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Abstract The concept of a strict extended partial order (SEPO) has turned out
to be very useful in explaining (resp. rationalizing) non-binary choice functions.
The present paper provides a general account of the concept of extended binary
relations, t.e. relations between subsets and elements of a given universal set
of alternatives. In particular, we define the concept of a weak extended partial
order (WEPO) and show how it can be used in order to represent rankings of
opportunity sets that display a “preference for opportunities." We also clar-
ify the relationship between SEPOs and WEPOs, which involves a non-trivial
condition, called "strict preperness.” Several characterizations of strict (and
weak) properness are provided based on which we argue for properness as an
appropriate condition demarcating "choice based" preference.



1 Introduction

The concept of an extended strict partial order (SEPO) has been introduced in
Nehring [1996] in order to explain the structure of non-binary choice functions.
The notion of an extendeal partial order serves as an appropriate generaliza-
tion of the concept of a transitive, but possibly incomplete preference among
alternatives. In particular, building on the work of Aizerman [1985], and Aizer-
man and Malishevski [1981], it has been shown in Nehring [1996] that a choice
function is rationalizable by a SEPO if and only if it satisfies two fundamen-
tal rationality conditions, contraction consistency and the so-caled " Aizerman
condition,” or, equivalently, if and only if it satisfies Plott's [1973] famous path-
independence condition." The present paper introduces the notion of a weak
extended partial order (WEPO) by substituting a straightforward reflexivity
condition for the (non-trivial) irreflexivity condition characterizing SEPOs. It
is shown that WEPOs can be used to represent the qualitative structure of
rankings of opportunity sets that display a " preference for opportunities” (in a
sense to be defined). Moreover, in a choice functional context, the subclass of
"strictly proper" WEPOSs rationalize "acceptability” of alternatives in a natural
way that complements the rationalization of inferiority in terms of SEPOs. A
number of characterizations of strict (and "weak") properness are given, based
on which we argue that properness demarcates choi ce based weak preference.

The paper is organized as follows. Section 2 contains the basic definitions.
In particular, we identify appropriate conditions of reflexivity, irreflexivity and
transitivity for extended relations. Section 3 briefly summarizes the relation be-
tween SEPOs and choice functions established in Nehring [1996). In Section 4,
we establish an isomorphisrn between WEPOs and rankings of sets that display
a "preference for opportunities." As a corollary, we obtain a characterization
of a WEPO as the intersection of all its weak order extensions. Section 5 is
devoted to the interrelation of WEPOs and SEPOs introducing the condition of
strict properness. We also briefly discuss a weakening of properness that corre-
sponds to a condition of “Irrelevance of Inessential Elements" (I1E) introduced
in Nehring and Puppe [1996], and translate the analysis there to characterize
strict and weak properness in terms of restrictions on the intersection represen-
tation. Section 6 addresses the question of how the results generalize to the case
of arbitrary non-finite domains. For the general intersection representation of
WEPOs we give a complete answer using an appropriate "regularity" condition.
An analoguous result for proper WEPOs seems to be much more difficult, and
we only provide a partial solution to that problem.

'For recent work on this class, see Bandyopadhyay [1986], Johnson [1990], Malishevski
{1994} and Sertel [1988a, b].



2 Basic Concepts

Let X be an arbitrary set of alternatives and denote by P%(X) = P(X) \ {0}
the set of all non-empty subsets of X . Elements of P°(X) are interpreted as
choice situations or opjvortunity sets. An extended (preference) relation Q on
X is a binary relation between subsets and elements of X, i.e. Q C P°(X) x
X. For A € P°(X) and z € X, the statement “AQz” is interpreted as "the
choice situation, or opportunity set, A is preferred to the (degenerate) choice
situation, or (degenerate) opportunity set, z (={z})”? Consider the following
basic properties of extended relations.

Reflexivity (REF) For dl z, A,
r€ A= AQz
Irreflexivity (IRR) For al x, A,
AQz = [A\x # 0 and (A \ z)Qz]
Monotonicity (MON) For al x,A,B,
[AC B and AQz] = BQ=z.

Property REF is a straightforward generalization of standard reflexivity. Prop-
erty MON seems to be very natural in our context. It states that having more
options can never be harmful and thus reflects the absence of “effort-of-decision
costs." Property IRR is asuitable generalization of irreflexivity. A choice-based
justification for IRR is as follows. If A is Q-superior to X, then the "non-x"
elements in A must be superior, i.e. (A\ 2)Qz.

The following condition generalizes the notion of transitivity for extended
relations. Note that for A= 0 and B = z it reduces to ordinary transitivity for
(non-extended) binary relations.

Transitivity (TRA) For all x,y,AUy, B,
[(AUY)Qz and BQy] = (AU B)Qz.

An extended relation satisfying monotonicity, transitivity and either reflexivity
or irreflexivity will be called an extended partial order (EPQO). A reflexive EPO
iscaled a weak extended partial order (WEPOQO), an irreflexive EPO is called a
strict extended partial order (SEPO). Throughout, WEPOs will be denoted by
the symbol R and SEPQOs by the symbol P.

The simplest examples of EPOs are those that are binary, i.e. those that
satisfy the following property.

2Throughout, singletonsare identified with elements,i.e. for all z € X, {z} is identified
with X.



Binariness (BIN) For dl x,A,

AQr = Jy € A : yQz.

A binary EPO Q is completely determined by its (non-extended) base relation
@ = QN(X x X). Notethat a binary and monotoneextended relation is reflex-
ive (irreflexive, transitive) if and only if its base relation is reflexive (irreflexive,
transitive) in the usual sense. In accordance with standard terminology we may
thus define a weak order on X as a binary WEPO that is complete on X x X.
Similarly, a linear order on X isa binary SEPO P that is weakly connected on
X in the sense that for al z,y € X, x # y implies (zPy or yPz).3

3 SEPOs and Non-binary Choice

The prominent role of SEPOs in the context of rationalizing non-binary choice
functions has been established in Nehring [1996].* Consider a choice function
C: F(X)+ F(X) defined on the domain F(X) of al finite and non-empty
subsets of X . Asusual, the term "choicefunction" refers to the assumption that,
for al A € F(X), C(A) C .A. Any such choice function may be "rationalized"
by an extended relation P in terms of the following condition. For all x and all
A€ F(X),

(p) APz &« g C(AU{z}).

Note that, given an extended relation P and achoicefunction C that are related
by means of condition p, P automatically satisfies IRR (on F(X)).

Theorem 3.1 (Nehring [1996]) A choice function C : F(X) — F(X) is
rationalizable by a SEPO P C F(X) x X 1n the sense of condition p if and only
if C satisfies for all x,A,B

(@) € A\C(A) and AC B=>z ¢ C(B),
and
(m C(B)C AC B=C(A)CC(B).

In the literature, n issometimes referred to asthe Aizerman-condition. It iswell
known that on afinite domain a and n are together necessary and sufficient for a

3 A note on terminology: sometimes a reflexive and transitive binary relation is called a
preorder, whereasa partial order is in addition required to be antisymmetric. In this paper,
given reflexivity, the term "partial order” is used synonymuosly for "preorder." Wherever
assumed, antisymmetry is explicitly mentioned.

4 Andrey Malishevski has informed us that he independently arrived at a concept essentially
identical to that of a SEPO in a forthcoming paper (which has not yet been accessibleto the
authors).



choice function to be rationalizable by aset P of linear orderingsin the following
sense. For all A,
c) = max 4, (3.1)
PeP
where maxp A denotes the (unique) best element in A with respect to thelinear
ordering P. The following result is thus a corollary of Theorem 3.1. Let C
denote the set of all linear orderingson X.

Corollary 3.1 Let X be finite. An extended relation P on X is a SEPO if and
only it is the intersection of all its linear extensions, 1.e.,

P=({Qel:Q2P)

In particular, the set of linear extensions s non-empty.

4 WEPOsand " Preference for Opportunities"

In this section it is shown how the concept of a weak EPO naturally arises in
the context of ranking sets of alternativesin terms of their "opportunity value."
Specifically, it will be shown that there isan isomorphism between WEPOs and
rankings of opportunity :sets, or choice situations, that display a "preference for
opportunities” (in an appropriately specified sense). The assumption here is
that choice is performed in two stages. First, an opportunity set is determined
from which in later stage of choice one particular alternative is chosen as the
final outcome. As the simplest example consider the indirect utility preference
> derived from some weak order Ron X, which is defined asfollows. For all
A, B,
AR B.o Yye B3zreA:zRy.

In particular, for all A and each alternative x,
Auz >R Ao vye A zPy, (4.1)

where P denotes the asymmetric part of R. Clearly, since Ris complete on X,
> is complete on P°(X). However, indirect utility preferences neglect impor-
tant aspects of decision making that may cause tncompleteness of preference.
For instance, a decision maker may be uncertain about the preferences that are
relevant at the moment of choice of the alternative. More generally, asin a
multi-attribute decision problem a decision maker may attach importance to
different "viewpoints" reflected by different rankings of the alternatives. Ac-
cordingly, we consider the following generalization of (4.1). Let T denote a
partial order on P°(X), i.e. a reflexive and transitive (but not necessarily, com-
plete) binary relation annong sets of alternatives.



Definition 4.1 We will say that > displaysa preference for opportunities if and
only if there exists a set R of weak orders on X such that for all x,A,

AUz > A« JRERVy€ A: zPy. (4.2)

By (4.2), the addition of an alternative z to A isof positive valueif and only if x
issuperior to A (in termsof indirect utility) for some "relevant” ordering R € R.
Definition4.1 thus captures the intuitiveargument for the value of having choice
put forward in Jones and Sugden [1982]. A particular interpretation of the set
R of weak orders is as a decision maker's possible future preferences. In this
case, condition (4.2) may be thought of expressing a "preference for flexibility"
(see Kreps {1979]). As noted above, a more general interpretation of the set
R is as different relevant "viewpoints" from which a decision maker evaluates
alternatives. In this case, the term "preference for opportunities" seems to be
appropriate.

Note that, given a set R of weak orderson X, (4.2) in effect imposes consis-
tency conditionson thefollowing extended relation on X derived from the rank-
ing ?. Say that x is essential at A, denoted by AEz, if and only if AUx + A.
The question to be studied in the following is: Which extended relations E are
multi-preference rationalizable in the sense of Definition 4.17 In other words,
what are the conditions on an extended relation E that imply the existence of
aset R of weak orders on X such that

AFz & 3RERVye A:zPy

Obviously, the following two conditions are necessary for multi-preferenceratio-
nalizability. For al x,A, B,

AEx = z¢A, (4.3)
[ACBand BEz] 3 AEx. (4.4)

Condition (4.3) is straightforward. Condition (4.4) states that if x is essential
at B, then x must be essential at any subset A of B (in Nehring and Puppe
[1996], condition (4.4) is referred to as contraction consistency). Conditions
(4.3) and (4.4) can be made more transparent by considering the corresponding
"inessentiality" relation Rg which is defined asfollows. For al x, A,

ARgz & not [AFz)

The following fact is easily estabhshed. It shows, in particular, that the "con-
sistency" condition (4.4) exactly corresponds to the canonical property MON.

Fact 4.1 The extended relation E satisfies (4.3) if and only if Rg satisfies
REF. Furthermore, E satisfies (4.4) if and only if Rg satisfies MON.



It is clear that E is multi-preference rationalizable in the sense of Definition 4.1
if and only if Rg is multi-preference rationalizablein the following sense: There
exists a set of weak orders R on X such that for all z, A,

ARpz & YRER : ARz, (4.5)

The following theorem establishes that the class of extended relations that are
multi-preference rationalizable is precisely the class of all WEPOs.

Theorem 4.1 Let X be a fintte set, and let Rg be an extended relation on X.
REg is multi-preference rationalizable (in the sense of (4.5)) if and only if Rg
satisfies REF, MON and TRA, i.e. if and only if Rg is a WEPO.

The proof of Theorem 4.1 is given in two steps. First, it is shown that a
reflexive and monotonic extended relation Rg can be extended to a partial
order on P°(X), weakly monotonic with respect to set inclusion, if and only if
Rp satisfies TRA.® In a second step, it is verified that the smallest extension
>% of Rg to PO(X)satisfies the necessary and sufficient conditionsin order to
apply a fundamental representation theorem due to Kreps [1979] which gives
the desired set R of weak orders.

Lemma 4.1 Let X ke a finite set, and let Rg be an extended relation on X
satisfying REF and MON. There exists a partial order > g on P°(X) satisfying
for all x,A, B,

Ar-pg AUX & ARgz, and
ACB = Bx>gA,

if and only if Rg satisfies TRA

Note that in Lemma 4.1, the first condition states that > g is a (proper) exten-
sion of Rg. The second condition is weak monotonicity of >g with respect to
set inclusion.
Proof of Lemma 4.1 Necessity of TRA can be verified as follows. Suppose
that (AUy)Rez and BRgy, hence by MON, (AUBUy)Rgz and (AU B)Rgy,
respectively By the fact, that >g is an extension, AUB > AUBU y and
AUBUy »g AUBUyUz, hence by transitivity, AUB »g AUBUyUz. Finally, by
monotonicity with respect to set inclusion and transitivity, AUB >g AUBUX,
i.e. (AUB)Rgz.

In order to verify sufficiency of TRA, define a binary relation >% on P°(X)
asfollows. For al A, B,

A>% B Yy € B: ARpy. (4.6)

SNote that this may serve as an additional justification for property TRA as the natural
extension of transitivity for extended relations.



Obviously, since R satisfies REF, >}, is an extension of Rg that is monotonic
with respect to set inclusion. Hence, it suffices to show that >3} is transitive.
Suppose that for A,B,C € P%(X), A > B and B >} C, i.e. ARgy for al
y € B and BRg:z for all 2 € C. We havetoshow that for all z € C, ARgz. This
follows at once from MON if B C A. Hence, suppose that B \ A = {b1,...,bn}
is non-empty. Define By == A, and for i = 1,...,n, B; := AU {4;,...,4}, so
that B, = AUB. By MON, BRgz implies B, Rgz for al z € C. This can be
written as
(Bn—l U bn)REZ

for al z € C. Also, by assumption, ARgb,. Hence, by TRA, for al z € C,
B,._1Rgz. Again, this can be written as

(Bn—2Ubs_1)REgz,

which together with ARgb,,_; implies B,_sRgz for al z € C by TRA. Thus,
by induction, BoRgz,1.e. ARgz for al z € C.
o

Note that the particular extension >7 given by (4.6) is defined in terms of a
domznance condition: Aisweakly preferred to B if and only if every alternative
of B isinessential at A. It can be shown that this, in effect, determines the
smallest extension of Rg to P°(X), i.e. =% is the intersection of al extensions
to P(X).

It iseasily verified that, given REF, the extension >3, defined above satisfies
the following property.

Indirect Utility Dominance (IUD) For al A,B,
A>Be A= AUB

Theorem 4.2 (Kreps) Let X be finite, and let > bhe a btnary relation on
PO(X). There ezists a set R of weak orders on X such that for all A,B,

A>B& YReR: AR B,
if and only if > is a partial order satisfying [UD.

Thisis the version of Kreps' theorem stated and proved in Puppe [1996, Corol-
lary 4]. For asketch of the proof of Theorem 4.2 on infinite domains, see Sect. 6.
Given this result, the proof of Theorem 4.1 proceeds in the following straight-
forward manner.

Proof of Theorem 4.1 Necessity of REF, MON and TRA for multi-preference
rationalizability is easily verified. For the sufficiency part, let Rg satisfy REF,
MON and TRA. By Lemma 4.1 there exists an extension of Rg to P°(X). The
particular extension >} constructed above in addition satisfies [lUD. Hence, by
Theorem 4.2 there exists a set R of weak orders on X such that A >% B if and



only if for al R € R the corresponding indirect utility preference > satisfies
A>T B. In particular, ARgz if and only if, for all Re R, ARz.
O

As a corollary of Theorem 4.1 one obtains the following characterization of
WEPOSs analogous to the characterization of SEPOs provided by Corollary 3.1.
Denote by W the set of all weak orders on X.

Corollary 4.1 Let X be finite. An extended relation R on X is a WEPO if
and only if it is the intersection of all its weak order extensions, i.e.,

R=({QewW:Q2R)}

Note that in our context, binariness has very little to recommend itself. For in-
stance, BIN would yield the following high.iy restrictive implication: If {z,y) +>
z for dl x,y € X, then AD B= A »% B for al A,B (“C” denoting proper
inclusion). In terms of the intersection representation, BIN is equivalent to the
following condition. Let R = {R;,..., R,} be a representing family of wesk
orders asin (4.5). For all A,B and all z,

[BRiVa € A :zPa, and 3R; Vb€ B : zPjb] = 3RrVc € AUB : 2 Pye,

which seems remarkably unattractive.

5 Properness

The rationalization result for choice functions in terms of SEPOs on the one
hand, and the representation of "preference for opportunities” in terms of WE-
POs on the other, raise the question of the precise relationship between reflexive
and irreflexive EPOs. This issue is addressed in this section. In particular, an
appropriate additional condition of "strict properness" is shown to provide a
canonical link between SEPOs and WEPOSs. Furthermore, it is argued that the
notion of properness may serve as a foundation for the concept of " choice-based"
preference.

5.1 Strict Properness

Given the concept of an extended relation as introduced in this paper, the fol-
lowing definition seems to be natural.

Definition 5.1 For any extended relation Q on X, define its irreflezive compo-
nent Pq asfollows. For al z, A,

APgzr & (A\ z)Qxz
Also, define the reflerive closure Rg of Q by
ARqz & [AQz or = € A],

10



for al x,A.

It is easily verified that, given rnonotonicity of Q, Pg is the greatest irreflex-
ive subrelation of Q. Similarly, Rq is the smallest reflexive extension of Q. In
particular, Pg = Qif Q satisfies [IRR, and Rg = Q if Q satisfies REF. The oper-
ations of taking the irreflexive component and the reflexive closure are mutually
inverse in the following sense.

Lemma5.1 If R is a reflexive and monotone extended relation on X, then
R = R(pg)- Similarly, if P is an irreflezive and monotone extended relation on
X, then P= P(Rp)~

The proof isstraightforward and therefore omitted. It is also easily verified that
for any SEPO P, the reflexive closure Rp is a WEPO. An analogous statement
for WEPOs is, however, not true as the following example demonstrates.

Example 5.1 Let X ={x,Yy,z}, and a WEPO R on X asfollows. For dl x, A,
ARz = [A={x) or #A > 2]
It can be verified that the irreflexive component Pg of R is given by
APrz & [A={x,y,z} or (#A =2and X € )]

However, Pg is not transitive as can be verified by choosing A = B ={x, z} in
the definition of TRA.

Example 5.1 thus shows that adclitional conditions are needed in order to guar-
antee transitivity of the irreflexive component of a WEPO. It turns out that the
appropriate condition is as follows.

Strict Properness (SPR) For all AUX, AUy, z #,
[(AUz)Qy and (A Uy)Qz] = [A # 0 and AQz].

The following lemma clarifies the interrelation of SPR and the basic properties
of extended partial orders. In particular, it shows that any SEPO automatically
satisfies SPR.

Lemma 5.2 For any extended relation, (i) IRR and TRA jointly imply SPR,
and (ii) MON and SPR jointly imply TRA.

Proof (i) Let AU X, AUy with x # y be given such that (A U z)Qy and
(AUy)Qzx. First, itiseasily established that by IRR and TRA, A # . By IRR,
[(AU<)\ 3]Qu and [(A\ z)Uy]Qz, hence by TRA, [(4\ ) U((AUz)\ y)]Qz.
Thisimplies (A U z)Qz, hence AQz by IRR.
(ii) Let AUy, B and z be given such that (A U y)@Qz and BQy. If x =,
(A U B)Qz by MON. Hence, suppose x # y. By MON, (AU B U y)Qz and
(A UB Uz)Qy, hence by SPR, (AU B)Qx.
»

11



Theorem 5.1 If P is a SEPO, then Rp is a WEPO satisfying SPR. Con-
versely, if R s a WEPO satisfying SPR, then Pg is a SEPO.

Proof The first part of Theorem 5.1 is easily established using Lemma 5.2(i)
and the fact that Ro satisfies SPR whenever Q does. Consider the second part.
Irreflexivity and monotonicity of Pg are obvious. In order to verify transitivity,
observe that Pg satisfies SPR, since R does. Hence, the claim follows from
Lemma5.2(ii).

a

5.2 Strict Properness and Choice

In this subsection, it is shown that the concept of strict properness allows for
a canonical definition of "revealed weak preference.” We will also argue that
properness is the "right"' condition in order to demarcate the notion of “choice-
based” preference. Ashas been argued in Nehring {1996}, condition p provides a
canonical link between choice and revealed strict preference in termsof SEPOs.
Consequently, one may use the correspondence between SEPOs and strictly
proper WEPOs established in Theorem 5.1 in order to define revealed weak
preference. Given a choice function C' : F(X) — F(X), define the revealed
weak extended preference relation R¢ as follows. For all x and all A€ F(X),

(p) ARcz & C(AUXx)C A

Intuitively, condition p’ rationalize? weak superiority of sets over elements,
whereas condition p rationalizes inferiority of non-chosen alternatives. It is
easily verified that if R and C satisfy p' then Pr and C satisfy p. Conversely,

if P and C satisfy p then Rp and C satisfy p'. The following result is thus an
immediate corollary of Theorems 3.1and 5.1.

Corollary 5.1 Let Rc be defined from a choice function C' according to p'.
Then R¢ is a WEPO satisfying SPR if and only if C satisfies a and 7.

Thisresult suggests an identifcation of chorce basedness with strict properness,
at least if one is willing to accept a and n as basic conditions of consistent
choice. In order to shed further light on the relation between choice and (weak)
preference, consider again condition p’ which describes how revealed weak pref-
erence can be canonically obtained from given choice behaviour. One may ask,
conversely, what choice function is generated by a given WEPO R. Consider
the following definition. Given a WEPO R et for any A,

Cr(A) :==({BC A: BRz for al x € A} (5.1)
Hence, Cr(A) is the intersection of all "dominating” subsets of A. Thus, one

would like to interpret the choice function Cg as describing, for each A, the
minimal set that a decision maker is " unambiguously entitled" to confine himself

12



to in choosing given his preferences. As the following result shows, such an
interpretation is warranted if and only if R isstrictly proper.

Theorem 5.2 Let X be finite, and let R be a monotone and reflexive extended
relation on X. The choice function Cr satisfies Cr(A) # @ for all A, and
Cr(A)Rz for all z € A, if and only if R satisfies SPR.

Proof Necessity of SPR can be verified as follows. Let x # y be given such that
(A Uz)Ry and (A Uy)Rx. By definition of Cg,

Cr(AU{z,y}) C(AUZ)N(AUY) = A.

In particular, A # 0 and, as a consequence of Cr(A U{X,y})Rz for al z €
AU{Xx,y), ARz for al z € AU{x,y) by MON. In particular, ARz as required
by SPR.

Conversely, let R satisfy SPR. In order to show the desired conclusion it
suffices, by induction, to verify the following. For al non-empty B,C C A
such that BRz and CRz for al z € A, the intersection B N C is non-empty
and satisfies (BN C)Rz for all = € A. This is trivial if one of the sets, B
or C, isequal to A. Hence, we may assume B # A. In this case, the set
{z1,.,zm} =: A\ (BNC) is non-empty. We will show that for any subset
D C {z1,..,x), (A\D)Rz foral z € A. This will be done by induction on
the number of elements of D. First, consider a one-element subset D) = {z;}.
By REF, one has [(A \ z;) U z;]Rz for any z € A\ z;. Also, by MON, for
any z € A\ z;, [(A\ ;) U z]Rz; since either B C A\, or C C A\ z;.
Hence, by SPR, A \ z; is non-empty and (A \ z;)Rz;. Now assume the claim
is verified for all subsets N*) containing exactly k elements and consider any
set D¥+Y) C {z;,...,z,} that contains k + 1 elements. Let x;,z; be any two
different elements of D(**+1). By induction hypothesis, [(A \ D*+D) U z;] Rz,
and [(A\ D¢+D)Uz;)Rz;. Hence, by SPR, A\ D*+1) # ¢ and (A\ D+ Rz,
Since z; was an arbitrary element of D**V)| this shows (A \ DRz for all
z € A by REF. Consequently, BNC # @ and (BN C)Rz for al z € A, since
BNC =A\{z1,...,zn} = A\ DI™).

0

The fact that SPR is a necessary condition for Cr to be well-defined can be
further illustrated by considering the WEPO of Example 5.1 above.

Example 5.1 (continued) Let R be the WEPO on X = {z,y,z} as defined
in Example 5.1above. It iseasily verified that according to Theorem 4.1, R can
be represented as follows. For al w, A,

ARw & YVi=1,2,3: mea/i(u,-(v) > ui(w),
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with the following utility functions u; 23 on{Xx,y, z}:

1 1
0 1
1 0

Clearly, the WEPO R as defined is not strictly proper. What would be the
"reasonable” chosen setsinduced by the WEPO R? Obviously, any two-element
subset of { X, y, z} dominateseach of itssingleelements, while no singleton domi-
nates any other element. Hence, in accordance with definition (5.1), Cg(B) = B
for each two-element subset B of {z,y,z}. On the other hand, choice from
{z,y,z} isnot asstraightforward. Whilef r any two-element subset B, BRw for
all w, there is no (unambigously) smallest dominatingset, i.e. Cr({z,y,z}) = 0.
One might suggest to define the chosen set from {z,y, z} as {z,y, z} itself. How-
ever, that would inevitably result in the inclusion of "redundant" alternatives.
The example thus clearly demonstrates that indeed not all WEPQOs are canon-
ically related to consistent choice behaviour.

The following result lends further support to the proposed conceptual identi-
fication of “choice-basedness” and strict properness, showing that under SPR
condition p and definition (51) describe mutually inverse operations.

Fact 5.1 Let R be a WEPO satisfying SPR. Then, R(c,) = R, ad Cr.) = C.

Proof To verify the first part, suppose that AR(c.yz, i.e. by condition ¢’
Cr(AUzr) C A. By Theorem 5.2, Cr{AUX)Rz for all z € AUX, in particular,
Cr(AUz)Rz. Hence, by MON, ARz. Conversely, suppose that ARz. Then, by
REF, ARz for al z € AUX. 'Thisimplies CrR(AU ) C A, and hence AR(c,)z
by condition p'.

For the second part, we have to verify that for all A, C(A) = C(pc)(A).
Thisis trivial if A contains one single element. Hence, assume that A has at
least two elements. First, let x € C(A). ThisimpliesC((A\z)uz) Z A\z,
hence by p', not [(A \ z)R¢z]. By Theorem 5.2, C(re)(A)Rcz, hence by MON,
C(re)(A) € A \z,iez € C(re)(A). Conversely, let z ¢ C(A). This implies
C{(A\x)Ux) C A\g, hence by p, (A \ z)Rcz. By definition (5.1), one thus
obtains C(r.y(A4) C A\ z, ie. x & Cinrey(A).

0

5.3 Waeak Properness

The condition of strict properness defined above entails a condition of antisym-
mety. To see this, consider first the case of binary extended relations. First,
observe that Pg and Rg are binary whenever Q is binary. Let R be a binary
WEPO with base relation Ry C X X X. Then, the base relation (Pgr), of Pg is
given by (Pr), = Rs \{(x,x) : x € X). Clearly, in general the relation (Pg), is

14



irreflexive, but note that it is not necessarily antisymmetric. Indeed, it is easily
verified that for a binary WEPO R, the base relation is antisymmetric if and
only if R satisfies SPR. Hence, the notion of a strictly proper WEPO may be
thought of as generalizing the notion of an antisymmetric partial order, i.e. a
(reflexive) strict partial order. Furthermore, this suggests to think of SPR as
being composed of the following two conditions.

Weak Properness (WPR.) For all AUXx,A Uy such that not [zQy and yQz],
[(AUZ)Qy and (A U4)Qz] = [A # 0 and AQx].
Antisymmetry (ANT) For al x,y,

[zQy and yQz] = z = .
For the record, we note:
Fact 5.2 SPRis equivalent to tke conjunction of WPR and ANT

As will be shown in the next subsection, WPR is a condition that deserves
interest on its own right (although it does not seem sufficient for a canonical
link between SEPOs and WEPOs). Observe that in contrast to SPR, any binary
transitive extended relation automatically satisfies WPR. Hence, unlike SPR its
weakening WPR is a condition that has bite only in the general framework of
extended relations.

5.4 Multi-Preference Rationalizability of Proper WEPOs

Given the multi-preference representation of a WEPO by set of weak orders
R on X, a natural question. is how the condition of properness is reflected in
properties of the representing family of weak orders. Based on the analysis in
Nehring and Puppe [1996), we provide a complete answer in the case of finite
X . In order to formulate the result, consider first the following definition.

Definition 5.1 (i) Say that, an extended relation R admitsa linear representa-
tion if and only if there exists aset R of linear orders (i.e. antisymmetric weak
orders) such that R satisfies (4.5) with respect toR.

(ii) Similarly, R admits an effectivelylinear representation if and only if there
exists a representing family R = { Ry, ..., R} of weak orders with the property
that any indifference occuring in one ordering R; € R isshared by all orderings
inR, e zlyfor somei implieszl;y for al j.

(iii) Finally, R admitsa convez representation if and only if there exists a repre-
senting family R = {Ry, ..., R} of weak orders and, for each i, a utility function
u; representing R; such that any element of the convex hull of 4 = {u,,...,u}

also represents one of the orderings in R.
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Theorem 5.3 Let X be finite, and let R be a WEPO on X. Then,

(i) Rhas alinear representation if and only if R satisfies SPR

(ii) R has an effectively linear representation if and only i R satisfies WPR.
(ifi) R has a convex representation if and only if R satisfies WPR.

The entailed equivalence of effective linearity and convexity of a representa-
tion has been established in Nehring and Puppe [1996] in a slightly different
framework. Specifically, in that paper it has been shown that in the context of
ranking opportunity sets, effective linearity and convexity of a multi-preference
representation are each equivalent to a condition of "Irrelevance of Inessential
Elements" (I1E). It can easily be checked tat when translated into a condition
on the correpsonding WEPO, | E corresponds to our condition WPR. Part (i) of
Theorem 5.3is, in effect, a special case of part (ii), noting that effective linear-
ity of a representation entails its linearity if R is antisymmetric. Alternatively,
Theorem 5.3(1) can be deduced from Theorems 3.1 and 5.1 above. Indeed, if R
isa WEPO satisfying SPR, then by Theorem 5.1, its irreflexive component Pg
is a SEPO. Hence, by Theorem 3.1 (or, Corollary 3.1) there exists a represen-
tation of Pr by aset of (irreflexive) linear orderings. It is then easily verified
that the reflexive closures of these linear orderings represent R in the sense of
condition (4.5).

Multi-preference representations of extended orders alow to rationalize pref-
erence incompletenessin terms of "unresolvedness" of preference due to suspen-
sion of judgement between aset of "reievant” complete preference orderings that
induces a corresponding suspension of judgement between the alternatives them-
selves. Conversely, asserted weak preference is rationalized as definite (though
possibly "disjunctive") preference according to

ARz & VYR, €R Ey.- €A y,'R,'I. (52)

Note that the non-binariness of R can be accounted for in terms of (5.2) as a
failure of the “v” and “3” quantifiers to interchange. Conceptually, the “<”

implication of (5.2) seems not entirely unproblematic. In particular, one might

argue that even if x is dominated by some y; for any particular R;, x may
nonetheless be a potentially superior compromise choice. In Example 5.1, for

instance, z is clearly the best choice with respect to the subset {u;,u,} of utility
functions. Thisskepticism can be addressed by requiring the set of rationalizing
orderings R to be "closed under compromise," i.e. to be convex (see Nehring
[1996] for an extensive argument). In Example 5.1, z is uniquely best with
respect to any compromise utility function v = . au; with ., e; = 1 and
0 < a3 < min{a;,az}, and can thus not be viewed as genuinely dominated
by the set {x,y). While it has been shown in Nehring [1996] that convexity is
without loss of generality for SEPOs, Theorem 5.3(iii) shows convexity to entail
significant restrictions for WEPOs. It seems rather remarkable that, up to a
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different stance toward indifferences, closedness under compromise leads to the
same restriction as the requirement of choice-basedness in the sense of Theorem
5.2.

6 Non-finite Domains

In this section, we address the problem of how the main results of this paper
generalize to the case of arbitrary, possibly non-finite, domains. Specifically, we
will consider the results on multi-preference rationalizability of extended rela-
tions, i.e. Theorems 4.1, 5.3(1) and 5.3(ii).6 First, consider the multi-preference
representation for WEPOQOs established in Theorem 4.1. In order to prove a
corresponding result for arbitrary domains, we first need to state a version of
Kreps' theorem applicable also to infinite domains. As the following example
demonstrates, the multiple preference represenation according to Theorem 4.2
requires additional restrictions in that case.

Example 6.1 Let X = N, where N denotes the set of al natural numbers.
Define a binary relation = on P°(X) as follows. For al A,B,

A = B < [A isinfinite, or B isfinite].

Obviously, > is reflexive and transitive, i.e. a partial order. Also, it is easily
verified that > satisfies IUD. However, there does not exist a family R of weak
orders on X such that > is the intersection of al corresponding indirect utility
preferences as required by Theorem 4.2. To see this, assume to the contrary
that there would exist such afamily R = {R, : 2 € T} for some index set 7. By
definition, 1 > w for all w ¢ N. Hence, foral i € Z,and all w € N, 1R;w. This
implies 1 >® N for all i by definition of >%:. Consequently, one would obtain
1> N which isfalse by assumption.

As it turns out, the existence of a multi-preference representation can be guar-
anteed by the following “continuity” condition. Let C C P°(X) be a chain of
subsetsof X, i.e. afamily of subsets that are completely ordered by set inclusion.
For all A and all chainsC,

VCeC:AxC=Ax|]C. (6.1)

Note that on a finite domain any binary relation > (vacuously) satisfies (6.1)

6We do not consider the problem of existence of a convex representation as in Theorem
5.3(iii), since in this context additional difficulties arise. Indeed, in order to definethe concept
of convexity on arbitrary domains one would need additional conditions that guarantee the
existence of a utility representation for a given weak order. Therefore, such an investigation
is beyond the scope of the present paper.
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Theorem4.2' (Kreps, infiniteversion) Let > ke a binary relation on P°(X).
There exists a set R of (possibly infinitely many) weak orders on X such that
for all A,B,

A>B& VRER: AxP B,

if and only if > is a partial order that is continuous in the sense o (6.1) and
satisfies |UD.

Sketch of proof of Theorem 4.2° Necessity of the continuity condition (6.1)
iseasily verified along the lines of Example6.1. For the sufficiency part, consider
the following mapping f : P°(X) — P°(X). For all A,

fa)y=J B

B. »B

Using condition IUD and the continuity condition (6.1), one easily verifies that,
for al A, A > f(A). Thisimplies that, for all A,B, A = B < f(B) C f(A).
Using this, one can further verify that, for all A, f(f(A)) = f(A), hence the sets
f(A), A € P°X), are precisely the fixed points of the mapping f. Let T'pmax
denote the set of al maximal chains in the set {f(A) : A € P°(X)) of fixed
points of f, where a maximal chain is a chain that is not proper subset of any
other chain. For each H € I',,4» define a weak order on Ry on X as follows,
For al z,y € X,

tRny > VHeH : z € H=>ye€ H]|. (6.2)
It can be verified that for all A,B,
A> B& YRy €Thg, - AP B,

i.e. the family {Ry : H € ['maz } provides the desired representation.
O

Remark Note that the representing set R in Theorems4.2or 4.2" isnot uniquely
determined by the ranking ». The specific family of weak orders constructed in
the proof of Theorem 4.2' will be referred to as the maximal chain representation
of > (cf. Kreps [1979]).

Consider now the problem of multi-preference rationalizability of agiven WEPO
R on X. In order to apply Kreps' theorem, one hasto extend R to a continuous
partial order that satisfies IUD. Asthe following example suggests, the existence
of such an extension requires additional restrictions on infinite domains.

Example 6.2 Let X = N U {zo}, where N is the set of natural numbers, and
zo 1S some object not contained in N, e.g. one may choose zo = N. Define an
extended relation R on X as follows. For al i € N, and al A € P°(X), ARi.
Furthermore, for all A ¢ P°(X),

ARzg & [z € A or A isinfinite].
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It is easily verified that R satisfies REF, MON and TRA, i.e. Risa WEPO.
However, the canonical extension >* of R according to (4.6) is not transitive.
For instance, {1} ~* N and N ~* N U {zo}, but NU {z¢} >* {1}.

In the infinite case, transitivity of the canonical extension (4.6) is guaranteed
by the following "regularity” condition.

Regularity (REG) Let C be a chain. Suppose that for all C € C and all
y € UC, CRy. Then, for all z € X,

UCRz:> 3C €C: CRz

Note that as the continuity condition (6.1), REG is vacuously setisfied in the
finite case.

Lemma 6.1 Let R be an extended relation on X satisfying REF and MON.
There exists a partial order > on P°(X), continuous and monotone with respect
to set inclusion, that extends R if and only if R satisfies TRA and REG.

Proof Necessity of TRA follows as in the finite case. Necessity of REG can
be verified asfollows. Let C be a chain. Choose a well-ordering of [ JC so that
UC = {ui : i <v} for some (possibly infinite) ordinal ». Take any C € C. By
assumption, CRy; for all i < v. First, we show by transfinite induction that
this implies C > CuU|JC, and hence C > | JC. Clearly, C > CUy, since > is
an extension of R. Suppose it has been shown that C = CU{y; :i < pt1) for
some x < v. By MON, CRy, 41 implies(CU{y; :i < p+1})Ryuy1,1.e. CU{y; :
i <p+1} > CU{y ;i < pu+1}. Hence by transitivity C = CU{y; 1 < p+1}.
Next, suppose it has been shown that C > CU{y; : i < A) for somelimit ordinal
A < v. Then, by continuity, C > CU [ J{y: : i < A}. Together with C > CU y,
thisimpliesC > CU{y; : i < A). Thus, by transfinite induction, C > | JC. Now
suppose, according to REG, that | JCRz, i.e. {JC = |JCU 2. For any C € C,
C > |JC by thefirst part, hence by transitivity, C = {JC U z. By monotonicity
of »,C>CuUz e CRz

In order to verify sufficiency of TRA and REG, consider the canonical ex-
tension ?* of R defined, asin (4.6), by

A>*B:& VYye B: ARy,

for al A,B. By definition, =* is an extension that is monotone with respect
to set inclusion and continuous in the sense of (6.1). Hence, it suffices to verify
transitivity. Let A>* B and B =* C, i.e. ARy for all y € B and BRz for all
z € C. We havetoshow ARz for all z € C. Asin the proof of Lemma 4.1 this
follows at once from MON if B C A. Hence, suppose that B \Ais non-empty.
Choose a well-ordering of B\ A so that B\ A = {b; i <v} for someordinal v.
Define By := A and, for each 4 < v, B, := AU {b; : i < u} so that B, = AUB.
The proof proceeds by transfinite (downward) induction. Let z € C. Clearly,
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B, Rz by MON. Suppose that for someordina g, B,+1 Rz. Then one concludes
as in the proof of Lemma 4.1 that TRA implies B,Rz. Next, suppose that
By Rz for some limit ordinal A. Since for any u < v, AC A,, one has B, Ry
for any ye AU B by MON. Hence, by condition REG, B, Rz for some p < A.
Therefore, by induction BoRz, i.e. ARz.

a

Clearly, asin the finite case property REF implies that the canonical extension
>* satisfies IUD. Combining Theorem 4.2' and Lemma 6.1 one thus obtains
the following characterization of multi-preference rationalizability of extended
relations.

Theorem 6.1 Let R be an extended relation on an arbitrary domain X. Ris
multi-preference rationalizable (in the sense of (4.5)) if and only if R satisfies
REF, MON, TRA and REG, 1.e. if and only +f Ris a regular WEPO.

The following corollary is analoguous to Corollary 4.1

Corollary 6.1 An extended relation R on X is aregular WEPO if and only if
1t is the intersection of all its weak order extensions.

Consider now the statements (i) and (ii) of Theorem 5.3. Let R be a WEPOQO,
and denote by =* the canonical extension of Rasdefined in the proof of Lemma
6.1,ie. Ax* B :© VYy € B: ARy. In the finite case, the proof of Theorem
5.3(1) and (ii) consists in showing that R satisfies SPR (WPR) if and only if
the maximal chain representation of >=* is linear (effectively linear). Hence,
in the finite case, the existence of a iinear (effectively linear) represenation is
equivalent to linearity (effective linearity) of the maximal chain representation.
However, this is no longer true for arbitrary domains as the following example
shows.

Example 6.3 Let X = N U{z;,z2}, where z,,z5 & N. For each i € N define
aweak order R, by the following utility function u; : X — R,

3 if z=1
2 f 2=z,
ui(z) = 1 f z==x,
11—. if z=jwithjeN,7#1

Definearegular WEPO by R :=["; Ri. Clearly, since all orderings R; are linear,
R satisfies SPR. However, the maximal chain representation of the canonical
extension >* is not linear, nor even effectively linear. To see this, observe that
the set of all fixed points of the corresponding mapping f as defined in the proof
of Theorem 4.2' is{ N U {z1,z2}} U F; U FoU F3, where

Fi o= {A:ACN, A%},
Fy = {AU{J,‘)_} ‘.ACN},
Fy = {AU{Il,xz} cAC N}
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(Note that “C” denotes proper inclusion.) Using this, it is easily verified that
the maximal chain representation contains orderings for which z; and z, are
indifferent, as well as orderings for which 4 is strictly better than z;. Conse-
guently, the maximal chain representation is not (effectively) linear.

Linearity and effective linearity of the maximal chain representation can be
characterized using the following stronger notion of regularity.

Strong Regularity (SREG) For all chains C and all z,
UCR2:> ICe€C:CRz

In the following theorem, by the maximal chain representation of a WEPO
R we mean the maximal chain representation of the corresponding canonical
extension >* of Rto P°(.X).

Theorem 6.2 Le R be ¢ WEPO on an arbitrary domain X

(i) The maximal chain representation o R is linear if and only if R satisfies
SREG and SPR.

(ii) The maximal chain representation of R is effectively linear if and only i R
satisfies SREG and WPR.

Proof We only prove part (ii). From this, part (i) follows at once, noting that
for an antisymmetric WEPO, effective linearity and linearity of a representation
coincide.

Necessity of WPR is easily verified. Necessity of SREG can be verified as
follows. Let C be any chain of non-empty subsets of X. Suppose by way of
contraposition, that for al C € C, CUz »* C, where =" is the canonical
extension of R (cf. (4.6)). Denote by f the corresponding mapping as defined
in the proof of Theorem 4.2'. Clearly, for al C € C,

fleyuz>* f(C). (6.3)

Theset {f(C) : C € C} formsa chain in X, and hence can be extended to a
maximal chain, denoted by H. Let Ry be the weak order corresponding to H
according to (6.2). By (6.3), z ¢ f(C) for all C € C, hence by definition of
Ry, zRuz for adl z € Y{f(C) : C € C). Suppose that for some C € C and
some x € f(C), X Ryz. Then, I3z and by effective linearity, X and z must be
indifferent with respect to every ordering in the maximal chain representation.
However, this is not possible by (6.3). Consequently, one must have zPxr for
al z € J{f(C) : C € C}. In particular, zPxz for al X € |JC, and hence
Ucuz»=*JC.

In order to verify sufficiency of SREG and WPR, consider any maximal chain
‘H of fixed points of the corresponding mapping f. For each H € H define a set
He ={H :H eH,H c H). Hence H. istheset of all predecessors of H in
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H. Let H~ :=|JH.. Effective linearity of the maximal chain representation
is established by showing that for all H € #, {v,w} C H \ H- implies [vRw
and wRv]. First, it isshown that for all H € H, H~ € H. Indeed, by SREG,
H~ must be a fixed point of f, hence by maximality of the chain, H~ € H.
Note that either H~ = H, or H~ is the immediate predecessor of H in H.
Suppose that {v,w} C H \ H-, and assume by way of contradiction that not
[vRw and wRv]. Consider H;, := f(H~ Uv) and Hp :=f(H~ U w). Clearly,
H~- C H,,Hy C H, hence by maximality of the chain, H; = H, = H. This
implies (H~ Uv)Rw and (H~ U w)Rv, and therefore by WPR, H~ Rv which
contradicts thefact that #~ isafixed point of f. Consequently, vRw and wRv.
Thisimmediately implieseffective linearity of the maximal chain representation.

O

Remark Note that Theorem 6.2 entails Szpilrajn’s [1930] well-known extension
theorem as a straightforward corollary, since both SREG and WPR are implica-
tions of BIN. Also observe that Theorem 6.2 provides only sufficient conditions
for the existence of a linear (effetively linear) representation of a WEPO on an
arbitrary domain. Indeed, as Example 6.3 demonstrates, condition SREG is
not necessary for the existence of such a representation. It is conjectured that
the key to existence of a linear representation is again the weaker notion of
regularity, condition REG.
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