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1. INTRODUCTION

"A chimpanzeeis moresimilar to a human being than a donkey is"; "multiplication
ismoresimilar to addition than divisionis"; "Canadais moresimilar tothe U.S. than
Belgiumis'; "it isambiguouswhether Belgiumis moresimilar to the U.S. than Russia
is'. Judgements such as these can be explicated naturally in terms of comparisons
of sets of relevant features. The first judgment may be explicated, for instance, by
taking the relevant features to be the membership in different biological taxa such
as species, group, family, order: the chimpanzee has al features that a human and
a donkey share (i.e. belongs to al taxa common to humans and donkeys, being a
mammal) and shares the feature o being a primate with a human that the donkey
does not have. Belgium and the U.S. share the features o being rich, members of
NATO and the OECD, all shared by Canada as well, which in addition shares a lot
o important features with the U.S. that Belgium does not share. On the other hand,
while Belgium has some important features in common with the U.S. that Russia
doesn't share, the converse holds as well, so that it seems natural to deem Belgium
and Russia non-comparablein terms o overal similarity with the U.S.. In thispaper,
we will analyze judgments o qualitative similarity in terms o a ternary relation T
"y is at least as similar to x than z is"." Its central results are two representation
theorems which establish an isomorphism between sets of "attributes" (extensions?
o features) and ternary relations with appropriate structure.

The analysis can aso be motivated in purely mathematical terms in which the
primitive object of study isasymmetric ternary relation T with the geometric inter-
pretation o "betweenness' o points in some space. A ternary betweenness relation

has been introduced into tﬁe axiomatic foundations of geometry by Pasch (1882) and

'See example 3.3 and section 6 for casesin which a ternary relation is derived from a distance-

function.
?E.g. the set of all mammalsis the attribute corresponding to the feature "is a mammal" ; co-

extensive features are mapped into the same attribute.



frequently employed since then®. Whereas this literature largely focuses on special
cases such as betweennesson alineor in alattice®, the goal o this paper isto provide
a general definition of "ordered betweenness". The key is to specify an appropriate
ternary transitivity condition, resulting in the concept of a ternary preorder.

The representation o a ternary preorder on a set X by a family of subsets of
X (referred to as a "convex topology-') is  interest in a variety of ways. First
of dl, it yields a "semantics" (or "model") for betweenness, thereby confirming the
appropriateness of the proposed transitivity condition and indicating the range of its
applicability. Moreover, it leads to a perhaps surprisingly economic representation of
ternary preordersin terms d collectionsdf at most ﬂ"z—“) subsets o the set X with
cardinality n out o 2". This makesit significantly easier to visualize 'and work with
ternary preorders; the fact that the axiomatic conditions defining a convex topology

are much easier to apply than the 5-point transitivity condition also helps.

The paper is structured asfollows. In section 2, the notions of a ternary preorder
and o a convex topology are defined, and the central result o the paper, a pair
o representation theorems, is proved. The concepts and result are illustrated by a
plethora & examples in section 3. Section 4 addresses uniqueness and minimality
issues d the representation; it also points out that the class of convex topologies is
closed under intersection, hence a lattice, as is the class o ternary preorders. In
section 5, binary preorders are embedded as "effectively binary ternary preorders”,
and the associated classdf convex topologiesis characterized. It isshown that under
effective binariness, ternary transitivity is equivalent to ordinary binary transitivity.
Finally, the Fundamental Representation Theorem o section 2 is employed to obtain
a version of Birkhoff’s (1933) classic representation theorem for finite distributive
lattices. In section 6, we analyze taxonomic attribute hierarchies, a structure of

central importancein theliteratureson similarity and classification. These are shown

3See, for instance, Hilbert (1899), Suppes (1972), Fishburn (1985), ch. 4

*To the best o our limited acquaintance with it.



to be characterized by a strong connectednesscondition on theternary relation, which
in effect makesit possible to view the ternary relation as an n-tuple o weak orders;
ternary transitivity is shown to be equivalent in this context to (binary) transitivity
of each of the weak orders. We then apply the Fundamental Representation Theorem

to obtain a qualitative version o the classic characterization d "indexed hierarchies”

by ultra-metric distances. All proofs are collected in the appendix.

2. THE FUNDAMENTAL REPRESENTATION THEOREM

Let X denote a universe o objects. Subsets o the power set 2% of X will be called
attribute collections, or smply collections.

A collectionA C 2" inducesa ternary relation 74 € X x X x X =: X3 according
to
Th={(X,y,2) | {z,z2} SA=>y€AVACA).
The expression (X,y,z) € T4 can beread as “ y is at least as similar to X as z
istox" or “y liesbetween X and z ”; it isimportant to read these as weak rather

than as strict relations. Say that the triple (X,y,z) is compatible with the set A iff
{x,2} S A =y € A. With this terminology,

T4 = {r € X*| 7 is compatible with A, for all A € A};

an A C 2% such that T = T4 isa multi-attribute representationdf T. Conversely, any

ternary relation T C X2 induces a collection
Ar :={A € 2% | 7 iscompatible with A, for al 7 € T).
7

A T C X3 such that A = Ar is a ternary representation of A.

It is easily verified that T4 satisfies the following properties for any A : °

S5For transitivity, see the proof of theorem 1



Axiom 1 T1 (Reflexivity) : y €{x, z} = (x,y,2z) €T, for all z,y,z € X.
T2 (Symmetry) : (z,y,2) € T = (2,4,x) € T, for al x,y,z € X.
T3 (Transitivity): (x,z',2) € T& (r,2,2) e T& (X,y,2)eT = (X,y,2) €T,

for all x,z',y,z,2 € X.

Remarks on reflexivity can be found section 5, remarks on symmetry in section
6. Bdow and in the examples of section 3, the emphasis o the discussion is on

transitivity. Similarly, for every T € X3, Ar satisfiesthe following three properties:

Axiom 2 A1l (Boundedness): A 2 {§,X) .

A2 (Intersection-Closedness): A; € A, for alli | :>iQI A; e A

A3 (Abstract Convexity): A € A whenever, for all x,y € A, there exists B ¢ A
suchthat{x,y) € BCA.

A ternary relation T C X3 satisfying T1-T3 is called a ternary preorder; their class
is denoted by TPO.

A collection A C 2% satisfying A1-A3 is called convex topology; their class is
denoted by CVT.

For any A satisfying A1 and A2, define a hull-operator Hy : X x X — 2% by
Ha(z,y) =N{A € A|AD{x,y}}; Hi(z,y) is the smalest common attribute of
{X,y).Aset SisA— convexif Hy (x,y) C Sfor dl x,y € S. With this terminology,
abstract convexity can be read as the requirement that A contain all A-convex sets.

It will also be useful to associate with the ternary relation T its correspondence
T: X2+ 2% defined by T (x,y) = {2z € X | (X,2,y) € T); T (X,y) can be viewed
as the "segment” between x and y. A set S isT — convex if T (x,y) C S for dl
X,y € S With this terminplogy, transitivity can be read as the requirement that all

segments T (x,y) be T-convex sets.



Example 1 Let X = R™ and let [z, y] denote the closed line segment connecting x
and y.

Define T° by (z,y,2) € T® iff y € [x,2]. Likewise, let A? denote the class of all
convex subsets of R™. One easily verifies the following facts:

1. Hyo(z,y) = T%z,y) = [x,y}; by consequence, the notions of A%~ and 7°-
convexity both coincide with the ordinary Euclidean notion.

2. T° satisfies T1, T2 and T3 (line segments are convex sets).

3. A? satisfies Al, A2 (intersections of convex sets are convex) and A3 (A4° con-
tains all convex sets).

4. A° represents T°, i.e. Ty40y=T° (a pointy lies between two points X and z if
and only if it cannot be separated frorm them by some convex set).

5. T? represents A° (a set S is conves if and only if it contains all points on a line

segment between any two pointsin S). O

Theorem 1 T has a multi-attribute representation 4 if and only if T isa TPO.

There is a unique such representation that isa CVT; it is given by
Ac A e AisT — convex.

Theorem 2 A has a ternary representation T if and only if A isa CVT.

There is a unique such representation that is a TPO; it is given by
(33,?412) ET — yEHA(I,Z)

As indicated by these theorems, a key feature of the mutual representation o
ternary preorders and convex topologies (and the guiding light to the proofs) is the
coincidenced the segment$ defined by 17" and the smallest common attri butes defined
by \A. By consequence, aternary preorder can be specified in terms o the (unordered)

set of its segments.
In X is an infinite set, it will often be desirable to endow X with topological

structure. Thisis done very easily here. Let (X,7) be a topological space.



Definition 1 i) A ternary relation T isclosed if T(x,z) is closed for all X,z € X.
ii) An attribute collection A isclosed if each A € A is closed.

Using essentially identical proofs, one obtains the following topological version of

the above results.

Theorem 3 T has a closed multi-attribute representation A if and only if T is a
closed TPO.

There is a unique such representationthat isa CVT,; it is given by
AeA < A isT - convex and closed.

Theorem 4 A closed A has a ternary representationT if and only if Ais a CVT.

There is a unique such representation that is a TPO; it is closed and given by

(z,y,2) €T <= y € Ha(z,y).

3. EXAMPLES

1. Let X be finite. An attribute collection A is a (taxonomic) hierarchy if it

satisfiesthe following axiom.
Axiom 3 (Hierarchy) Forall A,Bc A: AB#0=ADB
The following fact is well-known and easily verified:

Fact 1 A is a hierarchy if and only if there exists a filtration {IIx}, _x (Sequence

k-

Note that the hierarchy property impliesintersection-closednessas well as abstract
convexity. The ternary preorders associated with hierarchical topologies are charac-

terized in section 6.



2. Let A be any attribute-collection satisfying A1 and A2. Then by theorem 2,
T4 € TPOisgiven by (X,y,2) € T4 if and only if y € H4(z,y). Sometimes, A will
naturally be given as an abstract convex class, asin the hypercube-example #4, but

in many casesit will not be, asin the following example.

3. Let (X,I') be a tree-graph, with the adjacency relation I' being symmetric,
acyclic and (graph-theoretically) connected. For any path ("walk without detour™)
7 in (X,I'), let A, denote the set of points reached by the path, and let

A:={0,X)U{A, | misapathin (X,[}.

A satisfies A1 and A2. The point y is T4 —between the points x and z if and only if
it lieson a path connecting x and z. 4 is a convex topology if and only if the treeis

in fact aline; in the general case, 'A(T.A) isthe class d connected subsets o the tree.

4. Let Fdenoteaset d featuresin the manner o Tversky's (1977) contrast model.
An object isidentified with the set of features it possesses, i.e. as an element of the
hypercube {0,1}* =: X. It is then natural to say that y is at least as similar to x
as z isif and only if y shares every feature shared by x and z; formally, (x,y,z) €T
if and only if z; = z; impliesy, = z; for all i ¢ F. Here, At is given by the set of
sub-hypercubes of {0,1}F, i.e. by the sets  the form {0}7° x {1} x {0, 1}F\(FoUF1)
for digoint Fp, F1 € F. While it is easy to see that At represents T and that it is
intersection-closed, it is non-trivial to show that A satisfies abstract convexity.

In the next paragraph, identify an object 15 with itsset of features S. Thefollowing
is a somewhat simplified version o Tversky's "contrast model”. Let there be two
additive not necessarily unitary strictly positive measures on 25 be given, A and 7.
A non-symmetric distance-function d(x,y) measuring the dissimilarity of x fromy is
given by defining

d(z,y) = Mz\y) +n(y\z).

Note that d issymmetric if and only if A =7, and that d isthe Hamming distance



if A and n are the counting measure. Define 7 asthe additive component of d:
T = {(z,y,2) € X | d(z,y) T d(y,2) = d(z,2)} .

Then T(@) coincideswith the betweennessrelation T just defined®. Thus, we have
here an important exampleinwhich aT PO can berecovered from a metric associated

with it (see section 6 for another example).

5. A from the mathematical point of view potentially very interesting generaliza-
tion o this example would be to the set o convex polytopes in which X is the set
o extreme points of some polytope P C R™, and the A € A are the sets of extreme
points of the faces of the polytope. The issue is whether A thus defined is a convex
topology, i.e. whether it satisfies abstract convexity. If it did, the topology d con-
vex polytopes might be representable/understandable in terms o its convex topology
respectively ternary betweenness structure. What needs to be shown for this to be
true is the following: if S isthe convex hull in R™ of a subset S, o X such that,,for
any x,y € 5,, § contains aface o the polytope which contains both x and y, then S

itself must be a face o the polytope P.7

6. Let (X,>) denote a partially ordered set. There are at least three natural

ways to define a ternary relation in this context. The first issimply to "embed" asa

ternary relation by setting
T:={(z,y,2) € X’ |y>zory >z}

Thisisexplored in section 5.

7. The second is based on interpreting > as a "polarity™-ordering (such as "right"

versus "left" in a political context). Then T defined by

/

T:z{(x,y,z)€X3|zZerorz2yZz}

6(Here and elsewherein this section we leave it to the reader to verify the asserted properties of

the defined ternary relation).

"Is this known? Are there counter examples?



defines a natural betweennessrelation that isa TPO.

8. In an economic context in which X denotes a universe of choice-alternatives or
consumption-bundles, and in which > denotes a preference ordering over the alter-
natives, one can naturally define convexity (plus monotonicity) requirements on the
preference relation in terms of a ternary order T describing the "convex topology"
of the choice space by defining a preference-relation > as T-convex if (X,y,z) € T
impliesy > w for al w such that x > w and z > w. (An alternative stronger de-
finition would require that (x,y,z) € T impliesy > x or y > z; while equivalent if
the preferencerelation is a wegk order, it seemsless attractive in the general case as
it involves strong comparability assumptions). Important examples are (euclidean)
convexity in general equilibrium theory and "single-peakedness’ in voting theory.

Conversely, one may define the "convex structure” 72 € TPO d a preference

relation > by setting
T2 = {(z,y,2) € X* |y > w for dl wsuch that x > w and 2z > w}

With this definition, convexity o preference with respect to a given T amounts to

the requirement 72 D T.

9. If (X,>) isalattice (with A denoting the meet, and v denoting the join), the
definition of T2 simplifiesto

T2 = {(z,y,2) eX¥ly> zA z} .
T2 has an isomorphic dual
TS = {(z,y,2) eX}ly< zv z} .

Note that TS really is T2 for the converserelation <=> . Asan example, if (X,2)
denotes the set of linear subspaces of a given linear space ordered by set-inclusion,
the subspace y lies TS —between the subspaces x and z if and only if it liesin their

span. The "spanning relations’ T2 and TS generate a particularly simple convex

topology.

10



Fact 2 Arx\{#} ={1z|ze X}, withTz:={ye€ X |y >z}

10. Let P dencte a finite set o propositional variables. Then the set of well-
formed formulaeX, Yy, .., identified under logica equivalence, can be represented truth-
functionally as X = {0,1}7. Then (X,+=) defines a lattice in which > is given by
inverseimplication <= , and in which the meet and join are given by logical con- and
disjunction.

The wif y is T< —between X and z if and only if y is logically entailed by the
conjunction of x and z (i.e. &z = y). Fact 2 impliesthat the CVT representing the
ternary entailment relation is given by the class o wffs of the form T x, i.e. of sets
o wffsjointly implied by a single mother-wff X. The attributes | z are exactly those
sets of wifs that are closed under implication and conjunction. They can therefore
be interpreted as potential "epistemic states". On thisinterpretation, z and z entail
y if and only if y is believed (part o an epistemic state) whenever x and z are jointly

believed.

11. Findly, let (X,T) be any space ordered by the TPO T, and let Ar be its
associated convex topology. (Ar, D) isa lattice ordered by set-inclusion. Endow A
with the TPO T%, and let h(z) :== Ha,(z,z). Then h: X — A, defines an order-
preserving mapping from the ordered space (X, T)to the ordered space (Ay, T<),

l1.e.

(h(z), h(y), h(z)) € TS = (xy,2) € T.

Thus, in particular, every ordered space (X,T) can be embedded in an order-

preserving manner in a lattice (Y,>) endowed with the TPO T<.

11



4. UNIQUENESS AND MINIMALITY ASPECTSOF THE
REPRESENTATION

Evidently, TPO is closed under intersection (in 2()‘3)). Somewhat less evident,
and very pleasant for the development of the theory, isthefact that CVT aswdl is

closed under intersection (in 2(2))
Proposition 1 CVT isN-closed.

By consequence, the "TPO closure" T* o T and the "CVT closure" A* o Aare

well-defined as follows.

Definition 2 T*:=n{T' e TPO|T 2T);
A*:=N{A' e CVT|ADA).

The following theorem shows that the mutual representation d TPOs and CVTs
constitutes an order-isomorphism. Moreover, ternary relations have the same multi-
attribute representation if and only if their transitive symmetric closure agrees; sim-
ilarly, attribute-collections have the same ternary representation if and only if their

CVT closure agrees.

Theorem 5 i) The mapping A : T —— A7 defines an order-inverting bijection
between TPO and CVT whose inverse isgiven by Ty : A +— Ty4.
ii) For any T C X®: Ar = Arp-; for any A C 2X 1 Ty = Ty-.

In analogy to the description o a lattice by its join-/meet-irreducible elements, it
seems natural to look for minimal subsets that yield an equivalent representation.
We carry out the analysisfor CVTs.

It ishelpful to defineseparate operators for intersection- and convex closure denoted

by ~and ™. Let J (2%) :={ B € 2¥ | B isn— closed and reflexive).

Definition 3 4) A:=n{B C 2X | 7 (2X), B2 A).
i) For Ae J (") : A:={SC2¥|S isA-convex}.

12



Part i) of thefollowinglemma showsin particular that the mapping A — A defines
a genuine closure operator; part ii) is the key to the following analysis, in that it
characterizes the convex-intersection closure as a simple composition o intersection-

closure followed by convex closure.

Lemmal i) For all A€ J(2X): A= A*
i) For all A C 2% : A= A"

The search for minimal collectionsdf attributes closaly related to that for %re-
ducible" elements (attributes), i.e. for those attributes that are not generated from

othersvia -*-closure.

Definition 4 i) For AC2X : A, :={S¢c A|S ¢ (A{S})*}.
ii)ForAC2¥: A:={ScA|S¢A{S}}.

Also, let H4 :={Ha(X,y) | X,y € X}.

The following theorem summarizes the minimality results available for CVTs.

Theorem 6 Let A€ CVT.

i) H 4 isthe unique minimal set B € 7(2X) such that B=A.

i) A.=HsNA.

For iii) and zv), suppose that X is finite.

i) H4 isa minimal set BC 2X suchthat B*=A.

iv) The following four statements are equivalent:
a) There exists a unique minimal collection B € J(2%) such that B* = A .
H (A=A .
c)HaCA. /
d) Ha=A* .

Examples: 1. In the hypercube-example 3.4, with #F = m, H 4 = A consists of

the 2m (m - 1)—dimensional sub-hypercubes.

13



2. If A isataxonomic hierarchy, H4 = A=A.

3. If A =2@%) | the "discrete topology”, Ha = {S| #S = 2}, whereas 4 =
{X\{z} |z € X}.

4. If A isthe set of closed convex subsets of R™ (asin Euclidean betweenness),
H 4 is empty, whereas A consists o all closed half-spaces. The role o X 4 is taken
by the set of closed half-lines.

5. BINARY PREORDERS EMBEDDED

With any ternary relation T, one can naturally associate a binary relation Ry C

X x X asfollows:
Definition 5 yRrz o (X,y,x) € T

Fact 3 i) Ry is reflexive / transitive whenever T is.
ii) If T isreflexive and transitive, then yRrz < [(X,y,2) € T & (z,y,x) e T Vz €
X]

Fact 3, ii) suggeststhenfollowing definitiond the "effectivebinariness’ o aternary
relation T.

Axiom 4 (Binariness) (x,y,z) € T= (x,y,x) €T or (zy,z) € T.

For a given reflexive binary relation R C X2, there is more than one ternary
relation T such that R = R7; it proves convenient to single out the largest one
given by {(x,y, 2) € X3 | sz or yRz} =: Tg. Notethat trivially R,y = R for any
RC X2

To precisely describe the interrelation between binary and ternary relations, the

following two properties are helpful.
Axiom 5 i) T issimply reflexive if (x,x,x) € T for all x € X.

14



ii) T isregular if (x,y,z) € T implies (x,y,z) € T and (z,y,z) € T, for all
z,y¥,z € X.

Remark: Regularity isa substantive restriction. To seethis, consider an operator
o: (z,y) > x oz with the properties zoz =z andxoz=zox for al z,z € X. Let
(x,y,2) € TC) iffy = xoz. T(®) issimply reflexive, symmetric and vacuously transitive
but fails to be regular. One can accommodate regularity by defining (x,y,z) € Tl
iff y C{X 02,x,2). Then Tl definesa TPO if and only if o satisfies, in addition to
the above, the property that x o (xo0 z) = x o z for al z,z € X. This property rules

out "averaging operators", for instance.

The following implications are easily established.

Fact 4 i) T is simply reflexive if it is reflezive.
ii) T isreflexive if it is simply reflexive and regular.
iii) T isregular +f it is reflezive and transitive.

iv) A simply reflezive and transitive T is reflexive if and only if it is regular.

The next proposition characterizes the embedding R — T’z and some df its prop-

erties; its last part anticipates the subsequent theorem 7.

Proposition 2 i) For any relation RC X x X, Tg is the unique regular effectively
binary relation T € X*® such that Ry = R.
i) Tg is always symmetric; it is reflezive whenever Ris.

ili) Tr is aternary preorder if and only if Ris a preorder.
Binary preorders can be viewed as effectively binary ternary preorders.

Theorem 7 An effectivelyy binary relation T € X is a ternary preorder if and only

if R isa preorder and T is regular.

We now study the implication o the representation theory for effectively binary

relations. The first result shows that effective binariness d T is equivalent to Ar

15



being union-closed. Given a binary relation Ry, Y C X isan “up-set” if x ¢ Y and
yRrz imply y € Y let U,y denote their class. The “up-set” of X {y | yRrz} is
denoted by T z.

Theorem 8 A ternary pre-order T is effectively binary if and only if A7 is closed

under arbitrary (or finite) union. Moreover, Ar =Yg,

Remark. An interesting aspect o the theorem is the conclusion that for convex
topologies closedness under finite and closedness under arbitrary unions coincides;
indeed, thisiseasily seen to bea direct implicationd abstract convexity. Asaresult,
the intersection of the classd "convex topologies’ with that of ordinary topologies
is minimal®; in particular, a convex topology describesthe closed sets o a Hausdorff

topology if and only if it is the discrete topology given by A = 2(2%),

Theset A € A issaid to be join-irreducible if A # @, and for no B, B' € A\ {A),
A = BUB' Let A" denote their class. For any pre-order R, let ((X;R)) denote the
quotient relation (partial order) induced by the equivalencerelation E: zEy < Ry
& yRx.

We have the following corollary:

Corollary 1 (A;C) is a sublattice of the distributive lattice (2X;C) if and only if
A =Ug for some pre-order RC X x X. Moreover, if X is finite, then the mapping

f : ((XR))— (A™; C) is an order-isomorphism,

In view o the wdl known and easily established fact that any finite distributive
lattice on X isorder-isomorphicto asub-latticed (2%;C), corollary 1 can be viewed
asaversion df Birkhoff’s classic representation theorem for finite distributive lattices

(Birkhoff (1933), Davey and Priestley (1989, p. 171) ).

8Do the topologies U r.., have a name?
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6. TAXONOMIC HIERARCHIES

A ternary relation T can beviewed asan X —tupled binary relations T = (T(,))__
defined by yT(;)z :& (X,Y,z), which isread as “ y is at least ascloseto x than z
is'. We will identify properties d T with those of T. Thus, for example, T issimply
reflexive iff each T(z) is reflexive, and T is reflexive iff z is T(;) - maxima for all
x € X. From this point o view, it isdf particular interest to study relations with the

property that each T,y is connected.
Axiom 6 (2-Connectedness) For all X,y,z € X, (X,y,2) € T or (X,z,y) € T.

2-connected ternary preorders will be shown to correspond to the hierarchical
topologies o example 3.1 . First, however, we note that under 2-connectedness,

(ternary) transitivity simplifiesto transitivity of each T;,,.

Axiom 7 (2-Transitivity) For al x,y,z,2' € X, (z,y,2') € T and (x,2/,z) € T
imply (z,y,2) € T.

Proposition 3 i) Transitivity and reflexzivity imply 2-transitivity.

ii) 2-Transitivity, symmetry and 2-connectedness imply transitivity.
Theorem 9 The ternary preorder T is 2-connected if and only if Az is a hierarchy.

Combining theorem 9, proposition 3 and theorem 5, one obtai ns the following result

about X-tuples o wesk orders as a corollary.®

Theorem 10 Let T be a tuple of weak orders (T(,)) such that =T,y for all

xe X
X,y € X. Then T is symmetric if and only if there exists a hierarchy A such that,

for all x,y,ze X, yTpjz e [z€ A=>yec A] VA€eA:ASX

®This result had been obtained directly prior to the work on this paper in collaboration with

Clemens Puppe.
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Theorem 10 iswritten in such away asto highlight therole o symmetry in ensuring
the existence of one A (independent  x) representing all T(z) simultaneoudly. The
result may be viewed as a qualitative analogue to well-known theorems on the repre-

sentation of ultrametric distances by "indexed hierarchies' or weighted tree-graphs.

Definition 6 A functiond: X X X -+ Ry is an ultra(pseudo)metric if
i) d(z,z) =0Vz € X, and
i) d(z,y) < maz{d(z,2),d(y,2)} Vr,y,z € X.

Note that an ultrametric is necessarily symmetric (put z = x) and satisfies the

triangle inequality.

Definition 7 A function v : A — Ry 1s anindex of the hierarchy A if
i)inf{r(A)|AeAd:A52} =0 VreX, and
ii) AC B=>v(A)<v(B),VA,B¢c A\ {0}.
The pair (A,v) is an indexed hierarchy.

The following is a standard result!®.

Theorem 11 (Johnson, Benzecri) A functiond : X x X — R, is an ultra-
metric if and only if there exists an indexed hierarchy (A,v) such that d(z,y) =
inf{v(A)|AeA: AD{z,y}}, Vz,ye X.

With any given ultra-metric, one can associate a 2-connected ternary preorder T4l :
(x,y,2) € T o d(z,y) < d(x,2);

to verify that T4 € TPO as claimed, we need to check its symmetry, ie. that
d(x,y) < d(x,z) impliesd(y,x) < d(xX,z), which isimmediate from ultrametricity.

10The result has been proved independently by Johnson (1967), Benzecri (1973) and others; for an
extensive treatment of the representation of proximity measuresby taxonomic hierarchiesand trees,

see the monograph of Barthélemy and Guénoche (1991).
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By consequence, theorem 11 can be obtained as a corollary of theorem 10: simply

take A from that theorem, and define v (A)= sup{d (x,y) [{x,y) C A),for A¢
Ara \ {0}

Conversely, one can obtain theorem 10 from theorem 11 by associating with a given

2-connected ternary preorder T an ultrametric d71 defined by
dT (z,y) =#{z| (X,z,y) € T) - 1.
Thisis a straightforward consequence o the following lemma.

Lemma 2 di7! is ultrametric for any 2-connected ternary preorder T

APPENDIX: PROOFS
SECTION 2

Proof of Theorem 1 (up to uniqueness):

I. Forany A : T4 € TPO.

The necessity of T1 and T2 istrivial.
To verify T3, take any x,x',y, z, 2’ € X such that

{(z.7',2),(z,7.2),(¢/,y,2')} ST, (1)

and any A€ A such that A2 {x,z}.

By assumption (1) then A2 {x', z'}, exploiting the definition d T4 twice. Hence
A >y by (1)again; A being arbitrary, this shows (x,y, z) € T4. It followsthat T4
satisfies T3. O /

IL. If T € TPO thereexists A € CVT such that T = T'4.

Lemma3 If T € TPO , then there exists A€ CVT such that T(.) = Hx(.).
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Proof. Let A :={A €2¥|Vve,yc A:T(x,y)CA); Aistheclass o al 7-
convex sets.

1. A isN—closed.

Take {A:},.; € A. For any X,y EQI A ,T(z,y) C A;forany i € I, by the
definition of A, hence T (z,y) C_Zig A; . It follows that QI A; €A

2. By definition, Hx (x,y) 2 T (x,y), for dl x,y € X.

3. By T3, foral x,y € X and ',y € T(x,y), T(z',y') C T (z,y) (segments are
T-convex), which implies T (x,y) € A, and thus H4 (X,y) € T (z, y). Together with
2., thisshows H4 =T .

4. Finally, in view o 3., A3isimmediate from the definitiond A . Al istrivialy
satisfied. O

Lemma4 If A€ CVT, then T4 = Hyu.

Pr oof.

1. By definition z € Ty (z,y)and A ¢ A: AD {z,y} = A>3z

Takeany x,y € X and z € T 4 (x,y) Since by definitionof HA, {z,y} € H4(z,y) €
A, it follows from the definition d T 4 that Hy4 (X,y) 3 =.

Thisshowsthat T4 C H,.

2. Consider now X,y, z such that z ¢ T 4 (X,y); by definition o T 4, there exists
A € Asuchthat A D{x,y} but 2 ¢ A. Since AD H4 (X,y) by A3, z ¢ Ha(X,y). It
followsthat T 4 (X,y) 2 Ha (x,y) for dl x,y € X.

The lemma results from combining1l. and 2. . O

Lemmas 1 and 2 yield the desired result. B
4

Proof of Theorem 2.

|.Forany TC X®: Ar € CVT.

1. Al istrivial.

2. (A2) Take {Ai},.; € Ar. Then, for any (z,y,z) € Tand dl i € |, A; 2
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{z,2} = A; >y. Thusaso: (Ql A,-) 2 {zx, 2z} = (QI A,~> 3y , which shows that
(z,y,z) iscompatiblewith N A ) , thus verifying A2.

3. (A3) Takeany A € 2 such'that Hy, (z',y') C Afor all 2/,y'-€ A and any
(x,y,z) € T. We need to show that (x,y,z) is compatible with A. Assume thus
A2 {z,z}.

Since Ha, (x,y) € AT by A2and Ha 2{x, z} by Al, Hx. (x,y) D .

Since A 2 H 4, (x,y) by assumption,,one obtains A 3 y as desired. O

I1. Sufficiency followsimmediately from the following lemma.
Lemmas5 f A €CVT, A=Ar,-

Proof. Takeany A ¢ A . By A3, there exist x,y,z such that {x,y} C A but z €
Ha({xy})\A. By lemma2, z € T4 ({z,y})\A, in other words: A isincompatible
with (X, z,y), which shows that A € A(r,). Sinceon the other hand A 2 Az ,) from

the respective definitions, one obtains A = A(TA) .O0n

SECTION 3

Proof d Fact 2.

In view of theorem 1, we need to show that &/ := {1 x | x € X} coincides with the
set of non-empty 72 —convex sets. That X iscontained in thisclassisstraightforward.
Conversaly, suppose that S isa T2 —convex set. Thus, for al x,y € S:1 (xAy) <€ S,
and in particular z Ay € S. A simple inductive argument shows that therefore also

(AzesX) € S. Since on the other hand by definition | (A,csX) 2 S, one must in

fact have 1 (AesX) =S N
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SECTION 4

Proof of Theorem 5.

Lemma6 I T € TPO, thenT{a) =T.

Proof. Take T € TPO, and take A € CV T such that T = T4, whose existence
is assured by lemma 3. By lemma 5, thus also A = A,y = Ar. It follows that
T=Ty=T,).0O

In view of lemmas 5 and 6, A. isa bijection; it isevidently order-preserving with
respect to set-inclusion. This completes the proof o part i) of the theorem. O

To demonstrate the second claim o the theorem, takeany T C X3,

SinceT* 2> T, Ar- € Ar, and thus also T(AT‘) 2 Tiar)-

SinceT* = Tiar) by lemma 6, and T 4,., 2 T by the definition o A, , it follows
that T* 2 Ti 4y 2 1.

Since Ty 4,y € TPO by theorem 1, from the monotonicity o the *-operator one
obtains T 4.y = (T(ap)) 2 T, and thusin fact T* = T} 4.

Since Ar ¢ CVT by theorem 2, one can infer from lemma 5 that A(T.) =
Ar

A<T
(4 )) = .
TheTproof d the clam for T. isanalogous. W

Proof of Proposition 1.
Consider any family {A:}.., € 23"); Let A ;= A;. Satisfaction o Al and A2
by A istrivial. For A3, consider any S that is A-convex . Since Ha () 2 Hy, (),

foralli ¢ |, (dueto A C A4;). Sis A;-convex , for al i € |. Since each A; satisfies
A3, SenA;=A4.0 /

Proof of Lemma 1.

For steps 1 through 5, assume throughout that the sets A,B arein J (2“‘) . We

begin by showing in steps 1 through 3 that “is a closure operator.
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1 ADA.

Since A isN—closed, for any A € A arid z,y € A,H,(x,y) C A;thusany Ac A
is A-convex .

2. K =A (Idempotence).

Since by construction, for al x,y € X and all A € A:AD H,4 (x,y), and since
H,(xy) € /Tbystep 1,it followsthat, for al x,y € X, Ha (z,y) = H3 (X, y). Thus,
aset A is A-convex exactly if it is A-convex . It follows that ;T: A.

3. B2A :>§2 A (Monotonicity).

B2 A implies Hg () C Ha (.), whichin turn implies 8 5 4.

4 Ae J(2¥).

Satisfaction of Al isstraightforward. To verify the intersection-closedness of /T,

take an arbitrary collection o A-convex sets {S;},.,. Chooseany z,y € §:=NS,.
By assumption, H 4 (X,y) C §; for each 5;, hencealso H4 (Xx,y) C S It foIIowsIthat
S itsdlf is A-convex , i.e. that § € A.

5. A=A*

By step 2, A satisfies A3, and thus one obtains from step 4 A€ CVT. It foliows
that A* C A. On the other hand, since by the definition of A*, A* = A , step 3
impli%ﬁg A=A This completes the proof o part i).

6. Part ii) followsfrom part i) via the identiti%i—l = (Z)' =A*. B

Proof of Theorem 6.

| . Lemmas 7 and 8 demonstrate the first part d the theorem.

Lemma7 Forany Ac CVT:H,s=A.

4
Proof. From H4 D M4, one obtains H(WA) () € Ha() which implies Ha 3
A. Since also by the monotonicity o the “operator A = A 2 H 4 , one infers H 4 = A
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Lemma8 For any B € J(2X) such that B= A (€ CVT): B D H4.

Proof. Suppose H4 \ B > H. Since H € B, H is B-convex , i.e. H=U Hpz(X,y),
T,y

with Hg (x,y) € H (strictly!) for dl z,y € H. Since B C A, Hg() 2 Hu(.).

Hence any B-convex set isA-convex . Thus H4 (X,y) C H for al x,y € H. However

H=H4(a,y') for somex’, ¥y € H (snceH € H, ), a contradiction. O

II. Theinclusion A, CH4N A isessentialy straightforward.
For the converse, consider any S € AN (A\A,). We need to show S ¢H 4. Let

B := A\{S}. By assumption, we have B* = 4 and B = B. From lemma 1 one can

infer that B=B = A. Since B J (2X), part i) yilds B2 Ha 2 H 4. O

IIL. It is (must be?) a standard result that (B)=B for any B C 2% and finite X.
Using lemma 7, thisyields applied to H 4: (H4)" =A.
To verify minimality, consider any B strictly contained in H 4. Then B C H 4, and

thus B* C A by part i) o the theorem. O

V. The equivalenced a) and b) follows from the monotonicity o the -*-operator.
The equivalenced c¢) and d) is straightforward from part ii), while that of a) and
d) follows directly from part iii. O R

SECTION 5

Proof of Fact 3.

i) Straightforward from the definition.
ii) Take x,y,z € X such that yRrz. By reflexivity of T, (z,x,z) € T. Application
o transitivity to the triplé ((x,x,2),(z,,2), (z,y,2z)) € T? yidds (x,y,z) € T. An

analogous inferenceyidlds (z,y,z) € T. I

Proof of Fact 4.
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i) and ii) are trivial, iii) is analogous to the proof o fact 3,ii), and part iv) follows

from combining i), ii) and iii).

Proof of Proposition 2.

i) It isclear that Ty has the asserted properties. Consider my regular effectively
binary T such that Rr = R. Then (x,y,z) € T impliesyRx or yRz by binariness,
while the conversefollows from regularity; hence T = Tk.

i) Symmetry of Ty follows from its definition, its reflexivity (given the reflexivity
o R) from fact 4, ii).

iii) The final claim follows from theorem 7 below. B

Proof of Theorem 7.

Necessity follows from facts 3 and 4.

For sufficiency, we need to verify the transitivity o T.

Consider any z,z',y,z, 2 € X suchthat (z,2',2) € T, (z,2',z) € T,and (X', y,2') €
T. By binariness, y Ry’ or yRrz'; assume yRrx' w.l.o.g. By binariness again, ' Rrz
or ' Rrz. Hence by the transitivity of Rr, yRpz or yRrz'. Moreover, by the assump-
tion on T and binariness, z’ Rrz or z' Rrx. By the transitivity of Ry, one obtains
yRrz or yRrz, and thus (z,y,2) € T or (X,y,z) € T. Thus, by the regularity o T,
(r,y,2)eT. B

Proof of Theorem 8.

Supposethat T iseffectiyely binary and consider any A compatiblewith T (i.e. A € Ar).
Take any z € A and y such that yRrz, i.e. (X,y,x) € T. By compatibility, y € A. A
is thus an upset, from which it follows that Ar C Ury)-

Conversely, take any A € U,y and any (z,y,a) € T such that {x, z} C A. By the
effectivebinarinessof T, (z,y,x) € T or (z,v,2) € T. Thus, w.lL.o.g. yRyz. SinceA is
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an up-set of Ry, we have y € A, verifying the compatibility of A with T. Thisshows
that Ay = U g,y

It isstraightforward to verify that ¢ g, isclosed with respect to arbitrary unions.

Finally, suppose that Ar is closed under finite union. Consider any (x,y,z) € X3
such that neither (x,y,z) € T nor (z,y,2) € T. Since T = T} 4., there must exists
AB € Ar suchthat x € A,y ¢ A,z € B and y ¢ B. By union-closedness,
AUB € Ar. Since{x,z} C AUB but y¢ AUB by construction, we have (z,y,z) ¢ T,
thus verifying the effective binarinessof T. H

Proof of Corollary 1.

The first part follows from theorem 8 by setting R = R,).
The second part follows from, noting that U™ = {]x]|x¢c X),

and that Ry &t xCly. &

SECTION 6

Proof of Proposition 3.

i) Take x,y,z,2/ € X such that (x,y,a') € T and (x,a, z) € T.By reflexivity,
(X,X,2z) € T.Set ' = x and apply transitivity to obtain (x,y,a)< T.

ii) Take x,z’,y,2,2 € X such that (xz',a) €T, (x,2,2z) €T and (X, y.2) €T.
By 2-connectedness, (x,2’,2') € T or (x,a, x')€T ; w.lo.g. assume (xz',2') €T.

By symmetry, (2/,z',z) € T aswdl.as (a',y,z') € T. By 2-transitivity therefore
(z,y,x) € T, whence by symmetry, (x,y,2z') € T. Findly, by 2-transitivity again,
(z,y,z2)eT. R /

Proof of Theorem 9.

Suppose that A7 isnot a hierarchy, i.e. that thereexist A,B € Ar and x,y,z € X



suchthaty € A\B,ze B\A andx € AN B. By construction, neither (X,y,z) € T
nor (x,z,y) € T; T is therefore not 2-connected.

Conversely, suppose that T is not %-connected,i.e. that neither (X,y,z) € T
nor (x,z,y) € T for some x,y,z € X. Since T = T4,) by theorem 5, there exist
A,B € Ar such that {x,z} CA,y ¢ Aand{x,y} C B,z € B.Since AN B 3 x,
A\B >3 zand B\A >y, Ar isnot a hierarchy. W

Proof of Lemma 2.

Note first that dT! is symmetric due to the symmetry of T.

Consider any x,y,z € X such that diT) (x,z) < dT! (z,y): from the definition of
dT), (x,z,y) € T and (x,y,z) ¢ T. By symmetry, the latter implies (z,y,x) ¢ T, and
thus (z,x,y) € T by 2-connectedness. In turn, this yields (y,x,z) € T by symmetry,
hence d"1(y,2) > dTl (y,z) = d"(z,y) by the symmetry o d'7!, thus verifying

ultrametricity. W
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