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1 Introduction

Imagine an individual who faces the following two-stage decision problem. In the
first stage, the individual has to choose among different opportunity sets. In the
second stage, exactly one alternative from the set determined by the first stage
decision has to be chosen. In such a situation, one may think of two different
factors determining first stage choices. First, each menu entails indirect util-
ity derived from the ultimately chosen alternative. Secondly, a decision maker
might attach intrinsic value to the range of second-stage choices (on the impor-
tance of the intrinsic value of choice in individual decision making, see e.g. Jones
and Sugden [4] and Sen [14, 15]). The aim of the present paper is to develop a
rmunmimel, and in this sense general theory of "preference for opportunities" that
combines both aspects. While perhaps not terribly ambitious, a minimal theory
does not seem to he without merits in view of the conceptual elusiveness and
complexity of the notion of “freedom of choice ” With our analysis we intend
to clarify and lend support to the emerging multi-preference conceptualization
of “preference for opportunities” (see e.g Jones and Sugden [4], Pattanaik and
Xu [10]). The analysis is minimalistic in that we consider orderings of sets that.
are comparable with respect to set inclusion:; such orderings will be referred
to as qualitative set orders (QSOs) ' The proposed theory maintains the least
controversial assumption in the context of' ranking opportunities, namely that
for any given opportunty set no subset can have greater value than the original
set. (condition M. cf. Sect 2).* The focus s therefore whether or not, for any
given pair (A, B) o sets. 4 \ B is of marginal value when B is available. A
decision maker's QSO thus describes the value of additional opportunities while
being silent about trade-offs.

Given an ordering of the basic alternatives, the indirect utility principle com-
pares opportunity sets solely on the basis of preference between best elements
in each opportunity set A first step beyond this is to assume a “preference
for flexibility" due to uncertainty about future tastes (see the classic article by
Kreps [5]) For instance. suppose that an individual is uncertain about his pref-
erences between the alternatives r and y. Then. in terms of flexibility the set
{r y} would he strictly preferred to either { r)and {y}. In general, one would
have A U {z} > A if and only if 2 issuperior to al elements in A with positive
probabilaty Intumtively, preference for flexibility may thus be conceptualized by
the notion of expected mdirect utility However, this interpretation 1s unneces-
sarily particular More generally. 1t 1s conceivable that AU {z} >~ A if and only
if r issuperior to all clements 1n A with respect to some possible preference
In contrast to the set of probable preferences, the set of (relevantly) “possible”

'The term “qualitative” refers to the fact that a QSO 1s only defined on the domain of all
pairs (A, B) suchthat AC B.or BC A.

2Hence, the theory abstracts from phenomena such as “weakness of will," or .'effort-of-
decision costs,” or any other restricitions on the decision maker’s ability to choose from his
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preferences in general mught include any legitimate, or reasonable, or plausible
preference ordering even if it hes zero subjective probability. In particular, a
preference may be possible because it can :tself be chosen.

Any of these interpretations entails the following restriction on a QSO. Sup-
pose that for sorneset A the addition of the alternative x is of positive marginal
value. Then the addition of z to any subset B C A must be of positive marginal
value as well. We will refer to this property as acondition of " Contraction Con-
sistency” (condition CC, cf. Sect. 2) ™ ™his condition makesintuitive sense even
froma moregeneral perspective based on the notion of diversity of opportunities.
Indeed, suppose that diversity strictly increases when the alternative r is added
to the set A. Now, any diversity possessed by asubset of A is also possessed by
A Hence, the addition of r to any subset B C A must strictly increase diversity
as well. Thus, condition CC seems to be an appropriate general condition for
evaluating opportunities. In particular, in the above interpretations in terrus of
multiple preferences one may allow for co-actuality of the different preferences,
e.goas different “ponts of view.” For instance. one may derive utility from
consuming the fantasy of doing a multitude of things while knowing that they
won't be done

By a result of Kreps [5] conditions M and CC arc the only restrictions on
“preference for flexibihty.” and hence on "preference for opportunities.” Conse-
quently, conditions M anti ('(" art the key axioms of thispaper, and our goal isto
explore the resulting structure. A QSO satisfying M and CC will be referred to
as a consistent qualitative set order (CQSO). Kreps {3] has shown further that M
and CC remain the only restrictions if one assumes an additive, 1 ¢ an expected
indirect utility representation Thus even under that much more structure, the
('QSO captures “where the action is."

In contrast to the recent hiterature on multi-preference conceptuahzations of
“preference for opportunities”™ (see[4], {10]). such aconceptualization arises here
from a representation theorern. This has two important implications. First, the
principle that adding opportumties is always strictly preferred, as sometimes
assumed 1n the Iiterature on freedoin of choice.” cannot be considered ageneral
principle of evaluating opportunities Secondly. for a typical CQSO the marginal
value of adding an alternauive 1s context-dependent, 1.e. \n general there exist
sets A B and alternatives ¢y such that,

b and  Au{y}~ A
Bulry~B and Bul{y}»> B

I'his observation suggests that conditions of context independence popular m

'We note that. given condition M from above and transitivity, condition CC 15 equivalent
to Kreps' condition {1 3) (see [5. p 567]).

11 g the principle of strict monotonicity With respect to set inClUsion 1s assumed 1n Gravel
[3]. and implied 1n Pattanaik and Xu [9]  Similarly. strict monetonicity 1s implied in the
models considered in Bossert, Pattanaik and Xu {2]



the literature on ranking sets may not be very helpful in the context of ranking
opportunities, see Section 2 for further discussion.

The present paper provides refinements of Kreps' result based on two moti-
vations. First. one may want to incorporate (resp. axiomatically characterize)
constraints on the set of possible preferences such as the “rigid” superiority of
some alternative x to another y for all possible preferences. While the implica-
tions of rigid weak preference on the CQSO are straightforward, the implications
of rigid strict preference are more complex and involve restrictions on the entire
CQSO. We are also interested in clarifying the relation between multi-preference
representations in an opportunity context and multi-preference rationalization
of choice functions as provided by the well-known theorem of Aizerman and
Malishevski [1]. Taking a cue from the analysis of Puppe [12], it turns out
that on the class of CQSOs satisf-ing a condition 1E (for. “lrrelevance of
Inessential Elements") Kreps' representation theorem specializes to that of Aiz-
erman/Mahshevski (see Section 7). This raises the question whether [E 1s
a mere technical artefact, or whether 1t has substance, and more specifically
whether IIE can be understood within the multi-preference aproach itself We
answer this question by characterizing 1{E in terms of two alternative conditions
on the representation that there exist a representing set of linear orderings
(Theorem 6 1), or that there exist a set of representing preference orderings
that is conver in an appropriate sense (Theorem 5 1) Intriguingly, cach of
these requirements can be imposed on the multi-preference rationalization of a
choice function without loss of generality.®> The notion of convexity, introduced
in Nehring {7] as “closedness under compromise,” expresses the intuitive idea
that orderings that lie “in between” possible orderings should itself be possible
This seemns a natural enough requirement if “possible” is interpreted as "reason-
able,” or “legitimate,” but less so under aflexibility interpretation of "possible"
as “probable 7 1t is not entirely clear how to assess the strength of [1E. While
the hinearity characterization imports sornc flavour of genericity on it, we show
by means of two examples that it may be rich in implications not obtainable
without 1t

The paper 1s organized as follows Section 2 introduces sornc basic definitions
and briefly discusses thr issue of context-dependence Based on the result of
Kreps [5] Section 3 derives 1he representation of a CQSO by means of mult
ple preferences on the set of alternatives The interrelation between a CQSO
and preferences over alternatives, specifically the problem of rigidity of strict
preference. 1s discussed 1n Section 4. Section 5 provides the characterization of
ITE rankings as those that admit a convex representation. Condition IE 1s fur-
ther examined i Section 6. where it is shown to v)» the necessary and sufficient
condition lor thr existence of arepresentation with multiple linear preferences
Also it isdemonstrated by means of two examples that 11E allows for inference.
from partial knouledge & a CQSO As a further application of IIE, Section 7

7As to “linearity” this is obvious: as tn convexity, see [Nehring 7, Th. 6]



establishes the link between QSOs and choice functions Concluding remarks
arc offered in Section 8 All proofs are found in an appendix

2 Basic Definitions and Facts

Let X be a finite set of alternatives and denote by P°(X) := P(X)\ {0} the
set of all non-empty subsets of X. By 2(X) we denote the set of al pairs
(A,B)e P%(X) x P°(X) which are ordered by set inclusion, i e.

X(X) :={(AB) € P°(X)x P’(X): ACBorBC p)

By > we denote a reflexive binary relation in ¥(X). We call > an ordering in
X(X) if and only if = 1s complete and transitive in ¥(X), ie. if anti only if
forall (4. B) € £(X), [A > Bor B> A}, and for al (.i. B),(B,C),(A,C) €
Y(X), [A> Band B> C} = A = ¢ An ordering in £(X) 1s also referred
to as a qualitative set order (QSO)
A= Baf and only if A entails at least its much “opportunity value™ as . The
symmetric and asymmetric parts of > are defined asusual. ie 4~ B & [ A~
Band B> A],and A > B 4> [A4 > 11 and not. B > A], respectively Note that
by transitivity of >, both retations, = and . are transitive in ¥(X)

The intended mterpretation of the QSO > as describing a "preference for
opportunities” is formally captured by the following two basic conditions.

The intended interpretation of > i1s that

M (Monotonicity) For all BC.I, 4 » p

Monotonicity states that any set A entails at least as much opportunity value
as any of its subsets Note that, given condition M, a binary relation > in %(X)
is automatically complete in (X} Furthermore, in this case > is transitive
in ¥(X) if and only if for all sets A.B.C € P°(X) such that A C B C (.
[4T Band BT ] < AT (" The second basic condition is as follows.

CC (Contraction Consistency) For all 5 C .1 and all z € X,
lU{s}> A= BU{s} B

Contraction consistency states that if joining the element x to A Increases the
entailed opportunity value then this value must also increase when joining z to
the smaller set B C A Note that since > s reflexive, the element x € X 1n
(!C’ cannot be contained in A We will say that an element » & A 1s essential
at A if and only if AU{x} > A. that 1s if and only if 1t marginally enhances
opportunity value Otherwise, f r € A and A T AU {z} we will say that = 15
inessential at A Hence, CC may be rephrased as follows Suppose that x & A
1s essential at 4 Then s must be essential at any subset B of A

In our approach. we takt conditions M and CC as implicitly defining the
notion of “preference for opportunities ™ Hence. the object of our study is the
set of QSOs > i L(X) which satisfy XI and CC We refer to it QSO satisfying



M and CC as a conststent gualizative set order (CQSO) and denote the set of
all CQSOs in £(X) by Ree(X)

The simplest examples of CQSOs are indirect utility preferences, A CQSO
~ issaid to be an indirect utilily preference (henceforth: Ill-preference) if and
only if there exists a complete preference ordering R on X such that for all
(4,B) € B(X),

A> B < for all & € B there exists a € A such that afth

If > 15 an {U-preference with underlying preference ordering R, we wili write
Any CQSO > canonically induces the following partial order® 2. on X For

alr.ye X,
1Rey < {x} ~{r y} (21)

Hence. r ey if and only if y 1s inessential at {r}. Note that if = € Ree (X)) s
an [{/-preference then = = [['(R» ). The partial order Ry can be interpreted
as the decision maker’s (untrJ:t-zn—dﬁpcndcnt preference .juagements amorg in-
cremental alternatives added to given opportunity sets. Such an interpretation
1s indeed warranted due to the following fact.

Fact 2.1 Let > & R (X) and lef Ry be thr znduced partial order on Y.
Then, xRy y of and only of for all B ¢ such that 13{x, y} C C,

Bidy > C=Bu{r}>C. (2.2)

Hence, K>y 1f and onlyv 1f adecision maker would always be willing to exchange
y for = independently of the context in which = arid y occur. Note that. in
general, for given elements z. « € X. (2. 2)will be true for some B, € P°(X)
and for others not

If,"-preferences can be characterized on £(.X) by a condition which in effect
says that all preference judgements among incremental alternatives are context-
independent (in the sense of Fact 2 1)7

Theorem 2.1 Let = € Ree{XN). Then > 1s an [U-preference if and only if
the induced partial order Ry 15 complete on X

5The term “"partial order” 1s sometimes reserved for binary relations that are reflexive.
transitive and anfisymmetric, whereas a binary relation satisfying just reflexivity and transi-
tivity 1s sometimes called a preorder In this paper. antisymmetry is nowhere assumed and
both terms are used synonymously

""The context-independence rondition (2 2) isstrong in that it allows tho sets B and {r.y}
to have non-empty intersection. However. | hr importance of this feature seems rather limited.
In particular, in Nehring and Puppe (8} 1t 15 shown that on non-finite domains even very
weak context-independence conditions (with a disjointuess-clause) imply thr indirect utility
principle provided that the set of alternatives is rich enough.



In concluding this section, we note that 1n our context the requirement of strict
monotonicity with respect to set inclusion would unply Ry = {(x,x) :x € X}
Hence, such a requirement is incompatible with the notion that the decision
maker may have some (non-trivial) preferences (s)he 1s committed to (cf. Son
[15], Puppe [11, 12])

3 Setting the Stage: The Basic Representation
Theorem

In the following, it will be convenient to work with the asymmetric part > of
an ordering > in X(.X) as the primitive notion. Suppose that. > is complete in
Y(X), asise.g. the case if > satisfies condition M. Then, A~ B & not B > A
Hence, > is transitive if and only if > is negatively transitive in the sense that
for all (A, B).(B.C). (4.C) e N(X),

[not (B> 4) and not (C > )] = not (C > 4)

Let Pee (LX) denate the set of dl asymmetric CQSOs, 1.e. the set of all relations
> n LX) which are negatively transitive in (X)) and satisfy conditions M
and C!C. Obviously, = P (X)) if and only if its complement isin Ry X)

The basic construction of the following analysis leans heavily on Kreps [5]
Our presentation, however. emphasizes how the multi-preference representation
emerges naturally from an analysis of the structure of the set of CQSOs The
following fact 1s eastly established.

Fact 3.1 The set Pe{ X} s closed under unions, 1e. », '€ Poc(X) implies
that = U >'¢€ p((*(\)

Fact 3.1 suggests the following two questions. What are the CQSOs that are
minimal with respect o set inclusion, and: can every CQSO he represented as
the union of such minunal CQSOs?” The (non-trivial) minimal (:QSOs are easily
characterized. Yor any 1 € PY(.X) define an clement > 4 of P (X)) as follows
Foral (C'.D) e ¥(X)

">y D> C ¢ Land D C A (3.1

Note that - x =@ Observe lso that. for each 4 & 1’”(/\'). the relation >4 1s
the [U-preference derived from the following preference ordering P4 on X For
all oy e X
rflyy o xg Aand ye A

Indeed, it 1s casily ventied that (" >4 D 1f and only if there exists £ € ' such
that z P4y for all y € D Hence, 4= [U(P4) In the following, we will refer to
the orderings Py and >y as dichotomous orderings. Denote by Pr. (X)) the set
of all dichotomous orderings > 4, 1.2

Do oANY = -4 e P



Fact 3.2 The set Pr.,.(X)\ {0} consusts rractly of those elements in Pee{X)\
{0} that are minimal with respect to set zncluszon

Theorem 3.1 The set P{.~(X) s a base of Pcc(X) wn the sense that each
element of Poe(X) 1s the union of elements of Pio(X). Thut s, for all » ¢
Pee(X),
> = U =4 for some family A C P°(X)
AcA

The proof of 'Theorem 3 1 uses, for each given CQSO ». thr following particular
family A C P%(X) Let = € Pce(X), and define @ mapping f PO(X) —
PO(X) by

flty= | ¢ (32)

11CC AxC)

[t can be shown that the family 4 = {f(4) : 4 € PYX)} indeed provides the
desired decomposition as stated in Theorem 3.1 (for a rigorous proof, see the
appendix). ,
It has already been noted that all relations used for the decomposition of
the ordering > in Theorem 3 1 art° 11'-preferences. Therefore, one may restate
Theorem 3.1 in the followmng way A relation > is in Peo(X) if and only if
lhere exists a finite set { Py, P} of preference orderings on X such that for

all (4 B)e YY)
4 ~Bo forsome:r A >, B (3.3)

where for each e € {1, .. n}. == [L'(F). The sutficiency part of this statement
1s precisely the content of Theorem 3.1. For the necessity part, note that any
[T -preference satisfies M and CC| and hence is an element of Poe(X). By Fact
31 P (X) s closed under unions, hence any finite union of IU-preferences
also satisfies M and CC Henceforth. we will refer to a set of preference orderings
{ P P satisfving (3.3) as a representing famaly of the CQSO >

In Theorem 3.1. one may think of the elements of the family A as corre-
sponding to different states. For instance. in the specific interpretation adopted
i [5] the elements > ;4. or rather the corresponding preference orderings F; as
above. correspond to different future “tastes” in mutually exclusive states of the
world about which an individual 1s uncertain. In the more general perspective
of this paper, the orderings P’ may be interpreted as the different viewpoints
from which an individual evaluates the elements of X. In our framework. the
content of Theorem 3.1 may thus be described as follows. If a ranking >
Y(X) exhibits a “preference for opportunities” in the sense of conditions M and
CC then there exists a set of viewpoints such that, for all B C A 4 =~ B
and only if from some viewpomnt A is strictly better than B. In particular, by
Theorem 3.1 one obtains that r is essential at A il x 1s uniquely best in AU {r}
from some viewpoint £,



It can easily be checked that the “state space" (i e the family A in The-
orem 31, or equivalently, a representing family {£y,. ., P,}) 1s not uniquely
determined by > However, as already observed in [5], there are state spaces
which deserve special interest. Consider the set {f(A4) : A € P°(X)} where
f : PY(X) — PYX) is defined as in (3.2) above. A subset C of this set, is
a chazn if and only if C is completely ordered by set inclusion. A chain C is
marmal if and only if C 1s not it proper subset of any other chain Denote by
ez the set of maximal chains in {f(A): A€ P°(X)}. Obviously,every /(A)
iscontained in some maximal chain Hence, the representation in Theorem 3 |
may be written as,

- = U [U >;H\] (34)

Celmar | f(AYEC

We will refer to this representation of = as the marimal chain representation.
Observe that since C 1s a chain, cach of the relations [ J{>;4) f(1) € C} in
(3.4) 1s an [0 -preference. Hence, one may think of each maxunal chain as
corresponding to one single state. [n particular, 1f = 1tself 1s alrcady an [17-
preference then the maximal chain representation of > involves only one state.

Using the duality between a CQSO > € Ree(X) and the corresponding
strict CQSO = € Pere-(X), one may restate Theorem 3.1 in the following way.
For cach 4 € PY(X), let >4 denote the weak dichotomous preference corre-
sponding to the ordering > 4 defined in (3.1). Furthermore, denote by R7...(.X)
the set of all weak dichotomous preferences, re.

Ree(N) = {0 Ae PYX))

Theorem 3.1 The set R7. (X)) 15 a (“dual”) base of R (X) win the sense
that each element of Re(X) s the antersection of elements of R} ~(X). That
s, for all = € Ree (X)),

> = ﬂ =4 for some famly A C PO(X)
AEA

(learly, as 1n the proof of Theorem 3 1. in order to verify Theorem 3 1 one may
use the family A = {f(4) A e PY(X)} By Theorems 3.1 and 3 1’, 1t 15 just a
matter of convenience whether one represents a CQSO as the intersection of a
set of weak [{/-preferences. or 1ts strict part by the unon of the corresponding
strict orderings. In particular, we will also refer to a set {Ry. . R,} of weak
orderings on X as a representing family for > € R(\') whenever the set
{Py. .. P,} of the corresponding strict orderings s arepresenting family far the
corresponding strict ordering > £ P (. Y m the sense defined previously



4 Rigid Preferences over Alternatives

Let > € Ree{X), and let R. be the induced partial order on X defined by
(2.1). As we have argued, R,. may be interpreted as describing a decision
maker's context independent preference jugdements involved in the ranking of
opportunity sets. The following fact is easily verified.

Fact 4.1 Let > € Ree(X) and let {Ry, ..., R.} be a representing famaly of >
according to Theorem 3.1'. Then, for all x,ye X,

tRyy << forallie {1,... ,n} xRy

By Fact 4.1, a weak preference for x over y is context-independent if and only if
it 1s respected by all viewpoints, or in other words, if and only if 1t 1s respected
in every possible “preference world " In accordance with terminology in the-
theory of possible worlds one might thus call ft+ also the decision maker ; rigid
preferences among the clrments of X

Also, consider the case where there isan independently given partial order R
on X representing the decision maker's (partial) preference judgements on the
set X'. Assume that the ordering > of sets respects R in the sense that xRy =
rRyy Then by Fact 1.1,7 is respected by all viewpoints, 1 ¢ 2Ry = xR,y for
a 1€ {1. . n} Obviously, analoguous statements are true for the symmetric
part I~ of Ry

A natural question to ask in this context is therefore whether the same
apphes also to the asymmetric part P. of Rx which is defined by

Py e [{z} ~ {z,y} and {zx,y} > {y}].

for al x,y € X Perhaps surprisingly, the answer 1s no To see this, consider
the following example

Example 4.1 Let X = {r y -} and define an element > € R (X) as follows
For all (A, B) € &(X)

A> B o[A=Bor (A#{y} and A # {z})]
It can be verified that, for instance. {R;, R;} with
rzliyPiz and zl,z2 Py

1s a representing family of weak orders for > Note that for the ordering >
defined above one has r P,y However, the weak order R, does not respect
this strict preference judgement. Indeed, in this example there cannot exist a
representing family { Ry, .R,,} such that each R, respects the strict preference
for r over y 1n the sense that for al i, zP;y. To see this, assume that for each
1. rP;y First, observe that since {y.z} > {z} there must exist j € {l. . n}
such that yP;z Hence. by transitivity one could conclude z P;z and x /%y which



would imply {x,y,z} > {y,z} However, this is false by assumption

By this example, the induced strict preference relation P. cannot always be
interpreted as a rigid strict preference In the following, we will characterize
the class of orderings in Re:(X) for which an Interpretation of P, as the rigid
strict preference judgements is possible The characterization 1s based on the
following condition of strict monotonicity Let @ be a binary relation on X
Say that > 1s strictly monotone with respect to Q if and only if > satisfies the
following condition

SM(Q) (Strict Monotonicity) For all A € P°(X),and all x,y € X with zQy,
AU{y}>= A= AU {y}lUu(T)> AU {y}

Intuitively, this condition rnay be paraphrased as follows. Suppose that Q.
1e suppose that r is “Q)-preferred” to y. Condition SM(Q) states that, if
adding y 15 of value, then adding x, which is Q-preferred to y, must be of
even greater value 'The following theorem shows that SM( P ) is the necessary
and sufhicient condition for P. being interpretable as the decision maker’s rnigid
strict preference judgements In the theorem, 1t 1s convement to work with the
asyminetric part > of an ordering = € Ree(X)

Theorem 4.1 Let>¢€ Pec(X). There crists a representing famdly {Py. .., P}
such that
rPey e forallt {1. .n} zPy

tf and only of = 15 strectly monotone with respect to Py v af and only of {the
complement = of ) > satisfies condation SM(Ps )

Consider now the cast: where in addition to the ranking > 1 £(.X) there is an
independently given partial preference relation P on X which 1s asyvmmetric
and transitive Furthermore. suppose that > respects P in the sense that for
allr ye X

rPy=>arPey (41)
The followig result, which is proved along the same lines as Theorem 4.1, gives
the necessary and sufficient condition under which P can be interpreted as the
decision maker’s rigid strict preferences

Corollary 4.1 Let = € Ree(X), and let P be a strict partial order on X.
There erists a representing famaly { Ry, .. R,} such that for alli € {1 .. n}.
Py = »Py of and only of = satisfies (4.1) and condition SM{P ) e strict
monotonicity with respect to P.

5 Closedness under Compromise

Any family {f2,. . R,} of preference orderings on X can be represented It>
i family U = { . .un} o utility functions on X in the sense that for all
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re{l, ,njandallz ye X
Ry < ui(z) > uiy)

Say that a family {R; , Rn} 1s closed under compromuse if and only if there
exists a family U of representing utility functions that 1s convex, i e for al
A€ [0,1], u,v €U implies xu t (1 - A)v € 4 A property such as convexity
seems to besuitable to distinguish the interpretation of “possible” preference as
reasonable, or legitimate preference from the flexibility interpretation of "pos-
sible" preference as probable preference Indeed, there seems to be good reason
to assume that a convex combination of legitimate (or reasonable) preferences
should itself be legitimate (reasonable) In contrast, this does not seem to apply
to the case of probable future preferences For instance a decision maker may
be uncertain about her/his preferences between z and y while knowing for sure
that (s)he will never be indifferent On the other hand if both strict preferences
1Py and yPx are legitimate one would feel that rly must be legitimate too

Convexity of sets of preferences hasbecn introduced in Nehring [7] as closed
ness under compromise  to clarify what it means to ratzonalize a choice function
in terms of a set of preferences  While 1t was shown there that convexity can
be required without loss of generality, 1t adds a surprising amount of structure
in the present context For Instance. it will be shown in the next section that t
implies rigidity of strict preference. 1 e it implies condition SM(P.) Moreover.
it implies the following property

I1E (Irrelevance d Inessential Elements) For all A € P%(X) and all » y € A
such that not x/.y

[AU{xiU{y} ~AU{s}and AU{x}U{y} TAU{y}] > AU{z y} = 1

The intuition behind IIE 1s as follows. Suppose that in a set containing s
and y the deletion of either r and y does not reduce the entailed opportunity
value. Then the joint deletion of' r and y does not reduce opportunity value
either In this sense, inessential elements arr irrelevant for the ordering = This
seems to be plausible enough except in the case where x and y arc indifferent
from every relevant viewpoimnt Indeed. suppose that z and y are indifferent
in any possible “preference world.' 1 e suppose that z/.y Then the set AU
{x}u{y} s indifferent to both A U{s} and AU {y} However. if from some
viewpoint all elementsof A are inferior tos and y. one would obtain AU{z, y} >
A, in contradiction to the conclusion of [IE Hence, the clause excluding rigid
indifference between x and y in 1I1E ®

#One way to think about the clause is as follows. For r € X, denote by [z] the equivalence
class of r with respect to the equivalence relation /.. Then IIE is equivalent to the following
condition. For all A and all 7.y, Au{[z]}Uu{[y]} ~ Au{[z]} and AU {[z]} U {[¥]} ~ Au{{y]}
implies A U {{z].[y]} ~ A. Hence. [IE with clause on X is equivalent to [IE, with or without
clause, on the quotient space. A condition equivalent to IIE without clause has been introduced
in {12] where the analysis is implicitly restricted to the quotient space.
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Theorem 5.1 Let > € Ree(X). There emists a representing famuly for > that
15 closed under compromuse if and only if > satisfies 111

As an illustration of Theorem 5.1, consider the CQSO > defined 111 Example 4 1
Obviously, > does not satisfy | |E. Indeed, by definition one has {x,y,:} = {s,z}
and {x,y,z} ~ {y,z}, but {z,y,2z} > {z} although x and y are not rigidly
indifferent. Accordingly, there cannot exist a representing family that is closed
under compromise. This can be verified as follows. Let {R),..., [Z,} be any
representing family for >=. Since {z,y,z} = {x}and {y,z} > {y), there must
exist R, such that zR,zP;y. Similarly,since {x,y,z} ~ {x}and {y,z} > {z},
there must also exist R; such that zR;yF;z. Closedness under compromise
would imply the existence of R; such that z P,y and = /z. However. this is not
possible since by definition, {x, y,z} ~ {y, z}.

6 On the Structure of I1E Orderings

In the "possible preference worlds," ex-post indifference is arguably pomntless,
or irrelevant. at least unless alternatives are ex-anti. (i.e rigidly) indifferent
(CConsequently, 1t seemns natural to require a representing family of a CQSO to
effectively consist of linear orderings. Say that arepresenting family {f;.. . R.}
of a CQSO s effectively linearif and only if for al r.ye X

rliyforsomei € {1, n} =zl

Hence, arepresenting family iseffectively linear if and only if any indifference 1s
rigid. Asit turnsout, the requirement that any indifference be rigid iscquivalent
to the requirement of closedness under compromise, and hence to L.

Theorem 6.1 Let = € Re¢ (X) There enists arepresenting famly for > that
s effectively hnear if and only if = satisfies IIF

Note that Theorems 6.1 and 4 1 entail that for CQSOs, [1E implies SM( P ) 1Y
‘The converse is. however. not truc as the following example shows

Example 6.1 Let X = {x.y,z} and define a CQSO » € R () as follows
For all (A, BB) € £(X).

.

B [A=Bor #4222

Note that for no r,y € X rP»y, hence > trnivially satisties SM(P»)  Also
observe that zl,y « r = y. 1t can be verified that, for instance, the set
{Ry, Ry, R3} with

eliyPrz, 2lyz Py and ylyz Pyx

?For an analysis of the role of indifference in the context of freedom and Hexibility sup-
porting this view, see {12, Sect. 6].
'This can, of course, also be shown directly, using M and CC

12



is a representing family of weak orders for > Obviously, {R, Ry, R3} iS not
(effectively) linear. Indeed, there cannot exist a representation with linear or-
dering-since in that case { x,y, z} would have to be strictly preferred to one of
thesets {x,y), {z,z),or {y,z}. However, by the definition of > this is not the
case.

It is not entirely clear how strong an assumption IIE really is. While the lin-
earity characterization of Theorem 6.1 suggests the generic applicability of IIE
in some sense, the following two examples show that |IE may be rich in impli-
cations.

Example 6.2 Denote by R the set of real numbers. Let X = R? and let > be
an ordering in C(R?) such that > satisfies M and CC Furthermore, suppose it
15 known that for all a,b,x € R?,

{a,b} =~ {a.b, 7y = € co{a, b},

where co.4 denotes the convex hull of A "Then IIE implies the following property
For all 4 € PY(R?),
rc€cod = A~ AU{z}

[n order to verify this claim. suppose that r € coA There are two possible
cases

Case I. There exist two pomnts 0U A, say a; and ay, such that x € co{ay, as}.
Then, by assumption {ay, a2} = {a),az, z}, hence by application of CC, A~
Aufz}.

Case 2. There do not exist two points as in Case |. It 1s easily verified that
in this case there must exist three points of A, say a),a» and a3, such that
x € co{a,,az,az} Consider the straight line through a, and x, and denote by
y the intersection of this line with the line segment @saa as shown in Figure 1

Insert Figure | aboul herc

By assumiption. {a; .y} ~ {ay.zr,y} and {a2,u3} ~ {az,a3.y}. This implies by
e,

{ay,ay, a3, y} ~ {ay, a2, a3, z,y} and {ay. a2, a3, 2} ~ {a;,az, a3, r, y}.

respectively  From this, one obtains by IIE. {ai,a2,a3} ~ {a;.as, a3, . y}.
which finally unplies 4 = AU {x} using M and CC.

Example 6.3 As in the previous example, let X = R? and let > he an ordering
in $(R?) satisfving M and CC Suppose 1t is known that

A~Bo AC B (6.1)
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forall A, B € P°(R?) such that B C A and such that A has at most 4 elements
Then, I1E implies that (6.1) holds for all finite sets A, B € P°(R?) with B C 4
In order to verify this, let B C A First, 1t is shown that A C coB implies
BT A Let A= {zy,....z.} U B, and consider for every ¢ € {1,...,n} the set
BU{x,}. By the argument given in the previousexample,one has B = BU{r,}
for every i € {1,...,n). Using M and CC, this implies by induction B = A.

Next, let x € A\ coB. By the separating hyperplane theorem, there exists a
straight line {; separating the point z and the set coB. Now one can construct
two further straight lines {; and {3 as shown in Figure 2 such that the set coB
is contained in the triangle spanned by the intersection points t;, ¢, and t3 of
these straight lines.

Insert Figure 2 aboul here

By the first part, {ty. ty, 85} ~ {t, s, t3; U B. By assumption. {uo. (), o ty} =
{t;. 15,3}, hence using transitivity and M,

{I,tl.f'z.t‘g}u B>~ {(l.tg.t(g}u[j

This finally implies by CC. {z} U B > B, and therefore A = B

7 Multiple Preferences and Choice Functions

In this section, Theorem t 1 is applied in order to uncover a structural 1somor-
phism between the subclass of QSOs satisfying ITE and choice functions. As
in Puppe [12], define for each set A € PY(.X) 1ts subset of essential elements
E{A)C A by

FlA)y ={re A A 1\ {r}} (713

For notational convenience. in (7 1) we have set 4 > 0 for all A € P(X)
Hence. in our terminology, r € F(A4) 1 and only if £ 1s essential at A \ {x}

Fact 7.1 Let > be an ordering in YX(X) satisfying conditions M and [IF such
that for allz.y € N zl-y =z =y Then,

(1) forall (A, B) € S(X). A= B e (A\NB) N E(A)#0.
() for all A € PP(X), E(A) #0.

Consider now an independently given mapping
G PYX) — PN,

such that for all 4 € PY(X), G(A) C A The interpretation is that the corre-
spondence G associates to each A ¢ PY(X) the subset of "potentially valuable”
alternatives in 4. Consider the following (novel) condition.
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SD () (Strict G-Dominance) For al (A,B) € £(X),
A> B (A\B)NG(A) £ 0

Hence, by SD, the set A isstrictly preferred to B C A if and only if { contains
some potentially valuable alternative that 1s not available in B Condition SD
may be viewed as generalizing, at least prima facie, the account of preference for
opportunities offered in Section 3 Let {P, ,P,} be aset of linear orderings
and denote, for each A € P°(X), by maxp, A the (singleton-)set of maximal
elements in A with respcct to P; [f one defines for all A € P?(X),

G(A) = U n})ax A,

ve{l, . n} ‘

condition SD((G) comncides with (3.3) Other interpretations of (; and SD(()
include the following (/(A) may describe a set of acceptable alternatives based
on the partial elicitation of the decision maker’s preferences, and SD((7) an as-
sessment of Hexibility valire based on the expectation of further elicitation i the
sccond stage of chowce. Alternatively, G(A) may represent the set of alternatives
that are “normatively acceptable,” or “reasonably eligible;” and SD(() a con-
dition reflecting an “intrinsic value of freedom of choice.” Interestingly enough,
any ordering > derived from some & via SD must satisfy HE. In particular,
SD((G) yields ITE without any assumptions on the choice function

Fact 7.2 Let > be a reflerive and complete binary relation in N{X). and let
G PYX) — PYX) be quren such that the asymmetric part = of = satisfies
condition SD(G). Then,

(i) for all A € P°X). G(4) = E(A).

(ir) > 1s transitive on L(.X).

(i) forallr, ye X rlry e r=y.

(iv) = satisfies condition M

(v) > satisfies condition [1F

By Fact 7 2(1). condition SD identifies the sets of essential elements with the
sets of “potentially valuable” elements. Conversely, by Fact 7.1 any ordering >
satisfying conditions M and I1E, satisfies condition SD with respect to G = £
provided that any [.-indifference 1s trivial

Condition SI) indeed establishes a structural 1somorphisim between the sub-
class of QSOs satisfving [IE and choice functions The following result describes
some of the connections between propertics of the ranking > and well-known
consistency properties of the “choice function” (- - PO(X) — PP(X) (sec e g Sen
[13], Aizerman and Malishevski [1]. Moulin [6])

Theorem 7.1 Lct > be a complete binary relation in YX(X) such that its asym-
melric part = satisfies condition SD with respect to G PYNY) — PY(X). Then
= salisfies condition (CC 1f and only of (& satisfies the following condition. For
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all 4, B € PY(X) with B C A,
(o) BN G(A) C G(B).

Furthermore, if = 1s negatively transitwve then G satisfies the following so-called
“Arzerman” condztzon For ell A,B € P°(X) wzth B C 4,

(Aiz) G(A) CB = G(B)CG(A)
Conversely, 1f G satisfies () and (Aiz) then - 1s negatively transilive

Thus, the key consistency conditions defining a CQSO correspond to the ba-
sic rationality conditions on choice functions, («) arid (Aiz). This nicely con-
firms the claimed generality of the CQSO approach (see the concluding section
for further discussion) Notably absent is "expansion consistency” (Sen's v),
which would translate into the follewing condition on CQSOs |If for all = € A.
{y,r} = {z}, then {y}U A = A However, the status of Lhis condition as a ra-
tionality requirement is less clear. Indeed. the appeal of expansion consistency
has already been questioned in Aizerman and Malishevski [1] and Nehring {7]

Combining Theorems 7.1and 6.1 one obtains the following result which has
first been proved by Aizerman and Malishevski [1] (see also [6]).

Corollary 7.1 {Aizerman and Malishevski) Let G- PY(X) = P%X) be a
mapping with G(A) C A for all A€ PYX). Then G salisfies (o) and (Arz) of
and only of there exists aset {P,, ., P,} o Linear orderings on X such that for
all A € PYX).

G(A) = U max A

vE{iL . n} '

Note that, conversely. Corollary 7.1 could he used to deduce Theorem 6.1. In-
deed, suppose without loss of generality that for all x,y € X, zlyy & x =y,
and let » € Pee(X) satisfy lIE By Fact 7 1. > satisifes SD with respect to the
correspondence (¢ = E where £ : PO(X) = PY(X) is defined as in (7.1). By
Theorem 7.1, E satisfies («) and (Aiz), hence by Corollary 7.1. /< can be “ra-
tionalized” by aset of linear orderings { ). .., P.}. It is then casily shown that
thisset {P\..... P,} constitutes a representing family for the ordering >. Note,
however. that our proof in the appendix entails asomewhat stronger result than
Theorem 6.1, 10 that it shows that given IIE the maximal chain representation
of a4 CQSO s effectively linear: this would also seem to lend support to the
genericity interpretation of the result.

8 Conclusion: On the Generality of CQSOs

In this paper, we have developed a theory of “preference for opportumties”
based on two simple axioms Condition M scems to be uncontroversial, hence
the crucial condition is C'C. Can CC aspire to the status of a general axiom of
“consistent” preference for opportuntties? Quite possibly, as we shall argue in
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concluding this paper based on the discussion of an apparent counterexample,
provided that the "alternatives" are appropriately specified as the carriers of all
value. Consider an agent whose choices between behaving “commonly selfishly"
(x), "cheaply"(y) and “magnanimously” (z) are described as follows

Clz.y}) ={e}, C{z. 2}) = {z}, C({y.2}) = {z} and C({z, v, 2}) = {2}

The underlying story might be that while the agent 1s naturally inclined to
behave commonly selfishly, dhe is roused to magnanimity in the presence of an
opportunity for cheap behaviour. If one distinguishes magnanimity when cheap-
ness is feasible (z5,) from magnanimity when cheapness is not feasible (zy,),
these choices can be rationalized by the preference ordering z3, Pz Pzyz,Py on
the set X ={X, Y, z3,,23,} Ranking sets by their chosen element yields the
following ordering > on P(X) with X ={s,y,z}

frouzh~ Ay 2} = {z )~ {eyh ~ {e) > {2} > {u)

Let >, denote the restriction of > to ¥(X) Obviously, >, 15 transitive
Y(X) and satisfies M Choice is valued here  specifically the possibility of
being magnanimous in the face of the opportunity of being cheap 1n the sensc
that {y,z} >, {y} as well as{y,z} >, {z}, aid {x. y,z} >, {s,}} as well
as{r,y.z} », {x, 2} On the other hand. C'C 1s violated. since {x} ~, {X, z}
while{X. y.z} >, {X.y} Clearly, if one redescribes sets as subsets of the refined
untverse X . CC (appropriately applied) 1s satisfied again.

The above example shows how particular instances of a context-dependence
of the value of elements can be accommodated by including the relevant features
of the “context™ in the specification of an element. Sometimesit is asserted that
the process of chotce has intrinsic value itself Jones arid Sugden, for instance,
substantiate that intuition by developing an interesting argument for the value
of “significant choice” which occurs when a person "while choosing reasonably,
acts contrary to a preference that he might reasonably have had" ([4, p.60]).
Notions of the intrinsic value of significant choice and the “process of choice"
more generally may'! thus lead to pervasive context-dependence. While this
would not invalhidate M and CC, 1t would rob these conditions of their bite, at
least without additional structure on the nature of the context-dependence.

Appendix: Proofs

Proof of Fact 2.1 Suppose that 2Ry 1e {4} ~{X, y} By CC this implies
Bu{x} T BU{r y} Furthermore, M implies MU {z,y} > BU{y} Therefore
BU{y} > Cimplies BU{r y} > (" and hence BU {z} > ' Converscly, (2 2)
implies r Ry by letting B ={x} and (' = {1 y}

"' May. since we do not know of any worked out theory articulating these intuitions.



Proof of Theorem 2.1 Clearly, if > is an IU-preference the induced partial
order Ry is complete. Conversely, let K> be complete on X. In order to show
= = IU(Rx) we have to verify that for all (A, B) € %(X),

A» Ba foral be B thereexists a € A such that alfnb. (A1)

If BC A,(A.1)istrivially satisfied. Hence, let A C B, and let a* he a maximal
element in A = {z,,...,z,,} with respect to Ry, L.e. {a*} ~ {a*,z;} for all
i = 1, .,m. First, suppose that A > B. By CC, {a*,z;} ~{a* x,,z;} for
all i,j, hence by transitivity {a*) ~{a*,z4,z;} for al z,7. Thus, by induction
one obtains{d) ~ A, and hence by transitivity, {a} > B. This implies. by
condition M and transitivity, a* R,y for all y € B. Next, suppose that the right-
hand side of (A.l)is satisfied. Then, a* Ry for all y € B, hence by induction
and CC, {a"} = B Thisimplies A> B by M and transitivity.

Proof of Fact 3.2 First we show that for any > € P (X) \ {0} there exists

PY(X). A # X, such that > 4C »=. This can he verified as follows Ciiven
> € Pec(X), let £ PY(X) — P°.,Y)be the mapping defined in (3.2) Observe
that by M and CC. B C A implies f(B) C f(A) (cf. [5, Lemma 2(b)]). Also.
one easily shows that for all A € P°(X), f(f(A)) = f(A) (cf. [5, Lemma 2(a)})
In particular, the sets of the forrn f(A), A € PO%(X), are precisely the fired
pownts of the mapping f. Let D C C be such that C' >4y D, ie. O € f(4)
and D C f(A). In particular, f(D) C f(A). We will show that €' > D
Assume to the contrary that D = . Then, by the definition of f. (" T f(D).
hence € C f(A) However, thisis false by assumption and therefore ¢’ ~ )
This shows that for each A € P°(X), > t(a)C >. Finally, suppose that > # 0.
hence for some (C, D) € ¥(X), C = D. Then, C € f(D), hence f(D) # X
This proves that if an element of Pee(X) \ {0} is minimal it is contalned
Pro (XY \ {0}

It remains to be shown that indeed every element of Pl (X) \ {0} is mun-
irnal. Hence. let -\, B € PY(X) such that 4 # X and »4C >p By defi-
nttion of > 4, one has for al r ¢ A, AU {z} =4 A Hence, by assumption
AU{r} >p A. which by definition of > p isonly possible when 4 = B. (‘'owe-
quently, =1 C >pg implies A := B which immediately implies minimality of each
element in Pr (X)) \ {0}

Proof of Theorem 3.1 Consider the family A = {f(4) : 4 € P(X)} By
the proof of Fact 3.2, > 4,C > for all A€ P"(X). Hence, 1t suffices to show
that for al (C. D) € (X)), C » [} implies C >4, D for some A € POCN .
However, by the definition of f : P(X) — PYX), C > D implies (" € f(D)
Also, one has D C f(D). Hence, by definition of >py, C >ipy D

Proof of Theorem 4.1 Necessity of SM( P ) can easily be chrcked along the
lines of Example 4.1 Sufhiciency of SM{Py.) is verified by considering the max-
imal chain representation (3.4). It 1s shown that for each maximal chain C the
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corresponding preference ordering P satisfies © Py = & Pcy, provided that »
satisfies condition SM{P») Thus, let C = {H1, ..., H»} be a maximal chain of
fixed points of the mapping f defined in (3.2) such that

Let Pr denote the preference ordering on X corresponding to that maximal
chain. Obviously, for al z,w € X,

2Pew <> forsome j € {1,...,m),z¢ H; and w € ;. (A2)

Now let x,y € X be given such that zP.y, and let j, be the minimal index
such that x € ff;,. First, we show that j, > 1. Indeed, assume to the contrary
that x € ;. In this case, f/; = {x} and {r} = {s,y} hecncc using the fact
that f(H;) = H, one would obtain y € H;. This in turn implies f({y}) C H,
However, x & f({y}), hence f({y}) 1s a proper subset of H; which contradicts
maximality of the chain C. This proves j, > 1

Next, we show that y € H,,_,. Again, assume to the contrary that y ¢
Hio—1. Then, H,,_ U{y} » H,,—1. Let H' := f(H,,-, U{y}). Clearly, /'
is a proper superset of H, _;. Also observe that H;, > {z} = {z,y} implies
y € H,,, and therefore, /' C H;,. We now show that r ¢ [/’ Indeed. by
condition SM(Ps. ), H;,— U{y} > ;1 tmplies H; _ U{y}u{zr} > H;,—1U{y},
hence z ¢ H'. But thisimplies that /' is a proper subset of f{;, which again
contradicts maximality of the chain C. Therefore, one must have y € H;,
From this one finally obtains z Pry using (A.2).

Hence, 2 Pox = z Py for al ¢ if {P,,.... P} is the representing family cor-
responding to the maximal chain representation of >. Conversely, it is obvious
that [tPy foralie{l,..n}] > Py

Proof of Theorem 5.1 (Necessity of IIE) In order to verify necessity of
[IE, suppose that 4 U{sy} ~ AU {z}, AU{z y} ~ AU {y} and riot ri.y.
Let R = {#,. ..R.,} be arepresenting family for > that 1s closed under com-
promise Assume. contrary to what LIE claims, that A U {r.y} » A. 'This
imphes that for sornc j. 4 U {z,y} »; A where »=;= [U(],) Without loss of
generality, suppose that ri2,y. Given this, one can conclude that zja for all
a € A. Since by assumption. A U{X,y} ~ AU {y} one must have zR;z for
some z € AU {y}, hencc yR;z and therefore z/;y. Since not r/»y there must
exist k # j such that yFPrz, or there exists { 2 j such that = FPy. In the first
case, consider the convex-combination Aug + (1 — Mu;, where ug, u; represent
Ry, R, respectivley, and let K, denote the corresponding preference ordering
in R For sufficiently small (but positive) A one obtains y/,x and yPa for all
a € A. However, this contradicts the assumption that A U {z,y} ~ AU {x}
In the second case, a symmetric argument can be applied in order to derive a
contradiction to the assumption that A U {r.y} = AU {y}. Hence, in both
cases one can conclude AU (sy} ~ 4 as required by [1E The sufficiency part,
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of Theorem 5 1 1s conveniently based upon Theorem 6 1 Hence, we prove that
result first

Proof of Theorem 6.1 Necessity of liE is easily verified. The proof of the
suffictency part consists in showing that, given condition IIE, the representing
family corresponding to the maximal chain representation of > 1s effectively
linear. Let ¢ = {H,,...,Hmn} be a maximal chain of pairwise different fixed
points of the mapping f defined in (3.2) such that H,, = X and H; C H,4 for
J€{l,...,m=1). From (A.2) it s clear that the representing family correspond-
ing to the maximal chain representation is effectively linear provided that (i)
{v,w) C H, impliesvlsw, and (ii)fordl j € {1, . m-1}, {v,w) C H; 11\ H;
implies v/=w. In order to verify (1), suppose that {v,w} C H, for v # w. By
CC, f({v,w}) C H,. Assume that not v/>w. 1e. {v,w} > {v}or {v,w} > {w}.
Without loss of generality. we ma, assuine that {v,w} - {c}. However, this
would imply that f({v}) isa proper subset of /| which contradicts maximality
of the chain. Hence, one must have vl

Next . we show (i1). Suppose that {v, »} C H, 4 \H, for v # w In particular,
Hyugp b= Hyand Hy U{u} > I, Consider H' = [(H, U (L)) and H" =
f(H, u{w}) By condition CC. EI"H" C Hjyy, hence by maximality of the
cham €. H' = H" = H,4, Thisimplies 1;U{v, w} ~ H,U{v} and H;U{v, w} ~
H,u{w} Now assume that not v/, w Then. [IE would imply /1, U{v.w} ~ H,
which contradicts the fact that H, 1s a fixed point of f Hence, v/ww

Proof of Theorem 5.1 (Sufficiency of I1E) Let > € R (X)) satisfy 111
| let {f2;, R,} be a representing family for > that 1s effectively linear
according to Theorem 6 1. The following proof is based upon the construction in
[7‘ Th 6] Fix e sthll that 0 < ¢ < 1/n,and defineforeach: = 1. ,nandalz €
X.oug(z) = #FUEEX R Ohuisusly foralli = 1, .n, represents R,. It will
be shown that the convex hull & of {u,. .u,} constitutes a representing family
for = as well Let (A, B) € X(X) Obviously, maxze 4 u(x) > max,¢p u(z) for
all v €14 imphes A > 3 The converse implication is shown by a contradiction

argument Hence. suppose that A > Boop foralli =1, . . n
max u,(r) > maxu,(r). {(A3)
re A T refs

while for some u € U and some b €& B,
u(b) > u(r) forall x € A, (A4)

Let wu=5"7"_, Au,. Forall: = 1. ..n define A7 := )\zul(b)/(zj Au;(b)). By
(A1),

" u(r)
s E Al Oor - € AL AD
1 > . T forall r € 4 (AD)

Foralls let 27 € argmaxye 4 u,(r) We now show that. for all ., 2] Pb Indeed.
by (A 3) oue has x7 R;b On the other hand, r; b for some & would imply by



effective linearity! z; ;b for all i, which is not possible by (A.4). Consequently,
for al ¢,
ui(z7)
u,-(b)
Since, u;(z) is non-negative for al i and al z € X, (A.5) and (A.6) together
imply that for all i, Ay < 1/n. Howevrr, this contradicts the fact that the A7
add up to 1.

>

™o o

> n. (A.6)

Proof of Fact 7.1 Given (A,B) € £(X), it is clear that (4 \ B)n E(A) # 0
implies A = B. Conversely, let B C A and suppose that for all z € A\ B,
A~ A\{x). Then, by succesive application of [IE, A = B. This proves (i).

In order to verify (ii), assume that for some A € PY(X) with #A > 2,
E{A) = 0. Hence, for some v # w,{v,w} C A and 4 = A\{x} for every x € A
Succesive application of I1E implies A = {v} and A = {w}. Hence by condition
M, {v,w} ~{v) and{v, w} T {w} which contradicts the assumptions. Thus.
E(A) #0for all A€ PY(X)

Proof of Fact 7.2 Parts (i) (iv) are easily verified. Hence, it suffices to
show that  satisfies condition IIE. Clearly, AU {z} U {y} = AU{r} and
AU{x}U{y} ~ AU {y} imply y € G(AU{r} U{y}) and r ¢ G(AU{x) U{y}).
respectively. However, this implies by SD((7), AU{X, y} ~ 4

Proof of Theorem 7.1 Given SD((). the equivalence between CC and («)
1s easily verified. In order to deduce (Aiz) from negative transitivity, observe
that for B C A, (G(A) C B implies A ~ B. Sow suppose that x € G(8).
Le. B> B\ {z}. By negative transitivity. 4 = B \{x}, hence by SD,

(AN B)U{z}NGA) £ 0.

(iiven G(A) C B this immediately imphes ¢ € ((A). Finally, the last statement
in Theorem 7.1 follows from the observation that under SD, (a) and (Aiz), for
al BC A A~ Be G4 =G(B).

Proof of Corollary 7.1 Necessity of (a) and {Aiz) is obvious In order to
show their sufficiency, define a binary relation - 1n (X) by conditions M and
SD(G). By Theorem 7.1,- isan clement of R-(.X'). By Fact 7 2(v), > satisfies
ITE. Furthermore, by Fact 7 2(in), any rigid indifference 1s trivial. Hence, by
Theorem 6.1there exists a representing family { Py, ..., P,} for » that consists of
linear orderings. It can be verified that {P;. . P,} rationalizes (7 in the sense
of Corollary 7.1
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