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Abstract The concept of a strict extended partial order (SEPO) has turned out 
to be very useful in explaining (resp. rationalizing) non-binary choice functions. 
The present paper provides a general account of the concept of extended binary 
relations, i.e. relations between subsets and elements of a given universal set 
of alternatives. In particular, we define the concept of a weak extended partial 
order (WEPO)  and show h(ow it can be used in order to represent rankings of 
opportunity sets that display a upreference for opportunities." We also clar- 
ify the relationship between SEPOs and WEPOs,  which involves a non-trivial 
condition, called "strict propern'ess." Several characterizations of strict (and 
weak) properness are provided based on which we argue for properness as an 
appropriate condition demal-catin.g "choice based" preference. 



1 Introduction 

The concept of an extended strict partial order (SEPO) has been introduced in 
Nehring [I9961 in order to explain the structure of non-binary choice functions. 
The notion of an extendeal partial order serves as an appropriate generaliza- 
tion of the concept of a transitive, but possibly incomplete preference among 
alternatives. In particular, build.ing on the work of Aizerman [1985], and Aizer- 
man and Malishevski [1981], it has been shown in Nehring [I9961 that a choice 
function is rationalizable by a SEPO if and only if it satisfies two fundamen- 
tal rationality conditions, contraction consistency and the so-called "Aizerman 
condition," or, equivalently, if and only if it satisfies Plott's [I9731 famous path- 
independence condition.' The ]present paper introduces the notion of a weak 
extended partial order (WEPO) by substituting a straightforward reflexivity 
condition for the (non-trivial) irreflexivity condition characterizing SEPOs. It 
is shown that WEPOs can be used to  represent the qualitative structure of 
rankings of opportunity sets that display a "preference for opportunities" (in a 
sense to be defined). Morelover, in a choice functional context, the subclass of 
"strictly proper" WEPOs rationalize "acceptability" of alternatives in a natural 
way that complements the rationalization of inferiority in terms of SEPOs. A 
number of characterizations of strict (and "weak") properness are given, based 
on which we argue that prclpernsess demarcates choice based weak preference. 

The paper is organized as follows. Section 2 contains the basic definitions. 
In particular, we identify xppropriate conditions of reflexivity, irreflexivity and 
transitivity for extended relations. Section 3 briefly summarizes the relation be- 
tween SEPOs and choice functions established in Nehring [1996]. In Section 4 ,  
we establish an isomorphisrn between WEPOs and rankings of sets that display 
a "preference for opportunities." As a corollary, we obtain a characterization 
of a WEPO as the intersection of all its weak order extensions. Section 5 is 
devoted to  the interrelation of WEPOs and SEPOs introducing the condition of 
strict properness. We also 11riefl:y discuss a weakening of properness that corre- 
sponds to a condition of "Inelevance of Inessential Elements" (IIE) introduced 
in Nehring and Puppe [19!)6], and translate the analysis there to  characterize 
strict and weak properness in terms of restrictions on the intersection represen- 
tation. Section 6 addresses the question of how the results generalize to the case 
of arbitrary non-finite domains. For the general intersection representation of 
WEPOs we give a complete answer using an appropriate "regularity" condition. 
An analoguous result for proper WEPOs seems to be much more difficult, and 
we only provide a partial solution to that problem. 

'For recent work on this cl.ass, see Bandyopadhyay (19861, Johnson [1990], Malishevski 
[I9941 and Sertel [1988a, b]. 



2 Basic Concepts 

Let X be an arbitrary set of alternatives and denote by P O ( x )  := P ( X )  \ (0) 
the set of all non-empty subsets of X .  Elements of P O( X )  are interpreted as 
choice s i tuat ions or opjvortunity se ts .  An extended (preference) re lat ion Q o n  
X is a binary relation between subsets and elements of X ,  i.e. Q 2 P O(X)  x 
X .  For A E P O( X )  and z cf X ,  the statement "AQz" is interpreted as "the 
choice situation, or opportunity set, A is preferred t o  the (degenerate) choice 
situation, or (degenerate) opportunity set, z (={z))"2 Consider the following 
basic properties of extended relations. 

Reflexivity ( R E F )  Folr all x ,  A, 

Irref lexivi ty  ( I R R )  For all x ,  A ,  

A I Q X  + [ A  \ x # 0 and ('4 \ x)Qx] 

Monotonic i ty  (MON) For all x ,  A ,  B ,  

[ A  B and AQx] BQx. 

Property REF is a straightforward generalization of standard reflexivity. Prop- 
erty MON seems to be very natural in our context. It states that having more 
options can never be harmful and thus reflects the absence of "effort-of-decision 
costs." Property IRR is a suitable generalization of irreflexivity. A choice-based 
justification for IRR is as follows. If A is Q-superior to x ,  then the "non-x" 
elements in A must be superior, i.e. ( A  \ z ) Q x .  

The following condition generalizes the notion of transitivity for extended 
relations. Note that for A = 0 and B = z it reduces to  ordinary transitivity for 
(non-extended) binary r'elations. 

Trans i t iv i ty  (TRA)  For all x ,  y, A U y, B, 

[ ( A  U y)Qx and BQy] 3 ( A  U B)Qz.  

An extended relation satisfying monotonicity, transitivity and either reflexivity 
or irreflexivity will be called an extended partial order  (EPO). A reflexive EPO 
is called a weak extended partial order (WEPO),  an irreflexive EPO is called a 
s t r i c t  extended partial order (SEPO). Throughout, WEPOs will be denoted by 
the symbol R and SEPOs by the symbol P. 

The simplest examples of EPOs are those that are b inary ,  i.e. those that 
satisfy the following property. 

'Throughout, singletons are identified with elements, i.e. for all x E X ,  {z) is identified 
with x. 



Binar iness  (BIN)  For all x ,  A, 

A binary EPO Q is completely determined by its (non-extended) base relat ion 
Qa := Q n ( X  x X). Note that a binary and monotone extended relation is reflex- 
ive (irreflexive, transitive) if and only if its base relation is reflexive (irreflexive, 
transitive) in the usual sense. In accordance with standard terminology we may 
thus define a weak order  on X as a binary WEPO that is complete on X x X .  
Similarly, a l inear  order  on X is a binary SEPO P that is weakly connected on 
X in the sense that for all :E, y E X ,  x # y implies (xPy  or ~ P x ) . ~  

3 SEPOs and Non-binary Choice 

The prominent role of SEPOs in the context of rationalizing non-binary choice 
functions has been established i:n Nehring [1996].~ Consider a choice function 
C : 3 ( X )  -+ 3 ( X )  defined on the domain T ( X )  of all finite and non-empty 
subsets of X .  As usual, the term "choice function" refers to the assumption that ,  
for all A E 3 ( X ) ,  C(A) C .A. Any such choice function may be "rationalized" 
by an extended relation P in terms of the following condition. For all x and all 

A E 3 ( X ) ,  

( p )  APx w x # C(A U {x)) .  

Note that,  given an extended relation P and a choice function C that are related 
by means of condition p ,  P automatically satisfies IRR (on F ( X ) ) .  

Theorem 3.1 (Nehr ing  [1996]) A choice funct ion C : 3 ( X )  - -  3 ( X )  i s  
rationalizable by a SEPO P C_ T ( X )  x X In the  sense of condi t ion p i f  and on ly  
i f  C satisfies for  all x ,  A, B 

( a )  2 E A \ C(A) and A B => x # C(B) ,  

and  

In the literature, q is sometihes referred to as the Aizerman-condition. I t  is well 
known that on a finite domain a and 71 are together necessary and sufficient for a 

3 A  note on terminology: sometimes a reflexive and transitive binary relation is called a 
preorder, whereas a partial order is in addition required to be antisymmetric. In this paper, 
given reflexivity, the term "partial order" is used synonymuosly for "preorder." Wherever 
assumed, antisymmetry is explicitly mentioned. 
' Andrey Malishevski has informed us that he independently arrived at a concept essentially 

identical to that of a SEPO in a, forthcoming paper (which has not yet been accessible to the 
authors) . 



choice function to  be rationalizable by a set P of linear orderings in the  following 
sense. For all A ,  

where m a x p  A denotes the  (unique) best element in A with respect t o  the  linear 
ordering P. The  following result is thus a corollary of Theorem 3.1. Let C 
denote the  set  of all linear orderings on X. 

Corollary 3.1 Let X bie finite. A n  extended relation P on X is a SEPO if and 
only it is the intersection of all its linear extensions, i.e., 

In particular, the set of linear extensions ts non-empty. 

4 WEPOs anld "Preference for Opportunities" 

In this section it is shown how the concept of a weak E P O  naturally arises in 
the context of ranking sets of alternatives in terms of their "opportunity value." 
Specifically, it will be shown that  there is an  isomorphism between W E P O s  and  
rankings of opportunity :sets, or choice situations, tha t  display a "preference for 
opportunities" (in an  appropriately specified sense). The  assumption here is 
tha t  choice is performed in two stages. First, an opportunity set is determined 
from which in later stage of choice one particular alternative is chosen as the  
final outcome. As the  simplest example consider the indirect utility preference 
k R  derived from some weak order R on X I  which is defined as follows. For all 
A,  B ,  

A kR B :G Vy E B 32: E A : zRy. 

In particular, for all A and each alternative x ,  

where P denotes the  asymmetric part  of R. Clearly, since R is complete o n  XI  
k R  is complete on P O( X ) .  However, indirect utility preferences neglect impor- 
tant  aspects of decision making tha t  may cause mcompleteness of preference. 
For instance, a decision ]maker may be uncertam about the preferences t h a t  are 
relevant a t  t he  moment of choice of the  alternative. More generally, as in a 
multi-attribute decision problem a decision maker may attach importance t o  
different "viewpoints" reflected by different rankings of the alternatives. Ac- 
cordingly, we consider the  following generalization of (4.1). Let t denote a 
partial order o n  P O( X ) ,  i.e. a reflexive and transitive (but not necessarily, com- 
plete) binary relation annong sets of alternatives. 



Definition 4.1 We will say that  > displays a preference for opportunrtres if and 
only if there exists a set R of weak orders on X such that  for all x ,  A, 

By (4.2), the  addition of a n  alternative x t o  A is of positive value if and only if x 
is superior to  A (in terms of indirect utility) for some "relevant" ordering R E R. 
Definition 4.1 thus captures the  intuitive argument for the  value of having choice 
put  forward in Jones and  Sugden [1982]. A particular interpretation of the set 
R of weak orders is as a decision maker's possible future preferences. In  this 
case, condition (4.2) may ble thought of expressing a "preference for flexibility" 
(see Kreps [1979]). As not,ed a:bove, a more general interpretation of the  set 
R is as different relevant "viewpoints" from which a decision maker evaluates 
alternatives. In this case, the term "preference for opportunities" seems to  be 
appropriate. 

Note tha t ,  given a set R of weak orders on X ,  (4.2) in effect imposes consis- 
tency conditions on the  following extended relatton on X derived from the rank- 
ing ?. Say tha t  x is essential at A,  denoted by A E x ,  if and only if A U x + A. 
The  question to be studied in the following is: Which extended relations E are 
multi-preference ra t ional i~a~ble  in the sense of Definition 4.1? In other words, 
what are the conditions on an  e.xtended relation E that  imply the existence of 
a set R of weak orders on ;Y suc:h that  

Obviously, the  following two conditions are necessary for multi-preference ratio- 
nalizability. For all x ,  A, B,  

A E x  3 x @ A ,  

[A!: B and B E x ]  3 A E x .  

Condition (4.3) is straightforward. Condition (4.4) states tha t  if x is essential 
a t  B ,  then x must be essential a t  any subset A of B (in Nehring and Puppe 
[1996], condition (4.4) is referred t o  as contraction consistency). Conditions 
(4.3) and (4.4) can be made more transparent by considering the corresponding 
"inessentiality" relation Rrs which is defined as follows. For all x ,  A,  

AR.Ex :e not [AEx] 

The following fact is easily esta.blished. I t  shows, in particular, t h a t  the  "con- 
sistency" condition (4.4) exactly corresponds to  the canonical property MON. 

Fact 4.1 The extended relation E satisfies (4.3) if and only rf R E  satisfies 
REF. Furthermore, E satisfies (4.4) if and only if RE satisfies MON. 



It is clear that  E is multi-preference rationalizable in the sense of Definition 4.1 
if and only if RE is multi-preference rationalizable in the following sense: There 
exists a set of weak orders ;R on X such that for all x ,  A, 

The  following theorem establishes that  the class of extended relations tha t  are 
multi-preference rationalizable is precisely the class of all WEPOs. 

Theorem 4.1 Let X be a finite set, and let RE be an extended relation on X .  
RE is multi-preference rationalizable (in the sense of (4.5)) if and only if RE 
satisfies REF, MON and TRA,  i.e. i f  and only i f  RE is a WEPO. 

The proof of Theorem 4.1 is given in two steps. First, it is shown that  a 
reflexive and monotonic extended relation RE can be extended to  a partial 
order on P O( X ) ,  weak1.y monotonic with respect to set inclusion, if and only if 
RE satisfies TRA.5 In a second step, it is verified that the smallest extension 
kk of RE to P O( X )  satisfies the necessary and sufficient conditions in order to  
apply a fundamental representation theorem due to Kreps [I9791 which gives 
the desired set R of weak orders. 

Lemma 4.1 Let X be a finite set, and let RE be an extended relation on X 
satisfying REF and MON.  There exists a parttal order ? E  on P O( X )  satisfying 
for al l  x ,  A, B ,  

A  > E  A U x  t. AREx,  and 

A C _ B  3 B k E A ,  

if and only zf RE satisfies T R A  

Note that  in Lemma 4.1, the first condition states that  k ~  is a (proper) exten- 
sion of R E .  The  seconcl condition is weak monotonicity of ? E  with respect t o  
set inclusion. 
Proof of Lemma 4.1 Necessity of T R A  can be verified as follows. Suppose 
that  ( A  U y)REx and BREy,  hence by MON, ( A  U B  U y)REx and ( A  U B ) R E y ,  
respectively By the fact, that  ?E is an extension, A  U B  k E  A U B  U y and 
AUBUy Y E  AUBUyUx, hence by transitivity, AUB ?E AUBUyUx. Finally, by 
monotonicity with respect to set inclusion and transitivity, A  U B t~ AU B U x,  
i.e. ( A  U B ) R E z .  

In order t o  verify sufficiency of T R A ,  define a binary relation t k  on P O( X )  
as follows. For all A, B ,  

'Note that this may serve as an additional justification for property TRA as the natural 
extension of transitivity for extended relations. 

8 



Obviously, since RE satisfies REF, 5; is an extension of RE that is monotonic 
with respect to set inclusion. Hence, it suffices to  show that k; is transitive. 
Suppose that for A, B , C  E P O ( : X ) ,  A >-; B and B t.& C ,  i.e. AREy for all 
y E B and BREz for all z E C .  We have to  show that for all t E C, AREz. This 
follows at once from MON if B 5 A. Hence, suppose that B \ A = {bl, .. ., b , )  
is non-empty. Define BO ::= A, and for i = 1, ..., n,  Bi := A U {bl ,  ..., bi) ,  so 
that B, = A U B. By MON, BREz implies B, REz for all z E C .  This can be 
written as 

(Bn-1 U b n ) R ~ z  

for all z E C. Also, by assumption,  ARE^,. Hence, by TRA, for all z E C ,  
Bn-l REz. Again, this can be written as 

which together with AREb,,-l iimplies Bn-2REz for all z E C by TRA. Thus, 
by induction, BoREz,  i.e. AREz for all z E C. 

0 

Note that the particular extension kk given by (4.6) is defined in terms of a 
domznance condition: A is weakly preferred to B if and only if every alternative 
of B is inessential at A. 11, can be shown that this, in effect, determines the 
smallest extension of RE to P O( X ) ,  i.e. >k is the intersection of all extensions 
to P O(X) .  

It is easily verified that,  given REF, the extension >;5 defined above satisfies 
the following property. 

Ind i rec t  Uti l i ty  Dominance  ( I U D )  For all A, B ,  

T h e o r e m  4.2 (Kreps)  Let X be finite, and let k be a btnary relation on 
P O(X) .  There ensts  a set ;R of weak orders on X such that for all A, B,  

if and only if k is a partzar' order satisfying IUD.  

This is the version of Kreps' theorem stated and proved in Puppe [1996, Corol- 
lary 41. For a sketch of the proof of Theorem 4.2 on infinite domains, see Sect. 6. 
Given this result, the proof of Theorem 4.1 proceeds in the following straight- 
forward manner. 
P r o o f  of T h e o r e m  4.1 Necessity of REF, MON and TRA for multi-preference 
rationalizability is easily verified. For the sufficiency part, let RE satisfy REF,  
MON and TRA. By Lemma 4.1 there exists an extension of RE to P O(X) .  The 
particular extension k; constructed above in addition satisfies IUD. Hence, by 
Theorem 4.2 there exists a set 1 2  of weak orders on X such that A kk B if and 



only if for all R E 'R the corresponding indirect utility preference hR satisfies 
A k R  B. In particular, AREx if and only if, for all R E R, A R x .  

0 

As a corollary of Theorem 4:.1 one obtains the following characterization of 
WEPOs analogous to  the characterization of SEPOs provided by Corollary 3.1. 
Denote by W the set of all weak orders on X. 

Corollary 4.1 Let X be finite. A n  extended relat ion R on X i s  a WEPO if 
and only if i t  i s  the intersectiton of all i t s  weak order  extensions,  i . e . ,  

Note that in our context, bina.riness has very little to  recommend itself. For in- 
stance, BIN would yield the following higLy restrictive implication: If { z ,  y)  +> 
x for all x ,  y E X ,  then A 2 B + A +; B for all A, B ("c" denoting proper  
inclusion). In terms of th~e intersection representation, BIN is equivalent to the 
following condition. Let 72 -1 {R1, ..., &) be a representing family of weak 
orders as in (4.5). For alll A ,  El and all x, 

[3Ri Va  E A : xPia ,  and 3Rj Vb E B : xP,b] 3 3Rk Vc E A U B : x P ~ c ,  

which seems remarkably unattractive. 

5 Properness 

The rationalization result for choice functions in terms of SEPOs on the one 
hand, and the representation of "preference for opportunities" in terms of WE- 
POs on the other, raise the question of the precise relationship between reflexive 
and irreflexive EPOs. This issue is addressed in this section. In particular, an 
appropriate additional condition of "strict properness" is shown to provide a 
canonical link between SIEPOs and WEPOs. Furthermore, it is argued that the 
notion of properness may serve as a foundation for the concept of "choice-based" 
preference. 

5.1 Strict Properness 

Given the concept of an extended relation as introduced in this paper, the fol- 
lowing definition seems to be natural. 

Definition 5.1 For any extended relation Q on X ,  define its arrejlezive compo- 
nent  PQ as follows. For all I, A,  

Also, define the reflexive closure RQ of Q by 



for all x ,  A. 

It is easily verified that, given rnonotonicity of Q,  PQ is the greatest irreflex- 
ive subrelation of Q. Similarly, .RQ is the smallest reflexive extension of Q.  In 
particular, PQ = Q if Q satisfies [RR, and RQ = Q if Q satisfies REF. The oper- 
ations of taking the irreflexive component and the reflexive closure are mutually 
inverse in the following sense. 

Lemma 5.1 If R is a reflexive and monotone extended relation on X ,  then 
R = R(p,). Similarly, if P is an irreflezrve and monotone extended relation on 
X I  then P = P[R,). 

The proof is straightforwardl and therefore omitted. It is also easily verified that 
for any SEPO P, the reflexive closure Rp is a WEPO. An analogous statement 
for WEPOs is, however, not true as the following example demonstrates. 

Example 5.1 Let X = {x, y, z } ,  and a WEPO R on X as follows. For all x ,  A,  

ARx :@ [ A  = {x) or #A > 21 
It can be verified that the irreflexive component PR of R is given by 

APRx H [A = {x, y, z }  or (#A = 2 and x A)] 

However, PR is not transitive as can be verified by choosing A = B = {x, z }  in 
the definition of TRA. 

Example 5.1 thus shows tha.t adclitional conditions are needed in order to guar- 
antee transitivity of the irreRexive component of a WEPO. It turns out that the 
appropriate condition is a s  follows. 

S t r i c t  P rope rnes s  ( S P R )  For all A U x, A U y, z # y, 

[ ( A  U x)Qy and (A U y)Qx] 3 [A # 0 and AQx]. 

The following lemma clarifies the interrelation of SPR and the basic properties 
of extended partial orders. I[n particular, it stows that any SEPO automatically 
satisfies SPR. 

Lemma 5.2 For any extended relation, ( i )  IRR and TRA jointly imply SPR, 
and (ii) MON and SPR jointly imply TRA. 

P roo f  ( i )  Let A U x, A U y with x # y be given such that (A U x)Qy and 
(AU y)Qx. First, it is easily established that by IRR and TRA, A # 0. By IRR, 
[(A U I) \ YIQY and [(A \ X:I U YIQx, hence by TRA, [(A \ x) U ((A U x) \ y)]Qz. 
This implies (A U x)Qx, hence AQx by IRR. 

(ii) Let A U y, B and 2: be given such that (A U y)Qx and BQy. If x = y, 
(A U B)Qx by MON. Hence, suppose x # y. By MON, (A U B U y)Qx and 
(A u B U x)Qy, hence by SPR, (A U B)Qz. 

0 



Theorem 5.1 I f  P is a SEPO, then Rp is a WEPO satisfying SPR.  Con- 
versely, if R rs a WEPO satisfying SPR, then PR is a SEPO. 

Proof T h e  first part of Theorem 5.1 is easily established using Lemma 5.2(i) 
and the fact that RQ satisfies S P R  whenever Q does. Consider the second part .  
Irreflexivity and monotonicity of PR are obvious. In order t o  verify transitivity, 
observe that  PR satisfies SPR,  since R does. Hence, the claim follows from 
Lemma 5.2(ii). 

0 

5.2 Strict Properness and Choice 

In this subsection, it is shown that the concept of strict properness allows for 
a canonical definition of "revealed weak preference." We will also argue that 
properness is the "right"' condition in order to demarcate the notion of "choice- 
based" preference. As has been argued in Nehring [1996], condition p provides a 
canonical link between choice and revealed strict preference in terms of SEPOs. 
Consequently, one may use the correspondence between SEPOs and strictly 
proper WEPOs established in Theorem 5.1 in order to define revealed weak 
preference. Given a choice function C : 3 ( X )  -+ 3 ( X ) ,  define the revealed 
weak extended preference relation Rc as follows. For all x and all A E 3 ( X ) ,  

(p') ARcx C ( A  U x )  A. 

Intuitively, condition p' rationalize? weak superiority of sets over elements, 
whereas condition p rationalizes inferiority of non-chosen alternatives. I t  is 
easily verified that  if R and C satisfy p' then PR and C satisfy p. Conversely, 
if P and C satisfy p then Rp and C satisfy p'. The  following result is thus an 
immediate corollary of Theorems 3.1 and 5.1. 

Corollary 5.1 Let Rc be defined from a choice function C according to p'. 
Then Rc is a WEPO so,tisfying SPR if and only if C satisfies a and q .  

This result suggests an identifcation of chorce basedness with strict properness, 
a t  least if one is willing to  accept a and q as basic conditions of consistent 
choice. In order to  shed further light on the relation between choice and (weak) 
preference, consider again condition p' which describes how revealed weak pref- 
erence can be canonically obtained from given choice behaviour. One may ask, 
conversely, what choice function is generated by a given W E P O  R. Consider 
the following definition. Given a WEPO R let for any A, 

CR(A)  := n { ~  2 A : BRx for all x E A }  

Hence, CR(A) is the intersection of all "dominating" subsets of A.  Thus,  one 
would like to  interpret the choice function C R  as describing, for each A,  the  
minimal set tha t  a decision maker is "unambiguously entitled" to  confine himself 



to in choosing given his preferences. As the following result shows, such an 
interpretation is warranted if and only if R is strictly proper. 

T h e o r e m  5.2 Let X be finite, and let R be a monotone and reflexive extended 
relation on X .  The choice function CR satisfies CR(A) # 0 for all A, and 
CR(A)Rx for all x E A, if and only if R satisfies SPR. 

P r o o f  Necessity of SPR can be verified as follows. Let x # y be given such that 
(A U x) Ry and (A U y) Rx. By definition of CR,  

In particular, A # 0 and, as a consequence of CR(A U {x, y))Rz for all z E 
A U {x, y), ARz for all z E A U {x,  y) by MON. In particular, ARx as required 
by SPR. 

Conversely, let R satisfy SF'R. In order to show the desired conclusion it 
suffices, by induction, to verify the following. For all non-empty B ,  C G A 
such that BRz and CRz for all z E A, the intersection B n C is non-empty 
and satisfies ( B  n C)Rz for all z E A. This is trivial if one of the sets, B 
or C ,  is equal to A. Hence, we may assume B # A. In this case, the set 
{x l ,  ..., x,) =: A \ ( B  n C:) is non-empty. We will show that for any subset 
D G { X I ,  . .  ., x,), (A \ D)Rz for all z E A. This will be done by induction on 
the number of elements of .D. F m t ,  consider a one-element subset D(') = {xi).  
By REF, one has [(A \ xi) U x;]Rz for any z E A \ xi. Also, by MON, for 
any z E A \ xi, [(A \ xi) U z]Rxi since either B 2 A \ xi, or C 2 A \ xi. 
Hence, by SPR, A \ xi is non-empty and (A \ xi)Rxi. Now assume the claim 
is verified for all subsets L)(" containing exactly k elements and consider any 
set D("+') {XI ,  ... , x,) i,hat contains k + 1 elements. Let x;, x j  be any two 
different elements of D ( ~ + ' ) .  By induction hypothesis, [(A \ D(~+ ' ) )  U xi]Rxj 
and [(A \ D ( ~ + ' ) )  u z j ]  RX;. Hence, by SPR, A \  D (~+ ' )  # 0 and (A \ D ( ~ + ' ) ) R Z ~ .  
Since xi was an arbitrary element of D('+'), this shows (A \ D(~+ ' ) )Rz  for all 
z E A by REF. Consequently, .B n C # 0 and (B n C)Rz for all z E A, since 
B n C  = A \  { X I ,  ..., x,) = : A \  ~ ( " 1 .  

0 

The fact that SPR is a necessary condition for CR to be well-defined can be 
further illustrated by considering the WEPO of Example 5.1 above. 

E x a m p l e  5.1 (continueqd) Let R be the WEPO on X = {x, y, z} as defined 
in Example 5.1 above. It is easily verified that according to Theorem 4.1, R can 
be represented as follows. For all w, A, 



with the followirig utilit,y functions u1,2,3 on {x,  y ,  2): 

Clearly, the W E P O  R i s  defined is not strictly proper. What  would be the 
"reasonable" chosen sets induced by the W E P O  R ?  Obviously, any two-element 
subset of {x, y, z) dominates each of its single elements, while no singleton domi- 
nates any other element. Hence, in accordance with definition (5.1)) CR(B) = B 
for each two-element subset B of {x,  y, z). On the other hand, choice from 
{x,  y,  z )  is not as straightforward. While f ,r any two-element subset B ,  B R w  for 
all w ,  there is no (unambigously) smallest dominatingset, i.e. CR({x, y,  z}) = 0. 
One might suggest to  define the chosen set from {x, y,  z )  as {x ,  y,  z)  itself. How- 
ever, that  would inevitably result in the inclusion of "redundant" alternatives. 
The example thus clearly demonstrates that indeed not all WEPOs are canon- 
ically related to  consistent choice behaviour. 

The following result lends further support to the proposed conceptual identi- 
fication of "choice-basedness" and strict properness, showing that  under SPR 
condition p' and definition (5 1) describe mutually inverse operations. 

Fact 5.1 Let R be a WEPO satisfying SPR. Then, R(c,) = R ,  and C ( R ~ )  = 6. 

Proof TO verify the first part ,  suppose that AR(C,)z, i.e. by condition p', 
CR(A U x)  C A. By Theorem 5.2, CR(A U x)  Rz for all z E A U x ,  in particular, 
CR(AU x)Rx.  Hence, by MON, ARx. Conversely, suppose that  ARx.  Then,  by 
REF,  ARz for all z E A U x. 'This implies CR(A U x)  C A, and hence AR(c,)x 
by condition p'.  

For the second part ,  we have to  verify that for all A,  C(A) = C(R,)(A). 
This  is trivial if A conta.ins one single element. Hence, assume that  A has a t  
least two elements. First;, let x E C(A). This implies C((A \ z) U x)  A \ x ,  
hence by p',  not [(A \ x)Rc:x]. By Theorem 5.2, C ( R c ) ( A ) R c ~ ,  hence by MON, 
C(Rc)(A) A \ x ,  i.e. r E C(R,)(A). Conversely, let x $! C(A).  This implies 
C ( ( A  \ x )  U x)  C A \ I, hence by p', (A \ x)Rcx. By definition (5.1), one thus 
obtains C(R,)(A) C A \ x, i.e. x $! C(Rc)(A). 

0 

5.3 Weak Properness 

T h e  condition of strict properness defined above entails a condition of antisym- 
m e t y .  To see this, consider first the case of binary extended relations. First, 
observe tha t  PQ and RQ are binary whenever Q is binary. Let R be a binary 
W E P O  with base relation R b  C_ X x X .  Then,  the base relation ( P R ) ~  of PR is 
given by ( P R ) ~  = R b  \ {(x ,  x)  : x E X ) .  Clearly, in general the relation ( P R ) ~  is 



irreflexive, but note that it is not necessarily antisymmetric. Indeed, it is easily 
verified that for a binary MTEPC) R ,  the base relation is antisymmetric if and 
only if R satisfies SPR. Hence, the notion of a strictly proper WEPO may be 
thought of as generalizing the notion of an antisymmetric partial order, i.e. a 
(reflexive) strict partial order. F'urthermore, this suggests to think of SPR as 
being composed of the follol~ing two conditions. 

Weak P rope rnes s  ( W P R . )  For all A U x ,  A U y such that not [zQy and yQz], 

[(A U z)Qy and (A U y)Qz] * [A # 0 and AQx]. 

An t i symmet ry  (ANT) For all x,  y, 

[zQy and y Q x ]  j x  = y. 

For the record, we note: 

Fact 5.2 S P R  is equivalent to the conjunction of W P R  and ANT 

As will be shown in the next subsection, WPR is a condition that deserves 
interest on its own right (although it does not seem sufficient for a canonical 
link between SEPOs and WE:POs). Observe that in contrast to SPR, any binary 
transitive extended relation automatically satisfies WPR. Hence, unlike SPR its 
weakening WPR is a condition that has bite only in the general framework of 
extended relations. 

5.4 Multi-Preference Rationalizability of Proper WEPOs 

Given the multi-preference representation of a WEPO by set of weak orders 
R on X ,  a natural question. is how the condition of properness is reflected in 
properties of the representing family of weak orders. Based on the analysis in 
Nehring and Puppe [1996], we provide a complete answer in the case of finite 
X .  In order to  formulate th'e result, consider first the following definition. 

Definition 5.1 (i) Say that, an extended relation R admits a linear representa- 
tion if and only if there exists a set R of linear orders (i.e. antisymmetric weak 
orders) such that R satisfies (4.5) with respect to  R. 
(ii)  Similarly, R admits an effectively linear representation if and only if there 
exists a representing family R = {R1, ..., R,,) of weak orders with the property 
that any indifference occuring in one ordering R, E R is shared by all orderings 
in R, i.e. xl iy  for some i implies xI jy for all j. 
(iii) Finally, R admits a convex representation if and only if there exists a repre- 
senting family 72 = {R1, ..., R,) of weak orders and, for each i, a utility function 
u, representing Ri such that any element of the convex hull of U = {u l ,  ..., u,} 
also represents one of the orderings in R. 



Theorem 5.3 Let X be finite, and let R be a WEPO on X .  Then, 

(i) R has a linear representation if and only if R satzsfies SPR 

(ii) R has an effectively linear representation i f  and only if R satisfies WPR. 

(iii) R has a convex representation if and only i f  R satisfies WPR. 

The entailed equivalence of effective linearity and convexity of a representa- 
tion has been established in Nehring and Puppe [I9961 in a slightly different 
framework. Specifically, in that paper it has been shown that in the context of 
ranking opportunity sets, effective linearity and convexity of a multi-preference 
representation are each equivalent to a condition of "Irrelevance of Inessential 
Elements" (IIE). It can easily be checked t'iat when translated into a condition 
on the correpsonding WEPO, IIE corresponds to  our condition WPR.  Part (i) of 
Theorem 5.3 is, in effect, a special case of part (ii), noting that effective linear- 
ity of a representation en,tails its linearity if R is antisymmetric. Alternatively, 
Theorem 5.3(i) can be deduced from Theorems 3.1 and 5.1 above. Indeed, if R 
is a WEPO satisfying SPR, then by Theorem 5.1, its irreflexive component PR 
is a SEPO. Hence, by Theorem 3.1 (or, Corollary 3.1) there exists a represen- 
tation of PR by a set of (irreflexive) linear orderings. It is then easily verified 
that the reflexive closures of these linear orderings represent R in the sense of 
condition (4.5). 

Multi-preference representations of extended orders allow to rationalize pref- 
erence incompleteness in terms of "unresolvedness" of preference due to suspen- 
sion of judgement between a set of "reievant" complete preference orderings that 
induces a corresponding suspension of judgement between the alternatives them- 
selves. Conversely, asserted weak preference is rationalized as definite (though 
possibly "disjunctive") preference according to 

Note that the non-binariiness of R can be accounted for in terms of (5.2) as a 
failure of the "V" and "3" quantifiers to  interchange. Conceptually, the ''en 
implication of (5.2) seems not entirely unproblematic. In particular, one might 
argue that even if x is dominated by some y; for any particular R;, x may 
nonetheless be a potentially superior compromise choice. In Example 5.1, for 
instance, z is clearly the best choice with respect t o  the subset { u l ,  u2) of utility 
functions. This skepticism can be addressed by requiring the set of rationalizing 
orderings R to be "closed under compromise," i.e. to  be convex (see Nehring 
[1996] for an extensive a~rgument). In Example 5.1, z is uniquely best with 
respect to  any compromise utility function v = xi aiui with Ci ai = 1 and 
0 5 a3 < min{al, as), and can thus not be viewed as genuinely dominated 
by the set {x, y). While it has been shown in Nehring [I9961 that convexity is 
without loss of generality for SEPOs, Theorem 5.3(iii) shows convexity to entail 
significant restrictions for WEPOs. It seems rather remarkable that,  up to  a 



different stance toward indifferences, closedness under compromise leads to  the 
same restriction as the requirement of choice-basedness in the sense of Theorem 
5.2. 

6 Non-finite Domains 

In this section, we address the problem of how the main results of this paper 
generalize to  the case of arbitrary, possibly non-finite, domains. Specifically, we 
will consider the results on multi-preference rationalizability of extended rela- 
tions, i.e. Theorems 4.1, 5.3(i) and 5.3(ii).6 First, consider the multi-preference 
representation for WEPOs established in Theorem 4.1. In order to  prove a 
coxesponding result for arbitrary domains, we first need to state a version of 
Kreps' theorem applicable also to infinite domains. As the following example 
demonstrates, the multiple preference represenation according to Theorem 4.2 
requires additional restrictions i n  that case. 

Example 6.1 Let X = N', where N denotes the set of all natural numbers. 
Define a binary relation > on P O( X )  as follows. For all A, B, 

A > B :* [A is infinite, or B is finite]. 

Obviously, t is reflexive and transitive, i.e. a partial order. Also, it is easily 
verified that k  satisfies IUD. However, there does not exist a family R of weak 
orders on X such that > is the intersection of all corresponding indirect utility 
preferences as required by Theorem 4.2. To see this, assume to the contrary 
that there would exist such a family 72 = {R, : i E 1) for some index set Z. By 
definition, 1 k  w for all w E N.  Hence, for all i 6 Z, and all w E N ,  1R;w. This 
implies 1 k R s  N for all i by definition of k R * .  Consequently, one would obtain 
1 N which is false by assumption. 

As it turns out,  the existen.ce of a multi-preference representation can be guar- 
anteed by the following "c'ontinuity" condition. Let C C P O( X )  be a chain of 
subsets of X ,  i.e. a family of subsets that are completely ordered by set inclusion. 
For all A and all chains C. 

Note that on a finite domain any binary relation 2  (vacuously) satisfies (6.1) 

We do not consider the problem of existence of a convex representation as in Theorem 
5.3(iii), since in this context adsiitional difficulties arise. Indeed, in order to define the concept 
of convexity on arbitrary domains one would need additional conditions that guarantee the 
existence of a utility representation for a given weak order. Therefore, such an investigation 
is beyond the scope of the present paper. 



T h e o r e m  4.2' (Kreps,  infinite version) Let 2 be a binary relation on P O(X) .  
There exists a set R of (possibly infinitely many) weak orders on X such that 
for all A, B, 

A ? B ~  V R E R : A > ~ B ,  

if and only if > is a partial order that is continuous in the sense of (6.1) and 
satisfies IUD. 

Sketch  of proof  of Theorem 4.2' Necessity of the continuity condition (6.1) 
is easily verified along the lines of Example 6.1. For the sufficiency part, consider 
the following mapping f : P O( X )  -+ P O(X).  For all A, 

Using condition IUD and the continuity condition (6.1), one easily verifies that,  
for all A, A > f (-4). This implies that, for all A, B ,  A > B w f (B)  f (A). 
Using this, one can furth'er verify that, for a11 A, f (f (A)) = f (A), hence the sets 
f(A),  A E P'(x), are precisely the fixed pomts of the mapping f .  Let T,,, 
denote the set of all ma.ximal chains in the set { f ( A )  : A E P O( X ) )  of fixed 
points of f ,  where a maximal chain is a chain that is not proper subset of any 
other chain. For each 7i E rmaz define a weak order on RX on X as follows. 
For all x , y E  X ,  

It can be verified that for all A ,  B, 

i.e. the family {RX : 3t C! rmaz} provides the desired representation. 
0 

R e m a r k  Note that the rlepresenting set R in Theorems 4.2 or 4.2' is not uniquely 
determined by the ranking 2. The specific family of weak orders constructed in 
the proof of Theorem 4.2' will be referred to as the maximal chain representation 
of > (cf. Kreps [1979]). 

Consider now the probleim of multi-preference rationalizability of a given WEPO 
R on X. In order to apply Kreps' theorem, one has to extend R to a continuous 
partial order that satisfies IUD. As the following example suggests, the existence 
of such an extension requires additional restrictions on infinite domains. 

E x a m p l e  6.2 Let X = N U {xo), where N is the set of natural numbers, and 
xo is some object not contained in N ,  e.g. one may choose xo = N. Define an 
extended relation R on X as follows. For all i E N ,  and all A E P O(X) ,  A Ri. 
Furthermore, for all A E PO(X) ,  

A.Rxo :e [xo E A or A is infinite]. 



I t  is easily verified that R: satisfies REF,  MON and TRA, i.e. R is a WEPO.  
However, the canonical extension >* of R according to  (4.6) is not transitive. 
For instance, (1) N* N and N N* N U {xo), but N U {xo) +* {I) .  

In the infinite case, transitivity of the canonical extension (4.6) is guaranteed 
by the following "regularity" condition. 

Regularity (REG) Let C be a chain. Suppose that  for all C E C and all 
y E U C ,  CRY. Then, for all z E X, 

Note that  as the continuity condition (6.1), REG is vacuously satisfied in the 
finite case. 

Lemma 6.1 Let R be an extended relation on X satisfying REF and M O N .  
There exists a partial order ? on P O( X ) ,  continuous and monotone wzth respect 
to set tncluszon, that extends R zf and only if R satasfies TRA and REG. 

Proof Necessity of TRA follows as in the finite case. Necessity of REG can 
be verified as follows. Let C be a chain. Choose a well-ordering of U C  so that  
U C  = {y, : i < v) for somie (possibly infinite) ordinal v .  Take any C E C. By 
assumption, CRyi for all i < v. First, we show by transfinite induction that  
this implies C > C U U C ,  and hence C ? U C .  Clearly, C > C U yl since 2 is 
an extension of R. Suppose it has been shown that C > CU {yi : i < p + 1) for 
some p < v. By MON, CR:y,+l implies (CU{y; : i < p+1})Ryptl, i.e. Cu{yi : 
i < p+1) > CU{y, : i < p + l ) .  Hence, by transitivity C > Cu{yi : i 5 p + l )  
Next, suppose it has been s:hown that C Cu{yi : i < A) for some limit ordinal 
X < v.  Then,  by continuity, C ? C U Uiyi : i < A ) .  Together with C > C U yx 
this implies C > C U { ~ ,  : i < A). Thus,  by transfinite induction, C U C .  Now 
suppose, according to  REG, that UCRz,  i.e. U C  > UC U z. For any C C,  
C 2 U C  by the first part ,  hence by transitivity, C > U C  U z.  By monotonicity 

of ?, C C U z ,  i.e. CRz 
In order to  verify sufficiency of TRA and REG, consider the canonical ex- 

tension ?* of R defined, as in (4.6), by 

A >* B :@ Vy E B : ARy, 

for all A, B. By definition, ?* is an extension that  is monotone with respect 
t o  set inclusion and continuous in the sense of (6.1). Hence, it suffices t o  verify 
transitivity. Let A >* B and B k* C, i.e. ARy for all y E B and B R z  for all 
z E C. We have t o  show 14Rz for all z E C. As in the proof of Lemma 4.1 this 
follows a t  once from MON if B 5 A. Hence, suppose that  B \ A is non-empty. 
Choose a well-ordering of B \ A so that  B \ A = {bi : i < v) for some ordinal v .  
Define Bo := A and,  for each p 5 v ,  B, := A U  {bi : i < p) SO that  B, = A U B. 
The  proof proceeds by transfinite (downward) induction. Let z E C. Clearly, 



B,Rz by MON. Suppose that for some ordinal p ,  B,+1 Rz. Then one concludes 
as in the proof of Lemma 4.1 that TRA implies B,Rz. Next, suppose that 
BARz for some limit ordinal A .  Since for any p 5 v ,  A C A,, one has B,Ry 
for any y E A U B by M O N .  Hence, by condition REG, B,Rz for some p < A.  
Therefore, by induction BoRz, i.e. ARz. 

0 

Clearly, as in the finite case property REF implies that the canonical extension 
k* satisfies IUD. Combining Theorem 4.2' and Lemma 6.1 one thus obtains 
the following characterization of multi-preference rationalizability of extended 
relations. 

Theorem 6.1 Let R be an extended relation on an arbitrary domazn X .  R is 
multi-preference rationai'izable ( in the sense of (4.5)) if and only if R satisfies 
REF,  M O N ,  TRA and REG, i .e .  if and only t f  R is a regular WEPO. 

The following corollary is analoguous to Corollary 4.1 

Corollary 6.1 An extended relation R on X is a regular WEPO if and only if 
zt is the intersection of a l l  its weak order extensions. 

Consider now the statements (i) and (ii) of Theorem 5.3. Let R be a WEPO, 
and denote by t* the canonical extension of R as defined in the proof of Lemma 
6.1, i.e. A L* B :a V y  E B : ARy. In the finite case, the proof of Theorem 
5.3(i) and (ii) consists in showing that R satisfies SPR (WPR) if and only if 
the maximal chain representation of t* is linear (effectively linear). Hence, 
in the finite case, the existence of a linear (effectively linear) represenation is 
equivalent to linearity (effective linearity) of the maximal chain representation. 
However, this is no longer true for arbitrary domains as the following example 
shows. 

Example 6.3 Let X = IV u { x l ,  x2) ,  where x l ,  x2 @ N. For each i E N define 
a weak order R, by the f~ollowing utility function u, : X + R, 

Define a regular WEPO by R := n, Ri. Clearly, since all orderings Ri are linear, 
R satisfies SPR. However, the maximal chain representation of the canonical 
extension k* is not linear, nor even effectively linear. To see this, observe that 
the set of all fixed points of the corresponding mapping f as defined in the proof 
of Theorem 4.2' is {N U 1x1 , x2)) U F1 U 3; U F3, where 



(Note that "c" denotes proper inclusion.) Using this, it is easily verified that 
the maximal chain representation contains orderings for which X I  and 2 2  are 
indifferent, as well as orderings for which 22 is strictly better than X I .  Conse- 
quently, the maximal chain representation is not (effectively) linear. 

Linearity and effective linearity of the maximal chain representation can be 
characterized using the following stronger notion of regularity. 

Strong Regularity (SR.EG) For all chains C and all z ,  

In the following theorem, by the maximal chain representation of a WEPO 
R we mean the maximal chain representation of the corresponding canonical 
extension k* of R to P O ( X ) .  

Theorem 6.2 Let R be a! WEPO on an arbitrary domain X 

( i )  The maximal chain representation of R is linear if and only zf R satisfies 
SREG and SPR. 

(ii) The maximal chain n~presentation of R is effectively linear if and only zf R 
satisfies SREG and WPR. 

Proof We only prove part (ii). From this, part ( i )  follows at  once, noting that 
for an antisymmetric WEPO, effective linearity and linearity of a representation 
coincide. 

Necessity of WPR is easily verified. Necessity of SREG can be verified as 
follows. Let C be any chain of non-empty subsets of X. Suppose by way of 
contraposition, that for all C E C, C U z t* C ,  where k' is the canonical 
extension of R (cf. (4.6)). Denote by f the corresponding mapping as defined 
in the proof of Theorem 4.2'. Clearly, for all C E C, 

The set {f(C) : C E C} forms a chain in X ,  and hence can be extended to a 
maximal chain, denoted by 7-1. Let Rx be the weak order corresponding to 7-1 
according to (6.2). By (16.3), z $! f (C)  for all C E C, hence by definition of 
RH, z R H x  for all x E U{f(C) : C E C) .  Suppose that for some C E C and 
some x E f (C), x Rxz. Then, xIXz and by effective linearity, x and z must be 
indifferent with respect to  every ordering in the maximal chain representation. 
However, this is not possible by (6.3). Consequently, one must have zPxx for 
all x E U{f(C) : C E C}. In particular, zPxx for all x E U C ,  and hence 
u c u z  +* uc .  

In order to  verify sufficiency of SREG and WPR,  consider any maximal chain 
7-1 of fixed points of the corresponding mapping f .  For each H E 7-1 define a set 
H< := {H' : H' E 7-1, H' C H). Hence H< is the set of all predecessors of H in 



31. Let H -  := U H,. Effective linearity of the maximal chain representation 
is established by showing that for all H E X ,  {u, w} H \ 12- implies [uRw 
and wRu]. First, it is shown that for all H E 3t, H -  E 'H. Indeed, by SREG, 
H -  must be a fixed point of f ,  hence by maximality of the chain, H -  E 3t.  
Note that either H -  = H ,  or H -  is the immediate predecessor of H in 'H. 
Suppose that {u, w} C ,K \ H - ,  and assume by way of contradiction that not 
[vRw and wRu]. Consider H1 := f (H-  U v) and Hz := f (H-  U w). Clearly, 
H -  C H1, Hz  H ,  hence by maximality of the chain, HI  = H2 = H. This 
implies (H-  U v)Rw and (H-  U w)Ru, and therefore by WPR,  H-Ru which 
contradicts the fact that H -  is a fixed point o f f .  Consequently, uRw and wRu. 
This immediately implies effective linearity of the maximal chain representation. 

0 

Remark Note that Theorem 6.2 entails Szpilrajn's [1930] well-known extension 
theorem as a straightforward corollary, since both SREG and WPR are irnplica- 
tions of BIN. Also observe that Theorem 6.2 provides only sufficient conditions 
for the extstence of a linear (effetively linear) representation of a WEPO on an 
arbitrary domain. Indeed, as Example 6.3 demonstrates, condition SREG is 
not necessary for the existence of such a representation. It is conjectured that 
the key to existence of a linear representation is again the weaker notion of 
regularity, condition REG. 
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