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ABSTRACT 

In this paper, we study preferences over Savage acts that map states to opportunity 

sets and satisfy a state-dependent version of the Savage axioms. Conditional prefer- 

ences over opportunity sets may be inconsistent with indirect-utility maximization. 

This is interpreted as reflecting a preference for flexibility due to implicit uncer- 

tainty about future preferences , or alternatively an intrinsic preference for freedom 

of choice. 

On a flexibility interpretation, the main result of the paper (theorem 3) charac- 

terizes preferences based on maximizing the expected indirect utility in terms of an 

"Indirect Stochastic Dominance" axiom. The relevance of theorem 3 to a freedom-of- 

choice context is established on the basis of a novel multi-attribute conceptualization 

of the notion of effective freedom of choice; the theorem delivers an additive multi- 

attribute representation with optimal uniqueness properties. 

The key technical tool of the paper, a version of Mobius inversion, is novel to the 

literature on choice of opportunity sets and has been imported from the theory of 

(non-additive) "belief-functions" ; it also yields a simple and intuitive proof of Kreps's 

(1979) classic result. 

We conclude by arguing that a thorough-going revealed-preference point of view 

imposes incentive-compatibility constraints on the domain of acts which amount to 

excluding future preferences from the definition of an (explicit) state. 



1. INTRODUCTION 

Flexia plans to undertake a plane trip; she has to decide whether to purchase an 

advance-reservation ticket now at a price p, or whether to wait until right before her 

intended date of departure and then to finally decide between staying at home and 

purchasing a ticket at a higher price q. Flexia's "present choice" can be thought of 

as one among "opportunity sets", here {fly Q p, stay Q p) and {fly Q q, stay @ 01, 

from which her "future choice" is then made. 

Flexia has fairly common present preferences over opportunity sets; if required to 

make a final choice now among basic alternatives (singleton opportunity sets), she 

would most prefer to purchase a ticket in advance (fly @ p >- stay 8 0). On the 

other hand, if possible, she prefers to %wait-and-see" ({fly @ p, stay 8 p) 4 {fly 

@ q, stay @ 0)). Note that these preferences are not compatible with a ranking 

of opportunity sets according to their indirect utility (i.e. by ranking the sets as 

equivalent to their currently best element)'. They are naturally explained, however, 

as due to an uncertainty about her own future preferences between making the trip 

and staying at home. 

Such preference forpex ib i l i ty  received its first axiomatic study in a classic paper by 

Kreps (1979) which characterized the class of preferences that rank opportunity sets 

in terms of their expected indirect (=maximal attainable) uti l i ty  (Em), the expecta- 

tion being taken with respect to an implicit2 state space describing future preferences. 

Kreps assumed that present choices determine future opportunity sets deterministi- 

cally. Such an assumption is obviously very restrictive; for instance, if Flexia decides 

to wait, realistically she will need to reckon with the risk that seats may no longer be 

available later. The present paper characterizes EIU maximization in such more gen- 

eral situations in which the agent may be uncertain about the opportunity set she is 
- 

'assuming greater wealth to be preferred, of course. 

'That is: part of the representation, not of the set-up. 



going to face, and in which at least some of the uncertainty about future preferences 

is explicitly modeled. 

Thus, at the heart of this paper's analysis is a distinction between explicit and 

implicit state spaces. In various guises, this distinction is of significant conceptual 

interest. As shall be argued, it corresponds, roughly speaking, to distinctions b e  

tween verifiable / non-verifiable and foreseen / anticipated unforeseen contingencies, 

between incentive-compatible and arbitrary Savage acts, and, finally, between pref- 

erence for flexibility itself and intrinsic preference for freedom of choice. Before de- 

scribing these alternative interpretations of the theory in greater detail in the second 

half of this introduction, we first sketch the main result of the paper. 

In formal terms, we will study preferences over acts f ("opportunity acts") that 

map states 0 E 63 to opportunity sets A E A = ~ - ~ \ f l  of alternatives z E X . Both 

states as well as prizes (opportunity sets) are to be understood as described in terms 

of what is knowable ex-interim, rather than as complete descriptions of everything 

relevant, as "small worlds" rather than "grand worlds" in Savage's terminology (1972, 

pp.82). By consequence, belief cannot be fully disentangled from value. As with 

singlevalued acts, this leads to statedependent preferences. Thus, we take as point 

of departure for our characterization a statedependent version of Savage's axioms 

(Karni-Schrneidler (1993) ) . 

If preferences are defined over opportunity acts, incompleteness of description 

(specifically: the absence of future preferences from the definition of a state) mani- 

fests itself additionally in conditiclnal preferences displaying a preference for flexibility. 

That is to say, it will typically not be the case, even for events E such that preferences 

are stateindependent on El that the following property holds. 

Conditional IU-Property) 

For all sets (constant acts) A, B E A, all acts f E 3, and all events E O : 

[A, E; f ,  E C]  ? [B, E; f ,  E"] implies [A, E;  f ,  E C] [A U B, E;  f ,  E ' ] . ~  

3[A,  E; f ,  EE] denotes the act that coincides with the constant act A on E and with f outside E; 



The key issue is to find axiom? that yield an expected-utility representation with 

respect to the implicit uncertainty concerning future preferences. Partial solutions 

can be found in the work of Kreps (1979,1992). Kreps (1979) characterizes the impli- 

cations of EIU maximization for preferences over constant acts, that is: opportunity 

sets. The obtained restrictions, described by the following condition, are weak.4 

Building on this result, Kreps (1992) introduces uncertainty explicitly into the 

model and shows that EIU maximization entails implications analogous to OSM for 

conditional preferences over opportunity acts. However, these implications are only 

ordinal in character and fail to characterize EIU maximization by far. Consequently, 

he obtains a representation in which the utility of an act is monotone but not neces- 

sarily additive in implicit-state utilities. 

In an explicitly stochastic context, EIU maximization has additionai and interesting 

cardinal implications. For example, it entails the following cardinal (conditional) 

version of OSM, which implies that opportunity subsets are of necessity substitutes 

for each other. 

CSM)6 For all set,s, A, B, C E A, all acts g, h E 3, and all events E O : 

[A, E; g, EC] h: [Au B, E; h, EC] implies [AuC, E;g,  EC] [Au BuC, E ;  h, EC]. 

CSM asserts that the incremental value of a set B of additional alternatives never 

increases as further alternatives become available; note that a conditional version of 

OSM results by restricting CSM tog,  h such that g = h. While coming much closer to 

cf. section 3. 
4Conversely, an additive representation is of limited significance in this context, as Kreps (1979, 

p. 567) points out. 

50SM for "Ordinal Submodularity", cf. section 4. 

'CSM stands for "Cardinal Subrncdularity" . 



characterizing EIU rationalizable preferences, CSM fails to capture all their cardinal 

implications.7 

To characterize EIU-maximization, we introduce an axiom "Indirect Stochastic 

Dominance" (ISD*) that makes use of the ''more-likely-relation" 2 over events de- 

rived from preferences over bets in the usual way. Roughly speaking, ISD* formalizes 

the notion that acts that "in expectation offer effectively more choice" are better. 

More specifically, ISD* requires that f be weakly preferred to g whenever, given 

any hypothetical (future) weak order R, the R-best available alternatives under f 

are 2-more-likely to be R-better .than under g ("first-order stochastically dominates 

in utility"; see sections two and three). For example, ISD* entails the following 

condition ISD:! which evidently is closely related to CSM. 

ISD2) For any event E such that E is ?-equally likely to its complement EC and 

a n y A 4 , B , C  E A :  [A, E ;A(J  B u C , E C ]  5 [ A u B , E ; A u C ,  EC]. 

Specialized to state-independent preferences, the main result (theorem 3) charac- 

terizes En--rationalizable prefere:nces >: as those satisfying the Savage axioms plus 

ISD*. 

The notion of a "preference for flexibility" translates into decision theory, and 

thereby generalizes, one of the central .ideas of financial economics, the notion that 

"options have value"; for example, the theory of option-pricing has profoundly af- 

fected the theory of investment in physical capital under the name of "real options" 

(see especially the recent monogrisph by Dasgupta/Pindyck (1994)). A more general 

decision-theoretic approach seem!: clearly desirable in contexts in which markets are 

thoroughly incomplete (as is the case for many investments in human capital, e.g. the 

71n addition, CSM does not seem to be fully satisfactory conceptually: that the incremental value 

of additional alternatives be non-increasing seems plausible enough, but how compelling can it be? 

Indeed, it can be shown that CSM may easily be violated if the decision maker is uncertainty-averse 

in the sense of Gilboa-Schmeidler (1989). 



comparatively "inflexible" decisions to obtain a Ph.D. training in economic theory 

rather than an M.B.A., for instance), or where markets are entirely absent; - in a 

somewhat playful and speculative vein., Dasgupta and Pindyck stress the irreversibil- 

ity inherent in the decisions to marry and commit s ~ i c i d e . ~  

While the economic importance of preference for flexibility seems evident, an ax- 

iomatic approach to preference for flexibility is motivated by an interest in the distinc- 

tion between explicit and implicit states fundamental to the opportunity act model. 

A polarity of this kind arises naturally from a variety of perspectives; while the second 

and third oppositions described below are conceptually of a rather different nature, 

they turn out to be mathematically isomorphic in a precise way. 

1. The distinction between explicit and implicit states captures at a primitive 

level important restrictions on the elicitation and even "construction" of an agent's 

preferences. In descriptive, especially in experimental applications, one may want to 

confine attention to acts defined in terms of verifiable or contmctible contingences
g 

If one seriously wants to test experimentally whether and to what extent a subject's 

behavior conforms to SEU-maximization, one will elicit preferences over acts defined 

in terms of a finite set of contingencies that is coarse almost by definition. The 

phenomenon of preference for flexibility shows that implicit (not directly elicited) 

uncertainty matters in a sequential setting even to decisions between acts whose 

consequences are fully described in terms of the coarse explicit state-space. 

From a first-person point of view, the explicit state-space may analogously be 

interpreted as the space of fores~~en  contingencies determining the class of thought- 

experiments relevant to the decision-maker's preference construction. Violation of 

the conditional TCT property can then be viewed as reflecting anticipated unforeseen 

contingencies (Kreps 1992); for example, Flexia may explain her preference for flexi- 

'see also JonesOstroy (1984) for a decision-theoretic model which relates the value of flexibility 

tb the amount of information to be received. 

gNote that many "Dutch book" argument for the sure-thing principle rely on the contractibility 

of contingencies. 



bility by the expectation that "quite possibly somethang will interfere with my travel 

plans", without having a clear idea about specifically what is likely to interfere. For 

another example, we note that in discussions of the value of preserving biodiversity, 

the irreversibility of extinction occupies frequently a central place. Preserving species 

for another generation keeps the option of their continued existence open, an option 

which has significant value in view of our uncertainty about the preferences of future 

generations which presumably we cannot foresee in any detail. 

A conceptualization of anticipated unforeseen contingencies in terms of a set of 

implicit decision-relevant states is interesting particularly in that it combines (antici- 

pated) "unforeseenness" with notions of subjective probability and expected utility1'; 

this contrasts with approaches in which "unforeseenness" is identified with ignorance 

of some kind, as in Ghirardato (1.996) and Mukerjee (1995)''. l 2  

2. It will be shown in section 7 that from a thorough-going revealed-preference 

perspective which identifies preferences with dispositions to choice-behavior, difficul- 

10 This is not to belittle the seriousness of the uniqueness issue in this context; see section 5 for 

further discussion. 

"For recent epistemic work on the related notion uf awareness, see Modica-Rustichini (1994) and 

Dekel-Lipman-Rustichini (1996). 

12~inally, the issue of "coarse explicit state-spaces" is central to a related, but largely philosophical 

literature on Bayesian belief revision and "belief kinenLc.ticsn (the locus classicus is Jeffrey (1965, ch. 

11). Coarseness there corresponds to the notion that rational belief change cannot be fully accounted 

for by Bayesian updating on "explicitly given" evidence. The literature emphasizes the existence of 

evidence that may be "non-verifiable" (e.g. irnprewionistic judgements) and/or "unforeseen" (e.g. 

future insights) ; see also Binmore-Brandenburger (1990) who forcefully spell out the problematic 

nature of large-world assumptions. Reservations have been articulated towards inclusion of future 

beliefs (i.e. here: of future preferences over bets) in the definition of a state. If these reservations are 

fully taken to heart, a theory of the kind outlined in this paper is required to justify "as-if Bayesian 

updating" (which is what EIU maximization amounts to in this context) with respect to the implicit 

uncertainty; in such a theory (with appropriately enriched structure), beliefs about future beliefs 

are revealed by preferences over sets o,f future bets, i.e. by the "flexibility value of effective belief 

revision". 



ties arise for a direct application of Savage's theorem in which future preferences are 

incorporated in the description of a state and in which the preference ordering is 

defined on the class of all Savage acts:; in particular, it is not obvious which class 

of acceptable thought-experiments can support arbitrary acts (i.e. acts that depend 

on the decision-maker's future preferences in arbitrary ways). We will thus argue 

that a "revealed-preference" interpretation of future preferences implies incentive- 

compatibility restrictions on the domain of acts which in turn lead to models equiva- 

lent to the opportunity-act model stu&ied in this paper. 

3. Last but not least, if one assumes that all uncertainty is modelled in standard 

ways13, and preference for flexibility is thus fully accounted for in terms of the explicit 

uncertainty, a failure of preferences tat satisfy the conditional TCT property can by 

definition no longer be attributed to uncertainty about future preferences; instead, 

it reveals an intrinsic "preference for freedom of choice." It is in fact this notion 

of freedom of choice which has been at the center of the recent wa-~e of interest in 

the axiomatic study of ranking of opportunity sets14. The present paper is the f i s t  

to simultaneously incorporate and distinguish within one model the two sources of 

preferences for opportunities. l5 

The key step in making the results of this paper equally applicable to a freedom- 

of-choice interpretation is a novel conceptualization of effective freedom of choice as 

a multi-attribute construct, with component opportunities (i.e. the opportunities to 

bring about particular consequences) d.ehing the different attributes. The Indirect 

Stochastic Dominance axiom is reinterpreted accordingly as requiring that "in expec- 

tation more opportunity is better", and theorem 3 yields an additive multi-attribute 

representation with optimal uniqueness properties. 

1 3 ~ h u s  bracketing points 1 and 2. 
'*It will become clear that our results are equally applicable to rankings of opportunity sets purely 

in terms of freedom of choice, without regard to the agent's indirect utility. 

 he nature and legitimacy of the distinction is intensively debated: for example, while Sen (1988) 

affirms it emphatically, Arrow (1995) does not appear to see any meaning in it. 



The remainder of the paper is organized as follows: 

Section 2 considers a von Neurnann-Morgenstern-type setting in which preferences 

are d e h e d  on the class of all (objective) probability distributions over opportunity 

sets; an objective version of the Indirect Stochastic Dominance axiom is introduced 

and used to characterize EIU rationalizable preferences (theorem 1). We present 

theorem 1 as a separate core result both to make it more accessible to the general 

reader unfamiliar with Savage's framework, and because from a mathematical point of 

view, the theorem is best understood as a result on mixture-spaces over opportunity 

sets. 

In section 3, a subjective version of the Indirect Stocha~5c Dominance axiom is 

formulated; Karni-Schmeidler's (1993) generalization of Savage's theorem to state- 

dependent preferences is then combined with theorem 1 to obtain a characterization 

state-dependent EIU rationalizahle preferences over opportunity acts. 

Section 4 introduces the key technical tool of this paper, (dual) Mijbius inversion 

which is taken from the literature on belief-functions (non-probabilistic representa- 

tions of uncertainty). It is shown that EIU rationalizable preferences are characterized 

by a risk-aversion property with respect to the "size" of the opportunity set. Dual 

Mobius inversion is also shown to yield. a direct and intuitive proof of Kreps's (1979) 

classic result. 

The following section 5 describes the uniqueness properties of the representation. 

While these are significantly stronger than those obtainable in a standard setting 

without explicit uncertainty, they still fall short of what one might have hoped for. It 

becomes clear, however, what kind of structure needs to be added to obtain optimal 

results. 

A reinterpretation of the results in terms of freedom of choice is given in section 6. 

Finally, section 7 discusses the difficulties of applying a direct Savage approach under 

a "revealed-preference" interpretation of future preferences. All proofs are collected 

in the appendix. 



2. AN AXIOMATIZATION OF EXPECTED INDIRECT UTILITY 

This section presents a charactlerization of Expected Indirect Utility maximization 

in a von Neurnan-Morgenstern (vNM) context in which preferences are defined over 

"opportunity prospects" with nurnerically given probabilities and opportunity sets as 

prizes. It serves both as a simplified versicn as well as a key building block of the 

main result of the paper, theorem 3 of the following section. 

Let X denote a finite non-em:pty set of alternatives, A = \ 0 the set of its 

non-empty subsets (opportunity sets),  and denote the probability simplex in R - ~  

with typical element p. (Ex ante-) preferences are described by a relation k on the 

set of opportunity prospects AA. 

The chronology of decision-making and uncertainty-resolution is as follows: at date 

1, an opportunity prospect p is chosen by the agent. Then, at some time between 

dates 1 and 2, say at date 1.5, the opportunity prospect is resolved, yielding with 

probability ps  the opportunity set S . Finally, at date 2, the agent selects one 

alternative among S. At date 1, the agent is uncertain of his preferences based on 

which date 2 choices are made; this uncertainty resolves before date 2. 

The uncertainty concerning da~te-1.5 opportunity sets may arise "artificially" as 

result of an agent's intentional randomization of set-choices, or of an experimenter's 

explicitly offering choices among "lotteries" with opportunity sets as prizes. Often, 

opportunity prospects also arise naturally, as in the following example modifying 

Kreps (1979). 

Example 1 At lunchtime, the agent has to make a reservation at a restaurant of her 

choice for dinner with a friend. She wants to choose the restaurant offering the best- 

tasting meal to  her friend. Since she knows his tastes (at dinner) only incompletely, 

her choice among restaurants will exhibit a 'jreference for jlexibility". Since she 

is  also uncertain of the m e n u  (set of meals) offered by each restaurant, a restaurant 

represents a (subjective) pmspect over menus. To satisfy the domain assumption, one 



needs to ask the agent to  imagine hypothetical "restaumnts" w m p o n d a n g  to a r b i t m y  

subjective (but not yet decision-theomtically derived) pmbability distributions over 

m e n u .  0 

To capture formally uncertainty about future tastes in the intended representation, 

let Cl denote a (finite) set of preference-determining contingencies w with associated 

utility-function v, , and let X E A" denote a probability distribution over 0. Note 

well that for opportunity prospects, i.e. (marginal) probability distributions over 

opportunity sets, to denote well-defined objects of preference, these distributions 

must be stochastically independent of the uncertainty governing future preferences. 

This assumption becomes explicit in a Savage setting (where it will be relaxed and 

further discussed); it is reflected here in the axiom ISD below, and motivates the 

following definition of the class of "Expected Indirect Utility" (EIU-) rationalizable 

preferences. 

Definition 1 ? is EIU-rationalizable if there exists a finite set 0 ,  X E An and 

utility-functions { u , ) , ~ ~  such that, for all p q E nA: 

Remark: In order to preserve generality, we have allowed in this definition the 

implicit state-space R to be arbitrary (finite), herein following Kreps (1979). It is 

debatable whether these are really meaningful; one may want to restrict attention to 

a canonical space of states that is logically constructed from the data, i.e. ultimately 

from the universe of alternatives X. A natural candidate for such a canonical state- 

space is the set of all weak orders on X.16 

Basic to the characterization of EN-rationalizable preference relations are the von 

Neumann-Morgenstern axioms vNM . 
- 

16~owever, fixing R in this way is not enough to ensure essential uniqueness; see section 5 for 

further discussion. 



Axiom 1 (vNM) 

i) (Completeness) p k q o r  p 5 q , for all p, q E A*. 

iz) (Transitivity) p  k q and q >- r imply p >- r , for all p, q, r E nd. 
iii) (Independence) p ? q -+=+ ap+ ( 1  - a ) r  ? aq+ ( 1  - a ) r  , for all a : 0 < a < 1 

and all p, q, r E Ad. 

iv) (Continuity) p ? q ? r =+- 3a  : 0 5 a 5 1 such that ap + ( 1  - a ) r  - q , for 

all p, q, r E A*. 

The final axiom is based on an "Indirect Stochastic Dominance" relation defined 

as follows. For S C A, let p ( S )  = C p-r. denote the probability of S. 
TES 

Definition 2 The  prospect p indirectly stochastically dominates q with respect to 

the weak order1' R 071 X ( " p  k R  q") if and only if, for all y E X : 

p indirectly stochastically dominates q ("p  r> q" )  if it indirectly stochastically 

dominates q with respect to every weak order R o n  X .  

In other words, p  indirectly stochast,ically dominates q if, given any hypothetical 

weak preference ordering over alternatives R and any associated ordinal indirect 

utility-function UR, the probabi1it.y distribution of indirect utilities p  o uil induced 

from p  first-order stochastically dominates (in the ordinary sense) the analogously 

defined probability distribution q o ukl .  

Indirect Stochastic Dominance restricted to degenerate prospects that yield with 

probability one some opportunity set A (and written as lA) coincides with mono- 

tonicity with respect t,o set-inclusion; in a stochastic setting, it is however much richer 

in content. 

17i.e.: complete and  transitive relation. 



1 1 1 Example 2 Let X = 1x9 Y, 21, P = ;il{X,,) + 4liX,z) , and = 21{x) + 21{x,y,z) . 
T h e n  p p q, but not  q p. 

This  is  easily verified. If x is a best alternative with respect to  R, i t  is available with 

probability one under p and q, and thus p pH q as well as q D R  p. If, o n  the other 

hand, x is not  a best alternative with respect to R, thel8 R - b a t  alternative is  available 

with probability one half under each. Under p, the at-least-second-best alternative is  

always available, and thus p pR q again. However, if x is worst with respect to  R, 

with probability one half not even the second-best option is available under q , and 

thus not q DR p for such R. It follows that p D q, but not q p p. 

Axiom 2 (ISD) p >- q whenever p indirectly stochastically dominates q. 

Remark: Note that, for the use of the unconditional distributions over opportu- 

nity sets p and q to be legitimate in the definition of R-conditional dominance and 

of ISD, these have to coincide with the i~-conditional distributions; that is to say, 

the distributions of state-contingent preferences R, and opportunity sets must be 

subjectively independent. 

The following characterization of Indirect Stochastic Dominance is a straightfor- 

ward consequence of the adopted definitions. 

Fact 1 The  following three statements are equivalent: 

i i i)  For all utility-functions v o n  X : C ps m a z e s  v(x) 2 C qs rnax,,~ v ( z )  . 
SEA S E A  

Theorem 1 i s  EIU-rationalizable if and only i f  i t  satisfies uNM and Indirect 

Stochastic Dominance. 

Theorem 1 belongs to a family of decision-theoretic results that obtain an addi- 

tively separable representation by appropriately augmenting the vNM axioms. These 

''breaking ties arbitrarily throughout. 



include in particular Harsanyi's (1955) Utilitarian representation theorem, as well as 

Anscombe-Aumann's (1963) characterization of SEU maximization. The role of ISD 

is played by a Pareto-condition in the former and by an (implicit, see Kreps (1988, 

p.107)) "only marginals matter" condition in the latter. The analogy to Harsanyi's 

theorem is particularly close, in that ISD functions as  a monotonicity-condition anal- 

ogous to the Paret~condition th.ere. Jaffray's (1989) rnixture-space approach to 

belief-functions, by contrast, enhances the vNM axioms in a rather different direc- 

tion. 

3. PREFERENCE FOR FLEXIBILITY IN A SAVAGE FRAMEWORK 

In this section, the characteriza.tion of EIU rationalizable preferences is extended 

to a fully subjective Savage-style formulation in which preferences are defined over 

acts that map states to opportunity sets. Theorem 1 can be translated to a Sav- 

age framework (with state-independent preferences) for the following two reasons: 

first, the ISD axiom uses probabilities only in ordinal, comparative way, and is thus 

straightforwardly put into subjective terms. Secondly, ISD thus translated retains 

its force due to the richness of Savage acts, specifically: to the fact that any subjec- 

tive probability distribution over opportunity sets is generated by some opportunity 

act.lg Besides providing an interpretation of theorem 1 in subjective terms, "going 

Savage" opens an important dimlension of generality by explicitly raising the issue 

of state-independent preference. We will argue that state-independence is a rather 

restrictive assumption in an opportunity-act setting, and present an additive state- 

dependent generalization of Savage's theorem. We will then "subjectivize" ISD to 

obtain a subjective, state-dependent generalization of theorem 1. 

Three basic types of explicit uncertainty can be distinguished in the present con- 

lQ1.e., in the notation to follow, if kc denotes the agent's subjective probability measure on 0, 

{ C 1 ~ f - l ~ f ~ ~ ) = ~ A .  



text: the agent may be uncertain as to which opportunity set results from a particular 

present choice (e.g., in Flexia's case, the availability of a ticket if she does not buy one 

now), the agent may receive information about the comparative value of alternative 

final choices (e.g., if Flexia is worried about the health of her child, her final decision 

may depend on his body temperature), and thirdly the final choice itself may be one 

under uncertainty (e.g, at the time of her final decision, Flexia may still not know 

whether the child will fall seriously ill.). In this paper, we will deal with uncertainty 

that resolves before the final choice is made, i.e. with uncertainty of the f i s t  two 

kinds. Uncertainty not resolving before the final choice is not explicitly modeled; 

doing so promises to be a worthwhile (see the concluding remark of section 5 )  and 

non-trivial task for future research. Uncertainty of the first kind is associated with 

state-independent preferences, uncertainty of the second kind with state-dependent 

preferences. Thus, to assume global state-independence would be highly restrictive, 

as it effectively eliminates uncertainty of the second kind. 

We first state an appropriate st,ate-dependent generalization of Savage's theorem 

that comes tailor-made from the literature; this result is then combined with theorem 

1 to yield the main result of the paper, a subjective state-dependent generalization 

of ElU rationalizable preferences over opportunity acts. 

Some additional notation and definitions. 

0 : the space of explicit states 9. 

F : the class of opportunity acts f : O + A. 
  con st : the subclass of constant acts, typically denoted by the constant prize. 

[ f ,  E ;g ,  EC] : the act h such that, for 6' E 0, 

: a preference relation on 3. 

f k E g  : whenever [ f lE ; h lE
C]  >- [g lE ;h lE

C]  forsome h ~ 3 ( " f  isweakly 



preferred to g given the event El1). 

E is null if f Y E  g for all f ,  g E F. 

The following three axioms are exactly Savage's PI ,  P2 (the "sure-thing principle" 

in standard, if not Savage's, terminology), and the richness and continuity condition 

P6. 

Axiom 3 (PI) 2 is transitive a71d complete, ie. a weak order. 

Axiom 4 ( ~ 2 )  For all f ,g ,  h, h' E 3, E C @ : [f, E ;  h,, EC] 2 [g, E; h, EC] if and 

only if [f ,  E;  h', EC] [g, E;  h', EC]. 

Axiom 5 (P6) For all f ,  g E 3 such that f + g and all h E Fconst, there exists a 

finite partition 7-t of O such that, for all H E 7-t: 

i) [h, H ;  f ,  HCl + 91 

ii) f + [h, H; g, H c].  

The generalization of Savage's theorem to be used assumes "hi tary statedependence". 

Definition 3 An event G is a state-independent preference (s.i.p.) event with respect 

to k if the following three conditions are satisfied: 

i) For non-null E  CI G, and all f , g  E FcmSt : [f ,  E; hl EC] k [g, E;  h, EC] if and 

only i f f  kc g. 

ii) For all E ,F  C G and f , g ,  f ' ,gf E FcmSt such that f +G g and f '  +G g': 

[f, E ;  g, Ec] ? [f, F ;  9, FC] if and only if [f', E;  g', EC] t [f', F ;  g', PC]. 

iii) There exist f ,  g E FCmSt : f +G g. 

Condition iii) requires G to be non-null, i) and ii) are Savage's state-independence 

axiom P3 and P4 restricted to G. The preference relation is finitely state-dependent 

if there exists a finite partition20 { O i ) i E r  of O such that each Qi (for i E I) is an 

s i p .  event. 

'OF'or transitive k, it is easily verified that one might have equivalently replaced "partition" by 

"collection"; we choose the former for greater specificity. 



Axiom 6 (P345*) is finitely state-dependent. 

The assumption of finite state-dependence can be viewed as having two parts: con- 

ditional on each @,, there is a rich, non-atomic set of contingencies within which pref- 

erences are state-independent; this follows from Q, being non-null and P6. Secondly, 

state-dependence can be described in terms of a finite partition. The second of these 

assumptions is made for technical convenience; the first, however, has substantive 

content, as it is indispensable for a characterization of subjective Em-maximization 

based on an ISD type axiom. Kote that state-independence of preferences condi- 

tional on E C ei requires in effect that, conditional on Oi, any implicit uncertainty 

about future preferences is subjectively stochastically independent of the explicit un- 

certainty 0 .  For simplification of language, we take in the following the partition 

{O,}iEI as given and will abbreviate kei to ki ; theorems 2 and 3 are to be read 

accordingly. 

For any finitely-ranged function x : O -+ R, define 

Theorem 2 (Karni-Schmeidler) o n  3 satisfies PI ,  P2, P345* and P6 if and 

only if there exists a collection of finitely additive, convex-range#' probability measures22 

{pi : 2e -+ R};E1 such that pi(@,) = 1 and a collection of non-constant utility- 

functions { u ~ } ~ ~  I such that 

f t 9 i f  and only i f  J ui( f ( 8 ) ) d p i  t c J ui (g(o) )dp i  , for ail f ,  9 E 3.23 
i E I  & I  

is said to be conva-mnged if, for all E C 8 and all p : 05 p 51, there exists FCE such that 

4F)=pp(E). 
"For notational convenience, the measures pi are defined on 2e instead of on 2e'; in view of 

the fact that pi(Bi) = 1 ,  they can nonetheless be interpreted as subjective conditional probability 

measures. Analogous remarks apply to the subsequently defined relations 2, . 
23~arni-~chmeidler assume P3, but their proof is easily modified to a partition-relativized version 

of P3. 



It remains to "subjectivize" ISD as ISD*. ISD* is naturally formulated here as 

an assumption on conditional preferences ki, since comparative probability relations 

can meaningfully be defined only conditional on s.i.p. events Oi. Thus, let >i be 

the conditional more-likely-than relation on 2e defined by 

E >i F if, for any constant acts f ,  g such that f +, g : [f, E; g, EC] ki [ f ,  F; g, FC]. 

Note that by part ii) of the definition of an s.i.p. event, "any" can be replaced by 

"all" in the definition of >i, and that E 2i F if and only if pi (E) 2 p i ( F ) .  

Moreover define 

Definition 4 f Di g ( "  f indirectly stochastically dominates g conditional on Oin) ,  

iff, for all weak o d e r s  R on X and all x E X: 

(0 E @If (6) n {Y E XIyfi) # 0) > i  (0 E @lg(Q) n {Y E X I y h }  # 0) .  

The following is a subjective, conditional version of ISD. 

Axiom 7 (ISD*, Indirect Stochastic Dominance) For all f , g  E F and all 

i E I : f ki g whenever f Pi g . 

ISD* can be expressed purely in preference terms: if f and g coincide outside Qi, 

and if any bet on attaining under f any level set of any weak order conditional on 

Qi, i.e. the bet on the event (6 E 01 f (0) n {y E X l y k )  # 0) f l  Oi, is preferred to 

the corresponding bet based on g, then f itself is weakly preferred to g. 

The following result, the main theorem of the paper, is a straightforward conse- 

quence of theorems 1 and 2. Note that in the representation, the implicit probability 

distributions X~ over future preferences are allowed to depend on Qi. 



Theorem 3 A preference relation over opportunity acts satisfies PI ,  P2, P345*, 

P 6  as well as ISD if and only zf there exist and { u ~ } , , ~  as i n  theorem 2 and 

such that each ui h a  the form u i ( A )  = C XSi  m a x s e A  vLi (x) (for appmpriate Ri, 
w, € 0, 

E A% , and { v $ ) ~ ; E R ~ ) .  

As remarked before, the richness of the state-space implied by P6 is critical to 

the validity of the result. The result would cease to hold with additively separable 

preferences and a finite state space as in Kreps (1992); it is easily verified, for instance, 

that the result is false if 8 consists of only one state, since then ISD* coincides with 

monotonicity with respect to set-inclusion which is not enough according to theorem 

5 below. 

4. THE SIMPLE ALGEBRA OF EXPECTED INDIRECT UTILITY 

Sections 2 and 3 have left two bits of unfinished business. The uniqueness proper- 

ties of the representation have not been discussed. One would also like to know more 

explicitly the nature of the restrictions imposed by EIU-rationalizability on pref- 

erences over opportunity prospects, and especially the restrictions on the cardinal 

utility-functions u representing those preferexes ( "EIU functions"). Both of these 

issues will now be addressed based on a preceding exposition of the algebra of EIU 

functions u . The basic novel insight of this section is the observation (fact 2) that the 

structure of EIU functions is closely related to that of "plausibility-functions" (con- 

jugate belief-functions) in the literature on non-probabilistic belief representations; 

as a result, the key technical tool of that literature, Mobius inversion (originally due 

to rtota 1964), becomes applicable and central here as well. It has in fact been used 

already in the proof of theorem 1; among other applications, Mobius inversion proves 

its mettle at the end of this section by yielding a particularly transparent proof of 



Kreps's (1979) main result .24 

Let A* = 2X\(0 U {X)). #S is. the cardinality of the set S, with # X  = n, and 

C denotes the str ict  subset relatiom. 1: A -t R is the constant function equal to 1, 

1s : A -) R is the indicator-function of the set of sets S. Functions from A to R 

will often be viewed as vectors in 1tA 

A function u : A + R is an indirect utility (IU) function if it has the form 

u(A) = max,,Au({x)) for all A E A. An function u : A -+ R is an expected 

indirect utility (EIU) function if it is a convex combination of KJ-functions: 

u(A) = C AUvw(A)  = C A,  mar:,^^ v , , ( { x ) )  for all A E A, for some finite collec- 
w € R  w E 0  

tion of W-functions { v , ) , ~ ~  and some set of coefficients {A,),,n such that A, 2 0 

for all w E and C A, = 1. Thus, preferences over opportunity prospects / acts are 
wen 

Em-rationalizable if and only if they have a vNM / Savage representation in terms 

of an ElU function u .  

An IU function is dichotomous (and 0-1 normalized) (DIU) if it takes the values 

0 and 1 only, i.e. if u ( A )  { 0 , 1 ) .  Finally, a function u : A -+ R is simple if u = us 

for some S E 2", with v s  : A -, R. defined by 
/ 

The follo&ng observation characterizes EIU functions as equivalent to certain lin- 

ear combinations of dichotomous IU (respectively simple) functions. 

Fact 2 i )  u is a DIU-function if and o d y  if u is simple. 

i i )  u is a n  ICJ-function if and o;dy if 

u = C Asus , for A E R~ such that As 2 0 for all S # X ,  and such that As > 0 
SEA 

and AT > 0 imply S 5 T or S > T . 
i i i)  u is an  EIU-function if and! only if 

u = C Asvs, for A E R~ such that .As > 0 for all S # X .  
S E A  

2 4 ~ h e  classical references on belief-functions are Dernpster (1967) and Shafer (1976); for a recent 

thorough study of Mijbius inversion, the key technical tool, see Chateauneuf-JafTray (1989). 



Example 3 Let X = {1,2,3) and u the ICJ-function defined by u ( S )  = max,,~ x2. 

Then = v{1,2,3} + 3v(2,3) + 5"J{3) . 

Mathematically, the key to the following analysis is the observation that the set 

of DIU functions is a linear basis of the space R ~ .  How DIU-functions combine (in 

particular to yield ETU functions) is described by the "dual Miibizls ~ ~ e n z t o r " ~ ~  Q : 

Rd + R~ defined by X H u = C As us, and thus u(A) = !P(A)(A) = C XS , 
SEA S€d:SnA#0 

for A E A. 

Basic is the following fact. 

Fact 3 \k : Rd -+ R~ is a bijective linear map. Its inverse W ' is given b y  

Q - l ( u ) ( A )  = C (-l)#(A\S)+lu(~c) for A E A , with u(0)  = 0 by  conventior~. 
s ~ 2 x : S c A  

The fact allows a straightforward characterization of Em-functions in terms of 

2n - 2 linear inequalities. 

Corollary 1 u is an  EIU function if and only if W 1 ( u ) ( ~ )  2 0 for all A E A*. 

Drawing on the literature on belief-functions, the characterizing condition is made 

more intelligible by generalizing it to the following effectively equivalent pair of con- 

ditions. 

Definition 5 i) u : A -+ R is monotone i f  A C B implies u(A) 5 u(B) VA, B E A. 

i i)  u : A -+ R is uniformly submoddar i f ,  for any finite collection { A k ) k r K  in 

A such that n Ak # 0, 
~ E K  

2 5 ~ o r  the choice of terminology, consult the proof of fwt 3. 

2"he c3njunction of monotonicity and uniform submodularity differs from "infinite monotonicity" 

in the sense of Choquet (1953) in two ways: the latter condition would result if in the definition of 

uniform submodularity the inequality would be reversed and if the non-empty-intersection clause be 



Uniform Submodularity is easielst understood by considering the case of # K  = 2, 

where it specializes to the following standard "submodularity" condition: 

or equivalently : 

In this version, submodularity says that the incremental value of adding some set 

a given set of alternatives (the set B to A) never increases as other alternatives (the 

set C)  are added. Submodularity implies that opportunity subsets are substitutes in 

terms of flexibility value. 

Theorem 4 u is an EIlJ function if and only if it is monotone and uniformly sub- 

modular. 

Theorem 4 translates immediately into a characterization of the risk attitudes 

towards opportunity prospects implied by EIU maximization. 

Definition 6 i) is monotone if for all A, B in A such that A > B. 

ii)  is opportunity risk-averse 2i for any finite collection {Ak IkEK in d such 

that n Ak # 8, and any q, p such that 
k € K  

q is defined by q s  = 2-"+' . #{J 5 K I #J is  even and strictly positive and 

S =  U Ak, or J = 8  and S =  (-1 Ak),  and 
k~ J kt K 

p is  defined by p s  = 2-nf1 . #{J 5 PC 1 #J is odd and S = U Ak),  
k E J  

then p q. 

The connection of this definition wit:h an intuitive notion of risk-aversion emerges 

from considering prospects of twlo opportunity sets. Opportunity risk-aversion then 

specializes27 to the condition th,at, for all A, B, C E A such that A > B U C and 

"by considering collections of the form {A\,B, A\C), with B n C = 0. 

2 1 



Thus, losing one of the opportunity subsets B or C for sure (each with equal odds) 

is weakly preferred to facing a fifty-present chance of losing both B and C.  All 

instances of opportunity risk-aversion share the following two characteristics which 

together lend some minimal justification to viewing them as genuine instances of 

risk-aversion: 

i) p({S I S 3 x)) = q({S I S 3 x)) Vx E X, and 

ii) for some S with qs > 0 : p~ > 0 * T > S V T  E A. 

Theorem 4 yields the following corollary: 

Corollary 2 on  aA is EIU-rationulizable if and only if it satisfies vNA4 and is  

monotone and uniformly risk-averse. 

Remark: While opportunity risk-aversion emerges as a natural characterizing 

property from a purely descriptive point of view, it is not very appealing decision- 

theoretically as a conceptually fundamental axiom. It is toe complex to be particu- 

larly intuitive; more importantly, its link to an intuitive notion of flexibility / indirect 

utility stands in need of clarification; finally, ir, contrast to ISD, the role of stochastic 

independence remains hidden. 

We conclude this section by providing a new and simplified proof of Kreps's (1979) 

classic result which characterizes EIU rationalizable preference orders defined on the 

class of opportunity sets A. The new proof is based on dual Mobius inversion and 

given in the appendix; we hope that it significantly clarifies the logic of Kreps's result. 

For the remainder of this section only, assume 2 to be a weak order on A. 

Definition 7 i )  >. is  monotone if A > B implies A B , for all A, B E A. 

i i )  is ordinally submodular if A A U B implies A U C A U B U C , for all 

A, B,C E A. 



iii) 2 is ordinally EIU-rationalizable i f  there exists an  ElUfunct ion u : A --+ R 

such that A B if and only if v(A) 2 u ( B )  for all A, B E A. 

Theorem 5 (Kreps) A weak o d e r  is ordinally EIU-mtionalizable if and only if 

i t  is monotone as well as oniinally subwaoddar. 

The suflicient conditions of the theorem seem surprisingly weak. In particular, 

Kreps' result implies that whenever a preference relation is "strictly monotone" (i.e. 

satisfies the condition " A  > B =+ A t B for all A, B E A"), it is ordinally EIU- 

rationalizable. To facilitate the discussion, we restate the result as one about ordinal 

utility-functions. 

Condition 1 (OSM) u(A) > u(A U B) + .u(A U C) 2 u(A U B U Cy) VA, B ,  C E A. 

Theorem 6 (Kreps, restated) For any function u : A -4 R: there exists a strictly 

increasing transformation 7 : R -+ R such that T o u is an  EIU function if and only 

zf u is monotone and satisfies OShf. 

Consider any utility function with the property A > B + u(A) > u(B) for all 

A, B E A. According to theorem 6, for an appropriate T ,  7 o u is uniformly sub- 

modular. The concave flavor of uniform submodularity suggests that to achieve thls 

one needs to define transformations T that concavify u "sufficiently strongly." The 

actual proof in the appendix follows this line of argument (lemma 5), and verifies 

that indifferences are adequately taken care of by condition OSM (lemma 4). 

5. ON THE UNIQUENESS OF THE REPRESENTATION 

So far, the uniqueness properties of the Em representation in theorem 1 and 3 have 

not been discussed. This task will be addressed now, with dual Mobius inversion as 

the key tool. The story line goes as follows. There is an essentially unique represen- 

tation in terms of dichotomous IU functions. Dichotomous IU representations can 



be reinterpreted as additive mdti-attribute representations (eliminating the reference 

to an implicit state-space). This allows one to characterize the exact extent of the 

non-uniqueness problem; in particular, it becomes evident what kind of structure 

needs to be added to achieve uniqueness. For the sake of specificity, we will explic- 

itly focus on the uniqueness properties of preferences over opportunity prospects in 

a vNM setting; the extension to preferences over opportunity acts is immediate. 

From fact 2iii), EIU-rationalizability is equivalent to rationalizability by a set of 

dichotomous IU-functions; using dual Mobius inversion, it is easy to see that "di- 

chotomous EIU-representations" enjoy optimal uniqueness properties. is nontrivial 

if X t {x) for some x E X. 

Proposition 1 i )  k is EIU-rationalizable if and only if there exists X E R~ with 

AT 2 0 for all T # X such that: 

i i )  If X satisfies condition (3),  then A' satisfies condition (3) as well if and only if, 

for some c > 0 : A; = cXT for all T # ;Y 

i i i)  If is nontrivial, there exists a unique X E aA' satisfying (3)28. 

In the remainder of this section, we .will maintain the assumption that is non- 

trivial and refer to X E AA* satisfying (3) as the "weight vector" or "measure" 

representing k. 

While uniqueness of dichotomous EJJJ representations in the present context may 

not seem to amount to that much, it is a significant improvement over what is achiev- 

able when preferences are defined over opportunity sets. This improvement is obvi- 

ously due to the fact that the utility-functions representing preferences are unique 

up to positive affine rather than merely strictly increasing transformations. In the 

2sStrictly speaking, X 6 Ad such that X x  = 0. 

24 



latter case, not even the support of X is uniquely determined. Moreover, proposition 

1 gives sufTicient indication for what needs to be assumed of the class of possible 

future preferences in order to ensure optimal uniqueness properties. 

Only in very rare situations, of course, will the decision maker in fact have dichote 

mow date-2 preferences, as in the following example in which X may be interpreted 

as a subjective probability measure. 

Example 4 Flex needs to open a lock; he can choose among closed boxes with uncer- 

tain contents. Specifically, any box contains with probability ps exactly the non-empty 

set S of keys x E X ;  a box can thus be ,identified with a probability measure p E AA. 

Having chosen the box, Flex will attempt to open the lock, trying out all keys i n  the 

chosen box. He cares only about the chance of success i n  opening the lock, and does 

not h o w  which keys if any will fit. In this case, the relevant state space is 2 X ,  with 

T E 2X denoting the set of keys that i n  fact open the lock; i n  state T, Flex's pref- 

erences over sets of keys are given by the DIU-function v ~ ;  i n  other words, Flex is 

successful ( v T ( S )  = 1 )  if the box S contains at least one key i n  T.  

Here, A* denotes also the event that some keys fit but not all ("r # 0, X ) .  By  

proposition I ,  Flex's preference ordering over hypothetical boxes p E Ad reveals 

unambiguously his subjective probability measure X E AA* over the sets of keys that 

fit, conditional on some but not all keys: i n  X fitting, that is: conditional on  A" (the 

conditional probability that exactly the keys i n  T fit is given by AT)  . O n  the other 

hand, contains no information about the subjective probability of the conditioning 

event A' itself (beyond its being non-zero), since if either all keys work or none, 

Flex's choice of a box does not matter. 0 

In the general case, in which future preferences may be non-dichotomous, the 

coefficients of a dichotomous EIU-representation yield only highly "compounded" 

information about the decision maker's beliefs about future preferences. The repre- 

sentation of proposition 1 then needs to be rewritten a bit to become meaningfully 



interpretable. The starting point is the observation that the interpretation of VT as a 

utility-function is unnecessary and, in ,this case, unhelpful. Alternatively, VT can be 

viewed as indicator-function of the class of sets that intersect with T,  VT = l{slsnTfO). 

Correspondingly, T can viewed as parametrizing not a state but an attribute the 

"component opportunity" T. S realizes the component opportunity T if and only if 

its intersects with T (or, equivalently, iff vT(S) = I), in other words: if S permits to 

realize some alternative in T .  

Accordingly, the vNM utility of S can uniquely be written as the sum of the values 

AT of all component opportunities that it realizes: u(S) = C As, thus yielding 
T:TnS#0 

an additive multi-attribute representation in terms of which essential uniqueness is 

always ensured. 

If one is willing to postulate that the decision maker "in fact" maximizes expected 

indirect utility with given { v ~ ) ~ ~  and subjective probabilities { T , ) , ~ ~  , further 

explanation of the attribute weights AT can be given. In view of fact 2ii), it is 

easily verified that the (non-normalized) coefficients AT in (4) that correspond to the 

EIU-function C ~ , v ,  satisfy: 
wen 

and, for T different from X, 

Note that the expression "minZET v,, ({x}) - ~ ~ X T ' ~ T  minZET! v, ({x))" differs from 

zero (being then in fact ~ositive) if and only if T is a level set of v,, i.e. if T = {x E 



X I v,({x)) 2 vu(T)}. Thus AT is the e q e c t e d  incnemental  ut i l i ty  from reaching the 

level set T rather than the next lower one. 

Together with proposition 1, ( 5 )  precisely describes the extent of non-uniqueness 

of the EIU-representation. Preferences thcs fail to reveal the agent's subjective 

probability distribution over IU-functions v, for two reasons. First, even if all IU- 

functions with positive probability are in fact dichotomous, their coefficients com- 

bine a subjective-probability and a utility-scale factor, as typical for state-contingent 

preferences. Secondly, the same EIU-function can typically be generated as convex 

combination of non-dichotomous IU-fun.ctions in many different ways. 

However, ( 5 )  also suggests that the second source of non-uniqueness is not in- 

escapable. In particular, uniqueness will obtain if either due to additional conditions 

on >- or simply by an external "identif-ying" assumption, future preferences R, are 

known to belong to some class R with the property that any non-degenerate level set 

is associated with at most one preference ordering in that class, i.e. formally that, 

for any x E X and any R, R' E R , { y l y h i h )  = { y ( y R ' x )  # X implies R = R'. Such R 

will be referred to as identified. 

If R is identified, it can be made the canonical state space; k has then a represen- 

tation of the form 

In view of (5), the V R  in this representation are essentially unique: specifically, if 

{ v R I R E R  represents k ,  then { v ' R } ~ ~ . ~  represents ? as well if and only if there exists 

c > 0 and { d R I R E R  such that = CUR + d R  for all R E R. 

An obvious example of an identified c!lass has already been introduced, that of weak 

orders .R with only two level sets. More interestingly, identified classes arise quite 

naturally with infinite domains X; examples are the class of quasi-linear preferences 

on a domain X of the form X = Y x R, and the class of EU preferences on a 

lottery space X of the form X = AY . Of course, the restrictions on preferences over 



opportunity sets implied by additional structure of this kind remain to be worked out. 

Note also that in a Savage framework, preferences of the latter class arise naturally 

from uncertainty that is not resolved at date 2. 

6. FREEDOM OF CHOICE 

We will now consider situations in which all relevant uncertainty is explicitly mod- 

elled in the manner of section 3, including uncertainty about future preferences. A 

failure of conditional preferences to satisfy the IU property can then by definition no 

longer be attributed to uncertainty about future preferences, but reveals an intrinsic 

"preference for freedom of choice." 29 

As a sound intuitive basis for imposing consistency conditions on preferences for op- 

portunities, only the notion t hat "more opportunity is better" seems to remain.30~e 

will argue in this section that, properly conceived, this notion is rich enough to pro- 

vide the basis for an well-behaved theory of intrinsic preference for freedom of choice, 

and that in fact one merely needs to reinterpret the results above to obtain such 

a theory. By contrast, the bulk of the literature has relied on independence condi- 

tions to obtain additional structure; these, however, are very restrictive and preclude 

consideration of the diversity of alternatives in an opportunity set3'. 

The key is an answer to the question: more precisely of what is better? To address 

it, we take as point of departure an interpretation of "freedom of choice" as the 

freedom to do this or that, to choose something particular, to bring about specific 

consequences such as living in a particular place, entering a particular profession, 

"We leave to philosophy the task of explicating this intuitive appealing concept in a rigorous man- 

ner; for a justification based on the notion that agents autonomously choose their own preferences, 

see Sugden (1996). 

300f course, this requires to keep abstracting from phenomena such as weakness of will, etc. 

3 1 ~ e e  I'attanaik-Xu (1990), Puppe (1995), Nehring-Puppe (1996a) as well as Sugden (1996) for 

criticisms along this line. 



etc. . Thus, the freedom of choice offered by some opportunity set can be analyzed 

in terms of its component opportunities to bring about particular consequences, and 

effective freedom of choice is naturally viewed as multi-attribute construct, with the 

component opportunities as its relevant attributes. By "effective freedom of choice" 

we mean an agent's inclusive valuation of opportunity sets that combines indirect 

utility and freedom of choice considerations; the notion of "effective freedom of choice" 

is thus understood to comprise as a special case the preferences of agents who do not 

intrinsically value freedom of choice, i..e. whose conditional preferences kj satisfy 

the conditional IU-property; in this case, the valued component opportunities are 

those associated with the attainment of some level-set of the form {yl{y} ki {x)}. 

Up to the issue of extensionality :raised below, the notion of component opportunity 

coincides with that of section 5 wlzich hiid been introduced there for largely technical 

reasons. 

A significant strand in the axiomatic literature on the ranking of opportunity sets 

is interested in "measuring" freedom of choice exclusive of considerations concern- 

ing an agent's welfare. The notion of a corilponent opportunity and the following 

analysis based on it are equally applicable under such an exclusive freedom of choice 

interpretation, as illustrated by the following example. We do not pursue this in- 

terpretation further here, especially since its conceptual coherence stands in need of 

further ~lar i f icat ion.~~ 

Example 5 Renate is  a young LSast German woman currently living in the G D R ~ ~  

i n  the 1980s. A n  alternative consists of a place where she might live (East or West  

Berlin, E or W), and of a profession she might enter (becoming a medical doctor or a 

journalist, D or J).  The  relevant universe of alternatives is X = {w, x,  y, z ) ,  with w = 

( E ,  J ) ,  x = ( E l  D), y = (W, D ) ,  and z = (W, J ) .  i i t  the level of consequences, basic 

compon,ent opportunities are the oppodunity to live i n  East Berlin, the opportunity 

32~ugden (1996) for one is highly skeptical. 

33~erman  Democratic Republic, R.I.P.. 



to live i n  West-Berlin, that of becoming a doctor, and that of becoming a journalist. 

Typically also logically derived component opportunities are relevant, such as that of 

becoming a doctor while living in West- Berlin. 

To express component opportunities defined via consequences in terms of the primi- 

tives of the model (i.e. alternatives), they need to be translated into their consequence 

edensions; the extension E C X of a consequence is the set of alternatives that bring 

about that consequence34. (Obviously, some information may be lost in translation, 

since different consequences may happen to have the same extensions). The follow- 

ing matrix associates component opportunities and their extensions in the example 

above. 

Component Opportunity E W D J W&J 

Extension ( ~ 4 )  Y Y { w 1 4  (2) 

Component opportunities will be described in the following extensionally, as the 

opportunity to bring about membership of the chosen alternative in E, to "realize 

E", and will be referred to by their extensions. As in section 5, an opportunity set 

A realizes the component opportunity E if and only if A contains one alternative 

realizing El  in other words, if and only if A n E  # 0. 

In a stochastic setting, this suggests the following definition of "more opportunity 

in expectation". 

Definition 8 The opportunity act f offers more opportunity in expectation than the 

opportunity act g (f  g )  if and only if, for all component opportunities E E 2 X  and 

a l l i ~  I :  { O E Q ~ ~ ( O ) ~ E # ~ ) > ~ { O E Q ~ ~ ( O ) ~ E # ~ ) .  
- 

3 4 ~ n  logic, the extension of a predicate is defined as the set of objects that satisfy it. In Frege's 

famous example, the predicates "is the morning star" and ILis the evening star" have the same 

extension, the planet Venus. 



Thus, f offers more opportunity in eqectation than g if, for any component oppor- 

tunity E E 2X and conditional on any (3;, it is at least as likely for E to be realized 

under f as it is under g. 

It is easily verified that the ''offers more opportunity than" relation coincides with 

the Indirect Stochastic Dominance; it is therefore denoted by the same symbol D. It 

follows from the above that the indirect stochastic dominance axioms ISD* and ISD 

capture the notion that more opportunity is better. State-dependence of preference 

is highly plausible, again. For example, if O = {el, Q2), with O1 denoting the event 

"Renate has married someone unwilling to leave East-Berlin", Renate's valuation of 

the component opportunity W of: living in West-Berlin will most probably depend 

on whether Q1 is realized or its complement; correspondingly, her preferences over 

opportunity sets conditional on and Q2 will differ. Moreover, to account for a 

co-existing preference for flexibility in terms of explicit uncertainty, preferences need 

to be state-dependent. To establish the relevance of theorems 3 and 1 in a freedom- 

of-choice context, it remains to reinterpiret the representations. 

Theorem 3 yields a state-dependent additive multi-attribute representation, in which 

the utility-functions ui : A --+ R of theorem 2 have the form ui(A) = C Xb 
E€A*:EnA# 0 

for appropriate state-dependent a.ttribute weights A& .35 The collection of weights 

{ ~ b ) ~ ~ ~ *  defines an additive measure X~ on A*, and the utility-representation can 

be rewritten as 

In view 01 the great popularity of proposals to measure pure (IU-exclusive) freedom 

of choice by counting alternatives, a measure representation is of some interest. It 

shows that the notion of counting makes sense after all, provided it is applied to the 

right type of objects, component opportunities rather than alternatives. 

3 5 ~ o t e  that the s u m  is taken over 7' E A* rather than T E 2 X .  While conceptually perfectly 

sensible, the consequence extensions 0 and X have been "normalized out" in the representation due 

to their irrelevance to preferences. 



Remark 1: The counting of alte~natives (with possibly asymmetric weights) 

emerges as a special case in which A' is concentrated on singletons, since then ui(A) = 

Ai({{x}lx E A } ) .  However, concentration of Ai on singletons means that the only 

valued consequences are those that can exclusively be realized by a single alternative. 

This seems to be a remarkably implausible implication even on a pure freedom-of- 

choice interpretation; for instance, in example 5, it means that realization of no basic 

component opportunity has value by itself. In fact, it is recognized by its apparent 

proponents that the counting of alternatives is not entirely satisfactory, and that, in 

particular, it fails to take properly into account the diversity of an opportunity set 

(see Pattanaik-Xu (1990) and Gravel-Laslier-Trannoy (1996)). 

Remark 2: It is worth noting; that the manner of counting has been motivated 

decision-theoretically rather than mathematically. On purely mathematical grounds, 

one might consider a dual measure based on all sets a given set contains, leading to 

uniformly supennodular (rather than submodular) vNM utility-functions of the form 

ui(A) = Ai({EI E C A ) ) .  Such a measure is evidently devoid of decision-theoretic 

content. 

From an inclusive valuation pers;pective, the most promising strand in the literature 

is the emerging multi-preference approach in which opportunity sets are compared in 

terms of a range of "relevant" (or "reasonable") preferences; see in particular Jones- 

Sugden (1982), Pattanaik-Xu (1995), and Sugden (1996). The results of this paper 

fit naturally into this line of research; one simply needs to reinterpret an EIU ra t i e  

nalization as follows: In the representing expression C ~3~ maxv;,(.) of theorem 
wieni 

3, Ri indexes the set of "reasonable" utility-functions (with A& > 0), conditional 

on Oi, and A$ is naturally interpreted as the relevance-weight of v$i ; preferences 

satisfy the conditional IU property whenever all weight is concentrated on just one 

ordering. Of course, just as under the flexibility interpretation, there is the prob- 

lem of non-uniqueness of the representation, and in particular that of disentangling 



relevance-weights from utility-scides. In this context, the present paper contributes 

the first cardinal representation and, more specifically, an additive aggregation rule. 

By comparison, the aggregation rules proposed in the literature are ordinal and en- 

tirely different in character (see l'attanaik-Xu (1995), Puppe-Xu (1995)). Moreover, 

with the exception of Nehring-Puppe (1.996b), the set of relevant preferences is taken 

as given rather than derived from a representation theorem. 

It is clear from the discussioi~ of section 5 that within the framework studied 

here, the multi-attribute and the multi-preference interpretations are "obsewationally 

equivalent". It remains to be seen whet'her the two can be distinguished in interesting 

ways if more structure is assumed. 

7. INCENTIVE-COMPATIBILITY 

In this section, we discuss the viability of a direct Savage-style approach in which 

future preferences enter the description of a state. We will argue that whether or 

not any mileage is gained by such a move depends critically on one's willingness to 

accept certain types of counterfactuals.. 

For expositional simplicity only, we will illustrate the problem by means of a simple 

example with two alternatives (X = {x, y)) and with only preference-uncertainty. In 

a direct Savage-style approach, the state-space is then given by the set of conceivable 

future preference-orderings, i.e.36 by the two linear orders PI, P2 with xPl y and y P2x, 

as illustrated in the following table. 

A natural subclass of Savage acts are those induced by the agent's future choice 

from some opportunity sets A. Such acts have the form fA : Pi - arg maxp, A, as- 

signing to each state as "prize" the finally chosen alternative; they will be referred to 

as "generated by the opportunity set A", and their class denoted by FW. Note that 

on 3m the sure-thing principle is satisfied vacuously (this holds true in general, irre- 

36disregarding the pwibility of future indifference for simplicity. 



spective of the cardinality of X). 'Note aJso that due to the inherent state-dependence 

of conditional preferences, Savage's other key axioms P3 and P4 do not apply here in 

any case. 

Thus, if one considers preferences over 3q, the direct Savage approach entails 

no additional restrictions. It follows that in order to give the surething principle, 

and thus the direct Savage approach, any bite, arbitrary acts (like (y 'x ) )  need to 

be supported by appropriate (counterfactual) gedanken-experiments; the question is 

whether acceptable ones exist. 

The most straightforward justification for the admissibility of arbitrary acts derives 

from postulating a perfectly mind-readzng referee who awards the prize based on the 

agent's future preference ordering. The mind-reading might be that of an empathetic 

but potentially spiteful wife, or that of a brzirl-scientist in possession of a perfect 

"preference detector". 

Gedanken-experiments of this kind seem not only rather contrived, but also very 

much to go against the grain of the "revealed-preference" approach central to the 

decision-theoretic tradition, within which preferences are identified with dispositions 

to choice-behavior. Thus perhaps somewhat more plausible is a story in which the 

referee obtains knowledge of the agent's preference through the agent's own truthful 

revelation. This, however, leads to a severe incentivecompatibility problem, since 

honest reporting will often be contrary to the agent's current interest, i.e. to acting 

in accordance with the choice-function defining the state. In the above example, 

for instance, an agent faced with the "prima-facie act" (y ,  x) in terms of reported 



preferences will report P2 if his true preferences are PI,  and vice versa, thus inducing 

the act (2, y) in terms of his true preferences. Note that at no point in the argument 

have we denied that the agent himself has introspective access to his own preferences; 

that simply is not enough to support arbitrary acts. The issue is rather whether it 

may be feasible for the agent to commit himself at present to make choices in the 

future contrary to his preferences at that time. 

If this is doubted, the discussion suggests that only incentive-compatible acts cor- 

respond to plausible thought-experiments; an act is incentive-compatible if, for any 

pair of weak orders R and R' on X, f (12) R f ( R ' ) ~ ~ ;  in other words, if, for all weak 

orders R, 

f (R) E arg m a R {  f (R1)I R' is weak order on X). 

Thus, incentive-compatible acts are precisely those induced by some opportunity 

set; as a result the sure-thing princ:iple is vacuously satisfied on the class of incentive- 

compatible acts, and the state-structure turns out to be redundant. In other words, 

a preference relation over opportunity acts38 is effectively as primitive as can be. 

It should be noted that analogous revealed-preference / incentive-compatibility 

considerations do not undermine t,he decision-theoretic approach to game-theory in 

which players are assumed to have beliefs about others' beliefs (respectively prefer- 

ences on a state-space that includes others' preferences). In a nutshell, the difference 

to the intrapersonal intertemporal case is that in a game with self-interested players, 

player i's belief that another player j has placed some bet on i's own betting behavior 

does not interfere with i's actual betting behavior since, by self-interestedness, i does 

not care whether j wins or loses his bet. By contrast, an agent's "future self" i will 

typically care about whether the "initial self" j wins his bet or not: not only do the 

3 7 ~ n  a general deterministic model, an act f maps weak orders to alternatives. 

=that is, in the absence of non-preference uncertainty assumed here, a preference relation over 

opportunity sets. 



interests of the initial and future selves typically coincide, but also the initial self's 

bets can only be physically paid out to the future self! 

We have argued that incentive-compatibility constraints may be of concern even on 

a normative interpretation on which acts correspond to a decision-maker's though& 

experiments. On the other hand, on a behavioral interpretation concerned with ~ a l  

experiments, these constraints seem to be binding in principle. Fortunately, theorem 

3 has shown that the hypothesis of EIU maximization with respect to ali uncertainty 

remains testable in principle nonetheless. 

APPENDIX: PROOFS 

Proof of Fact 1. 

i) =+ iii) . True since p PR, q iinplies 1 psu(S) > 1 qsu(S) , with R, defined 
SEA S E A  

by X&'Y 44 2 4 ~ ) .  

iii) + ii). True since p({S 1 5: n A # 0) coincides with expected utility from p 

under the indirect-utility function v~ given by C pSvA(S) . 
S EA  

ii) + i). True since p E R  q is equivalent by definition to P({S I S n A # 0) 1 

q({S I S f l  A # 0) for all A of the form {x 1 xRy}, for some y E X. . 
Proof of Theorem 1: 

It is well-known that vNM imp1j.e~ the existence of a vNM utility-function u : A +R 

such that 

In view of fact 3 below, we need to show that ;1 satisfies ISD if and only if XA = 

\Ir- ' (u) (A)  2 0 for all A E A*. 



Note first that p ( { S  I S n A # 0)) = \E(p) (A) .  The dual Mobius operator \E 

thus maps opportunity prospects p to their characteristic profiles \E(p),  establishing 

a linear isomorphism between A-A and the space of characteristic profiles rA := 

*(A*) = { p  E R* I p is monotone, uniformly submodular and p ( X )  = 1). The 

desired result is obtained by studying the induced preferences over characteristic 

profiles. 

? defined on aA induces on 1rA according to 

s is said to be monotone if p > p' + p s p'. Fact 1 impliesp 1> q 9Cp) 2 Q(q) .  

This yields part i) of the following fact. In view of facts 2, iii) and equation ( 6 ) ,  one 

also easily verifies its second part. 

Fact 4 i )  i s  monotone if and only if 17 satisfies ISD. 

i i )  p p1 if and only if C XAp(A) 2 C XApl(A) , for all p , p l  E rA. 
AEA* AEA* 

In view of fact 4, i) ? the theorern follows from the following lemma. 

Lemma 1 is  monotone if and only if XA > 0 for all A E A*. 

Proof of lemma. 
EA SnAfQ Only if: define 77, by ji(A) = @&. = 1 - 2 n - # A - 1  

2n-1 , for all A E A. 

77, is in the interior of r A ,  since I$ is a homeomorphism and V1(77,)=& . 1 is in 

the interior of A ~ .  Thus, for any A E A' and small enough E ,  77, + &liA) E rA. By 

the monotonicity of and fact 4, ii) , 2 0. 

The converse is immediate, noting that Q ( p ) ( X )  = 1 for all p E a A . ~  

Remark: Characteristic profiles are, from the mathematical point of view, "plau- 

sibility functions" in the sense of the theory of belief-functions (Shafer (1976)); how- 

ever, in contrast to the intended interpretation of that theory, a characteristic profile 



does not express a non-additive belief about the state-space A*, but rather proba- 

bilistic beliefs about events in A* of the form {S I S n T # 0). 

Proof of Theorem 3: 

Let {pi}iEI and { u , } ~ ~ ~  as in theorem 2, which implies in particular 

f t i  g if and only if / ui(f (0))dpi 2 1 u, (g(B))dp,, for all f ,  g E 3. (7) 

For given i E I, define >-f on aA according to p, o f- '  >-f pi o g-l if and only 

if f >-i g , for all f ,  g E 3. By the representation (7), >-t is well-defined. From the 

convex-rangedness of pi and the definition of 3, {pi o f - l  1 f € 3) = nA; kf is 

therefore complete. From (7 ) ,  it follows that tf satisfies all of the vNM axioms and 

is represented by the vNM utility-function ui. [ These facts have been in fact derived 

by Savage as a key step in obtaining his representation theorem in the first place 1 .  
ISD* of is clearly equivalent to IS11 of >.f. By theorem 1, this in turn is equiv- 

alent to a representation of ui according to ui(A) = C X i i  maxZcA vLt(x) , for 
4 E Q, 

appropriate R,, Xi E Ani , and { v ~ ~ ) ~ , ~ ~ ,  . 

Proof of Fact 2. 

1. i) ===+ . If u is a DIU-function, then u = v(Z,xu(s)=l) . 

2. i) t= . By definition of a simple function, vs(A) = 1 if and only if 32 E X : 

x E A n S , which in turn holds if and only if 32 E A : vs({x)) = 1. 

3. ii) +== . Consider u = C Xsvs, fbr X E R~ such that As > 0 for S # X, and 
S E A  

such that As > 0 and AT > 0 imply S G T or S > T . Define A = {S E d 1 As > 0 

or S = X}. Then u({x)) = 1 X5: , for all x E X, and u(A) = C AS 
S E A : S ~ X  St  A:SnAf 0 

=u( {y ) )  for any y E n{S E A I S n A # 8); such y exist by the assumed ordering 

property of A. Since clearly u(A) 2 u(i[z)) for all z E A, u(A) = mXz€A ~ ( { x ) ) ;  u 

is thus an IU-function. 



4. ii) * . If u is an IU-function, let { x ~ ) ~ = ~ , . . , ,  be an enumeration of X such that 

u({xk)) 2 U ( { X ~ + ~ ) )  for k = 1, .., n. Then 

denotes a function of the desired form. By part 3., w is an lU-function. To 

show its equality to u, it thus suffices to show equality for singleton-sets, as follows: 

Proof of Fact 3. 

Extend u to R~~ by setting ,u(e)) = 0, and set X0 = 0 as well. Define 0 : RA x (0) 4 

By construction, 1(A) = 1: As - C As = 1 As. 
S ~ 2 ~ : S n X f 0  S~2X:Sn4~#0 Sc2X:S&A 

Let @ : R~ x (0) -+ RA x (0) denote the linear ("Mijbius") operator that maps X 

to 1 as just described. Shafer (1976) has shown the following. 

Proposition 2 (Shafer) iP : RA x (0) -+ R A  x (0) is  a bijective linear map. Its 

inverse @-' is given by  

( ) ( A )  = 1 ( - l )#(A ' \S) l (~ :~  for A E 2.Y 
S E ~ ~ : S ~ A  

Since Q is invertible (with inverse Q-' = 0; this follows from noting that 1(1(A)) = 

u(A) ), one can write \k = 0-' (1 iP , and thus also V1 = W1 o Q. Specifically, in 

view of proposition 2, one obtains W1(u)(A) = C ( - I ) # ( ~ \ ~ ) ( U ( X )  - u(Sc)) , 
S E ~ X : S & A  

for A E A. Since 1 (-I)#(~\ ')  == 0 (cf. Shafer (1976, p.47)) , one can simplify 
S E ~ " : S C A  



Proof of Theorem 4. 

In view of corollary 1 and the decornposition V1 = W1 o Q as in the proof of 

fact 3, the theorem is an immediate consequence of the following two lemmas. Let 

A** = 2 X \ { ~ ) .  

Lemma 2 i )  u is monotone (on. A) if and only if the associated loss-function 1 = 

0 ( u )  is monotone on  A+*. 

i i )  u is  u n i f o d y  submodular (on A) if and only if the associated loss-function 

1 = @(u) is uniformly supermoddar on A'*, i.e. if, for any finite collection { A k ) k E K  

Proof of lemma. Part i) is obvious from the definition of 1. 

For part ii), we shall prove the ',only-if" part; the "if" part follows from reading the 

proof given backwards. Thus, consider a finite collection { A k ) k E K  in A** such that 
/ \ / \ 

U A k  C X; it needs to be shown that 1 C ( - 1 ) # ~ + l 1  
k t  K  J:0#Jc K  

This follows from the equivalence of the three inequalities just below, as well as the 

equivalence of " U Ak c X "and " n A; # 0" 
k € K  k € K  

is by the definition of 1 and computation of complements equivalent to 

,.(Xi - (" k € K  A:) 2 z (-11*~+l 

J:a#J(Z K  

which, due to the equality 1: (--l)#Jt = 1, is equivalent to 
J:@#JC_ K  



Lemma 3 1 is monotone and uniformly .supennodular o n  A** if and only  if W1 (z)(A) 2 

0 for all A E A**. 

Proof of lemma. For s E X, let A, = 2.Y\{x}. It follows from Shafer's (1976) 

theorem 2.1 (see also Chateauneuf-Jaffray (1989), Corollary 1) for any x E X that 1 

is uniformly supermodular on R, if and only if W1 ( l ) (A)  >. 0 for all A E A,. The 

claim follows from noting that UZcIx R, = A**. H 

Proof of Corollarv 2. 

By standard arguments , the vNM axioms ensure the existence of a vNM repre- 

sentation p >. q C psu(S) 2 C qsu(S). Monotonicity and opportunity risk- 
S E A  S E  A 

aversion of ? are then easily verified to be equivalent to monotonicity and uniform 

submodularity of the utility-function u. H 

Proof of Theorem 6. 

Necessity is straightforward. 

For sufficiency, assume w.1.o.g. that u(X) = 0 , and hence that u(S )  5 0 for all 

S E A. Let urn : A 4 R defined by u,,(S) = - ( - ~ ( 5 ' ) ) ~ .  Let Am denote the 

associated coefficient vector Am = \3rP1 (urn); note that -um(A) = C AT. 
SCAC 

We want to show that, for some sufficiently large m, urn is an EIU-function. By 

fact 2,iii) , it thus needs to be shown that for some sufficiently large m : A T  > 0 for 

all S # X. Since X is finite, it sdEces to show that for all S E A*, AT 2 0 for all 

sufficiently large m. Take S E A*. 

Case 1: For some x E S : u(SC U {x}) = u(S C) .  Then um(Sc U { x } )  = u m(S C);  

since, moreover, urn satisfies OSM because u does, it follows that A? = 0 by lemma 

4 below. 



Case 2: For all x  E S : u(SC U { x } )  :> u(S C) .  Then A'$ > 0 for sufliciently large m 

by lemma 5 below. 

Lemma 4 For any w satisfying OSM, A E A, and x  E X :  

w ( A  U ( 2 ) )  = w(A)  implies AT = 0 for all T such that x  E T C AC. 

Proof of lemma. Fix x  E X .  The claim is shown by downward induction on 

the size of A. It holds vacuously for A := X. 

Thus, assume the claim to be true for all B such that B > A, and assume also 

w(A U { [x ) )  = w(A). ( 8 )  

By OSM, w(B U { x ) )  = w ( B )  for all B > A; 

hence by induction assumption, A? == 0 for all T such that x  E T c AC : AT = 0. 

Since equation 8 implies by the definition of A: C AT = w(AU { x ) )  - w(A)  = 
T : z € T & A C  

0 , it follows that AAc = 0. 0 

X m I  Lemma 5 i) limsup -U,;S(~.)  < 00. 
m+co 

AT 
ii) In  case 2: lim = 1. 

m--tm -um(SC) 

Proof of lemma. From A? = .-um(SC) - C A? , one obtains 
T C  S 

Let qs  =lim sup *" . Due to the monotonicity of u, I ) 1 -  < 1 in equation 
m+m um(SC) 

(9). One thus obtains from equation (9) ,  qs  < 1 + C for S E A. 
T C  S 

Part i) follows from this by induction on the size of S.  

Part ii) follows from the validity of i) for T C S ,  and the fact that satisfaction of 

the condition "for all x  E S : u(SC u {x)) > u(Sc)" implies + 0 as m + oo, 
u,(SC) 

for all T such that T C S. . 



Proof of Proposition 1. 

i) follows from theorem 1 and fact 2,iii) . 

ii) By the unique determinacy of vNM-utility functions up to positive affine trans- 

formations, u = 1 XTvT and u' = C X;vT must be positive a f h e  transformations 
T EA  TEA 

of each other. The claim is thus a straiglntforward implication of the behavior of V 1  

under a f h e  transformations described by the following fact which itself follows at 

once from the linearity \E-' and the definition of Q; note that changes in the "level" 

of u affect only the coefficient on vx representing global indifference. 

Fact 5 For any u  E R ~ ,  c > 0 and d E R : 

c V 1 ( u )  ( T )  i f T # X  
( C u t d l )  ( T )  = 

cW1(u)(T)  + d if T = X .  

iii) is straightforward from ii). H 
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