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ABSTRACT

In this paper, we study preferences over Savage acts that map states to opportunity
sets and satisfy a state-dependent version of the Savage axioms. Conditional prefer-
ences over opportunity sets may be inconsistent with indirect-utility maximization.
This is interpreted as reflecting a preference for flexibility due to implicit uncer-
tainty about future preferences, or alternatively an intrinsic preference for freedom
of choice.

On a flexibility interpretation, the main result of the paper (theorem 3) charac-
terizes preferences based on maximizing the expected indirect utility in terms of an
"Indirect Stochastic Dominance" axiom. The relevance o theorem 3 to a freedom-of-
choice context is established on the basisdf a novel multi-attribute conceptualization
o the notion o effective freedom of choice; the theorem delivers an additive multi-
attribute representation with optimal uniqueness properties.

The key technical tool of the paper, a version o Mobius inversion, is novel to the
literature on choice of opportunity sets and has been imported from the theory o
(non-additive) "belief-functions” ; it also yields a simple and intuitive proof of Kreps's
(1979) classic result.

We conclude by arguing that a thorough-going reveaed-preference point of view
imposes incentive-compatibility constraints on the domain of acts which amount to

excluding future preferences from the definition of an (explicit) state.



1. INTRODUCTION

Flexia plans to undertake a plane trip; she has to decide whether to purchase an
advance-reservationticket now at a price p, or whether to wait until right before her
intended date of departure and then to finally decide between staying at home and
purchasing a ticket at a higher price q. Flexia’s "present choice' can be thought of
as one among "opportunity sets", here{fly Q p, stay @ p} and {fly @ q, stay @ 0},
from which her "future choice" is then made.

Flexia hasfairly common present preferences over opportunity sets; if required to
make a final choice now among basic aternatives (singleton opportunity sets), she
would most prefer to purchase a ticket in advance (fly @ p - stay 8 0). On the
other hand, if possible, she prefers to “waii-and-see” ({fly @ p, stay @ p) < {fly
@ g, stay @ 0}). Note that these preferences are not compatible with a ranking
o opportunity sets according to their indirect utility (i.e. by ranking the sets as
equivalent to their currently best element)’. They are naturally explained, however,
as due to an uncertainty about her own future preferences between making the trip
and staying at home.

Such preference for flexibility received itsfirst axiomatic study in a classic paper by
Kreps (1979) which characterized the classd preferencesthat rank opportunity sets
in terms d their expected indirect (=maximal attainable) utility (EIU), the expecta-
tion being taken with respect to an implicit? state space describingfuture preferences.
Kreps assumed that present choices determine future opportunity sets deterministi-
caly. Such an assumption isobvioudy very restrictive; for instance, if Flexia decides
to wait, redlistically she will need to reckon with the risk that seats may no longer be
availablelater. The present paper characterizesEIU maximization in such more gen-

eral situationsin which the agent may be uncertain about the opportunity set sheis

! assuming greater wealth to be preferred, of course.

2That is part of the representation, not of the set-up.



going to face, and in which at least some d the uncertainty about future preferences
is explicitly modeled.

Thus, at the heart o this paper's analysisis a distinction between explicit and
implicit state spaces. In various guises, this distinction is o significant conceptual
interest. AS shall be argued, it corresponds, roughly speaking, to distinctions be-
tween verifiable / non-verifiable and foreseen / anticipated unforeseen contingencies,
between incentive-compatibleand arbitrary Savage acts, and, finaly, between pref-
erence for flexibility itself and intrinsic preferencefor freedom of choice. Before de-
scribing these alternative interpretations o the theory in greater detail in the second

haf d thisintroduction, we first sketch the main result o the paper.

In formal terms, we will study preferencesover acts f ("opportunity acts") that
map states § € © to opportunity sets A € A = 2%\ o aternativesz € X . Both
states as well as prizes (opportunity sets) are to be understood as described in terms
o what is knowable ex-interim, rather than as complete descriptions o everything
relevant, as "smadl worlds® rather than "grand worlds® in Savage's terminology (1972,
pp.82). By consequence, bdief cannot be fully disentangled from value. As with
single-valued acts, this leads to statedependent preferences. Thus, we take as point
o departure for our characterization a statedependent version o Savage's axioms
(Karni-Schmeidler (1993)).

If preferences are defined over opportunity acts, incompleteness of description
(specifically: the absence d future preferences from the definition o a state) mani-
festsitself additionally in conditional preferencesdisplayinga preferencefor flexibility.
That istosay, it will typically not bethe case, even for events E such that preferences

are state-independent on E, that the following property holds.

Conditional | U-Property)
For all sets (constant acts) A,B€ A, all actsf € 3,and all events E C 9 :
[AE;f, E9 = [B,E;f,E] implies[AE;f, EY] = [AUB, E;f, E|.3

3[A, E;T, E°] denotes the act that coincides with the constant act A on E and with f outside E;




The key issue is to find axioms that yield an expected-utility representation with
respect to the implicit uncertainty concerning future preferences. Partial solutions
can befound in the work o Kreps (1979,1992). Kreps (1979) characterizes the impli-
cations of EIU maximization for preferences over constant acts, that is. opportunity

sets. The obtained restrictions, described by the following condition, are weak.4
OSM)3 VA,B,C € A: A > AU B implies AUC = AUBUC.

Building on this result, Kreps (1992) introduces uncertainty explicitly into the
model and shows that EIU maximization entails implications analogous to OSM for
conditional preferences over opportunity acts. However, these implications are only
ordinal in character and fail to characterize EIU maximization by far. Consequently,
he obtains a representation in which the utility d an act is monotone but not neces-
sarily additive in implicit-state utilities.

In an explicitly stochastic context, EIU maximization has additionai and interesting
cardinal implications. For example, it entails the following cardinal (conditional)
version d OSM, which implies that opportunity subsets are d necessity substitutes

for each other.

CSM)® For al sets, A,B,C € A, dl actsg,h e 3,and al events E C © :
[A,E;g,E] = {[AUB,E;h,E] implies{AUC, E; g, E] = [Au BUC, E;h, E].

CSM asserts that the incremental valued aset B o additional alternatives never
increases as further alternatives become available; note that a conditional version o

OSM results by restricting CSM tog, h such that g = h. While coming much closer to

cf. section 3.
4Conversely, an additiverepresentationis of limited significance in this context, as Kreps (1979,

p. 567) pointsout.
508SM for "Ordina Submodularity”, cf. section 4.

8CSM stands for "Cardinal Subrncdularity”.



characterizing EIU rationalizable preferences, CSM failsto capture all their cardinal
implications.”

To characterize EIU-maximization, we introduce an axiom "Indirect Stochastic
Dominance" (ISD*) that makesuse d the "more-likely-relation” > over events de-
rived from preferencesover bets in the usual way. Roughly speaking, | SD* formalizes
the notion that acts that "in expectation offer effectively more choice" are better.
More specificaly, ISD* requires that f be weakly preferred to g whenever, given
any hypothetical (future) weak order R, the R-best available alternatives under f
are >-more-likely to be R-better than under g (“first-order stochastically dominates

in utility”; see sections two and three). For example, ISD* entails the following

condition ISD, which evidently is closdly related to CSM.

ISD2) For any event E such that E is >-equally likely to its complement E° and
any A,B,C € A: [A\E;AUBUC, E | <[AUB,E; AUC, E].

Specialized to state-independent preferences, the main result (theorem 3) charac-
terizes ElIU-rationalizable preferences » as those satisfying the Savage axioms plus

ISD*.

The notion of a "preference for flexibility" translates into decision theory, and
thereby generalizes, one o the central .ideasd financial economics, the notion that
"options have value"; for example, the theory o option-pricing has profoundly &f-
fected the theory o investment in physical capital under the name o "real options"
(see especialy the recent monograph by Dasgupta/Pindyck (1994)). A more general
decision-theoretic approach seems clearly desirable in contexts in which markets are

thoroughly incomplete (asisthe casefor many investments in human capital, e.g. the

In addition, CSM does not seem to be fully satisfactory conceptually: that the incremental value
of additional alternatives be non-increasing seems plausible enough, but how compelling can it be?
Indeed, it can beshown that CSM may easily be violated if the decision maker is uncertainty-averse

in the sense of Gilboa-Schmeidler (1989).



comparatively "inflexible" decisionsto obtain a Ph.D. training in economic theory
rather than an M.B.A., for instance), or where markets are entirely absent; - in a
somewhat playful and speculative vein.,Dasgupta and Pindyck stressthe irreversibil-
ity inherent in the decisions to marry and commit suicide.®

While the economic importance o preferencefor flexibility seems evident, an ax-
iomatic approach to preferencefor flexibility ismotivated by an interest in the distinc-
tion between explicit and implicit states fundamental to the opportunity act model.
A polarity o thiskind arises naturally from a variety of perspectives; while the second
and third oppositions described below are conceptually of a rather different nature,
they turn out to be mathematically isomorphic in a precise way.

1. The distinction between explicit and implicit states captures at a primitive
level important restrictions on the dlicitation and even "construction” o an agent's
preferences. In descriptive, especially in experimental applications, one may want to
confine attention to acts defined in terms o verifiable or contractible contingencesg
If one seriously wants to test experimentally whether and to what extent a subject's
behavior conforms to SEU-maximization, one will €licit preferences over acts defined
in terms o a finite set d contingencies that is coarse amost by definition. The
phenomenon o preference for flexibility shows that implicit (not directly elicited)
uncertainty matters in a sequential setting even to decisions between acts whose
consequences are fully described in terms d the coarse explicit state-space.

From a first-person point o view, the explicit state-space may analogously be
interpreted as the space d foresecen contingencies determining the class o thought-
experiments relevant to the decision-maker's preference construction. Violation of
the conditional TU property can then be viewed as reflecting anticipated unforeseen

contingencies (Kreps 1992); for example, Flexia may explain her preference for flexi-

8See also Jones-Ostroy (1984) for a decision-theor eticmodel which relates the value of flexibility

tb the amount of information to be received.
?Note that many " Dutch book" argument for the sure-thing principle rely on the contractibility

of contingencies.



bility by the expectation that "quite possibly something will interfere with my travel
plans”’, without having a clear idea about specificaly what is likely to interfere. For
another example, we note that in discussions d the value o preserving biodiversity,
theirreversibility o extinction occupiesfrequently a central place. Preserving species
for another generation kegps the option o their continued existence open, an option
which has significant valuein view o our uncertainty about the preferencesdf future
generations which presumably we cannot foreseein any detail.

A conceptualization of anticipated unforeseen contingenciesin terms o a set o
implicit decision-relevant states isinteresting particularly in that it combines (antici-
pated) "unforeseenness’ with notions of subjective probability and expected utility®;
this contrasts with approachesin which "unforeseenness' isidentified with ignorance
o some kind, as in Ghirardato (1.996)and Mukerjee (1995)11. 12

2. It will be shown in section 7 that from a thorough-going reveal ed-preference

perspective which identifies preferences with dispositions to choice-behavior, difficul-

Thisis not to belittle the seriousness of the uniqueness issue in this context; see section 5 for

further discussion.
" For recent epistemic work on the related notion of awareness, see Modica-Rustichini (1994) and

Dekel-Lipman-Rustichini (1996).
12Pinally, the issue of " coarse explicit state-spaces” iscentral toa related, but largely philosophical

literature on Bayesian belief revision and "belief kinematics” (thelocus classicus is Jeffrey (1965, ch.

11). Coarseness there corresponds to the notion that rational belief change cannot be fully accounted
for by Bayesian updating on "explicitly given" evidence. The literature emphasizes the existence of

evidence that may be "non-verifiable" (e.g. impressionistic judgements) and/or "unforeseen" (e.g.

future insights) ; see also Binmore-Brandenburger (1990) who forcefully spell out the problematic
nature of large-world assumptions. Reservations have been articulated towards inclusion of future
beliefs (i.e. here: o future preferencesover bets) in the definition of a state. If these reservations are
fully taken to heart, a theory o the kind outlined in this paper is required to justify “as-if Bayesian
updating” (whichis what EIU maximization amounts to in this context) with respect to the implicit
uncertainty; in such a theory (with appropriately enriched structure), beliefs about future beliefs
are revealed by preferences over sets of future bets, i.e. by the "flexibility value of effective belief

revision".



ties arise for a direct application of Savage's theorem in which future preferencesare
incorporated in the description o a state and in which the preference ordering is
defined on the class of all Savage acts:; in particular, it is not obvious which class
o acceptable thought-experiments can support arbitrary acts (i.e. actsthat depend
on the decision-maker's future preferences in arbitrary ways). We will thus argue
that a "revealed-preference” interpretation of future preferences implies incentive-
compatibility restrictionson the domain d actswhich in turn lead to models equiva-
lent to the opportunity-act moddl studied in this paper.

3. Last but not least, if one assumesthat all uncertainty is modelled in standard
ways!3, and preferencefor flexibility is thusfully accounted for in terms of the explicit
uncertainty, a failure o preferences to satisfy the conditional TU property can by
definition no longer be attributed to uncertainty about future preferences; instead,
it reveds an intrinsic "preference for freedom o choice It isin fact this notion
o freedom of choice which has been at the center of the recent wave of interest in
the axiomatic study of ranking of opportunity sets!4. The present paper is the first
to simultaneously incorporate and distinguish within one model the two sources o
preferences for opportunities.!®

The key step in making the results o this paper equally applicable to a freedom-
of-choice interpretation is a novel conceptualization o effectivefreedom of choice as
a multi-attribute construct, with component opportunities (i.e. the opportunities to
bring about particular consequences) defining the different attributes. The Indirect
Stochastic Dominance axiom is reinterpreted accordingly asrequiring that "in expec-
tation more opportunity is better”, and theorem 3 yields an additive multi-attribute

representation with optimal unigueness properties.

13T hus bracketing points 1 and 2.
141t will become dlear that our resultsare equally applicable to rankings of opportunity sets purel y

in terms of freedom of choice, without regard to the agent'sindirect utility.
15The natureand legitimacy of thedistinctionisintensively debated: for example, while Sen (1988)

affirms it emphatically, Arrow (1995) does not. appear to see any meaning in it.



The remainder of the paper is organized as follows:

Section 2 considers a von Neumann-Morgenstern-type setting in which preferences
are defined on the class of al (objective) probability distributions over opportunity
sets; an objective version of the Indirect Stochastic Dominance axiom is introduced
and used to characterize EIU rationalizable preferences (theorem 1). We present
theorem 1 as a separate core result both to make it more accessible to the general
reader unfamiliar with Savage'sframework, and becausefrom a mathematical point of
view, the theorem is best understood as a result on mixture-spaces over opportunity
Sets.

In section 3, a subjective version of the Indirect Stochastic Dominance axiom is
formulated; Karni-Schmeidler's (1993) generalization of Savage's theorem to state-
dependent preferencesis then combined with theorem 1 to obtain a characterization
state-dependent EIU rationalizahle preferences over opportunity acts.

Section 4 introduces the key technical tool of this paper, (dual) Mobius inversion
which is taken from the literature on belief-functions (non-probabilistic representa-
tionsd uncertainty). It isshown that EIU rationalizable preferencesare characterized
by a risk-aversion property with respect to the "size' o the opportunity set. Dual
Mobiusinversionis aso shown to yidd. a direct and intuitive proof o Kreps's (1979)
classic result.

The following section 5 describes the uniqueness properties o the representation.
While these are significantly stronger than those obtainable in a standard setting
without explicit uncertainty, they still fall short o what one might have hoped for. It
becomes clear, however, what kind o structure needs to be added to obtain optimal
results.

A reinterpretation o the resultsin terms o freedom o choice is given in section 6.
Finally, section 7 discussesthe difficultiesof applying a direct Savage approach under
a "revealed-preference” interpretation of future preferences. All proofs are collected

in the appendix.



2. AN AXIOMATIZATION OF EXPECTED INDIRECT UTILITY

This section presents a characterization of Expected Indirect Utility maximization
in a von Neuman-Morgenstern (vNM) context in which preferences are defined over
"opportunity prospects’ with numerically given probabilities and opportunity sets as
prizes. It serves both as a simplified versicn as well as a key building block of the
main result of the paper, theorem 3 o the following section.

Let X denote a finite non-empty set of alternatives, A = 2X \ @ the set of its
non-empty subsets (opportunity sets),and A4 denote the probability simplex in R4
with typical element p. (Ex ante-) preferences are described by a relation > on the
set of opportunity prospects AA.

Thechronology o decision-making and uncertainty-resolution is asfollows. at date
1, an opportunity prospect p is chosen by the agent. Then, at some time between
dates 1 and 2, say at date 1.5, the opportunity prospect is resolved, yielding with
probability ps the opportunity set S . Finaly, at date 2, the agent selects one
alternative among S At date 1, the agent is uncertain o his preferences based on
which date 2 choices are made; this uncertainty resolves before date 2.

The uncertainty concerning date-1.5 opportunity sets may arise "artificialy" as
result o an agent's intentional randomization d set-choices, or d an experimenter's
explicitly offering choices among "lotteries” with opportunity sets as prizes. Often,
opportunity prospects aso arise naturally, as in the following example modifying

Kreps (1979).

Example 1 At lunchtime, the agent has to make a reservation at a restaurant of her
choice for dinner with a friend. She wants to choose the restaurant offering the best-
tasting meal to her friend. Since she knows his tastes (at dinner) only incompletely,
her choice among restaurants will exhibit a “preference for flexibility”. Since she
is also uncertain of the menu (set of meals) offered by each restaurant, a restaurant

represents a (subjective) prospect over menus. To satisfy the domain assumption, one



needs to ask the agent to imagine hypothetical “restaurants” corresponding to arbitrary
subjective (but not yet decision-theomtically derived) probability distributions over

menus. O

To capture formally uncertainty about future tastesin the intended representation,
let £2 denote a (finite) set of preference-determiningcontingencies w with associated
utility-function v,, , and let A € A" denote a probability distribution over £2. Note
wdl that for opportunity prospects, i.e. (marginal) probability distributions over
opportunity sets, to denote well-defined objects o preference, these distributions
must be stochastically independent o the uncertainty governing future preferences.
This assumption becomes explicit in a Savage setting (where it will be relaxed and
further discussed); it is reflected here in the axiom I1SD below, and motivates the
following definition of the class & "Expected Indirect Utility" (EIU-) rationalizable

preferences.

Definition 1 > is EIU-rationalizable if there exists a finite set 2, A € AN and
utility-functions {v, }oeq such that, for all p ¢ € AA:
prrqg <« Z z PsAo max v,(x) > Z Z gsAw max v, (x).
SEAweED €S SEAweD zes

Remark: In order to preserve generality, we have alowed in this definition the
implicit state-space €2 to be arbitrary (finite), herein following Kreps (1979). It is
debatable whether these are really meaningful; one may want to restrict attention to
a canonical space d statesthat islogically constructed from the data, i.e. ultimately
from the universe o alternatives X. A natural candidate for such a canonical state-

space is the set of al weak orders on X .6

Basic to the characterization of EIU-rationalizable preferencerelations are the von

Neumann-Morgenstern axioms viNM .

18 However, fixing  in this way is not enough to ensure essential uniqueness; see section 5 for

further discussion.
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Axiom 1 (vINM)

i) (Completeness) p=qorp=q, forall p,qge A4

i) (Transitivity) p=qand g>=r imply pi=r, for all p,q,r € A4

iii) (Independence) p = q<= ap+ (1-a)r = ag+ (l—a)r, forala:0<a<1
and all p,q,r € Ad,

w) (Continuity) p>q>=r =+ 3a:0 < a < 1 such that ap+ (1-a)r~q, for
alp,q,r € A4,

The final axiom is based on an "Indirect Stochastic Dominance" relation defined

asfollows. For SC A, let p(S) = Y pr denote the probability of S.
TeS

Definition 2 The prospect p indirectly stochastically dominates g with respect to
the wesk order™ R on X (“p g q") if and only if, for all y € X :

p({S| S0 {z|zRy} #0}) 2 q({S| SN {z | zRy}) # 0}

p indirectly stochastically dominatesq (“p & q") if it indirectly stochastically

dominates g with respect to every weak order £ on X.

In other words, p indirectly stochastically dominates q if, given any hypothetical
weak preference ordering over alternatives R and any associated ordinal indirect
utility-function ug, the probability distribution o indirect utilities po u;l induced
from p first-order stochastically dominates (in the ordinary sense) the analogously

defined probability distribution qou;-tl.

Indirect Stochastic Dominance restricted to degenerate prospects that yield with
probability one some opportunity set A (and written as 14) coincides with mono-
tonicity with respect to set-inclusion; in a stochastic setting, it is however much richer

in content.

17 e.: complete and transitive relation.

11



Example 2 [et X = {z,y,z},p= %1{x,y} + %l{z,z} , and q = %1{1} + %1{%%2} _
Thenpt g, but not g p,

Thisis easily verified. If z isa best alternative with respect to R, it s available with

probability one under p and g, and thus p > g aswell asq>g p. If, onthe other
hand, X is not a best alternative with respect to R, thel® R-best alternative is available
with probability one half under each. Under p, the at-least-second-best alternative is
always available, and thus p >g g again. However, if X is worst with respect to R,
with probability one half not even the second-best option is available under g, and

thus not q>gx p for such R. It follows that pt q, but not q > p. O
Axiom 2 (1SD)p > q whenever p indirectly stochastically dominates g.

Remark: Note that, for the use o the unconditional distributions over opportu-
nity sets p and g to be legitimate in the definition d R-conditional dominance and
of I1SD, these have to coincide with the w-conditional distributions; that is to say,
the distributions o state-contingent preferences R, and opportunity sets must be
subjectively independent.

The following characterization o Indirect Stochastic Dominance is a straightfor-

ward consequence d the adopted definitions.

Fact 1 The following three statements are equivalent:

i)pq,
W) p({S|SNAF#P) >q{S|SNA#£P}) forall Ac A,

iii) For all utility-functionsv on X : Y psmaxzesv(z) > 5 gsmaxzesv(x) .
SeA Se A

Theorem 1 > is EIU-rationalizable if and only if it satisfies vNM and Indirect

Stochastic Dominance.

Theorem 1 belongs to a family  decision-theoretic results that obtain an addi-

tively separable representation by appropriately augmenting the vNM axioms. These

8hreaking ties arbitrarily throughout.

12



include in particular Harsanyi's (1955) Utilitarian representation theorem, aswdl as
Anscombe-Aumann’s (1963) characterization of SEU maximization. The role of 1SD
is played by a Pareto-condition in the former and by an (implicit, see Kreps (1988,
p.107)) "only marginals matter" condition in the latter. The analogy to Harsanyi's
theorem is particularly close, in that 1SD functions as a monotonicity-condition anal-
ogous to the Pareto-condition there. Jaflray’s (1989) mixture-space approach to
belief-functions, by contrast, enhances the vNM axioms in a rather different direc-

tion.

3. PREFERENCE FOR FLEXIBILITY IN A SAVAGE FRAMEWORK

In this section, the characterization o EIU rationalizable preferencesis extended
to a fully subjective Savage-style formulation in which preferences are defined over
acts that map states to opportunity sets. Theorem 1 can be translated to a Sav-
age framework (with state-independent preferences) for the following two reasons:
first, the ISD axiom uses probabilities only in ordinal, comparative way, and is thus
straightforwardly put into subjective terms. Secondly, ISD thus translated retains
its force due to the richnessd Savage acts, specifically: to the fact that any subjec-
tive probability distribution over opportunity sets is generated by some opportunity
act.!® Besides providing an interpretation o theorem 1 in subjective terms, "going
Savage" opens an important dimension o generality by explicitly raising the issue
o state-independent preference. We will argue that state-independence is a rather
restrictive assumption in an opportunity-act setting, and present an additive state-
dependent generalization d Savage's theorem. We will then "subjectivize' 1SD to

obtain a subjective, state-dependent generalization o theorem 1.

Three basic types o explicit uncertainty can be distinguished in the present con-

%] e., in the notation to follow, if 4 denotes the agent's subjective probability measure on €,

{uof™t | feFr=2A".

13



text: the agent may be uncertain asto which opportunity set results from a particul ar
present choice (e.g., in Flexia’s case, the availability of aticket if she does not buy one
now), the agent may receive information about the comparative value of alternative
final choices (e.g., if Flexiaisworried about the health of her child, her final decision
may depend on his body temperature), and thirdly the final choiceitself may be one
under uncertainty (e.g., at the time o her final decision, Flexia may still not know
whether the child will fall serioudly ill.). In this paper, we will deal with uncertainty
that resolves before the final choice is made, i.e. with uncertainty of the first two
kinds. Uncertainty not resolving before the fina choice is not explicitly modeled;
doing so promises to be a worthwhile (see the concluding remark of section 5) and
non-trivial task for future research. Uncertainty d the first kind is associated with
state-independent preferences, uncertainty o the second kind with state-dependent
preferences. Thus, to assume globa state-independence would be highly restrictive,
asit effectively eliminates uncertainty d the second kind.

We firgt state an appropriate state-dependent generalization of Savage's theorem
that comestailor-made from the literature; this result isthen combined with theorem
1 to yield the main result o the paper, a subjective state-dependent generalization

of EIU rationalizable preferences over opportunity acts.

Some additional notation and definitions.

O: thespace d explicit states 6.

F : theclassd opportunity actsf : ®@ — A.

Femst - the subclass o constant acts, typically denoted by the constant prize.

[f,E;g, E°]: theact hsuchthat, for 6 € O,

fo if 8€E
hg = (“f on E and g on E®”).

go if 0¢€E¢

a preference relation on 3.

f g g : whenever [f E;hE°] = [g,E;h E"] for some h € F (“f is weakly
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preferred to g gi ven the event E7).
Eisnullif f =g gforal f,geF.

The following three axioms are exactly Savage'sP1, P2 (the “sure-thing principle"
in standard, if not Savage's, terminology), and the richnessand continuity condition

P6.
Axiom 3 (P1) > is transitive and complete, i.e. a wesk order.

Axiom 4 (P2) For al f,g,h,n € 3,EC®©: [fE:hE = [gE;h EY if and
only if [f,B;h', EY] = [g,E; h', EY].

Axiom 5 (P6) For al f,g € 3 such that f > g and al h € Fo***, there exists a
finite partition H d ©® such that, for all H € H:

i) [h,H; f,H] = g,

i) f > [h,H;g,H°].

The generdization of Savage'stheorem to be used assumes “finitary statedependence”.

Definition 3 Anevent G is astate-independent preference (s.i.p.) event with respect
to = if thefollowing three conditions are satisfied:

i) For non-null £ C G, and al f,g€ " : [ E;h EY > [g,E;h, E if and
only f f »¢ g

i) For al E,F C G and f,g,f,g € F° such that f =g g and f' > ¢':
lf,E;g, B = [f, F;g, F°] if and only if [f'.E:d, E°] = If',F;d, F°l.

iii) There exist f,ge F™": § »qg.

Condition iii) requires G to be non-null, i) and ii) are Savage's state-independence
axiom P3 and P4 restricted to G. The preferencerelation = isfinitely state-dependent
if there exists a finite partition?® {©;},c; d © such that each ®; (for i € ) isan

s.1.p. event.

20Por transitive >, it is easily verified that one might have equivalently replaced “partition” by

" collection" ; we choose the former for greater specificity.
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Axiom 6 (P345*) > s finitely state-dependent.

The assumption o finite state-dependence can be viewed as having two parts: con-
ditional on each @ thereisarich, non-atomic set o contingencieswithin which pref-
erences are state-independent; this followsfrom &; being non-null and P6. Secondly,
state-dependence can be described in terms o a finite partition. The second of these
assumptions is made for technical convenience; the first, however, has substantive
content, asit isindispensable for a characterization of subjective EIU-maximization
based on an I1SD type axiom. Note that state-independence of preferences condi-
tional on E C ©; requiresin effect that, conditional on ©;, any implicit uncertainty
about future preferencesis subjectively stochastically independent o the explicit un-
certainty ¢. For simplification d language, we take in the following the partition
{©;}icr as given and will abbreviate »¢g, to >; ; theorems 2 and 3 are to be read

accordingly.

For any finitely-ranged function x : © — R, define
[eOru= % cutio colz(6) = €)).

Eex(©)

Theorem 2 (Karni-Schmeidler) > on 3 satisfies P1, P2, P345* and P6 if and
only if there exists a collection of finitely additive, convex-range# probability measures*?
{pi : 2 — Rl}ies such that ug(©;) = 1 and a collection of non-constant utility-
functions {u;}:c; such that

frgifandonly f 5 [ wi(£(6))du; > 2/ui(g(0))dui ,for all f,g e F.2
tc

i€l

21, is said to be convezr-ranged if, for all E C © and all p: 0< p <1, there exists FCE such that

p(F)=pu(E).
#For notational convenience, the measures yi; are defined on 2° instead of on 2%:: in view of

the fact that p:(6©:) = 1, they can nonetheless be interpreted as subjective conditional probability

measures. Analogousremarks apply to the subsequently defined relations >; .
23K arni-Schmeidler assume P3, but their proof is easily modified to a partition-relativized version

of P3.
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It remains to "subjectivize" I1SD as ISD*. I1SD* is naturally formulated here as
an assumption on conditional preferences -;, since comparative probability relations
can meaningfully be defined only conditional on s.i.p. events ®,;. Thus, let >; be

the conditional more-likely-than relation on 2® defined by
E >, F if, for any constant acts f ,gsuchthat f =, g: [f,E;g,E‘] =; [f,F;g, F].

Note that by part ii) o the definition o an s.i.p. event, "any" can be replaced by
"al" in the definitiond >;, and that £ >; Fif and only if u;(E)> wpi(F).

Moreover define

Definition 4 f &; g (“f indirectly stochastically dominates g conditional on 8,”),
iff, for all weak orders R on X and al x € X:

{0 €0[7(0) n{y € X|yRx} # 0} >; {6 € Olg(9) N {y € X|yRx} # 0}.

The following is a subjective, conditional version o 1SD.

Axiom 7 (ISD*, Indirect Stochastic Dominance) For all f,g € F and all

iel:f > gwheneverf ;g

ISD* can be expressed purely in preferenceterms: if f and g coincide outside ©;,
and if any bet on attaining under f any leve set o any wegk order conditional on
9, i.e. the bet on the event {6 € | f (0)N{y € X|yRzx} # 0} N O;, is preferred to
the corresponding bet based on g, then f itsdf is weakly preferred to g.

The following result, the main theorem o the paper, is a straightforward conse-
quence o theorems 1 and 2. Note that in the representation, the implicit probability

distributions A* over future preferences are dlowed to depend on ©;.
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Theorem 3 A preference relation over opportunity acts > satisfies P1, P2, P345%,
P6 as well as ISD* if and only f there exist {p;yier and {u;}ic; asintheorem 2 and
such that each u; has the formuy(A) = T A, maxgea v}, (X) (for appropriate ;,

. wi €Yy
M oe A%, and {v:),'}wieai)‘

As remarked before, the richness d the state-space implied by P6 is critical to
the validity of the result. The result would cease to hold with additively separable
preferencesand afinite state spaceasin Kreps (1992); it iseasily verified, for instance,
that the result isfaseif © consistsdf only one state, since then 1SD* coincideswith
monotonicity with respect to set-inclusionwhich is not enough according to theorem

5 below.

4. THE SIMPLE ALGEBRA OF EXPECTED INDIRECT UTILITY

Sections 2 and 3 have left two bits of unfinished business. The uniqueness proper-
ties o the representation have not been discussed. One would also like to know more
explicitly the nature o the restrictions imposed by ElU-rationalizability on pref-
erences over opportunity prospects, and especially the restrictions on the cardinal
utility-functions u representing those prefereices (“EIU functions'). Both of these
issues will now be addressed based on a preceding exposition d the algebra of ETU
functionsu . The basic nove insight o thissectionistheobservation (fact 2) that the
structure o EIU functions is closely related to that of "plausibility-functions’ (con-
jugate belief-functions) in the literature on non-probabilistic belief representations;
as a result, the key technical tool o that literature, Mobiusinversion (originally due
to Rota 1964), becomes applicable and central here aswell. It hasin fact been used
aready in the proof o theorem 1; among other applications, Mobiusinversion proves

its mettle at the end of this section by yielding a particularly transparent proof o
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Kreps's (1979) main result.2

Let A* = 2X\(@ U{X)). #S isthe cardinality o the set S, with #X = n,and
C denotes the strict subset relation. 1: A — R is the constant function equal to 1,
1s : A — Ris the indicator-function o the set o sets S. Functions from A to R
will often be viewed as vectorsin R4

A function u : A — R isan indirect utility (IU) function if it has the form
u(A) = maxzeq u({z}) for adl A € A. An functionu : A — R is an expected
indirect utility (EIU) function if it is a convex combination of TU-functions:
u(A) = Y Avo(A) = Y A maxzecq v,({z}) for dl A € A, for some finite collec-
tion of Iu{f-(flunctions {ku}iizg and some set o coefficients {A, }.eq such that A, >0
foralw e Qand Y, A =1.Thus, preferencesover opportunity prospects,/ acts are
EIU—rationalizabl:Eiannd only if they have a vNM / Savage representation in terms
d an EIU function u.

An IU function is dichotomous (and 0-1 normalized) (DIU) if it takes the values
0 and 1 only, i.e. if u(A) C {0,1}. Finaly, afunctionu : A — Rissimpleif u=vg
for some S € 2%, with vs : A — R defined by

1 fANS #Q,

0 ifANS=p, forAdc A
The following observation characterizes EIU functions as equivaent to certain lin-

Us(A) =

ear combinations d dichotomousIU (respectively simple) functions.

Fact 2 i)u is a DIU-function if and only if u is simple.

ii) u is an ICJ-function if and only if

u= S Agvg, for A€ RA such that Ag > 0 for all S# X, and such that Ag > 0
and /\TS€>A0 implySCT orS2>T.

it} u is an EIU-function if and only if

u= Y Asvg, for A€ RA such that Ag > 0 for all S # X.
SeA

24The classical referenceson belief-functionsare Dempster (1967) and Shafer (1976); for a recent
thorough study of Mébius inversion, the key technical tool, see Chateauneuf-Jaffray (1989).
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Example 3 Let X = {1,2,3} and u the IU-function defined by u(S) = maxzcs x°.
Then u = vy .3y + 3vpa 3y + 5ugay,

Mathematically, the key to the following analysis is the observation that the set
of DIU functions is a linear basis o the space RA. How DIU-functions combine (in
particular to yield EIU functions) is described by the "dual Mébius operator”® ¥ :
RA — RA defined by A — u= Y Asvs, andthusu(A4) = ¥(A)(A) = As

SeA Se ASNAAD
for Ac A.

Basic is the following fact.

Fact 3 ¥ : RA — RA is a bijective linear map. Itsinverse & ! is given by
T 1(u)(A) = % (=) #FAS)+18¢) for A€ A, withu(@) = 0 by convention.
Sc2X:8CA

The fact alows a straightforward characterization of EIU-functions in terms of

2" — 2 linear inequalities.
Corollary 1 uisan EIU function if and only if ¥~!(u)(A) > 0 for all Ac A*.

Drawing on the literature on belief-functions, the characterizing condition is made
more intelligible by generalizing it to the following effectively equivaent pair of con-

ditions.

Definition 5 1) u: A — R ismonotoneif A C B impliesu(A4) < u(B) VA, B € A.
ii) u: A— R isuniformly submodular if, for any finite collection {Ag}rcx in

A such that N Ax # 8,

ke K

u < N Ak> < Y (=)t ( U Ak) 26

keK JOFICK keJ

N

2 Far the choice of terminology, consult the proof of fact 3.
26The conjunction of monotonicity and uniform submodularity differ sfrom " infinite monotonicity”

in the sense of Choquet (1953) in two ways. the latter condition would result if in the definition of

uniform submodularity the inequality would be reversed and if the non-empty-inter section clause be

dropped.
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Uniform Submodularity is easiest understood by consideringthecase d #K = 2,

whereit specializesto the following standard "submodularity” condition:
wW(ANB) +u(AUB) <u(A)+u(B) VA, B€ Asuchthat ANB#0, (1)
or equivalently:
u(AUB) —u(A) >u(AUBUC) -u(AUC) VA,B,Ce€ A

In this version, submodularity says that the incremental value o adding some set
a given set of alternatives (theset B to A) never increases as other alternatives (the
set C) are added. Submodularity implies that opportunity subsets are substitutes in

terms o flexibility value.

Theorem 4 u is an EIU function if and only if it is monotone and uniformly sub-

modular.

Theorem 4 translates immediately into a characterization o the risk attitudes

towards opportunity prospectsimplied by ETU maximization.

Definition 6 i) = ismonotone if 1;4y = 1 for all A,B in Asuchthat A 2 B.

i) = isopportunity risk-averseif, for any finite collection {Ax},. INA such
that | Ax # 8, and any q, p such that
keK
q is defined by gs = 27"t #{J < K | #J is even and strictly positive and

S= |\ Ay, or J=0and S= | Ax}, and

keJ kt K
pisdefined by ps =2 "1 #{J < K| #J isodd and S= | A},
keJ
then p> q.

The connection o this definition with an intuitive notion d risk-aversion emerges
from considering prospects d two opportunity sets. Opportunity risk-aversionthen

specializes?” to the condition that, for dl A,B,C € A suchthat A > BUC and

2Thy considering collectionsd the form {A\ B, A\C}, with BNC = 0.
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BNnC=0:

1 1 1
(5 liap + ‘2'1{,4\0}) > (51{/;} + 51{A\(Bu0)})~ (2)

Thus, losing one of the opportunity subsets B or C for sure (each with equal odds)
is weakly preferred to facing a fifty-present chance of losing both B and C. All
instances o opportunity risk-aversion share the following two characteristics which
together lend some minimal justification to viewing them as genuine instances of
risk-aversion:

Dp{SI1S3x)=¢{S|S3x)) Vr € X, and

ii) forsome S withgs > 0:pr >0=T D SVT € A.

Theorem 4 yields the following corollary:

Corollary 2 > on A4 is EIU-rationalizable if and only i it satisfies vNM and is

monotone and uniformly risk-averse.

Remark: While opportunity risk-aversion emerges as a natural characterizing
property from a purely descriptive point o view, it is not very appealing decision-
theoretically as a conceptually fundamental axiom. It is toc complex to be particu-
larly intuitive; more importantly, itslink to an intuitive notion o flexibility / indirect
utility standsin need d clarification; findly, in. contrast to 1SD, the role df stochastic

independence remains hidden.

We conclude this section by providing a new and simplified proof o Kreps's (1979)
classic result which characterizes EIU rationalizabl e preference orders defined on the
class of opportunity sets A. The new proof is based on dual Mobius inversion and
givenin the appendix; we hope that it significantly clarifiesthe logic o Kreps's result.

For the remainder d this section only, assume > to be a weak order on A.

Definition 7 i) > ismonotoneif A D B impliesA = B, for all A,B € A.
ii) = isordinally submodular if A = AuB impliesAUC = AUBUC , for all
A,B,CeA.
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iii) > isordinally ElU-rationalizableif there exists an EIU functionu: A—+ R
such that A> B if and only if u(A) > w(B) for all A,Bc A

Theorem 5 (Kreps) A weak order = is ordinally EIU-mtionalizable if and only if

it is monotone as well as ordinally submodular.

The sufficient conditions o the theorem seem surprisingly weak. |n particular,
Kreps’ result implies that whenever a preferencerelation is "strictly monotone" (i.e.
satisfies the condition "AD> B = A > B for dl A,B € A”), it is ordinaly EIU-
rationalizable. To facilitate the discussion, we restate the result as one about ordinal

utility—functions.
Condition 1 (OSM) u(A) > u(AUB) = u(AUC) > u(AUBUC) YA,B,C € A.

Theorem 6 (Kreps, restated) For any functionu: A — R there exists a strictly
increasing transformation 7 : R— R such that Tou is an EIU function if and only

if u is monotone and satisfies OSM.

Consider any utility function with the property A > B = u(A) > u(B) for al
A,B € A. According to theorem 6, for an appropriate 7, 7 o u is uniformly sub-
modular. The concave flavor d uniform submodularity suggests that to achieve this
one needs to define transformations r that concavify u "sufficiently strongly." The
actual proof in the appendix follows this line o argument (lemma 5), and verifies

that indifferences are adequately taken care o by condition OSM (lemma 4).

5. ON THE UNIQUENESS OF THE REPRESENTATION

Sofar, the uniqueness properties o the ETU representation in theorem 1 and 3 have
not been discussed. This task will be addressed now, with dual Mobius inversion as
the key tool. The story line goes as follows. There is an essentially unique represen-

tation in terms o dichotomous IU functions. Dichotomous U representations can
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be reinterpreted as additive multi-attribute representations (eliminating the reference
to an implicit state-space). This dlows one to characterize the exact extent of the
non-unigueness problem; in particular, it becomes evident what kind of structure
needs to be added to achieve uniqueness. For the sake o specificity, we will explic-
itly focus on the uniqueness properties d preferences over opportunity prospectsin
a vNM setting; the extension to preferences over opportunity actsisimmediate.
From fact 2iii), EIU-rationalizability is equivalent to rationalizability by a set of
dichotomous TU-functions; using dual Mobius inversion, it is easy to see that "di-
chotomous ElU-representations” enjoy optimal uniqueness properties. > is nontrivial

if X >={x) for some x € X.

Proposition 1 i) > is EIU-rationalizable if and only if there exists A € R* with
Ar >0 for all T # X such that:

VpgeAt: prq e Z Z psArur(S) > Z Z gsArvr(S).  (3)
SeATeA SeATeA

ii) If X satisfies condition (3), then N’ satisfies condition (3) as well if and only if,
for somec>0: A, =cAr foral T # X

iii) If > is nontrivial, there exists a unique A € A" satisfying (3)%.

In the remainder o this section, we will maintain the assumption that > is non-
trivial and refer to A € AA" satisfying (3) as the "weight vector" or "measure"
representing .

While uniquenessd dichotomous EIU representations in the present context may
not seem to amount to that much, it isasignificant improvement over what is achiev-
able when preferencesare defined over opportunity sets. This improvement is obvi-
ously due to the fact that the utility-functions representing preferences are unique

up to positive afine rather than merdy strictly increasing transformations. In the

288trictly speaking, A € A* such that Ax = 0.

24



latter case, not even the support o A is uniquely determined. Moreover, proposition
1 gives sufficient. indication for what needs to be assumed o the class of possible
future preferencesin order to ensure optimal uniqueness properties.

Only in very rare situations, of course, will the decison maker in fact have dichoto-
mous date-2 preferences, asin the following examplein which A may be interpreted

as a subjective probability measure.

Example 4 Flex needs to open a lock; he can choose among closed boxes with uncer-
tain contents. Specifically, any box contains with probability ps exactly the non-empty
set S of keys x € X; a box can thus be ,identified with a probability measure p € AA.
Having chosen the box, Flex will attempt to open the lock, trying out all keys in the
chosen box. He cares only about the chance of success in opening the lock, and does
not h o w which keys if any will fit. In this case, the relevant state space is 2%, with
T € 2% denoting the set of keys that in fact open the lock; in state T, Flex's pref-
erences over sets of keys are given by the DIU-function vp; in other words, Flexis
successful (vy(S) = 1) if the box S contains at least one key inT.

Here, A* denotes also the event that some keys fit but not all (T # @, X). By
proposition |, Flex's preference ordering > over hypothetical boxes p € A4 reveals
unambiguously his subjective probability measure A € A”* over the sets of keys that
fit, conditional on some but not all keys:in X fitting, that is: conditional on A' (the
conditional probability that ezactly the keys in T fit is given by Ay) . On the other
hand, > contains no information about the subjective probability of the conditioning
event A itself (beyond its being non-zero), since if either all keys work or none,

Flex's choice of a box does not matter. O

In the general case, in which future preferences may be non-dichotomous, the
coefficients o a dichotomous ElU-representation yield only highly "compounded"
information about the decision maker's beliefs about future preferences. The repre-

sentation of proposition 1 then needs to be rewritten a bit to become meaningfully
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interpretable. The starting point isthe observationthat the interpretation o vy asa
utility-function is unnecessary and, in this case, unhelpful. Alternatively, vy can be
viewed asindicator-function of the classof setsthat intersect with T, vr = 1{515n7#0}-
Correspondingly, T can viewed as parametrizing not a state but an attribute the
"component opportunity” T. S realizes the component opportunity T if and only if
itsintersectswith T (or, equivaently, iff vr(S) = 1), in other words: if S permitsto
realize some alternative in T.

Accordingly, the viNM utility of § can uniquely be written asthesum o the values
Ar o al component opportunities that it realizes: «(S) = TT;S#O s, thusyielding

an additive multi-attribute representation in terms o which essential uniqueness is

aways ensured.

Vpgedt: prq & ZPS( Y )\S)ZZPS( ) AS>. (4)

SeA T:TNS#0 Se A T:TNS#D

If one iswilling to postulate that the decision maker "in fact" maximizesexpected
indirect utility with given {v,}.ecn and subjective probabilities {7, }weq , further
explanation o the attribute weights Ay can be given. In view o fact 2ii), it is
easily verified that the (non-normalized) coefficients Ar in (4) that correspond to the
ElU-function ¥ m,v,, satisfy:

weR
M= Y momipu(ie))
and, for T different from X,

Ar =Y mo[minvy({z}) — max min v, ({z})] (5)

Note that the expression “mingeT v, ({X}) —maxy sy minger v, ({X))" differsfrom

zero (being then in fact positive) if and only if T isalevd set o v, ie if T={x €
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X | v,({z}) > v,(T)}. Thus At is the ezxpected incremental utility from reaching the

level set T rather than the next lower one.

Together with proposition 1, (5) precisely describes the extent of non-uniqueness
o the EIU-representation. Preferences thcs fail to reveal the agent's subjective
probability distribution over lU-functionsv, for two reasons. First, even if all TU-
functions with positive probability are in fact dichotomous, their coefficients com-
bine a subjective-probability and a utility-scalefactor, astypical for state-contingent
preferences. Secondly, the same EIU-function can typically be generated as convex
combination of non-dichotomousIU-functions in many different ways.

However, (5) aso suggests that the second source of non-uniqueness is not in-
escapable. In particular, uniquenesswill obtain if either due to additional conditions
on = or simply by an external “identifying” assumption, future preferences R, are
known to belong to some class R with the property that any non-degenerate level set
is associated with at most one preference ordering in that class, i.e. formally that,
forany x € X and any R, R' € R {y|yRz} = {ylyR'z} # X implies R= R'. Such R
will be referred to as identified.

If Risidentified, it can be made the canonical state space; > has then a represen-
tation of theform

prqe Zps (Z max vp(z ) Y s (Z mava(fC)) :
RER S Rer =€

In view o (5), the vg in this representation are essentially unique: specifically, if
{vR}Rrer represents -, then {vz} rer represents > aswell if and only if there exists
¢ >0 and {dg}recr Such that vj, = cug T dg for dl Re R.

An obviousexample o anidentified class has already beenintroduced, that of weak
orders R with only two level sets. Moare interestingly, identified classes arise quite
naturally with infinite domains X; examples are the class o quasi-linear preferences
on a domain X o theform X = Y X R, and the class & EU preferences on a

lottery space X of the form X = AY. Of course, the restrictions on preferences over
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opportunity setsimplied by additional structure of thiskind remain to be worked out.
Note also that in a Savage framework, preferences o the latter class arise naturally

from uncertainty that is not resolved at date 2.

6. FREEDOM OF CHOICE

We will now consider situations in which all relevant uncertainty isexplicitly mod-
elled in the manner o section 3, including uncertainty about future preferences. A
failure of conditional preferencesto satisfy the IU property can then by definition no
longer be attributed to uncertainty about future preferences, but revealsan intrinsic
"preferencefor freedom of choice." 2°

Asasound intuitive basisfor imposing consistency conditions on preferencesfor op-
portunities, only the notion that "more opportunity is better" seems to remain.**We
will argue in this section that, properly conceived, this notion is rich enough to pro-
vide the basisfor an well-behaved theory d intrinsic preferencefor freedom of choice,
and that in fact one merely needs to reinterpret the results above to obtain such
a theory. By contrast, the bulk o the literature has relied on independence condi-
tions to obtain additional structure; these, however, are very restrictive and preclude
consideration o the diversity o alternativesin an opportunity set3!.

The key is an answer to the question: more precisely o what is better? To address
it, we take as point o departure an interpretation o “freedom of choice" as the
freedom to do this or that, to choose something particular, to bring about specific

consequences such as living in a particular place, entering a particular profession,

2%We |eave to philosophy the task of explicating this intuitive appealing concept in a rigor ous man-
ner; for a justification based on the notion that agents autonomously choose their own prefer ences,
see Sugden (1996).

3%0f course, this requires to keep abstracting from phenomena such as weakness of will, etc.
31Gee |I'attanaik-Xu (1990), Puppe (1995), Nehring-Puppe (1996a) as well as Sugden (1996) for

criticismsalong thisline.
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etc. . Thus, the freedom of choice offered by some opportunity set can be analyzed
in terms of its component opportunities to bring about particular consequences, and
effective freedom of choice is naturally viewed as multi-attribute construct, with the
component opportunities asits relevant attributes. By "effective freedom of choice"
we mean an agent's inclusive valuation o opportunity sets that combines indirect
utility and freedom d choiceconsiderations; the notion of "effectivefreedom of choice”
isthus understood to comprise as a special case the preferencesd agents who do not
intrinsically value freedom o choice, i.e. whose conditional preferences -; satisfy
the conditional 1U-property; in this case, the valued component opportunities are
those associated with the attainment o some level-set o the form {y|{y} = {X)}.

Up to theissue d extensionality :raised below, the notion of component opportunity
coincideswith that o section 5 which had been introduced there for largely technical

reasons.

A significant strand in the axiomatic literature on the ranking o opportunity sets
is interested in "measuring” freedom o choice exclusive of considerations concern-
ing an agent's welfare. The notion d a comiponent opportunity and the following
analysis based on it are equally applicable under such an exclusive freedom of choice
interpretation, as illustrated by the following example. We do not pursue this in-
terpretation further here, especially since its conceptual coherence stands in need o

further clarification.3?

Example 5 Renate is a young East German woman currently living in the GDR33
inthe 7980s. An alternative consists of a place where she might live (East or West
Berlin, E or W), and of a profession she might enter (becoming a medical doctor or a
journalist, D or J). The relevant universe of alternativesis X ={w, z,y,z}, withw =
(E\J),x=(E,D),y=(W,D), and z= (W,J). At the level of consequences, basic

component opportunities are the opportunity to live in East Berlin, the opportunity

32Gugden (1996) for one is highly skeptical.

33German Democratic Republic, R.1.P..



to live in West-Berlin, that of becoming a doctor, and that of becoming a journalist.
Typically also logically derived component opportunities are relevant, such as that of

becoming a doctor while living in West-Berlin.

To expresscomponent opportunities defined viaconsequencesin termsof the primi-
tivesdf themode (i.e. alternatives), they need to betranslatedinto their consequence
extensions; theextension E C X o aconsequenceistheset of alternativesthat bring
about that consequence®. (Obviously, some information may be lost in translation,
since different consequences may happen to have the same extensions). The follow-
ing matrix associates component opportunities and their extensions in the example

above.

Component Opportunity E w D J W&J
Extension {w,z} v {z,y} {w,z} {z}

Component opportunities will be described in the following extensionally, as the
opportunity to bring about membership d the chosen alternative in E, to "realize
E", and will be referred to by their extensions. Asin section 5, an opportunity set
A realizes the component opportunity E if and only if A contains one alternative
realizing E, in other words, if and only if AN E # §.

In a stochastic setting, this suggests the following definition d "more opportunity

in expectation".

Definition 8 The opportunity act f offers more opportunity in expectation than the
opportunity act g (f > g) if and only if, for all component opportunities E € 2% and

alliel: {#€O|f(O)NE #0} 2 {0 € ©Og(h) N E # 0}

341n logic, the extension of a predicateis defined as the set of objects that satisfy it. In Frege's
famous example, the predicates "is the morning star" and “is the evening star" have the same

extension, the planet Venus.
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Thus, f offers more opportunity in ezpectation than g if, for any component oppor-
tunity E € 2X and conditional on any ©;, it isat least as likely for E to be realized
under f asit isunder g.

It iseasily verified that the “offers more opportunity than" relation coincides with
the Indirect Stochastic Dominance; it is therefore denoted by the same symbol B. It
follows from the above that the indirect stochastic dominance axioms ISD* and 1SD
capture the notion that more opportunity is better. State-dependence of preference
is highly plausible, again. For example, if © = {©1,0,}, with ©; denoting the event
“Renate has married someone unwilling to leave East-Berlin", Renate’s valuation of
the component opportunity W of: living in West-Berlin will most probably depend
on whether ©4 is redlized or its complement; correspondingly, her preferences over
opportunity sets conditional on ©; and ©, will differ. Moreover, to account for a
co-exigting preference for flexibility in terms d explicit uncertainty, preferences need
to be state-dependent. To establish the relevance o theorems 3 and 1 in a freedom-
of-choice context, it remains to reinterpret the representations.

Theorem 3yieldsastate-dependent additive multi-attribute representation, in which
the utility-functionswu; : A + R o theorem 2 have the form u;(A) = s .

Ec A“:ENA#D
for appropriate state-dependent attribute weights A%, .3 The collection of weights
{\2.}Ec 4+ defines an additive measure A* on A*,and the utility-representation can

be rewritten as
ui(A) = N({E|EN A #0}).

Inview ol thegreat popularity of proposalsto measure pure (IU-exclusive) freedom
o choice by counting alternatives, a measure representation is o some interest. It
shows that the notion o counting makes sense after all, provided it is applied to the

right type of objects, component opportunities rather than alternatives.

3 Note that the sumis taken over T € A* rather than T € 2¥. While conceptually perfectly
sensible, the consequence extensions @ and X have been " normalized out" in the representation due

to their irrelevance to preferences.
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Remark 1: The counting of alternatives (with possibly asymmetric weights)
emergesas aspecial casein which A* isconcentrated on singletons, sincethen u;(A4) =
M({{z}|z € A}). However, concentration of A* on singletons means that the only
valued consequencesare those that can exclusively be realized by a single alternative.
This seems to be a remarkably implausible implication even on a pure freedom-of-
choice interpretation; for instance, in example 5, it means that realization of no basic
component opportunity has value by itself. In fact, it is recognized by its apparent
proponents that the counting of alternativesis not entirely satisfactory, and that, in
particular, it fails to take properly into account the diversity of an opportunity set

(see Pattanaik-Xu (1990) and Gravel-Laslier-Trannoy (1996)).

Remark 2: It is worth noting; that the manner d counting has been motivated
decision-theoretically rather than mathematically. On purely mathematical grounds,
one might consider a dual measure based on all sets a given set contains, leading to
uniformly supennodular (rather than submodular) vNM utility-functionsd the form
u;(A) = M({E|E C A)). Such a measure is evidently devoid of decision-theoretic

content.

From an inclusivevaluation perspective, the most promisingstrand in theliterature
is the emerging multi-preference approach in which opportunity sets are compared in
termsd aranged "relevant” (or "reasonable") preferences; see in particular Jones-
Sugden (1982), Pattanaik-Xu (1995), and Sugden (1996). The results of this paper
fit naturally into this line o research; one simply needsto reinterpret an EIU ratio-
nalization as follows: In the representing expression ¥~ A} maxuv} (.) of theorem
3, €; indexes the set o "reasonable" utiIity-functionwsie((\z/z/ith )\fd!, > 0), conditional
on ©;, and AL‘, is naturally interpreted as the relevance-weight of v?, ; preferences
satisfy the conditional TU property whenever al weight is concentrated on just one

ordering. Of course, just as under the flexibility interpretation, there is the prob-

lem o non-uniqueness o the representation, and in particular that of disentangling
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relevance-weights from utility-scides. In this context, the present paper contributes
the first cardinal representation and, more specificaly, an additive aggregation rule.
By comparison, the aggregation rules proposed in the literature are ordinal and en-
tirely different in character (see |'attanaik-Xu (1995), Puppe-Xu (1995)). Moreover,
with the exception d Nehring-Puppe (1996b), the set of relevant preferencesis taken
as given rather than derived from a representation theorem.

It is clear from the discussion of section 5 that within the framework studied
here, the multi-attribute and the multi-preferenceinterpretationsare “observationally
equivaent”. It remains to be seen whet'her the two can be distinguished in interesting

ways if more structure is assumed.

7. INCENTIVE-COMPATIBILITY

In this section, we discussthe viability of a direct Savage-style approach in which
future preferences enter the description d a state. We will argue that whether or
not any mileageis gained by such a move depends critically on one's willingnessto
accept certain types o counterfactuals..

For expositional simplicity only, we will illustrate the problem by meansdf asimple
example with two alternatives (X ={X,y)) and with only preference-uncertainty. In
a direct Savage-style approach, the state-space is then given by the set d conceivable
future preference-orderings,i.e.*¢ by thetwo linear orders Py, P, withz Py and y Pz,
asillustrated in the following table.

A natural subclass o Savage acts are those induced by the agent's future choice
from some opportunity sets A. Such acts have the form f4 : P, — argmaxp, A, as-
signing to each state as "prize" the finally chosen alternative; they will be referred to
as "generated by the opportunity set A", and their class denoted by FPP. Note that

on F°PP the sure-thing principleis satisfied vacuoudy (this holdstruein generdl, irre-

38 disregarding the possibility of future indifference for simplicity.
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spective of the cardinality of X). 'Notealso that dueto the inherent state-dependence
of conditional preferences, Savage'sother key axioms P3 and £4 do not apply herein

any case.

act P; Py generating set

(xx) x x {x}

vy) v vy {v}
(xy) x vy {x.y}
(y’x) y X -

Thus, if one considers preferences over FPP, the direct Savage approach entails
no additional restrictions. It follows that in order to give the sure-thing principle,
and thus the direct Savage approach, any bite, arbitrary acts (like (y,z)) need to
be supported by appropriate (counterfactual) gedanken-experiments; the question is
whether acceptable ones exist.

The most straightforward justificationfor the admissibility o arbitrary actsderives
from postulating a perfectly mind-reading referee who awards the prize based on the
agent's future preferenceordering. The mind-reading might be that o an empathetic
but potentially spiteful wife, or that of a brzin-scientist in possession of a perfect
"preference detector”.

Gedanken-experiments d this kind seem not only rather contrived, but also very
much to go against the grain o the "revealed-preference” approach central to the
decision-theoretic tradition, within which preferences are identified with dispositions
to choice-behavior. Thus perhaps somewhat more plausible is a story in which the
referee obtains knowledge o the agent's preference through the agent's own truthful
revelation. This, however, leads to a severe incentive-compatibility problem, since
honest reporting will often be contrary to the agent's current interest, i.e. to acting
in accordance with the choice-function defining the state. In the above example,

for instance, an agent faced with the "prima-facie act" (y,X) in terms of reported

34



preferenceswill report P, if histrue preferencesare Py, and vice versa, thus inducing
theact (z,y) in termsd histrue preferences. Note that at no point in the argument
have we denied that the agent himsaf has introspective accessto hisown preferences;
that simply is not enough to support arbitrary acts. The issueis rather whether it
may be feasible for the agent to commit himsdf at present to make choices in the

future contrary to his preferences at that time.

If thisis doubted, the discussion suggeststhat only incentive-compatible acts cor-
respond to plausible thought-experiments; an act is incentive-compatible if, for any
pair of wesk orders R and R’ on X, f(R) R f(R')%; in other words, if, for all wesk

orders R,
f (R) € argmaxg{ f(R')|R' iswesk order on X).

Thus, incentive-compatible acts are precisely those induced by some opportunity
set; as aresult the sure-thing principle is vacuoudly satisfied on the class o incentive-
compatible acts, and the state-structure turns out to be redundant. In other words,
a preference relation over opportunity acts® s effectively as primitive as can be.

It should be noted that analogous revealed-preference / incentive-compatibility
considerations do not undermine the decision-theoretic approach to game-theory in
which players are assumed to have beliefs about others' bdiefs (respectively prefer-
enceson a state-space that includesothers' preferences). In a nutshell, the difference
to the intrapersonal intertemporal caseisthat in a game with self-interested players,
player i’s belief that another player | has placed some bet on i’s own betting behavior
does not interfere with i’s actual betting behavior since, by self-interestedness, i does
not care whether j wins or loses his bet. By contrast, an agent's "future self" i will

typically care about whether the "initial self* | wins his bet or not: not only do the

37In a general deterministic model, an act f maps weak ordersto alternatives.
38that is, in the absence of non-preference uncertainty assumed here, a preference relation over

opportunity sets.
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interests of the initial and future selves typically coincide, but aso the initial self's
bets can only be physically paid out to the future self!

We have argued that incentive-compatibility constraints may be of concern even on
a normative interpretation on which acts correspond to a decision-maker's thought-
experiments. On the other hand, on a behaviora interpretation concerned with real
experiments, these constraints seem to be bindingin principle. Fortunately, theorem
3 has shown that the hypothesisof EIU maximization with respect to ai uncertainty

remains testable in principle nonethel ess.

APPENDI X: PROOFS

Proof of Fact 1.

i) = iii). True sincep >g, g implies Y psu(S) > 3 gsu(S) , with R, defined
SeA Se A

by R,y & u(z) = u(y).
iii) = ii). Truesince p({S | SNA # @} coincides with expected utility from p

under the indirect-utility function v4 given by Y psva(S) .
SEA
i) = i). True since p g q is equivaent by definition to p({S | SN A # 0} >
q({S| SN A # @} for dl Ad theform{x | zRy}, for somey ¢ X. B

Proof of Theorem 1:
It iswell-known that vNM implies the existencedf avNM utility-functionu : A - R

such that

prge= Y psu(S) > Y gsu(S), for all p,q € A% (6)
Se A SeA

Inview o fact 3 below, we need to show that > satisfies ISD if and only if A4 =

T~ 1(u)(A) >0 for al Aec A*.
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Note first that p({S | SN A # 0}) = ¥(p)(A). The dual Mobius operator ¥
thus maps opportunity prospects p to their characteristic profiles ¥(p), establishing
a linear isomorphism between A4 and the space o characteristic profiles ' :=
¥(AA) = {u € R* | u is monotone, uniformly submodular and p(X) = 1). The
desired result is obtained by studying the induced preferences over characteristic
profiles.

> defined on A induces = on I' according to
pom g e T () = ().

= issaid to be monotoneif pu >y = pu = 1. Fact 1impliesp & g <= ¥(p) > ¥(q).
Thisyields part i) o the following fact. In view o facts 2, iii) and equation (6), one

aso easily verifiesits second part.

satisfies |1SD.

S i (A), for all p, p' € TA,
AcA*

Fact 4 i) = is monotone if and only if :

Y

v

i) u = g if and only if Aan(A)
TR y AEZ;{‘ Ap(A)
In view o fact 4, i) , the theorem followsfrom the following lemma.

Lemma 1l = is monotone if and only if A4 >0 for all Ac A*.

Proof of lemma.

Only if: define 7 by fi(A) = HEASCAA =7 27251 for all A € A.

T isin theinterior of T4, since ¥ is a homeomorphism and \Il‘l(ﬁ)zanH .disin
the interior of A4 Thus, for any A € A" and small enough ¢, 7t eliay € r'4. By
the monotonicity o = and fact 4, i) , A4 > 0.

The converse is immediate, noting that ¥(p)(X)=1foral pc A0 N

Remark: Characteristic profilesare, from the mathematical point of view, "plau-
sibility functions' in the sense d the theory o belief-functions (Shafer (1976)); how-

ever, in contrast to the intended interpretation d that theory, a characteristic profile
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does not express a non-additive belief about the state-space A*, but rather proba-
bilistic beliefs about eventsin A* o theform{S| SNT # 0}.

Proof of Theorem 3:

Let {u;}ier and {u; }ic; a@sin theorem 2, which impliesin particular

f >i g if and only if /ui(f(g))d#i > /Ui(g(g))dﬂi, foral f,ge 3. (7)

For giveni € |, define =} on A4 according to piof~t =t p;og 1 if and only
if f =; g, foral f,g E 3.By the representation (7), =! is well-defined. From the
convex-rangednessd p; and the definition o 3, {p; o f -1 | T € 3= A4, >t is
therefore complete. From (7), it followsthat ! satisfiesall of the viNM axioms and
is represented by the vNM utility-function u,. [ These facts have been in fact derived
by Savage as a key step in obtaining his representation theorem in the first place].

ISD* of > isclearly equivalent to ISD o >?. By theorem 1, thisin turn is equiv-
alent to a representation o u; according to u;(A) = )\;i maxge 4 v, (z) , for

wi €8,

appropriate Q;, A € A", and {v}, }u,eq,. O

Proof of Fact 2.

1. i) = . If uisaDIU-function, then U= v ¢ xju(z)=1} -

2. i) <= . By definition o a simple function, vs(A) = 1if and only if 3z € X :
X € AN S ,whichin turn holdsif and only if 3z € A : vg({z}) =1

3. ii) &= . Consider u= Y Agug, for A € RA such that Ag > 0 for S # X, and

Se A
such that As >0and Ar > 0imply SCTor SO T . DefineA={Secd|Xs>0
or S = X}.Thenu({z}) = 3 Ag,fordl x e X, and u(A) = > As
SeA:S>x SeA:SNA#D

=u({y}) forany y e n{S € A| SNA # @}; such y exist by the assumed ordering
property o A. Since clearly u(A) > u({z}) forall z€ A, u(A) = maxzeau({z}); u

isthus an IU-function.
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4. ii) = . If wisan |U-function, let {z }x=1,.» be an enumeration of X such that
u({zx}) > u({zry1}) for k=1,..,n. Then

n—1

w=Y " (u({zx}) — ul{zrs1})vie,1j<ky + u({za})vx

k=1
denotes a function o the desired form. By part 3., w is an TU-function. TO
show its equality tou, it thus sufficesto show equality for singleton-sets, as follows:
n—1
w({z}) = X (w({e}) - u({zend)) +ul{zn}) = u({a}).

5. ili) <= . Immediate from 3. and 4. . &

Proof of Fact 3.

Extend uto R2" by setting u(@) = 0, and set Ay = 0 aswell. Define® : RAx {0} —
RA x {0} , u+—— O(u) = by I[(A) = u(X) — u(A°).

By construction, I(A) = 3 As — 3 As= > As.

Sc2X:SNX#£P S€2X:SNA£D Se2X:85CA
Let & : R4 x {0} — RA X (0) denote the linear (“Mobius”) operator that maps A

tolasjust described. Shafer (1976) has shown the following.

Proposition 2 (Shafer) ® : R x {0} — R4 x {0} is a bijective linear map. Its
inverse ®-1 is given by

BIA) = T (=L)HAS(S) for A € 2
Se2X:.SCA

Since @ isinvertible (withinverse®~! = O; this follows from noting that I(I(A)) =

u(A) ), one can write ¥ = © !0 ® , and thus also ¥ ! = &' 0 ©. Specificaly, in

view of proposition 2, oneobtains ¥~ 1(u)(A) = ¥ (=1)FS)(y(X) - u(5°)),
Se2X:SCA
for Ae A. Since ) (—1)#A\S) = 0 (cf. Shafer (1976, p.47)) , one can simplify
Se2X:5CA
to Ul (u)(A) = ¥ (=1)FODHy(S) m

Se€2X:8CA



Proof of Theorem 4.

In view of corollary 1 and the decomposition ¥~ = ¢~1 0 ©® as in the proof of

fact 3, the theorem is an immediate consequence o the following two lemmas. Let

A**= 2X\{X}.

Lemma 2 i) u is monotone (on. A) if and only if the associated loss-function 1 =
©(u) is monotone on .4**,
i) u is uniformly submodular (on .4) if and only if the associated loss-function

I = ©(u) is uniformly supermodular on A**, i.e. if, for any finite collection { Ay }rex

in A** such that |J A C X, l( U Ak) > ¥ (=Y ( N Ak>.

ke K keK JB£ICK ked

Proof of lemma. Part i) is obvious from the definition of 1.
For part ii),weshall provethe ',only-if" part; the "if" part followsfrom reading the

proof given backwards. Thus, consider a finite collection {Ax}xcx in A** such that

/ \
U Ax C X; it needsto beshownthat 1{ U Ak> S (=n#Hu N Ak).
ktK keK J:@#£JCK keJ

This follows from the equivalence d the three inequalities just below, as well as the

equivalenceof “ |J A, C X "and “ N A # @

ke K ke K
l U Ak > Z (—1)#J+ll m ‘415
ke K JB#£JCK keJ

is by the definition d 1 and computation o complementsequivalent to

u(X) —u (@(Ai) > Z (—1)# 1 (u(X) — u (U Ai)),
JB#ICK

ke keJ

which, due to the equality $° (-1)#/*1 =1, isequivalent to

JD£IJCTK
ul (A< Y 0¥ | l4r)]. O
keK JDd#JCK keJ
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Lemma 3 I ismonotone and uniformly supermodular on A** if and only if ®~1(1)(A) >
0 for all Ae A*.

Proof of lemma. For z € X, let A, = 2*\M=}_ |t follows from Shafer's (1976)
theorem 2.1 (see also Chateauneuf-Jaffray (1989), Corollary 1) for any x € X that !
is uniformly supermodular on A, if and only if ®~1(1)(A) > 0 for al A€ A,. The

claim follows from noting that J,c x Az = A**.00 M

Proof of Corollary 2.

By standard arguments , the vNM axioms ensure the existence d a vNM repre-

sentation p = g < Y. psu(S) > ¥ qsu(S). Monotonicity and opportunity risk—
SeA ScA

aversion of > are then eadly verified to be equivalent to monotonicity and uniform

submodularity o the utility—functionu. W

Proof of Theorem 6.

Necessity is straightforward.

For sufficiency, assume w.l.o.g. that u(X) =0, and hence that u(S) < 0 for al
S€e A. Let un : A — R defined by un(S) = —(—u(S))™. Let A™ denote the
associated coefficient vector A™ = ¥~ !(uy,); note that —um(4) = Y R

We want to show that, for some sufficiently large m, u, is an ISEgICJ-function. By
fact 2,iii) , it thus needsto be shown that for some sufficiently large m: A¢ > 0 for
al S # X. Since X isfinite, it suffices to show that for all S € A*,A% > 0 for all
sufficiently large m. Take S € A*.

Case 1: For some X € S: u(S°U {x}) = u(S°). Then um™(S°U { x} )= u™(S°);
since, moreover, u™ satisfies OSM because u does, it follows that A’ = 0 by lemma

4 below.
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Case 2: For al x € §: u(S°U{x})> u(S").Then AF > 0 for sufficiently large m
by lemma 5 below. O

Lemma 4 For any w satisfying OSM, A€ A, and x € X:
w(AU {z}) =w(A) inplies Ar =0for al T suchthat xe T C A°.

Proof of lemma. Fix x € X. The claim is shown by downward induction on
thesize of A. It holdsvacuoudy for A = X.

Thus, assume the claim to be true for all B such that B O A, and assume also

w(AU {z}) = w(A). (8)

By OSM, w(B U {x))=w(B) for dl B> A,

hence by induction assumption, A\7' = 0 for dl T' suchthat x€ T C A° : Ar =0.

Sinceequation 8 implies by the definition of A: T;Ig:c/;c/\T = w(AU{X) )} w(A) =
0, it followsthat A4c =0. 0O

Lemma5 z’)limsupf,l‘—Ag(—‘Sq < oo.
m—oo m
ii) Incase 2 lim -

m—oo —um(S°)

Proof of lemma. From A\ = —u,,(S°) - T%:S ATt , one obtains
AS v A —un(T)
=1-) : 9
—um(5°) 775 ~um(T¢) —um(S°) 9)

AZ

Let s zlirinfolip —u(55- Due to the monotonicity of u, | —}Z-’"ﬂ%;% < 1inequation
(9). One thus obtains from equation (9), s <1+ nr for S € A.

Part i) followsfrom this by induction on the sizeTg‘SS.

Part ii) follows from the validity d i) for T C S, and the fact that satisfaction o
the condition "for al x € S: u(S¢ U {z}) > u(5°)” implies *2I) _, g as m — oo,

U (S°)
forall Tsuchthat TS ON
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Proof of Proposition 1.

i) follows from theorem 1 and fact 2,iii) .

i) By the unique determinacy of vINM-utility functions up to positive affine trans-
formations,u= 3" Apvrandu' = Y. Mpur must be positive affine transformations
of each other. Tgéélaim isthusa stIEightforward implication of the behavior of ¥~1
under affine transformations described by the following fact which itself follows at
once from the linearity ¥~! and the definition o ¥; note that changesin the "leve"

o u affect only the coefficient on vx representing global indifference.

Fact 5 Foranyuc R4, c¢>0andd € R:
¥ Hu)(T) f T #X

(cu+d1)(T)=
U Nu)T)+d | T=X.

iii) isstraightforward fromii). W
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