity function id
(whichgives theLHS of (2)), d (definedby d,,(x) = U for al x), d, (defined by d_(x) = D for all
x) and d_ (definedby d (U) =D, d (D) = U). Withd, theRHSdf (2)isequal to 4+ 5+ § 0=
25, withd itisequal to 3 4+ § 1= 25. Thus (2) is satisfied for Player 1. Similar calculations

show that (2) is aso satisfied for Player 2. Thus p(U,L) = p(D,R) = % isacorrelated equilibrium

distribution.

It is easy to see that every Nash equilibrium is aso a correlated equilibrium.16
Furtherraore, every convex combination of Nash equilibriais aso a correlated equilibrium. In a
two-person zero-sum game al correlated equilibria are convex combinations of pairs of optimal
(maxmin and minmax) strategies. Thus if a two-person zero-sum game has a unique pure-
strategy Nash equilibrium s then s is the unique correlated equilibrium point. However, in

general, there are correlated equilibria that are outside the convex hull of the Nash equilibria.

* For example, if s isa pure-strategy Nash equilibrium, take p such that p{s) = 1.
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Aumann (1987) proved the following result. Let  be a set of states; for every player i
let 7{ be a partition of &2 and denote by H.(w) the element of the partition that contains state w.

Letp & A(Q) beindividual i's “prior" such that p'(H) > 0 for all H, e 3 Let o, © — S, bea

function that specifies i’s choice of strategy at every state, satisfying the property that if
o’ € H.(w) then o,(w) = o,(w), that is, player i knows his own strategy. Let a= (a,, ..., o).

Player i is rational at state a if the strategy he chooses at @ maximizes his expected utility

calculated on the basis of his posterior beliefs p,(-| H,(@)) defined by p.(w | H.(o) = .? H((:)))) -
pHia
P (00"—- if w e H(a) and p,(w | Hi(@)) =0 if w ¢ H(o):
> p'
xeH, {a)

zui () p w|H, (@)= Zu, (o0 ,)p,@|H @) Vxes,

wel we

PROPOSGITION 7 (Aumann,1987). If the players have acommon prior (i.e. if there
is a probability measure p on Q such that p, = ... = p_=p) and each player is rational at every

state, then the probability distribution induced by p on Sis acorrelated equilibrium distribution.

It is clear that the structure considered by Aumann is just a special case of the notion of
model given in Definition 3. The extra assumptions that Aumann introduces are: (1) that the
possibility correspondences give rise to partitions and (2) that the beliefs of the players are
Harsanyi consistent, in the sense that they can be derived from a common prior.T7 An interesting
question is therefore whether Aumann’s theorem can be generalized to the case where the
possibility correspondences are non-partitional (i.e. where some players might have false

beliefs). In order to do so one first needs to have alocal definition of Harsanyi consistency (i.e.

" Note that the prior beliefs pl of player i postulated by Aumann play no role: only the posterior beliefs p,(+ H. (w))

are relevant. Indeed, given a model of a game according to Definition 3, one can obtain a (local) "prior" for
player i by taking any convex combination of the different beliefs (types) of that player, that is, a prior of player i
isany point in theconvex hull of {p; :we P,(1)}.
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of the existence of a common prior). However, obtaining a local formulation of the notion of a
common prior is only part of the difficulty. Recent contributions (Gul, 1996, Dekel and Gul,
1997, Lipman, 1995) have pointed out that the meaning of a common prior in situations of
incomplete information is highly problematic. This skepticism can be developed aong the
following lines. As Mertens and Zamir (1985) showed in their classic paper, the description of
the “actual world" in terms of belief hierarchies generates a collection of " possible worlds”, one
of which is the actual world. This set of possible worlds, or states, gives rise to a formal
similarity between situations of incomplete information and those of asymmetric information
(where there is an ex ante stage at which the individuals have identical information and
subsequently update their beliefs in response to private signals). However, while a state in the
latter represents a real contingency, in the former it is"a fictitious construct, used to clarify our
understanding of the real world" (Lipman, 1995, p.2), "a notational device for representing the
profile of infinite hierarchies of beliefs' (Gul, 1996, p. 3). As a result, notions such as that of a
commor prior, "seem to be based on giving the artificially constructed states more meaning than
they have" (Dekel and Gul, 1997, p.115). Thus an essential step in providing a justification for
correlated equilibrium under incomplete information is to provide an interpretation of the
common prior based on " assumptions that do not refer to the constructed state space, but rather
are assumed to hold in the true state”, that is, assumptions "that only use the artificialy
constructed states the way they originated — namely as elements in a hierarchy of belief" (Dekel
and Gul, 1997, p.116).

An interpretation of thedesired kind of the common prior assumption under incomplete
7
information was provided recently (Bonanno and Nehring, 1996a; see also Feinberg, 1995) in
terms of ageneralized notion of absence of agreeing to disagreeala Aumann (1976), called

consistency of expectations.
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DEFINITION 8. Atstateathereis Consistency of Expectations if there do not exist

random variables Y, : @ — R (i € N) such tha: ())VweP, Y ¥ @)=0, and (2) a ait is

ieN

common belief that, for every individual i, i’s subjective expectation of Y, is positive, that is,

ae B(IE,>0l n...n[[E >0l), where [E, >0l ={we Q: Y Y)p,, (0)>0}.

w'eQ

Consistency of Expectations turns out to be equivalent to a particular local version of the

Common Prior Assumption defined as follows.

DEFINITION 9. For every ue A(Q), let HQC, (for Harsanyi Quas Consistency
with respect to the " prior” y) be the following event: ae HQCI_ if and only if

plw)
ulllp,=p, D

w'e flp; = p,,ll and p; (@) = 0 otherwise (that is, p, is obtained from p by
conditioning on llp, = p, Il * and

(1) VieN, Vow'ePa), if ullip,=p, ) >0 thenp, (') = if

@  uP,@)>0.

If ae HQC, p isalocal common prior at a. Furthermore, let HQC= | JHQC, -

pnea(Q)

PROPOSITION 8."° AtacConsistency of Expectations issatisfied if and only
if ae HQC.

The above proposition shows that HQC isthe natural way of expressing Harsanyi

consistency locally.

18Where, for every event E, p(E) = Z ulw) . Notethat, for every we Qandie N,we Hpi:pmn.

wek

Thusp(w) > 0 impliesu(llp,=p, 1) > 0.

“Fora proof see Bonanno and Nehring (1996a). Thisresultisa local version of Morris's (1994) characterizationof
no trade under asymmetricinformation. See also Feinberg (1995) and Samet (1996).
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Harsanyi Quasi Consistency may seem weaker than expected in that condition (2) of its
definition only requires the derived common prior to assign positive probability to some
commonly possiblestate but allowsthe truestate to be assigned zero " prior" probability. As
illustrated in the example of Figure 9, Agreement and No Trade-type argumentscannot deliver

more.

not p P
Lo .
T p p"f:pl'ﬁz(o 1]’

2 |- R £ ) ey Y

1 0 0 1

P.(0) ={x, B}, P,(B) = {B}

x I
2

Figure 9

In thisexample, a the true state individual 1 wrongly believesthat it is common belief that p,

whileindividual 2 correctly believesthat not p is the case and knows 1°s incorrect beliefs.
Expectation consistency issatisfied at the true state (aswell asat (3). Infact, let Y, and Y, be

random variableson{r,3} suchthat Y, =~Y and supposethat v € B,lIE,> Oll, that is, a T it is
common belief that individual 1's expectation o Y is positive. Then Y () > 0, hence Y,() < 0.
Thus B ¢ ||E,> 0ll, that is, at {3 individual 2’s expectationof Y, cannot be positive. Since

B e P,(x), itfollowsthat & B,IIE,> 0ll. Thus Agreement is necessarily satisfied at t. By

Proposition 7 there must bea p such that T € HQCP. Indeed such alocal common prior isgiven

by u(@) =1.
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IsHarsanyi Quasi Consistency an adequate epistemic basisfor correlated equilibrium?
Perhaps not too surprisingly in view of the previous example, Harsanyi Quas Consistency is
insufficientby itsd f, as demonstrated by the following example. Figures 10a and 10b show a

two-person zero-sum game with a unique correlated equilibrium (B,R), and an epistemic model

of it.
| Insert Figure 10]
Player 2
L C R
| |
f; T 10,—10!—10,10 7,7
a E E—
Z M | -10, 10 1 10, -10 | -7 ,7
r - -
tog |77 7.7 0,0
Figure 10a
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Player 2 0.1 0@ 001 o089 0.01j E}
T B Y 9 e g

1's strategy - T M M T B B

2's strategy . L L C C C R
Figure 10b

In thisexample, a t (i) the players' beliefs satisfy Harsanyi Quasi Consistency (t € HQCu =
Q where u(g) = 1), (ii) there iscommon belief in rationality (P,(x) = Q and at every state each
player's strategy isoptimal given her beliefs) and (iii) no individual has any false beliefs. Yet at
1 the players play (T,L) which is not a correlated equilibrium.

Note that in the above example, although the derived common prior assigns zero
probability to T, there is no sense in which the belief hierarchies described by the true state are
"improbable™ and constitute a null event. Indeed the actual beliefsof all players assign positive

probability to t. s

The above exampleisin fact quite general. By astraightforward generalization of its
construction any profile of correlated rationalizable strategies — where one strategy isaunique

best response to some distribution over correlated rationalizable strategies of the other players —
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can berealized at the true state t of a Bayesian frame where v € HQC (and no individual has
false beliefs).

What seems to go wrong in the exampleis that, while Player 2 believes Player 1 to be
wrong at E, this does not show up as disagreement — and hence as a violation of Harsanyi Quasi

Consistency — since Player 1 falsely believesat € that there is agreement that the true state is €.
Hence T isviolated at e, and therefore B,T ., at t.

Indeed - in the absence of false beliefs at the true state — B, T, is exactly what needs to
be added to HQC to ensure the play of acorrelated equilibrium strategy-profile, asthefollowing
theorem shows.

To take account of the incomplete information context, we call astrategy profilea
correlated equilibrium if it is played with positive probability in some correlated equilibrium (in

the ordinary sense).

PROPOSITION 9 (Bonannoand Nehring, 1997).  Fix an arbitrary finite normal-
form game G and an arbitrary model of G such that:

(1) Tte TnNBT, (the actual beliefs of the players are correct and there is
common belief in Truth about common belief),

(2) te B,RAT, (thereis common belief in rationality)
(3 Te HQC (Harsanyi Quasi Consistency of beliefs, that is, Agreement, is
satisfied).

Then the strategy profile associated with t (i.e. the strategy profile actually played) is a
correlated equilibrium. ,

On the other hand, as the example of Figure 10 shows, if (2) and (3) are satisfied and (1)

isweakenedtot € T then the strategy profile associated with T need not be a correlated
equilibrium.
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REMARK 4. If condition (1) isweakenedtot € NI (or, equivalently — cf.
Proposition1 - t e T, N B,T_y) thenthe conclusionisthat € B,CE, where CE is the event
that a correlated equilibrium is played; that is, at the true state it iscommon belief that a
correlated equilibrium is played.

Thus one sees that once the rather mild-looking property of Negative Introspection of

common belief issatisfied, HQC is re-instated with the proper strength.
A converse to Proposition 9 is given by the following resuilt.

PROPOSITION 10. LetGbeagameandpe A(S) acorrelated equilibrium

distribution. Then thereexistsap € A(Q) and model #/ of G such that
Dte TNB T,z N HQCP N B,RAT, (2) thedistribution over strategy profilesinduced by p

restricted to {t } U P,_(r) coincides with p and (3) u(t) > 0 (sothat the strategy profile actually

played isin the support of p).

6. Nash equilibrium

We conclude by examining the epistemic foundations of Nash equilibrium, which
(together with its refinements) is without doubt the solution concept most used in applications.
The above examples (e.g. Figure 7) show that common belief in rationality, even in the presence
o Truth and common belief in Truth, is not sufficient to guarantee the play of a Nash
equilibrium. There are further difficulties, however, due to the fact that some Nash equilibria
involve mixed strategies. The models we have considered are models of particular ways a game
is played, and a particular pure strategy profile will always be realized at the true state of the
model and, indeed, at every state. The notion of model (cf. Definition 3) incorporates the

assumption that each player knows the strategy he actually plays. One could easily weaken this
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assumption by alowing players to delegate their choice of strategy to a random device.
However, as Aumann (1987, p.15) observes,

"In the traditional view of strategy randomization, the players use a
randomizing device, such as a coin flip, to decide on their actions. This
view has always had difficulties. Practicaly speaking, the idea that
serious people would base important decisions on the flip of a coin is
difficult to accept. Conceptually, too, there are problems. The reason a
player must randomize in equilibrium is only to keep others from
deviating; for himself, randomizing is unnecessary."

Elaborating on an idea of Harsanyi (1973), Aumann’s suggestion was to view a mixed strategy

of player i not as an actual choice by player i but as an expression of the uncertainty in the other

players mind concerning the choice made by i.

DEFINITION 10. Givenamode of agame, we can extract aconjecturedf player i,
defined as a function x, : & — A(S_) that associates with every state a the probability

distribution over S . induced by player i’s beliefs a a. For example, consider the zero-sum
matching penny game of Figure 11aand the model of Figure 11b (takenfrom Stalnaker, 1994, p.
59). The functions, and x, are shown in Figure 11b. At every state except e , Player 1 believes
that Player 2 ischoosing h an t with equal probability. At every state except 6 , Player 2 believes
that Player 1 is choosing H an T with equal probability. Note that at the true state t the
conjecturesof the players form a mixed strategy Nash equilibrium. Note that the mixed strategy

of Player 2 representsin fact the belief of Player 1 and vice versa. Note also that at t common
belief in rationality fails; in fact, RAT,=€ and RAT, = {t.y, 3, e} so that RAT = {r, y, 3, e}

and B, RAT =O.

| Insert Figure 11|
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Figure 11b

Theabove example generalizes. Given a probability distribution p € A(S,) denoteby ||y, = pll
the event that Player 1 hasconjecturep: |lx, =pll = {w e Q : x,(w) =p}. Similarly, for

qge AS) let llx,=all = {we Q: x,w) =q}.
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PROPOSITION 11 (Aumann and Brandenburger, 1995). Let G beatwo-person
normal-formgameand 77 amodel of it. Let pe A(S,) and g € A(S,). Then for every

ae T NBRAT NB,RAT N B,lix,=qll " B,llx,=qll, thepair (x, (@), x,(@)) isa Nash
equilibrium of G.

When the number of playersisgreater than 2, complications arise due to the fact that the
conjecture of player i is not a mixed strategy of another player, but a probability distribution on
(n—1)-tuplesof strategies of all the other players. However, i’s conjecture does induce a mixed
strategy for each player j = i (the marginal on S, of i’s overall conjecture). However, different
players other than j may have different conjectures about j. Since j's component of the putative
equilibrium is meant to represent the conjectures of the other players (other than j), and these
may differ across j's opponents, it is not clear how j's component should be defined. Aumann
and Brandenburger (1995) however show that if the players have a common prior, their

rationality is is mutually known and their conjectures are commonly known then for each player
j, dl the other playersi agree on the same conjecture X; about j; and the resulting profile (x,, ...

x,) 1S @ Nash equilibrium. The authors also show, through a series of examples, that the

conditions stated are "tight", in the sense that if any one of them is not met then the claim is no

longer true.

7. Conclusion

Theam o this paper has been to introduce the approach and some of the main results of
the recent literature on the epistemic foundations of game theory. Not all the contributions were
reviewed. In particular, we left out those papers that deal with extensive-form solutions concepts.
Recent papers have examined the foundations of backward induction in perfect information
games (Aumann, 1995, 1996, Ben Porath, 1997, Stalnaker, 1996, 1997, Stuart 1997) and of
extensive form rationalizability (Battigalli 1997, Battigalli and Siniscalchi, 1997). Several issues
arise in this context, namely whether or not ex ante rationality is sufficient, whether an explicit
analysis of counterfactuals is required, etc. A careful review of this literature would require a
paper aslong asthisone.
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