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Abstract 

We give an introduction to the literature on the epistemic foundations of 

solution concepts in game theory. Only normal-form games are considered. The 

solution concepts analyzed are rati~naliz~ability, strong rationalizability, correlated 

equilibrium and Nash equilibrium. The analysis is carried out locally in terms of 

properties of the belief hierarchies. Several examples are used throughout to 

illustrate definitions and concepts. 



1. Introduction 

The objective of the literature on the epistemic foundations of solution concepts in games 

is to determine what assumptions on the beliefs and reasoning of the players are implicit in 

various solution concepts. This is a recent line of inquiry in game theory and one that is gaining 

momentum. In this paper we give an introduction to the general approach and review some of the 

main contributions. We will provide a selective, rather than encompassing, survey. For a more 

ambitious and more comprehensive review of the issues dealt with in the literature on the 

epistemic foundations of game theory see Dekel and Gul (1997). 

Why worry about the epistemic foundations of solution concepts? A common view is that 

results that relate epistemic conditions (such as common belief in rationality) to a particular 

solution concept help explain how introspection alone can lead players to act in accordance with 

it. The task of this research program is to identify for any game the strategies that might be 

chosen by rational and intelligent players who know the structure of the game and the 

preferences of their opponents and who recognize each other's rationality and knowledge. 

Although several of the papers in the literature deal with the case of knowledge and 

common knowledge, we will take a more general point of view where the primitive concept is 

that of belief (and knowledge can be viewed as a particular form of belief: cf. Stalnaker, 1994, 

1 996). 

/ 

The paper is devoted mainly to the analysis of normal-form (or strategic-form) games, 
1 

although the implications for extensive games are sometimes discussed. In Section 2 we discuss 

1 
There is, however, a very recent literature that deals with the epistemic foundations of solution concepts for 

extensive games, in particular backward induction in perfect-information games. See, for example. Aumann, 



Bayesian and qualitative frames and their properties and in Section 3 we use them to define the 

notion of a model for a normal-form game. In Section 4 we consider the notions of 

rationalizability and strong rationalizability, while Sections 5 and 6 are devoted to the epistemic 

foundations of correlated equilibrium and Nash equilibrium, respectively. 

2. Bayesian and qualitative frames and their properties 
2 

D E F I N 1 T 1 0 N 1 . An interactive Bayesianfiame (or Bayesian frame, for short) is a 

tuple 

N = (1, ..., n} is a finite set of individuals. 

3 
52 is a finite set of states (or possible worlds) . The subsets of 52 are called events. 

4 
z E 52 is the "true" or "actual" state . 

for every individual i~ N, pi : 52 -+ A(52) (where A(52) denotes the set of probability 

distributions over 52) is a function that specifies herprobabilistic beliefs, satisfying the 

following property [we use the notation piaa rather than pi(a)] : V a ,  P E Q, 

(1995, 1996), Battigalli (1997), Battjgalli and Siniscalchi (1997), Ben Porath (1997), Stalnaker (1996, 1997), 
Stuart (1997). 

2 
For a similar definition see, for example, Aumann and Brandenburger (1995). Dekel and Gul (1997) and Stalnaker 

(1994, 1996). 

3 
Finiteness of 52 is a common assumption in the literature (cf. Aumann, 1987, Aumann and Brandenburger, 1995, 

Dekel and Gul, 1997, Moms, 1994, Stalnaker, 1994, 1996). 



Thus p. E A(Q) is individual i's subjective probability distribution at state a and condition 
1.Q 

(1) says that every individual knows her own beliefs. We denote by 11 pi = p. 11 the event 
1.a 

{a E 51 : pi," = piVa }. It is clear that the set 11 pi = piPw 11 : w E Q } is a partition of Q; it is 

often referred to as individual i's typepartition. 

D E F I N l T I0 N 2. Given a Bayesian frame 23, its qualitativejFarne (or frame, for 

short) is the tuple Q = (N, Q ,  r ,  {Pilie, ) where N, 9 ,  and r are as in Definition 1 and 

Q 
for every individual i~ N, Pi : Q -+ 2 \@ is i'spossibility correspondence, derived from i's 

5 
probabilistic beliefs as follows: 

Pi(a) == supp(pi,,). 

Thus, for every a€ Q, Pi(a) is the set of states that individual i considers possible at a. 

R E MA R K 1 . It follows from condition (1) of Definition 1 that the possibility 

correspondence of every individual i satisfies the following properties (whose interpretation is 

given in Footnote 7): Qa,@ Q, 

Transitivity: if p E Pi(a) then Pi(p) c P,(a), 

Euclideanness: if p E Pi(a) then Pi(a) 5 Pi(@. 

R E MAR K 2 (Graphical representatiorl). A non-empty-valued and transitive 
e 

possibility correspondence P : 52 + 2 can be uniquely represented (see Figures below) as an 

4 
We have included the true state in the definition of an interactive Bayesian model in order to stress the 

interpretation of the model as a representation of a particular profile of hierarchies of beliefs. 

5 
If p~ A(Q), supp@) denotes the support of p , that is, the set of states that are assigned positive probability by p. 



6 
asymmetric directed graph whose vertex set consists of disjoint events (called cells and 

represented as rounded rectangles) and states, and each arrow goes from, or points to, either a 

cell or a state that does not belong to a cell. In such a directed graph, or E P(o) if and only if 

either o and o' belong to the same cell or there is an arrow from o ,  or the cell containing o ,  to 

a ' ,  or the cell containing a'. Conversely, given a transitive directed graph in the above class 

such that each state either belongs to a cell or has an arrow out of it, there exists a unique non- 

empty-valued, transitive possibility correspondence which is represented by the directed graph. 

The possibility correspondence is euclidean if ,and only if all arrows connect states to cells and 

no state is connected by an arrow to more than one cell. 

Finally, if - in addition - the possibility correspondence is reflexive, then one obtains a 

partition model where each state is contained in a cell and there are no arrows between cells. 

Q Q 
Given a frame and an individual i, i's belief (or certainty) operator Bi : 2 + 2 is 

defined as follows: V E G Q, BiE = {wa Q : Pi(w) c E]. BiE can be interpreted as the event that 

(i.e. the set of states at which) individual i believes forsure that event E has occurred (i.e. 
7 

attaches probability 1 to E). 

Notice that we have allowed for false beliefs by not assuming reflexivity of the 

possibility correspondences ( V ~ E  Q, a E Pi(a)), which -as is well known (Chellas, 1984, p. 

164) - is equivalent to the Truth Axiom (if the individual believes E then E is indeed true): 

6 
A directed graph is asymmetric if, whenever there is an arrow from vertex v to vertex v' then there is no arrow 

from v' to v. 

I Thus Condition (I) of Definition 1 can be stated as follows: V i~ N, Vae  R, lipi = p. 1 1  = Bill pi = pi,,ll. 
1.a 



The common belief operator B, is defined as follows. First, for every E c $2, let BeE = 

n B.E, that is, BeE is the event that everybody believes E. The event that E is commonly 
1 

ieN 

believed is defined as the infinite intersection: 

The corresponding possibility correspondence P, is then defined as follows: for every a E Q, 

P,(a) = {a E Q : a E T B * - I { ~ ) } .  It is well known that P , can be characterized as the transitive 

closure of U f: , that is, 
k N  

V a$ E Q, (3 E P,(a) if and only if there is a sequence ( i,, ... im) in N and a 

sequence (rlo, q,, ..., q,) in B such ]that: (i) q, = a. (ii) qm = p and (iii) for every k = 0. 

..., m- 1, qk+,€ Pi (qk). 
k+ 1 

Note that, although P, is always non-empty-valued and transitive, in general it need not 

be euclidean (despite the fact that the individual possibility correspondences are; recall that - cf. 

Footnote 7 - P, is euclidean if and only if B, satisfies Negative Introspection). 

With reference to qualitative frames, we now define events that capture important 

properties of beliefs. 

/ 

8 
It is well known (see Chellas, 1984, p. 164) that non-empty-valuedness of the possibility correspondence is 

equivalent to consktency of beliefs (an individual cannot simultaneously believe E and not E): V E c_ 52, 
B.E c 7B.7E (where, for every event F, TF denotes the complement of F). Transitivity of the possibility 

correspondence is equivalent to positive introspection of beliefs (if the individual believes E then she believes 
that she believes E): V E E O, BiE E BiBiE. Finally, euclideanness of the possibility correspondence is 

equivalent to negative infrospection of beliefs (if the individual does not believe E, then she believes that she 
does not believe E): V E E 52, 7B.E c Bi-BiE. 



Event Corresponding property of beliefs 

No individual has false beliefs: 
For every a E Q, a E T if and only if no 
individual has any false beliefs at a (for every 
kN and for every E c Q ,  if a~ BiE then 

xE E)  

Common belief in no error: 
For every a E St, a E B,T if and only if at a it 
is common belief that no individual has any 
false beliefs 

Quasi-coherence of beliefs: 
For every a E 8, a E Q if and only if at a it is 
sommonly possible that it is common belief 
:hat no individual has any false beliefs 

I'ruth of common belief: * 
XE T if ;n3 ody  if at a whatever is commonly 
xlieved is true (for every event E, if a€ B,E 

:hen a€ E) 

Truth about common belief: 
x E TCB if and only if, for every event E and 

very individual i, if, at a, individual i 
believes that E is commonly believed, then, at 
a, E is indeed commonly believed (if 
a€ B,B,E then a€ B,E) 

Negative Introspection of common belief: 
a E NI if and only if - for every event E - 
whenever at a it is not common belief that E, 
then, at a, it is common belief that E is not 
commonly believed (if a E 7B,E then a 
E B,TB,E) 

The following propositions establish t.he relationship between some of these properties. 



P R 0 P 0 S 1 T 10 N 1 (Bonamo and Nehring, 1997a). NI = TcB n B,TcB 

* 
P R 0 P 0 S 1 T lo N 2. (Bonanno and Nehring, 1997b). T n B,T = T n B,T,, n Q. 

3. Models of normal-form games 

Throughout this paper we shall restrict: attention to finite games. A finite normal-form or 

strategic-form game is a tuple G = (N, {SiliEN, {uiliE N) where N = (1, 2, . . ., n) is a set of 

players, Si is the set of strategies of player i and ui : S + R (where S = S, x . . . x Sn and [W is the 

set of real numbers) is player i's von Neumam Morgenstern payoff (or utility) function. This 

(standard) definition of game represents only a partial description in that it determines the 

choices that are available to the players and the preferences that motivate the choices, but does 

not specify the players' beliefs about each other or their actual choices. The notion of model 

provides a way of completing the description. 

DEFlNlTlO N 3. Fix a normal-form game G. A model of G is a pair 

?n = (3, { 0.1 ieN ) where 3 = ( N, St , r, { p i  lie, ) is a Bayesian frame and, for every player 

i ,  a, : St -+ Si is a function that specifies for every state the choice made by player i at that state 

subject to the restriction that player i knows her own strategy: 

V ie N, V a ,P  E St, if piVa = p i ,  then oi(a) = oi(P). 

/ 

For every state w E St, let o(o) = (o,(w), ...,. on(w)) be the strategy profile played at o and, for 

the players other than i. 

The addition of a strategy profile at every state is what gives content to the beliefs of the 

players. 



D E F I N IT 10 N 4. Player i is rational at state a E 52 if her choice at a maximizes her 

expected utility, given her beliefs at a : for all x E Si, 

where s; =a, (a) (recall that i's own strategy is the same at every o E Pi(a)). Let RAT, be the 

set of states where player i is rational and RAT = n RAT, the event that all players ire 
k N  

rational. 

EX A M P L E 1 . Figure l b  shows a model of the two-person game illustrated in Figure 

la. Here we have that RAT, = {z, B) and RAT, = 52 ; hence RAT = {t, P). Note also that 

B,RAT = {t, (31, B,RAT = {t} and B,RAT = 0. 

Player 

1 

Player 2 

Figure la 



Figure l b  

R E MA R K 3. Note that, for every player i, BiRATi = RAT,, that is, no player can 

9 
have false beliefs about her own rationality and if she is rational then she knows it. It follows 

that B,RAT G RAT, that is, if it is common belief that all the players are rational, then they are 

10 
indeed rational. On the other hand, as Example 1 shows, in general RAT $€ B,RAT. 

4. Rationalizability and Strong Rationalizability 

The first solution concept we consider is rationalizability (Bernheim, 1984, Pearce, 

1984). / 

9 
If a E BiRATi then P E RAT, for all (3 E Ii(a). It follows that a E RATi since i's beliefs and strategy are the 

same at a as at any f3 E Ii(a). The converse follows similarly. 

10 
For all i E N, B,RAT G BiRAT c BiRATi = RATI. 



D E F l N IT I0 N 5. For every player i, let A(Si) be the set of probability distributions 

over Si (the set of player i's mixed strategies). If pi EA(S) and si E Si, we denote by pi(s,) the 

probability assigned to si by pi. A strategy si E Si is strictly dominated by pi E A(Si) if, for all 

s - I  . E S - i, ui(p., S-i) > ui(si, s-~), where ui(#, s -~)  = pi (XI ui (x,s+) . [For example, in the 
x€ s, 

game of Figure Za, strategy B of piayer 1 is strictly dominated by the mixture ($A, +D)]. Given 

1 
a game G, let G be the game obtained by eliminating the strictly dominated strategies of every 

2 1 
player; let G be the game obtained from G by eliminating the strictly dominated strategies of - 
every player, etc. Let G be the game obtained from G after the iterative deletion of strictly 

dominated strategies and S- the set of strategy profiles of G-. The profiles in sW are called 
1 2  3 - 

rationalizable. For the game of Figure 2a, the games G , G and G = G are shown in Figures 

2b-d. In the game of Figure la, S" = {(T,L), (?',C), (B,L), (B,C)), since for Player 1 M is strictly 

dominated by T and -after deletion of M - for Player 2 R becomes strictly domhated by both L 

and C. 

Player 2 

Figure 2a 
The game G: B is strictly dominated by ($  A, 2 D). 



Player 2 

a b c 

Figure 2b 
1 

The game G : now b is ~trictly dominated by c. 

Player 2 

a c 

Figure 242 
2 1 5  

The game G : now C is strictly dominated by ( A, D) 

Player 2 

/ a c 

player 1 A rE/ 
D 

Figure 2d 
3 3 

The game G : no strategy is strictly dominated; thus G = G- and s = {(A,a), (A,c), (D,a), (D, c)). 



The following proposition was established by Bernheim (1984) and Pearce (1984) and 

proved more formally in an epistemic context by Brandenburger and Dekel (1987), Tan and 

Werlang (1988), Stalnaker (1994). Given a game G and a model W of it, with slight abuse of 

notation let S- be the event that a strategy profile that survives iterated deletion of strictly 
Q) 

dominated strategies is played: S = {w E P : a(w) E sW}. For example, in the model of Figure 

lb, S- =: {r, PI. 

P'ROPOSITION 3. Let G be a game and W a model of it. Then 

That is, i t '  at a state there is common belief in rationality then the strategy profile played at that 

state is rationalizable and it is common belief that only rationalizable strategy profiles are played. 

Proposition 3 is a consequence of the fact that a strategy si E Si is a best response to some 

belief on (probability distribution over) S-i if and only if it is not strictly dominated. Thus if 

a E B,RAT then a E RAT (since B,RAT c RAT: see Remark 3) hence no player is choosing 

a strateg:y which is strictly dominated in G. Since, for every i, B,RAT BiRAT, at a every 

player believes that no player has chosen a strictly dominated strategy in G. Hence no player is 
1 

choosing a strategy which is strictly dominated in G , etc. 

The converse of Proposition 3 does not hold. To see this, consider the following model of 
m w 

the game of Figure 2: P = { t  }, PI(%) = P,(d = { t  1, dt) = (A,a). Then t E S n B,S but 

UT, = 0 and hence B,RAT 7 0. The following proposition gives a partial converse to 

Proposition 3 and shows that the notion of common belief in rationality is not stronger than the 

notion 01' rationalizability. 

P'ROPOSITION 4. L e t G b e a g a r n e a n d s ~  ~ ~ . T h e n t h e r e i s a r n o d e l  lll of G 

such that: (1) t E B,RAT, and (2) a(t) = s. 



In constructing the model of Proposil.ion 4 one can take 52 = SW and use the fact that for 
m 

every strategy si of player i in game G there is a probability distribution over the strategies of 

the opponents relative to which si is a best reply. 

Propositions 3 and 4 are not based on any assumption of correctness of players' beliefs. 

Thus a player can be mistaken in the strategy choices andlor beliefs she attributes to the other 

players. A natural question to ask is whether ruling out incorrect beliefs further reduces the set of 

strategy profiles that can be played when there is common belief in rationality. The answer is 

affirmative, as Stalnaker (1994) shows (see also Bonanno and Nehring, 1996b). The following 

algoritllm is similar to the iterative deletion of strictly dominated strategies, but differs from the 

latter in that it requires the iterative deletion ofprofiles rather than strhtegies. 

D E Fl N IT I 0  N 6. Given a nomal-form game G, a strategy profile X E  X c S is 

inferior relative to X if there exists a player i and a (pr;ssib!y mixed) strategy pi of player i 

(whose support can be any subset of S,, not necessarily the projection of X onto Si) such that: 

(2) for all E S-i such that (xi, s- i) E X, ui(xi, s -~)  I ui(pi, s-~). 

[Thus if X = S then x is inferior if and only if there is a player i for whom xi is weakly 
k 

dominated by some strategy si such that ui(si, x - ~ )  > ui(x).] For every k 2 0, define S, G S and 
0 k k 

D: E S as follows: S = S, D, is the set of profiles that are inferior relative to S, and 
-- 

SF' = S: \ D: . Let SF = n S: . The strategy profiles in S, are called sfrongly rationalizuble. 

EXAM P L E 2. For the game illustrated in Figure 3, S: = {(D,d), (D,a), (A,d)}. In 

fact, (A, a) G S: since it is inferior relative to S (for Player 1 A is weakly dominated by D and 

ul((A, a)) = 0 < ul((D, a)) = 1). Note that, on the other hand, s = S (that is, all strategy profiles 

are rationalizable) since no player has any strictly dominated strategies. 



Player 2 

d a 

Player 

1 A 

Figure 3 

EX A M P L E 3. In the game of Figure 4a, the first step in the algorithm leads to the 

profiles shown in Figure 4b [for Player 2 D is weakly dominated by E and for Player 1 C is 

weakly dominated by B], the second step leads to the profiles shown in F i p ~ r e  4c [now F is 

doiminated by E and C is dominated by A] and the third and final step to the profiles shown in 

Figure 4d [now B is dominated by A]. Thus S: = {(B,D), (C,D), (A,E), (A,F)). Note again that 

tha~t S- = S since no player has any strictly dominated strategies. 

Player 2 

D E F 

Figure 4a 
S: = S, D: = {(A, D), (C, F)) 



Player 2 

D E F 

Player 2 

D E F 

Player 2 

D E F 



Given a game G and a model ?7 of it, with slight abme of notation let S: be the event 

that a strongly rationalizable strategy profile is played: S: = {w E B : a(w) E S: ). 

I' R 0 P 0 S I T I 0 N 5 (Stalnaker, 1994; see also Bonanno and Nehring, 1 996b). Let 

G be a game and a model of it. Then 

(1) B,T n B,RAT B ,S~  and 

That is, , f there is common belief in no error and common belief in rationality, then it is common 

belief that only strongly rationalizable profiles are played. If, furthermore, Truth of common 

belief also holds, then it is also true that the strategy profile actually played is strongly 

rationalizable. 

Proof. Fix an arbitrary a E B,T n B,RAT. (1) For every o E P,(a) define j(o) as 

follows: j(o) = oo if o(w) E S: and j(o) = k E N (where N is the set of non-negative integers) if 

o(w) E :i: and o(w) e s:' . Clearly j(w) is well defined, since o(o) E S: for all w E 8. Let k 

be the rn inimum of { j  (w)}_ p*,, . Suppose that P,(a) B (w E 8 : o(w) E ST 1. Then k < rn. Let 

E i z  P,((x) be such that j ( E )  = k .  Then ~ ( E ) E  D: , that is, o ( E )  is inferior relative to S: . 

Thus there is a player i and a (possibly mixed) strategy pi of player i such that: 

ui(pi, SJ t ui(oi(E), s i )  for all sPi  E S-i such that (oi(G), s - ~ )  E S: , and (1) 

ui(pi, S $ a )  > u i ( 0 6  )). (2) 

Since G E P,(a) and a E B,T, 6 E Pi(G ), which implies that pi, (65) > 0. By definition of P*, 

Pi(EY) P,(G). By transitivity of P,, since iii' E P,(a), P , (5)  P,(a). By definition of 5 ,  

1 I 
Stalnaker (1994, p. 63) incorrectly states the result as B*T n BLRAT C S: . Bonanno and Nehring (1996b) give 
a counterexample and prove the results as stated in Proposition 5. 



P,(a) {o E Q : &)E sf 1. Hence Pi(G) r {a E 52 : o(o) E s It follows from this and 

(1) and (2) that 

[recall that, for all y E Pi(G), ai(y) = ai(G)] that is, player i is not rational at 6T . Hence z e 

B,RAT, , yielding a contradiction. Part (2) follows directly from (1) and the definition of T . 

To see that, in general, B,T n B,RAT $& S: consider the model of the game of Figure 

3 illustrated in Figure 5. It is easy to check that RAT = 52 (indeed, for x E ((3, y), a(x) is a Nash 

equilibrium). Hence at z (indeed at every state) it is common belief that all the players are 

rational Furthermore there is common belief (at t ,  indeed at every state) that no player has false 

beliefs, that is, B,T = 52. However, while t E B,T n B,RAT, o(t) = (A,a) P S: . 

[ Insert Figure 51 

Figure 5 



A partial converse to Proposition 5 is given by the following result. 

PROPOSITION 6. Let G b e a g a m e a n d s ~  S: .Thenthereis amodel %'of G 

such tha:: (1) t  E T n B,T n B,RAT, and (2) ~ ( t )  = s. 

The example of Figure 4 zhows that strong rationalizability is considerably stronger than 

rationalizability. To stress this point, consider the extensive game of Figure 6a, whose normal 

form is shown in Figure 6b. 

I Insert Figure 6 1 

0 3 Player 1's payoff 

2 O Player 2's payoff 

Figure 6a 



Player 2 

d a 

Figure 6b 

- 
For the normal form, S = S (that is, ali the strategy profiles are rationalizablej, since no 

strategy of any player is strictly dominated. Hence every outcome is compatible with common 
12 

belief in rationality. On the other hand, S: = {(DG, d), (DG, a), (DC, d), (DC, a)) and all the 

strategy profiles in S: give rise to the Nash equilibrium outcome, namely the payoff vector 

(1,O). 

One might wonder whether the above example can be generalized to the claim that in the 

normal lorm of an extensive game with perfect information strong rationalizability implies the 
13 

play of a Nash equilibrium outcome. The answer is negative, as the following example 

12 
In the lirst round (AG, a) and (AC,a) are eliminated [the first because d weakly dominates a, the second because 
AG weakly dominates AC]; in the second round (AG, d) and (AC, d) are eliminated (because 1's strategy is 
dominated by DG). 

13 
Stalnaker (1994, p. 64, Theorem 4) incorrectly makes this claim. 



14 
shows. Figure 7b shows a model of the normal form of the extensive game of Figure 7a. At the 

true state the players choose (A, d, G),  which is not a Nash equilibrium; furthermore, there is no 

Nash equilibrium that gives rise to the outcome (2,2,2). Note that z E T n B,T n RAT n 

B,RAT (in particular, Player 1's choice of A is rational, 

a with equal probability). 

given his belief that Player 2 plays d and 

4 2 0 Player 1's payoff 

4 2 0 Player 2's payoff 

4 2 0 Player 3's payoff 

Figure 7a 

14 
This example is due to Battigalli (1996, private communication). For a similar example see Bonanno and Nehring 

(19S6b). 

2 1 



'I: 

Figure 7b 

"he extensive game of Figure 7a has several Nash equilibria and more than one Nash 

equilibr urn outcome. Does strong rationalizability imply Nash equilibrium outcome if there is a 

unique such outcome? Once again, the answer is negative as the following modification of the 
15 

game of Figure 7a shows. Here there is a unique Nash equilibrium outcome, namely the payoff 

vector (7,7, 7, 7). Yet in the model shown in Figure 8b at z the realized outcome is (2, 2, 2, 10) 

despite b e  fact that z E T n B,T n RAT n B,RAT. 

[ 1nsert Figure 8 1 

15 
This e:;ample is due to Stalnaker (1996, private communication). 



Figure 8a 

0 Player 1 's  payoff 

0 Player 2's payoff 

0 Player 3's payoff 

0 Player 4's payoff 



fi. Correlated equilibrium 

We now turn to the notion of correlated equilibrium which was introduced by Aumam 

(1974, 1987). 

1) E FI N IT I0 N 7. Let G be a normal-form game. A correlated equilibrium 

distribulion is a probability distribution p over the set S of strategy profiles such that, for every 

player i and every function di : Si + Si 

X A M P L E 4. Consider the game of Figure 9 (discussed by A u m a ~ ,  1974) and the 

following distribution: p(U.L) = p(D,R) = ). Consider Player 1. The left-hand side of (2) is 

equal to f 5 + 1 = 3. The possible functions d : {U, L) + {U. L) are the identity function id 

(which gives the LHS of (2)), d, (defined by dU(x) = U for all x), dD (defined by dD(x) = D for all 

X) and dD (defined by do(U) = D, do(D) = U). With d, the RHS of (2) is equal to ) 5 + $ 0 = 

2.5, with d, it is equal to f 4 + $ 1 = 2.5. Thus (2) is satisfied for Player 1. Similar calculations 

show that (2) is also satisfied for Player 2. Thus p(U,L) = p(D,R) = $ is a correlated equilibrium 

distribution. 

16 
It is easy to see that every Nash equilibrium is also a correlated equilibrium. 

Furthermore, every convex combination of Nash equilibria is also a correlated equilibrium. In a 

two-person zero-sum game all correlated equilibria are convex combinations of pairs of optimal 

(maxrnin and minrnax) strategiep Thus if a two-person zero-sum game has a unique pure- 

strategy Nash equilibrium s then s is the unique correlated equilibrium point. However, in 

general, there are correlated equilibria that are outside the convex hull of the Nash equilibria. 

16 
For example, if s is a pure-strategy Nash equilibrium, take p such that p(s) = 1 .  



Aumann (1987) proved the following result. Let B be a set of states; for every player i 

let 3f be a partition of $2 and denote by Hi(w) the element of the partition that contains state w. 

Let pi E A(Q) be individual i's "prior" such that p i ( ~ i )  > 0 for all Hi E 3[;. Let oi : Q + Si be a 

function that specifies i's choice of strategy at every state, satisfying the property that if 

o' E Hi(w) then a i (o l )  = o,(o), that is, player i knows his own strategy. Let a = (a,, ..., an). 

Player i is rational a t  state a if the strategy he chooses at a maximizes his expected utility 

calculated on the basis of hisposterior beliefs pi(- I Hi(a)) defined by pi(u [ Hi(a)) = p'(w) - - 
{(Hi (a)) 

'' (w) if w E Hi(a) and pi(w I Hi(a)) = 0 if w e Hi(a): C p'cr)  
=Hi(a) 

P R 0 P 0 S IT I0 N 7 (Aumann, 1987). If the players have a common prior (i.e. if there 

is a probability measure p on Q such that p, = .. . = pn = p) and each player is rational at every 

state, then the probability distribution induced by p on S is a correlated equilibrium distribution. 

It is clear that the structure considered by Aumam is just a special case of the notion of 

model g;iven in Definition 3. The extra assumptions that Aumann introduces are: (I) that the 

possibility correspondences give rise to partitions and (2) that the beliefs of the players are 
I I 

Harsanyi consistent, in the sense that they c2n be derived from a common prior. An interesting 

question is therefore whether Aumam's theorem can be generalized to the case where the 

possibility correspondences are non-partitional (i.e. where some players might have false 

beliefs). In order to do so one fitst needs to have a local definition of Harsanyi consistency (i.e. 

17 1 

Note that the prior beliefs p of player i postulated by Aumam play no role: only the posterior beliefs pi(- IHi(w)) 
are n::levant. Indeed, given a model of a game according to Definition 3, one can obtain a (local) "prior" for 
player i by taking any convex combination of the different beliefs (types) of that player, that is, a prior of player i 
is any point in the convex hull of {p. : w E P,(t)}. 

1.0 



of the existence of a common prior). However, obtaining a local formulation of the notion of a 

common prior is only part of the difficulty. Recent contributions (Gul, 1996, Dekel and Gul, 

1997, Lipman, 1995) have pointed out that the meaning of a common prior in situations of 

incomplete information is highly problematic. This skepticism can be developed along the 

followir~~g lines. As Mertens and Zamir (1985) showed in their classic paper, the description of 

the "actual world" in terms of belief hierarchies generates a collection of "possible worlds", one 

of which is the actual world. This set of possible worlds, or states, gives rise to a formal 

similarity between situations of incomplete information and those of asymmetric information 

(where there is an ex ante stage at which the individuals have identical information and 

subsequently update their beliefs in response to private signals). However, while a state in the 

latter represents a real contingency, in the former it is "a fictitious construct, used to clarify our 

understanding of the real world" (Lipman, 1995, p.2), "a notational device for representing the 

profile c~d infinite hierarchies of beliefs" (Gul, 1996, p. 3). As a result, notions such as that of a 

comrnorli prior, "seem to be based on giving the artificially constructed states more meaning than 

they have" (Dekel and Gul, 1997, p.115). Thus an essential step in providing a justification for 

correlated equilibrium under incomplete information is to provide an interpretation of the 

commorl prior based on "assumptions that do not refer to the constructed state space, but rather 

are assumed to hold in the true state", that is, assumptions "that only use the artificially 

constructed states the way they originated - namely as elements in a hierarchy of belief" (Dekel 

and Gul, 1997, p.116). 

An interpretation of the desired kind of the common prior assumption under incomplete 
/ 

information was provided recently (Bonanno and Nehring, 1996a; see also Feinberg, 1995) in 

terms of a generalized notion of absence of agreeing to disagree a la Aumann (1976), called 

consistency of expectations. 



Dl E FI  N IT I0 N 8. At state a there is Consistency of Expectations if there do not exist 

random variables Yi : S2 + W (i E N) such that: (1) V me P, (w) = 0 ,  and (2) at a it is 
i eN 

common belief that, for every individual i, i 's subjective expectation of Yi is positive, that is, 

Consistency of Expectations turns out to be equivalent to a particular local version of the 

Common Prior Assumption defined as follows. 

D E F l N l T I0 N 9. For every y s  A(P), let HQCp (for Harsanyi Quasi Consistency 

with respect to the "prior" y) be the following event: a E HQC if and only if 
I' 

(I) VicN,  V o , w t ~ P , ( a ) , i f  y(l lpi=pi ,wil)>O thenpi,,(wl)= p ( d  if 
p(Ilpi = pi,,Il) 

o ' ~  llpi = pi,,ll and p. (a') = 0 otherwise (that is, piSw is obtained from p by 
I,, 

18 
conditioning on Ilpi = p. 11 ) , and 

1.w 

If a E HQCv, p is a local common prior at a. Furthermore, let HQC = U H Q C ~  . 
p € A ( Q )  

19 
P R 0 P 0 S IT I0 N 8. At a Consistency of Expectations is satisfied if and only 

if a E HQC. 

?he above proposition shows that HQC is the natural way of expressing Harsanyi 

consistency locally. 

18 
Where, for every event E, p(E) = p(o) . Note that, for every w E S2 and i E N, w E l l p i  = pioil. 

oeE 

Thus p(w) > 0 implies p(llpi = pi.ull) > 0. 

19 
For a proof see Bonanno and Nehring (1996a). This result is a local version of Morris's (1994) characterization of 
no trade under asymmetric information. See also Feinberg (1995) and Samet (1996). 



Harsanyi Quasi Consistency may seem weaker than expected in that condition (2) of its 

definition only requires the derived common prior to assign positive probability to some 

cornrno:~dy possible state but allows the true state to be assigned zero "prior" probability. As 

illustratled in the example of Figure 9, Agreement and No Trade-type arguments cannot deliver 

more. 

not p P 

1 Insert Figure 91 

Figure 9 

In this example, at the true state individual 1 wrongly believes that it is common belief that p, 

while individual 2 correctly believes that not p is the case and knows 1's incorrect beliefs. 

Expectation consistency is satisfied at the true state (as well as at (3). In fact, let Yl and Y2 be 

random variables on {r, P) such that Y, = -Yl and suppose that r E Bell El > 011, that is, at r it is 

common belief that individual 1's expectation of Yl is positive. Then Y,((3) > 0, hence Y,@) < 0. 

h u s  p @ 1 1  E,> 011, that is, at (3 ipdividual 2's expectation of Y, cannot be positive. Since 

(3 E P,(.c), it follows that r & B,II E,> 011. Thus Agreement is necessarily satisfied at r. By 

Proposition 7 there must be a p such that r E HQCp. Indeed such a local common prior is given 

by p(CJ) = 1. 



Is Harsanyi Quasi Consistency an adequate epistemic basis for correlated equilibrium? 

Perhaps not too surprisingly in view of the previous example, Harsanyi Quasi Consistency is 

insufficient by itself, as demonstrated by the following example. Figures 10a and lob show a 

two-person zero-sum game with a unique correlated equilibrium (B,R), and an epistemic model 

of it. 

P l a y e r  2 

Figure 1Oa 



Player 1: 

Player 2: 

1's strategy : 

2's strategy : 

In this example, at (i) the players' beliefs satisfy Harsanyi Quasi Consistency (z E HQC = 
P 

S2 where p(<) = I) ,  (ii) there is common belief in rationality (P,(z) = S2 and at every state each 

player's strategy is optimal given her beliefs) and (iii) no individual has any false beliefs. Yet at 

z the players play (T,L) which is not a correlated equilibrium. 

Note that in the above example, although the derived common prior assigns zero 

probability to z, there is no sense in which the belief hierarchies described by the true state are 

"improbable" and constitute a null event. Indeed the actual beliefs of all players assign positive 

probability to z. / 

The above example is in fact quite general. By a straightforward generalization of its 

construction any profile of correlated rationalizable strategies - where one strategy is a unique 

best response to some distribution over correlated rationalizable strategies of the other players - 



can be realized at the true state z of a Bayesian frame where t E HQC (and no individual has 

false beliefs). 

What seems to go wrong in the example is that, while Player 2 believes Player 1 to be 

wrong at E, this does not show up as disagreement - and hence as a violation of Harsanyi Quasi 

Consistency - since Player 1 falseiy believes at E that there is agreement that the true state is c. 
Hence T,, is violated at E,  and therefore B,T,, at t. 

Indeed - in the absence of false beliefs at the true state - B,T,, is exactly what needs to 

be added to HQC to ensure the play of a correlated equilibrium strategy-profile, as the following 

theorem shows. 

To take account of the incomplete information context, we call a strategy profile a 

correlated equilibrium if it is played with positive probability in some correlated equilibrium (in 

the ordinary sense). 

P R 0 P 0 S l T I0 N 9 (Bonanno and Nehring, 1997). Fix an arbitrary finite normal- 

form game G and an arbitrary model of G such that: 

(1) t E T n B,T,, (the actual beliefs of the players are correct and there is 

common belief in Truth about common belief), 

(2) T E  B,RAT, (there is common belief in rationality) 

(3) t E HQC (Harsanyi Quasi Consistency of beliefs, that is, Agreement, is 
satisfied). 

Then the strategy profile associated with t (i-e. the strategy profile actually played) is a 

correlated equilibrium. f 

On the other hand, as the example of Figure 10 shows, if (2) and (3) are satisfied and (1) 

is weakened to t E T then the strategy profile associated with t need not be a correlated 

equilibrium. 



R E MA R K 4. If condition (1) is weakened to t E NI (or, equivalently - cf. 

Proposition 1 - t E To n B,TcB) then the conclusion is that t E B,CE, where CE is the event 

that a correlated equilibrium is played; that is, at the true state it is common belief that a 

correlated equilibrium is played. 

Thus one sees that once the rather mild-looking property of Negative Introspection of 

common belief is satisfied, HQC is re-instated with the proper strength. 

A converse to Proposition 9 is given by the following result. 

P R 0 P 0 S l T 10 N 1 0. Let G be a game and p E A(S) a correlated equilibrium 

distribution. Then there exists a p E A(Q) and model %'j' of G such that 

(1) r E T n B,TcB n HQCp n B,RAT, (2) the distribution over strategy profiles induced by p 

restricted to { t  ) u P,(t) coincides with p and (3) y(z) > 0 (so that the strategy profile xtually 

played is in the support of p). 

6. Nash equilibrium 

We conclude by examining the epistemic foundations of Nash equilibrium, which 

(together with its refinements) is without doubt the solution concept most used in applications. 

The above examples (e.g. Figure 7) show that common belief in rationality, even in the presence 

of Truth and common belief in Truth, is not sufficient to guarantee the play of a Nash 

equilibrium. There are further difficulties, however, due to the fact that some Nash equilibria 

involve mixed strategies. The models we have considered are models of particular ways a game 

is played, and a particular pure strategy profile will always be realized at the true state of the 

model and, indeed, at every state. The notion of model (cf. Definition 3) incorporates the 

assumption that each player knows the strategy he actually plays. One could easily weaken this 



assumption by allowing players to delegate their choice of strategy to a random device. 

However, as Aumann (1987, p.15) observes, 

"In the traditional view of strategy randomization, the players use a 
randomizing device, such as a coin flip, to decide on their actions. This 
view has always had difficulties. Practically speaking, the idea that 
serious people would base important decisions on the flip of a coin is 
difficult to accept. Conceptually, too, there are problems. The reason a 
player must randomize in equilibrium is only to keep others from 
deviating; for himself, randomizing is unnecessary." 

Elaborating on an idea of Harsanyi (1973), Aurnann's suggestion was to view a mixed strategy 

of player i not as an actual choice by player i but as an expression of the uncertainty in the other 

players' mind concerning the choice made by i. 

D E F l N l T lo N 1 0. Given a model of a game, we can extract a conjecture of player i, 

defined as a function xi : Q -+ A(SFi) that associates with every state a the probability 

distribution over S induced by player i's beliefs at a. For example, consider the zero-sum 

matching penny game of Figure 1 l a  and the model of Figure 1 l b  (taken from Stalnaker, 1994, p. 

59). The functions X ,  and x2 are shown in Figure 1 lb. At every state except E , Player 1 believes 

that Player 2 is choosing h an t with equal probability. At every state except 6 ,  Player 2 believes 

that Player 1 is choosing H an T with equal probability. Note that at the true state t the 

conjectures of the players form a mixed strategy Nash equilibrium. Note that the mixed strategy 

of Player 2 represents in fact the belief of Player 1 and vice versa. Note also that at t common 

belief in rationality fails; in fact, RAT, = Q and RATz = {t, y, (3, E) so that RAT = {t, y, (3, E} 

and B,RAT = 0. 

I Insert Figure 111 



Player 2 

h t 

Player 1: 

Player 2: 

Figure l l a  

'I: Y 6 ( 3  E 

Player 

'I: Y 6 ( 3  E 

The above example generalizes. Given a probability distribution p E A@,) denote by I ( x ,  = p(I 

the event that Player 1 has conjecture p: 1 1  X ,  = pll = {W E Q : x1 (a) = p). Similarly, for 

q E US, )  let IIx,= 411 = {o E 8 : x,(w) = q). 



P R 0 P 0 S 1 T 1 0 N 1 1 (Aumam and Brandenburger, 1995). Let G be a two-person 

normal-form game and Y?? a model of it. Let p E A(S2) and q E A(Sl). Then for every 

a~ T n BIRAT n B2RAT n Blllx2= qll nB211xl = qll, the pair (xl(a), x2(a)) is aNash 

equilibrium of G. 

When the number of players is greater than 2, complications arise due to the fact that the 

conjecture of player i is not a mixed strategy of another player, but a probability distribution on 

(n-1)-tuples of strategies of all the other players. However, i's conjecture does induce a mixed 

strategy for each player j # i (the marginal on S, of i's overall conjecture). However, different 

players other than j may have different conjectures about j. Since j's component of the putative 

equilibrium is meant to represent the conjectures of the other players (other than j), and these 

may differ across j's opponents, it is not clear how j's component should be defined. Aumann 

and Brandenburger (1995) however show that if the players have a common prior, their 

rationality is is mutually known and their conjectures are commonly known then for each player 

j, all the other players i agree on the same conjecture X. about j; and the resulting profile (x,, ..., 
J 

x,) is a Nash equilibrium. The authors also show, through a series of examples, that the 

conditions stated are "tight", in the sense that if any one of them is not met then the claim is no 

longer true. 

7. Conclusion 
The aim of this paper has been to introduce the approach and some of the main results of 

the recent literature on the epistemic foundations of game theory. Not all the contributions were 

reviewed. In particular, we left out those papers that deal with extensive-form solutions concepts. 

Recent papers have examined the foundations of backward induction in perfect information 

games (Aumam, 1995, 1996, Ben Porath, 1997, Stalnaker, 1996, 1997, Stuart 1997) and of 

extensive form rationalizability (Battigalli 1997, Battigalli and Siniscalchi, 1997). Several issues 

arise in this context, namely whether or not ex ante rationality is sufficient, whether an explicit 

analysis of counterfactuals is required, etc. A careful review of this literature would require a 

paper as long as this one. 
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