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Global Identifiability under Uncorrelated Residuals 

by  Leon L. Wegge 
Economics, University of California, D a v i s  9567 6 

Suppose in  each equation, not counting covariance res t r ic t  ions, we 
need one more rest r ic t ion to  meet the order condition. I f  we now add to  
each equation a res t r ic t  ion that i t s  structural residual i :s  uncorrelated 
w i th  the residual of some other equation, i s  the parameter of the new 
model identif iable globally? That i s  the question. 

In general the answer i s  no. The parameter could remain either not 
identif iable or i s  locally identif.iable, possibly globally under additional 
inequality restr ict ions. In this paper we f ind fami l ies of models for 
which the answer to  the question is  yes without the help of inequalities. 

The fami l ies share common character ist ics.  F i r s t ,  the suf f ic ient  
condition for local ident i f iabi l i tg must hold. Secondly, the str ing of zero 
correlations between residuals contains a closed cycle of length at least 
four. Thirdly, w i th  the variables, equations and residuals a l l  numbered 
a s  they are in  the cycle, the odd numbered variable5 rrlust s a t i s f y  a 
kinship relationship and last ly,  the structural residuals can not a l l  be 
uncorrelated. There are also differences i n  the families, but these come 
from the difference in  the required kinship relationship. 

When there are four or more equations containing exte~rnal variables, 
the variety of models w i t h  uniquely ident i f iable parameter under a 
str ing of uncorrelated residuals i s  considerable. In part icular,  when 
correlated inverse demand shocks are uncorrelated w i t h  correlated 
supply shocks, our results show that many f lexible inverse demand and 
supply equations reproducing exactly the observed pr ice and quantity 
moments are members of the above families. 

JEL CLassificat ion: C3 
Keywords: unique i d e n t i f i a b i l i t y ,  uncorrelated shocks, cyc l i ca l  

covariance restr ict ions kinship, siblings, parental l i s t s  



1 .  Introduction. 

Global ident i f iab i l i t y  under covariance rest r ic t ions i s  a del icate 
mat ter .  For one reason, a l l  equations have t o  be considered 
simultaneously and an equational perspective, as  i n  Hausman & Taylor 
(1983) or i n  some parts of Bekker & Pollock (1986), reveals the links 
between the parts but not necessarily the wholeness of the system. 

Consider the linear model By=u. E(u)=O. E (uu8 )=~= (o i j ) ,  where B=(fi,j). 
$ i i= -1 ,  i , j - 1  ,..,G. Let Zk be the kth row of 2 .  The parameter (B,E) of  
recursive models when B i s  lower triangular and E diagonal i s  globally 
ident i f iable because (El ,al l)  i s  ident i f iable without any covariance 
restr ict ion, (B2,612,622) i s  identif iable w i t h  the help of the rest r ic t ion 
a12=0  and the last,equation (BG,zG) i s  identif iable because of the G-1 
restr ict ions on EG. Extensions t o  other cases of global ident i f iab i l i ty  
under covariance rest r ic t ions a s  stated i n  Koopmans (1950) and in  
Theorem 4 of Wegge (1965) a l l  have the character ist ic that a f i r s t  
equation i s  identif iable without any covariance  restriction:^ and that the 
r e s t r i c t i o n  aij=O, i < j ,  can be applied unambiguously t o  the 
ident i f iabi l i ty of (B j .a l j . . . ,a j j )  given that B 1  i s  identif iable 
already without i t .  

In an e f fo r t  t o  expand on the scope of globally ident i f iable model 
parameters, Mallela and Pat i l  ( ' I  976), Mallela ( 1  989) and Mallela, P., 
Porter-Hudak S. and Yoo S-H.  ( 1  993) considered models and restr ict ions 
of the type 

i n  which not a single equation i s  ident i f iab le w i t h o i ~ t  covariance 
restr ict ions. We w i l l  ca l l  th is the model {[231211 a ,3=a32=a24=a41=0 } .  
They have obtained some fragmented results and their examples are the 
ins p i r a t  ion 'Tor the design of the more general models considered here. 



2. The model { [ j l  ...jc I 1 6 '0. i = 1  .... H. G5H1.  m jni 

Assume that i n  the i t h  row of B w i th  $ i i= -1 ,  a l l  i t s  other elements 

are zero except for one unknown element pi j i ,  j i z i ,  i n  column j i ,  i = 1  .... G. 

C a l l  j i  the parent of variable i. Including the normalization rest r ic t ion 
there are only G - 1  rest r ic t ions on B i  and addit ional res t r ic t ions  
essential for ident i f iab i l i ty  are covariance restr ict ions. To this end, 

assume in  the structural covariance matrix E the elements cSmini. mizni, 

i =  1 ,..,H, G 5 H are required to  be zero. 
In th is  paper we I , seek t o  f ind the special cases of the model 

{ [ j l , . . , j ~ ]  1 a,n,n,=O. 1 H GLH) that have a globally ident i f iab le 

parameter d = ((vecB)', (vecE\)')', where E \  are a l l  elements of 1 on or 
below the diagonal. The results are extended readily to  the general 
model w i t h  external variables i n  which the paramete~r (B, r ,  Z) 1s 
required to satisfy G-1  restrictions on (B, r ) i ,  i=l ,..,G. 

The analytic formulation i s  sirnple enough. For G x G  nonsingular T ,  the 
parameter (TB,TIT1) is  equivalent to  the parameter (B,E) i f  and only i f  

w i th  r = ( r , , . . , t ~ )  satisfying the set of bil inear equations (T IT ' )m in i=O 

i.e. z i s  a solution of 

where we often le t  (m,n) E ( B - 1 1 : ) ~ ~  ((QBJ)mn and R B - " E B ' - ~  = (oil), 
i , j=1  , . . ,G, i s  the reduced form covariance matrix. 

I f  t satisf ies ( 1  ) the alternative parameter (TB,TITi) satisf ies 



where 8 i s  the Kronecker delta. I f  (1) implies ti.0, B i  i s  identifiable 
j j I 

and i f  t = O ,  the parameter oc i s  identifiable. 
In general bilinear equations ('I ) have mult iple solutions and therefore 

only local identif iabi l i ty properties are expected to hold. I f  9 ( 8 , d  0, 
w i t h  P ~ v e c B ,  o ~ v e c E \ ,  i s  the l i s t  of res t r i c t ions ,  the local 
identif iabi l i ty condition i s  that t:he Jacobian matrix J(oc) of the system 
of res t r i c t  ions $)((vecTB)',(vecTZT'\)').O has rank G2 a t  T =  I G .  O r  
equivalently w i th  B nonsingular 

has rank G2. From (2), after deletion of rows and columns corresponding 
to the restrict ions on B, the parameter oc i s  locally identifiable i f ,  and 
under constant rank conditions, o~nly i f  the matrix of coefficients in  the 
linear p a r t s  of the equations (1) has rank G. Local ident i f iab i l i ty  i s  
equivalent to t = O  i s  an isolated solution of (1). 

Whereas local ident i f iab i l i ty  i s  necessary, global ident i f iab i l i t y  
results of any generality have to be based on conditions under which the 
solution to  the system of equations (1) can be shown by  algebraic 
manipulations to be unique. This involves much more than knowing the 
rank of the Jacobian matrix. 

ldentif iabi l i ty can also be stated as  the condition that the population 
moment estimator { ( B * . z * )  I B*QB*'-Z*=O) satisfying the restr ict ions 

O=axmini i s  unique i.e. the system 

where t *  = 8 *  - 8 and t x n i = J 3 *  . - 8  , , has a unique 
mi mijmi mi jmi ni lni nilni 

solution t * = O .  The system (1) defining alternative parameters through 
the linear transformation operaticn i s  identical t o  the system (3) 



defining a l te rna t ive  values 01: the population moment es t imator .  
Ident i f iabi l i ty means (B*,E*) is unique and consistent. 

In (2)  and i n  the analysis below the elements of the matr ix B-1 E 
RB' E(yul) p l a y  a cruc ia l  role. This i s  the mat r ix  of covariances 
between variables and residuals. I f  ( i . j )  = B j  = B j 'R i  E(yiuj) = 0. 
the variable y i  i s  an exogenous or instruments1 variable w i t h  respect to  
the j t h  equation, or the j t h  residl~ral i s  an instrument i n  the i t h  equation. 
The la t te r  interpretation is  developed i n  Hausman and Taylor (1 983) i n  
the context of an equational analysis. In recursive models w i t h  B lower 
triangular. E3-1T i s  lower triangular , i i i th  E(yiuj) = 0, i < j ,  or variable i is  
exogenous i n  a l l  equations j> i .  In the type of models considered here, 
non-exogeneity i s  the rule and exlogeneity relations are the except ion. 

3. Cycles o f  Uncorrelated Residuals. 

To a single covariance res t r i c t ion  a k l k 2  = O  corresponds i n  ( 1 )  an 
equation containing the two  unknowns (zkl .zk2)  and corresponding to  two  
restr ict ions b k l k 2  = 0 k 3 k 4  - 0  we have two  equations containing three or 
four unknowns. To three or G1 rest r ic t  ions of the type 

corresponds i n  ( 1 )  a subsystem of G1 equations i n  G1 unknowns t ( G 1 )  

Definitions: 

1 . With G' the number of equations, the H restr ict ions 

- - 
'IYI~ nl - -  'mini = Ci 

" m ~ n ~  =0, mizn,, i =I ,.., H, 

a )  are adequate i f  H 2 G and for each integer j there ex is ts  a 
d i f ferent p a i r  of subscripts (mi,ni), w i t h  j E (mi,ni), j=1 ,..,G. 

b) are connected i f  adequate and mi  &{ml  ,.., mi-1 ,nl ,.., ni-I},  i = 2  ,.., H .  
C) are dis joint  i f  {mi.ni 1 i=l .... G1}n{mi.ni I i = G , + 1 .  ... H }  i s  empty. G1<G. 



2. A GI -cycle i s  a set of GI r8estrictions 

c(G,) . ak k ' ak2k, ' .. 
akG,k, 

0, 
1 2  

w i th  ki, i =2  ,.., kc, dist inct. 

3. A G I  -cycl ical G-tuple i s  the set of G restr ict ions 

A disjoint G-tuple of covariance restr ict ions could be adequate, but 

i s  not connected. As i s  clear from ( 1  ), i f  (jni,mi)zO i.e. i f  the parent of 

variable ni is not exogenous in  the mith equation, connected restr ict ions 
have the property that the nl-th equation i s  identif iable i f  the equations 
{m, ,.., mi-1, n, ,.., ni-1) are identif iable. 

Examples of GI-cyclical G-tuples are rectangular G-tuples which are 
systems o f  G covariance rest r ic t ions containing the 4-cycle d k l k 2 =  

ak2k,=ak,k4:6k4k,=0. Every 4-cycle can be represented as a rectangle in  

the covariance mat r ix  .Z b y  locating some a k .  1 k 1 + 1  . a t  ' k i + , k i  i f 
necessary. Similarly 3-cycles, 5-cycles and 6-cycles can be represented 
as triangles, pentagons and sexagons in  >I. 

A connected 4-cyclical 
6-tuple of restr ict ions 

A 6-cycle of covariance 
restr ict ions 



Our main result concerns the ident i f iab i l i ty  under a connected GI -  
cycl ical G-tuple of zero correlations. In considering the tota l  number of 
G1 -cycl ical G-tuples, the order i n  which the covariance rest r ic t  ions are 
wr i t t en  does not matter. Their numbers for values of G=4,5,6,..,G are 
stated i n  Table 1 where G#=G(:G-1)/2 i s  the number of dist inct  o f f -  
diagonal elements in  GxG I. 

Table 1 .  Total Number of (GI-cyclical G-tuples in  GxG I. 

i 
Connected 4-tuple 5-tuple 6-tuple - 

3-cycl ical 12 '150 2160 

4-cyclical' 3 60 1080 

5-cycl ical 0 12 360 

6-cycl ical 0 0 60 

I G-cyclical 0 0 0 

Not connec ted 0 30 1345 

Tot a 1 15 252 5005 

G-tuple 

G!GG-4/2(G-3)! 

G!GG-5/2(G-4)! 

G!GG-6/2(G-5)! 

G!GG-7/2(G-6)! 

(G- 1 ) ! / 2  

To see this,  the total  number of G-tuples i s  the number of different 
tuples of (3 elements that can be selected from G #  off-diagonal 
elements of  1. Of these (G-  1 )!/2 are G-cycles since in  the G-cycle 

d l k ,  = 0 k 2 k 3  .. = d 
k ~ 1  

= 0, 

k i  i n  turn can be selected i n  G - i + l  dif ferent ways and reading the G-  
cycle backwards i s  the same G-cycle. When G=3 there i s  one 3-cycle, 
namely 012=023=031 -0. 

As shown i n  Appendix 1 i n  GxG Z the to ta l  number of GI-cycles is 
equal to  G!/2G1(G-GI)! and each GI-cycle can be embedded in G I G G - G ~ - l  

connected C;-tuples. The product G !GG-GI -~ /~ (G-G~) !  i s  the number of  
connected (2,-cyclical G-tuples. Riordan (1958) studies cycles and 
related construct ions. 



Among the 1345 not connected 6-tuples, 100 have a l l  6 integers 
present i n  their subscripts. O f  the lat ter,  ten are two  disjoint triangles 
and ninety contain a rectangle, one element doubly joint and one disjoint 
element. Th~e results of Theorem 1 below apply to  the former but not to  
the la t ter .  1245 of the not connected 6-tuples have missing integers in  
their subscr-ipts. 

With these preliminaries the main results are now stated. Lemma 1 
states that under local ident i f iab i l i ty  conditions and a GI-cycle of  
uncorrelated residuals, a solut ion z(G1)zO of (1) impl ies each 
component of z(G1) i s  not zero. It i s  proved i n  Appendix 2. 

4. Lemma 1 .  I 

Consider system ( 1 )  consist ing of the G1 cyc l i ca l  covariance 
restr ict  ions 

This mea~ns that i f  the model { [ j l  .... j G l ,  bmin i=O,  i = 1  ..., H )  contains the 

G1-cycle q ( , k , =  .. = b 
k ~ l k l  

=0, the equations (kl,k2,.. ,k~1) are either a l l  

identif iable or none i s  identif iable ~vhen either the parent of variable k,  
i s  not exogenous i n  the k i + l - t h  equat~on or the parent of variable k , + l  i s  
not exogenous i n  the k,-th equation, i - 1  ,..,GI. Our main result i s  stated 
as  Theorem 1 and i t  i s  proved in  Appendix 4 .  



Theorem ;I. 

Given the model { [ j l  .... j ~ , , , j ~ , + ,  .... jc l ,  dmin i=O,  i = 1  ,..GI assume: 

The covariance restr ict ions are a connected GI-cyclical G-tuple 
w i th  GI even, 4 5 G1 5 G and i t s  f i r s t  GI restr ict ions are the GI- 
cycle 

In {l ,:?,..,GI} for some integer i, i even, and for a l l  4 ,  Q odd, one of 
the following holds: 

t 

k "  = ]ti+, 8 d = d k i k n  k1+2kn 
= 0, and 

either jki= jki+2, or k = + or ki.2 = jki. 

The parameter oc = ((vecB)',(vecE\)')' i s  globally ident i f iable i f  and 
only i f  A(G1)=zl(G1)-z2(G1) z 0, where cycl ical ly Gl+m stands for m and 

zl(Gl)= n a p ,  z2(G1)= n b p ,  a p = ( B - l ~ ) .  , bp=(B-lE). 
Q 11 1 1-1 l k Q h + l  J ~ Q + ~ ~ Q  

In the proof the GI bi l inear equations are reduced t o  G1/2 l inear 
homogeneous equations. Uniqueness of the solution z=O theil fo l lows 
from standard rank condit ions A(G1)zO. (A.3) are the reduct ion 
permitt ing a~ssurnptions in  the GI -cycle. 



5. Interpretat ion and implementat ion remarks. 

1 .  The verb(a1 understanding of (14.3) i s  that i n  a GI-cycle of uncorrelated 
equations, the odd numbered variables are siblings. Variable k i + l  where i 
i s  an even number, i s  a possible exception. The common parent i s  

a) k i  under (A.3) a), w i th  no exception, 
b) k i + l  under (A.3) b), k i + l  i t se l f  i s  the exception, 
c )  k,, a sibling of k i + , ,  under (A.3) c), where k n  i s  an odd numbered 

variable that i s  the exception and provided the adjacent variables 
k i  and k i + 2  are siblings w i th  residuals that are uncorrelated w i th  
the residual of the common parent k,,, 

d)  kn,  a grandpprent of k i + , ,  under (A.3) d), where k n  i s  an odd 
numbered variable that i s  the exception and provided the adjacent 
variables k i  and k i + 2  are either siblings or direct descendants of  
each other w i th  residuals that are uncorrelated w i t h  the residual 
of the common parent kn. 

Since a cycle can be traversed forwards or backwards, i n  Theorem 1 
the variable k i + l  and i t s  neighbors k i  and k i + 2  could be replaced by k i - 1  
and i t s  neighbors k i  and ki-2. 

Clearly under (A.3) a), c)  and d) at least one variable i s  parent to  at 
least two variables. As we w i l l  show next, th is i s  also implied by  ( A . 3 )  
b )  and local ident i f iab i l i ty .  Therefore under Theorem 1 at least one 
variable i s  not a parent i.e. B containing at least one unit column is 
reducible. 

2 .  The inequali ty conditions (A.2) ( B - 1 1 )  to, i = G 1  + 1  ,..,G, and 
Jnimi 

A(Gl)zO are equivalent to  the local ident i f iabi l i ty conditions (2). Define 



Under ( A . 3 )  b) w i t h  ei ther k3=jkl or kl=jkd, (P.4) of Appendix 3 

implies S2=0 and A(4) -  -(B-"Z) ( B - ~ z ) ~ ~  I( 8 ' .  The condition A ( 4 b 0  
jklk2 3 4 

requires b l t O  and therefore we must have ] k22 jk4 ,  k2z jkq ,  k4z jk2 
Therefore, when k3=jk l ,  the same variable k 3  must also be either the 
parent of k 2  or of k 4 .  One of the lat ter two  variables could be the parent 
of k 3  but then the other has no descendant and the assumption (A.3) b) 
together w i th  A(G1)+O also imply that B is  reducible, having a t  least 
one unit column. 

If both B and C are conformably reducible, B - 1 C  contains nul l  
submatrices and the local ident i f iab i l i t y  condit ion would f a l l .  in  
particular, the parameter of a model satisfying (A.3) of Theorem 1 i s  
riot locally identif iable when E i s  diagonal or also for G1=4, when B has 
two columris that are unit vectors. For larger systems B may contain 
more unit vectors provided enough off-diagonal elements i n  E are 
different from zero so that B-1C does not contain null submatrices. More 
precisely and operationally speaking the local ident i f iab i l i ty  condition 
(2) has to  be verified. 

We now l i s t  the models w i th  globally identif iable parameter defined 
in  Theorem 1 when G=4, followed by G.5 and G=6. 

6. Four  e q u a t i o n  m o d e l s  w i t h  i d e n t i f i a b l e  p a r a m e t e r .  

There are three 4-cycles when G=4. These are the rest r ic t ion systems 
s1 (4 )  G1 3::G32=624=64; =o,  
s2(4) z 612: :623=G34=641 = O ,  
S3(4) z G1 2::G24=643=631 = O ,  

Let [ j l  , j2 ! , j3 , j4 I  be the l i s t  of parents i.e. the column indices of the 
non zero unknown elements i n  the rows (1,2,3,4) of B. There are 81 
different sets of parents for each restr ic t ion system. The parameter is 
globally ident i f iable i n  24 cases under (A.3) a )  and i n  48 cases under 
(,4.3) b). These cases are the following. 



a).  2 4  Globally Identif iable Casez: One variable i s  not a parent. 

Let Fa(S i (4 ) )  be the family of' models w i th  B nonsingular, 1 posit ive 
clef i n i t e  and globally ident i f iable parameter d under the covariance 
restr ict ions Si (4)  and (A.3) a) of Theorem 1 .  We have 

i [ 3 3 l 2 ]  13321 1 [4412]  [ 4 4 2 l l  i f  a J 4 t 0  
Fa(S1 ( 4 ) )  = 

[3422]  [4322]  C341 1 I C431 1 I i f  Cl l2zO 

121231 [23211 [41431 [43411 i f ~ S ~ ~ t 0  

Is 
Fa(S2('i)) = ( [23431 [43231 [2141]  C41211 i f  a 1 3 ~ 0  

[ ? I 4 2 1  124121 [31431 [34131 i f 6 2 3 f 0  

iT 
Fa(S3(4)) = 

[24431 [34421 [21131 [31121 i f d 1 4 t 0  1. 
Each fami l y  has e igh t  members s a t i s f y i n g  (A.3)  a) and the  loca l  

ident i f iab i l i tg  condit ion A(4)zO. There are two  members i n  each of four groups: 

i )  jkl=jk,=k2. j k 2 z j k 4 ,  j k2zk4 .  j k 4 z k 2 ,  / A  / =a  k2k2'k2kqpkl k J  / 8 I 3 z 0  

i i )  jk., = j k 3 = k 4 ,  j k 2 z  j k 4 ,  j k 2 t k 4 ,  j k 4 % k 2 ,  1 A ( = a  k4k,ak4k2Pk3kl 1 1 0 1 ~ ~ 0  

i i i )  j k 2 = j k 4 = k 3  j k J t j k l .  j k J t k l ,  j k ,%kJ .  1 A 1 =a  p / 1 B I 3 z 0  
k ~ k ~ ~ k ~ k i  k 2 k 4  

i v )  j k 2 = j k 4 = k l .  j k j t j k l  jk3fC:l ,  j k l z k 3 .  1 A 1 =a  k l  kldklk3Pk2k4 / ~ B ) ~ z o  

where p k i k j Z  "k i k i c f k j k j -ak i k jak j k i  and ( A  I is  the absolute value of  A ( 4 ) .  

The las t  t w o  groups are obtained f rom the f i r s t  t w o  by ro ta t i ng  the 
subscripts of' the 4-cycle one place i.e. by placing the f i r s t  res t r ic t ion  last.  

In each c.ase the hypotheses that the unrestr icted off-diagonal coef f ic ients 
of B or  Z are zero, are testable. However the  coef f i c ien ts  needed t o  keep 
A(4) tO are riot testable. In the graph below. GJ4=0 i s  not testable. 



The graph of Model {[33121 / s1 (4 ) }  

The graph gives a representation of the local i den t i f i ab i l i t y  condit ions i.e. the 

residuals u3 and u4 must be correlated. The assumption ( A . 3 )  a) i s  shown by 
having yl and y 2  as yibl ings w i t h  yi5 the i r  parent, and y 4  having no descendant. 

b). 48 Globally Identif iable Caseg: One variable is  not a parent. 

Let Fb(Si(4)) be the family of models w i th  B nonsinsular, 1 positive 
def in i te  and globally ident i f iable parameter oc under the covariance 
restr ict ions Si(4) and (A.3) b) of Theorem 1 .  We have 



Each f a m i l y  has e igh t  members s a t i s f y i n g  (A .3 )  b) and the  loca l  
t d e n t i f ~ a b i l i t y  cond i t ion  A(4)zO. There are four members i 'n  each of four 
groups: 

where pkikj 'akikiakjk j - a k i k j  ' k j k i  

The elements of (B,E) not required t o  be d i f fe ren t  f rom zero are testable. 
Thus i n  the model { [231211 ~ , ( 4 ) }  the res t r i c t i ons  $ 1 2 = $ 3 1 = $ 4 2 = G 1 2 = 0  Or any 
subset are testable, but $ 2 3 a 3 4 = 0  i s  not. 

In a l l  cases one and only one of the four variables has no descendant 
and one has two. The twenty-four sets of parents l isted under (A.3) a )  
reappear under (A.3) b) w i t h  a d i f fe rent  4-cyc le  of  covariance 
restr ict ions. Graphically there are two types of models. Above we l isted 
the cases w i t h  an example of one type followed by an example of the 
second typle. In the f i r s t  type, three variables stand i n  a triangular 
relationship and one of the three variables has the fourth variable a s  
direct descendant. The four structural errors fa l l  in to t w o  uncorrelated 
pairs. The second pair  contains the four th er ror  that  must be 
intracorrelated w i t h  that of i t s  partner i n  the p a i r .  This causes the 
la t te r 's  stl-uctural error t o  have an ef fect  on the residual and on the 
parent of the four th variable, where they col l ide..  A graphical 
i l lustrat ior i  w i t h  the correlated error u3 and the fourth variable y 4  i s  
this: 



The graph of Model { [231211 s1(4)}  

In the second type of models the triangular relation i s  replaced by a 
direct two-way relat ion between two  of the variables. Again one 
variable i s  not a,,parent, but i t s  residual and i t s  grandparent are 
influenced by i t s  partner's residual. A graphic i l lust rat ion wi th  y 4  a s  
fourth variable and ul as i t s  partner's residual i s  this: 

c) With G,=4, (A.3) c) i s  empty. 

d). 24 Not L.ocallu Identifiable C ~ I  under any 4-cyclical restr ict ions 

A. Under (A.3) d)  when i=2,  n = l  we have the group of cases having 
k l  =jk3, jk2=jk4 and therefore A(4)=0. In this group are each one of the 12  
cases wi th  one variable having 3 descendants i.e. 

under each 4-cycle of restrictions after suitable permutation. 



B. The 12 cases w i th  two  variables having two descendants are 

In a l l  these cases A(4)=0, either because the model i s  equivalent to  a 
model under S1(4) w i th  (BJ) conformably reducible satisfying 

km = ~k r "+n  Jkm+, + " I  km+2 = ~ k ~ + ~ + n  = jkm+3+n , m ~ ( 1 , 2 ) ,  n ~ ( 1 , 2 ) ,  

or i t  satisf ies for some value m E (0,1 ,2,3), either 

To see this, under the former conditions w i th  m-0, we liave 

j using the relat ion B ( B - 1 ~ )  ak .  , k k j  + $ , ( j  k )  
k i 1% 'Wki I<,* 1 ' 

The problem occurs w i t h  the imposi t ion of vanishing covariance 
restr ict ions, not i f  covariances have known values that are not zero. 

e). 9 Locallq Identif iable Cases: Each variable i s  a parent. 

For completeness sake we record the remaining parental l i s t s  and 
cycles of  zero correlat ions under which the parameter i s  local ly 
identif iable. With each variable having one descendant, these models do 

and the parameter i s  not globally identi f iable. These not satisfy (A.3) 
models are: 

{[3421 I ,  [43 1 21 
{[2341 I ,  [41231 
{[24 1 31, [3  1 421 

S1 (411. 0 1 2 = 0 ,  6 3 4 = 0  are testable locally. 
S2(4)} .  c I l3=0,  6 2 4 = 0  are testable locally. 
S 3 ( 4 ) } .  0 1 4 = 0 ,  o ~ ~ = O  are testable locally. 



S 1 ( 4 ) ,  a 1 2 2 0 } .  ~ ~ ~ - 0  is testable locally. 
S 1 ( 4 ) ,  cS,~ZO}. G I 2 - 0  is testable locally. 
S 2 ( 4 ) ,  6 1 3 f 0 } .  6 2 4 = 0  is testable locally. 
S 2 ( 4 ) ,  6 2 4 ~ O } .  G 1 3 = 0  is testable locally. 
S 3 ( 4 ) ,  6 1 4 ~ 0 } .  G23=0  is testable locally. 
S , ( 4 ) .  c S ~ ~ Z O } .  G I 4 = 0  is testable locally. 

An important application of Cese [3412] i s  the inverse demand-supply 
system 

The parameter i s  locally identi f iable i f  either a 1 2 z 0  or a J 4 z 0 .  I t  i s  
moment equivalent t o  one al ternat ive parameter d* of the system 
t3*y+I'*x=u*, w i t h  f i 1 3 * = 1  / 8 3 1 ,  * = I  / 8 4 2 9  831*=1/813* 8 4 2  * = I  / 0 2 4 .  

lJnder the inequali ty constraints 813<0,  b Z 4 < O ,  8 3 1 > 0 ,  8 4 2 > 0 ,  t h i s  
alternative parameter (B*,T*,Z*) i s  not admissible. The parameter d i s  
not local ly ident i f iab le i f  Z i s  diagonal. The assumptions on E are 
just i f ied under the theory that inverse demand and supply disturbances 
i3re uncorrelated. Below we seek a l ternat ive speci f icat ions w i t h  
.identifiable parameter. 



7. Five equation models with identifiable parameter. 
There are sixty connected 4-cycl ical  quintuplets when G - 5 ,  there 

being f i f teen 4-cycles and each can have anyone of four d i f ferent  
restr ict ions from the missing column (row) as  f i f t h  element. These are 
the rest r ic t  ion systems 

R1(5)  - 6 1 3 = 6 3 2 = 6 2 4 = 6 4 1 = 6 m 5 = 0 .  R 2 i  ( 5 ) - 6 1 2 = 6 2 3 = 6 3 4 = 6 4 1  = a m 5 = o 0  

R5(5) -61 3=632=625=651 =Gm4=0 ,  R 2 5 ( 5 ) r 6 1 2 = 6 2 3 = 0 3 5 = 6 5 1  = 6 m 4 = 0 ,  

R9(5) ~ 6 1 3 = 6 3 5 = 6 5 4 = 6 4 1  =Om2=0 .  R 2 9 ( 5 ) - 6 1 2 = 6 2 5 = 6 5 4 = 6 4 1  = 6 m 3 = O 0  

R 1 3 ( 5 ) ~ 6 1 5 = 6 5 2 = 6 2 4 = 6 4 1  = a m 3 = 0 ,  R 3 3 ( 5 ) r 6 1  5 = 6 5 3 = 6 3 4 = 6 4 1 z 6 m 2 = o 0  

R 1  7 (5 ) -653=632=624=645=6ml  = O ,  R 3 7 ( 5 ) ~ 6 5 2 = 6 2 3 = 6 3 4 = ~ 4 5 = ~ m 1  " 0 .  
R 4 i  (5)  = 6 1 2 = 6 2 4 = ~ 4 3 = 6 3 1  =cSm5=0. 

R45(5) E 612=624=645=651 =cSm3=0, 

R49(5) 6 1 2 = U 2 5 = 6 5 3 = 6 3 1  =Gm4=O,  , 
RS3(5) - 6 1 5 = U 5 4 = 6 4 3 = 6 3 1 = 6 m 2 = 0 ,  

RS7(5) = 6 5 2 = 6 2 4 = 6 4 3 = 6 3 5 = 6 m 1 = 0 ,  

where 6mk i s  a  covariance w i t h  m  E { I  ,..,5}, mzk. 

Any model w i th  identif iable parameter when G=4 could be augmented 

w i th  a parent j ,  and a res t r ic t ion  Gm5=0,  me(1 .... 41, t o  const i tute a 

model w l t h  ident i f iable parameter when G.5, provided (B-1 E )  jsmzO. 

j S € { 1  ,..,4}. This would hold under the local ident i f iabi l i ty condition (2). 

Examples of fami l ies of  models Fa(Hk(5)) w i t h  B nonsingular and E posi t ive 

ce f i n i t e  having ident i f iab le  parameter under the covariance res t r i c t i ons  Rk(5)  

z~nd (A.3) a) of Theorem 1 are 



and Fa(R2i(5#)) i s  obtained from Fa,(R1!5)) by interchanging rows and columns 

t w o  and three, where Fa(R4i (5)) i s  obtained from Fa(R2i ( 5 ) )  by interchanging 

rows and columns three and foul- and where F a ( R 6 ~ ( 5 ) )  i s  obta ined f rom 

Fa(R4i(5)) by interchanging rows and columns one and f ive. 

Examples of  fami l ies of  models Fb(Rk(5)) w i t h  B nonsingular and Z posi t ive 

de f in i te  having ident i f iab le  parameter under the covariance res t r i c t i ons  Rk(5)  

and (A .3 )  b )  of Theorem 1 are 

where 



With G = 5 ,  Theorem 1 only contains resul ts when the rest r ic t ions 
c,ontain a 4-cycle.  Pentagona! res t r i c t i ons  do not imply unique 
ident i f iabi l i ty.  

8. S i x  equation models with identifiable parameter. 

When G=6 we could have ident i f iabi l i ty under anyone of the 1080 4- 
cycl ical sixtuples. Anyone of the 45 4-cycles can be augmented w i th  a 
p a i r  of res t r ic t idns  from 24  d i f ferent  possible pairs,  each p a i r  
containing one element i n  each of the two columns not included in  the 4- 
cycle. For example from S1(4) we can construct the 24 connected 
sixtuples 

The parameter of the model i s  ident i f iable under Rk(6) ,  k = 1  ,..,20, 
u,nder the conditions of Theorem 1 on { j l , j 2 , j 3 , j 4 }  provided ( B - ' Z ) ~ , ~ Z O  
and ( B - ' E ) ~ , ~ z O .  Lett ing k = l  when Q = m = l ,  examples of fami l ies of  
identif iable parameters are 

w i t h  



A n  ~ ( 1  .... 4 ) .  JJnE(1 .... 4 ) ,  w i t h  (B-1  L ) ~ , ~ ( B - ~ E )  20. n=1 .... 8. 
JJnl 

v n  ~ ( 1  .... 4 1. o n € { l  .... 4 1. W i th  (13-IE) ( B - ~ E ) ~ ~ , Z O .  n=1 ,... 16. 
Vn 1 

When G::6 we could have ident i f iab i l i t y  also w i t h  a sexagon of 
restr ict ions of which there are 60. With k i ,  i - 1  , . . ,6, a l l  dist inct i n  the 
set { 1 , . . ,6},  define 

From Theorem 1 we have the families of models i j k l . j k , . j k 3 . j k 4 . j k 5 . j k 6 1  
w i th  identif iable parameters 

,< 

For the 6-cycle Sl ( 6 ) = 0 1  = O f  examples w i th  E 
positive definite and nonsingular B w i th  the parents wr i t ten  in  the order 
[ j1 , j2 , j3 , j4 , j5 , j61  are 



The above inequalities are the conditions that A(6)zO and correspond 
to  the sufficient rank conditions (2) for local ident i f iabi l i ty.  

For general models their  sat is fact ion almost everywhere can be 
checked by calculating B-12 for some numerically chosen matrices (B,E) 
that satisfy the equality restr ict ions. This is  due to  the fortunate fact 
that i f  a l l  the coeff icients i n  the system ( 1  ) are di f ferent from zero, 

the reciprocals ( l /t ) satisfy a linear system. Under (A .3 )  and A(G1)zO 
k i 

of Theorem 1 ,  l / tk = O  and under (A.3) b) l / z k i + l  - 
Q 

1 / I 3  . The 
k i + 1  jk ,+ ,  

nonexistence of a solution for the system ( 1 )  translates in to  a zero 
value for some of the reciprocals. 

I f  some coeff icients i n  ( 1 )  are zero, a more careful procedure w i th  
subsets of (equations i s  needed. 

A l l  null-hypotheses under wh.ich the inequality A(6) z 0 continues to  
hold are tlestable. But by  imposi t ion of additional over-ident i f y ing  
r-estrictions, especially covariance rest r ic t ions that make 1 in to a 
diagonal matrix, we could lose ident i f iabi l i ty.  

For (3-7, Theorem 1 describes models w i t h  ident i f iable parameter 
either under 4-cycl ical or 6-cycl ical septuples. When G = 8  we also have 
cases identif iable under 8-cyclical or two disjoint 4-cycl ikal octuples. 



9. Extens , ions  to M o d e l s  h a v i n g  E x t e r n a l  V a r i a b l e s .  

I f  the structural model i s  the standard By+  rx=u,  u - i . i . p (O ,~ ) ,  w i th  
l l j -  Q i j B B "  the results of th is paper hold i f  there 
are G - 1  restr ict ions on each row (B, T ) ~ ,  Q = 1  ,..G. I f  n(Q)+l  elements of 

Bn. are unk:nown, n(Q) elements in  r a  are zero, 0 5 n(Q:) 5 G - 2 ,  where 
f i n k = -  1 .  W e  need some new notation. 

Let ( B f i j n *  @ t j p l *  * @ ~ j f i , , ( P )  ) be the unknown elements i n  B Q  

standing in  the columns j . .  Q and let  (ZfQmP, ,..,ZfQmPn(P))=O 

be the zero elements i n  r n  standing i n  the columns ( m ~ l , . . , m a ~ ( n ) ) .  The 
parameter (TB,TI7,TET') i s  equivalent t o  (B,r,I I) under a cycle of  
covariance rest r ic t  ions i f  and on~ly i f  

T = I G  + PB - l ,  where Pg=( 0 .. tea .. 0 .. z g l  ..O .. t ~ ~ ( 1 ) )  .. 01, 

w i th  the unknowns (z lo , t~ l , . . , t~n (k ) )  i n  row P Q  standing in  i t s  columns 
( j  ~ o , j e l ,  .. , j  Q ~ ( Q ) )  and satisfying 

With c .  k=O,..,n(Q), the signed determinant of order n(Q) in  1 P k '  

\ 
j eom t n ( e )  

jn. imen(t)  I ~ ( Q ) L  1 ,  
. . 

\nj pn(P)mkl 
.. TI. I en(e)m Pn(Q) 

af ter deleting i t s  row ( l l j  Pkmnl,  .. ,ll, ), the equations (4) imply I !2kmPn(!2) 



If there are no restr ict ions on T Q ,  put c .  - 1 .  Substituting into ( 5 )  
I no 

we have (TB,Tr ,TIT1)  i s  equivalent t o  (B,T,E) under a G-cycle of 
covariance rest r ic t ions i f  and only if t=(t, , t 2 , . . , t ~ )  sat is f ies the 
system 

where - (CB-lE)lciki+l , 6; I (CB-lZ)ki+lki. & (CQC')kiki+l and 

Again (7) i s  a system of G bilinear equations in  G unknowns and i f  i t s  
solution t = O  i s  unique, the parameter (B,r,E) i s  globally identif iable. 

Spec ia 1 Cases 

A. As in  the proof of Theorem1 1 ,  the G bilinear equations (71, w i th  G 
reduced to G/2 linear equations i f  even, can be 

( c B - w k i  

This cond 

(COC')kiki+l = ( c B - l ~ ) k i + ,  k i  ( C m k i - l  k i .  for i even. (8)  
-I k i  

i t  ion holds i f  C 
k i - 1  'k i+1 i.e. if j k i - lQ  = j k i + , Q t  for Q 

(),I, .. , n(ki-1) n (k i+ i )  and R = 
k i - 1  " k i + l  . This i s  the case if the rows 

k i - 1  and k i + l  have unknown elements in  the same columns of B and zero 
elements in  the same columns of r. 

When G=4 there i s  only the condition that C k l =  Ck . Any model i n  
3 

F'a(S1(4)) can be modified in to  a model satisfying th is  condition. For 
example {[:331211 S,(4), o,,zO) E Fa(S1(4)) can be modif ied in to the 
model 



in  which ( j l o , j l l ~ = ~ j 2 0 , j 2 1 ~ = ~ 3 , 4 ~ , ~  n(1 )=n(2)=1, (::: 1 (i 1, R l  =R2=  [::: 1. 
I ts  parameter i s  identif iable under local ident i f iabi l i ty conditions ( 2 )  

' I  

Other examples can be constructed from a member of Fa(Sl(4>> by 
leaving i t s  rows k l  and k 3  unchanged and by replacing the exclusion 

restrictions on B and B by exclusion restr ict ions on rk and rk . 
k 2 k 4  2 4 

B. I f  a model i n  Fb(S1(4)) satisfying jkl=k3 is  modified b y  replacing 
the exclusion restr ict ions i n  B 4  (or E2) by  exclusion restr ict ions in  r4 
(or r2), the new model has an identif iable parameter. For example the 
model 

i s  a modif ication of  the model {[23121 / S1(4). 823034+0 }  c Fb(S1(4)). TO 

see this when G=4, reduce the four equations ( 7 )  t o  two  equat~ons and 
then to the single equation 

4 4 

( I-Ian - n 6 n ) z k l  =-a,& (%a, - &a,) - 6,6, (&a, - '&a;)(2kl) ( 1 1 )  
Q = 1  Q = 1  

With jkl=k3, B k 3 ( 8 - l ~ ) k i = 0 ,  iz2.4. Bk,(RC1)k4=& imply T3?r4-6,& = -563. 
- 
a& - 6,q := and the coeff icient of the quadratic term i s  



and (10) h i3~  an identif iable parameter 
conditions ( 2 )  i.e. when 

under the local id€ l i t y  

Similar extensions of members i n  Fb(Sl(4) stated above resul t  i n  
models w i th  identif iable parameter. By special calculation, Mallela et .  
211. (1 993) established the identif iabi l i ty of the model 

This i s  an extension of the model {[41 121 1 ~ ~ ( 4 ) , 8 ~ ~ 6 ~ ~ d )  E Fb(S1(4)} 
\ ~ i t h  j k 3  = k l  and therefore i t  has an identif iable parameter under i t s  
local ident i f iabi l i ty conditions (2)  that are 



10. Concluding Remarks. 

Unique iden t i f i ab i l i t y  under- covariance res t r ic t ions  i s  generally 
understood t o  be a property of recursive models or models where there 
i s  at least one equation identif iable without covariance restr ict ions. The 
parameters of the other equations can be further restr icted by  the zero 
correlations w i t h  residuals that are identif iable already. Without such 
f i r s t  equation covariance res t r i c t i ons  i n  general imply loca l  
identif iab i ldy  only and inequality res t r ic t  ions must be rel ied upon for 
uniqueness. 

Taking inspirat ion from the special rnodel (1 1 )  analyzed by Mallela 
& a l .  ( 1  99131, we have characterized four fami l ies of models w i t h  
parameter ident i f iable under a subset of uncorrelated residuals and 
\N ithout having t o  invoke inequal.ity restr ict ions. In these families, not 
counting the zero correlat ion, there i s  one coef f ic ient  res t r i c t i on  
missing per equation so that riot one single equation i s  ident i f iable 
without the covariance res t r ic t  ions. Further for a1 1 members of the 
family the string of zero correlations i s  a closed cycle of order at least 
f'our and the odd-numbered variables are siblings. For these fami l ies 
Theorem 1 states that the parameter i s  globally ident i f iable i f  i t  i s  
locally identif iable. 

We derived the complete membership l i s t  of four equation models 
w i th  the above properties and we described by  example how models w i th  
f i ve  and s i x  equations are t o  be recognized a s  members of the above 
families. Since the analysis can be applied immediately t o  models that 
contain external variables, the results of th is paper are important i n  
rnodel ing price and quantity variables under f i r s t  and second moment 
reproducing inverse demand and supply equations w i t h  intercorrelated 
inverse demand shocks and intercorrelated supply shocks that are 
~.ncorrelated w i t h  the demand shocks. Models (9) and (10) provide an 
i l lustrat ion. 



Appendix .  

1 .  Total Number of G I  -cycl ical G-tuples in GxG C . 

A.  The number of GI -cycles i s  G!/2G1(G-GI)!. 

To see this, a GI-cycle i n  G x G  E has t w o  elements i n  a row or 
column. The GI -cycle w i th  vertices (d l  ,,ajl ) contains the vertices 

d l ;  = 6 im3 = = d . = d j l ,  ml=mk+l - 1 ,  m2= i ,  rnk-j. 
mk- l ]  

Given the subscripts 1 , i , j ,  the remaining subscripts are GI-3 integers 
out of G-3 possible, which implies the p a i r  (dI i .dl j ) ,  1 <i<jzG, can be 
the side of ( G - ~ ) ( G - ~ ) . . [ G - ( G ~  - 1  ) I  different GI -cycles. G p 3 .  When i = 2  
there are G-2 different values %or j ,  when i = 3  there are G-3 different 
values for j and for i = G -  1 ,  j=G i:; the only value of j .  Ther'efore the f i rs t  
row p a i r s  (bli,dl j ) .  1 < i< j ,  are a side of 

different G,, -cycles. When GI =3,  this i s  (G- 1 )#. 

Next, the p a i r  ( d 2 i , d 2 j ) .  2.<i<j, j i G ,  can be combined w i t h  GI-3 
integers out of G-4 t o  form (G-4)(G-5)..(G-GI) dif ferent polygons, also 
different from the polygons constructed before. When i = 3  there are G-3 
different values for j and when i = G - 1  there i s  only one value for j .  
Therefore the second row p a i r s  (a2 i .d2 j ) ,  2<i< j ,  are a side of 

different GI-cycles. 
in this sequence the last row pairs are ( a G - ( G , - ~ ) . i ,  a ~ - ( ~ , - l ) . j ) .  

1 
- ( G I  - 1 ) <:i<j, G which are a side of ?(GI-1 )(GI-2)..(1 ) dif ferent 

cycles. Therefore, adding over the sequence, the number of di f ferent GI - 
cycles in  GxG E i s  



R .  The number of connected G-tuples per G1 -cycle is  G~ GG-(GI+~). 

G"t-GI 
Each polygon of order Gl<G can be combined w i t h  ( G-G l  ) d i f ferent 

choices of G- k  restr ict ions to  c:onstitute assignable and not assignable 
sets of G restr ict ions. 

Clearly the number of G1 - laterals per polygon of  order G1 i s  one. 
Renumbering the subscripts so that the vertices of the polygon stand in  
the f i r s t  G1 rows and columns, let  the polygon of order G1 be denoted 

Connected G-tuples"linked to  the G1 -cycle number 

i) G1 in  the form 

ii) G 1 ( G 1 + l )  and G1 repectively in  the form 

P G ~  =a =O, n ~ ~ + 2  E ( 1  $2  .... G ~ , G , + ~  ) ,  or 
+ 1 .nG,+l G1 + 2 . n ~ ~ . + 2  

PGI=* ( ;~  +2.nG1+, = +I .GI +2=O' when G=Gl+2, 

iii) G1(G1 +I )(GI +2), G1(G1 + I  ) ,  G1(G1 +2),  G1(G1+l 1, (31, GI, G1 

respectively i n  the form 



=d =0, or 
PGl 'd~l  +2.nG1+, GI + 3 - n ~ , + 2  = " G ~ + I  .G1+3 

= d 
PGl 'a~ l  +3.nG1+, G1 + I  .G1+3 = 'G1+2.G1 +I 

=0, or 

= d 
P G l = a ~ l  +3.nG1+, G1 + 1 + 3  = "GI +2.G1 +3 

=o,  or 

P ~ l = d ~ l  +3.nG,+, = + 2 - ~ ~  +3 ' "Gl + I  +3'03 

Adding a l l  forms shows the result. 

for G=G1 +3. 

2 .  Proof of Lemma :l . 

We proceed in  steps. With a single covariance rest r ic t ion ( T Z T ' ) ~ , ~ , = O  
we have t k l z O  t k 2 = 0  only i f  ( jk l ,k2)=0.  Also t k , = O ,  t k 2 z 0  only i f  
: jk2.kl)=0, or the parent of  the k2th variable i s  exogenous i n  the kith 
equation. Therefore, we have 

and the combined conclusion that: 

I f  two  connected covariance restr ict ions dk,k2=dk2k3=0 are imposed. 
the two equations (TtT')klk2=(TET')k2kJ=0 are 

B y  the argument applied to  (TZT')klk2=0 leading to  (2.1), conclude 



With three cycl ical  covariance restr ict ions ok,k,=ok;!k,=ak,k, = O  we 
have the irnplicat ions 

Therefore, 

( T t T ' ) k l k 2 = ( T Z T ' ) k 2 k 3 = ( T Z ~ ' ) k a k l = ~ .  (zkl.tk2,tk,)z0 and either 

( j k , . k 2 ) ( j k 2 . k 3 ) ( j k , . k l ) z 0  Of ( J ~ 2 , , k 1 ) ( J k 3 . k 2 ) ( ] k , . k 3 ) z 0  o t t l t k2 tk , r0 .  
' I 

To see this,  if ( t k l . t k 2 . t k 3 ) t 0  w i t h  zklzO, then ( jk l .k2)z0 implies 
xk2z0 and then ( jk2,k3)z0 implies q 3 Z O .  I f  ( tkl .zk2,zk3)z0 w i t h  t k2z0 .  
then ( ] k 2 . k 3 ) d  implies tk,zO and then ( jk3.k1)z0 implies q l z O .  Finally. 
if (tkl, tk2,;~k3)zO because rk3z0,  then (jk,.kl)zO implies r k , z O  and then 
( j k 1 . k 2 ) ~ 0  implies zk2z0. We could also use the implications from the 
second column above to  prove the or part of the statement. 

The same argument goes through for general G1 -cycles. 

3 .  Relations between elements of €3, 1, €3-1 1 and R.  

The equations (1 ) t o  be solved contain elements of el- '  Z and of Q. 

Observe the following properties : 

n 
( ~ 2 )  a,, = ~ ~ ( € 3 - 1 1 )  = -(m,n) + B m j m  ( ~ m ~ n )  



4. Proof of Theorem 1 . 

We have to  show that the solution t ( ~ , ) ~ ( t ~  . - C ~ ~ . . . . Z : ~ ~ ,  )=0  of the 
1 

system = O ,  i = 1  ,..,GI, i s  unique under the stated conditions. 

This i s  the system of G1 equations 

Observe that the Jacobian matr ix of these equations at z(G1)=O has 
determinant A(G1 ) = z ,  (GI )-z2(G1 ). By assumpt ion, either aiz0, i= 1 ,..,GI, 
or blzO, 1 . G I  Therefore from Lemma 1 ,  t ( G , ) z O  impl ies each 
component o f  t (Gl)  i s  different from zero. 

Eliminating t T O  from the equations corresponding to  ( T E T ' ) ~  ,- = 
k 1 

(TIT')kiki+l = 0, we have the G1/2 equations 

From (P:2), Appendix 3. we have 



Hence, when d = O  adding (4.3) t o  (4.2,i), the la t te r  i s  equivalent t o  k ikn 

or subtracting (4.3), from (4.2.i), the la t ter  i s  also equivalent t o  

The f i r s t  quadratic term does not depend on elements of  Q i f  

1 .  k i - 1  and k i + l  are siblings i.e. 

J k i - l  ' k i+ ,  and then from (4.2,i) 

a i - l a ;  t -- bi-1 bi t = 0, 
k i- 1 k i + l  

2. k i - 1  or a sibling of k i - 1  ( for  nzi-1)  i s  the parent o f  k i + l :  

] k i - l  =Iknp knzjki+, and then f rom(4 .4 , i , n )p rov idedo  kikn =0,  

a i - 1  a i t  - 1  b i t  = C i n t k ,  2 
k i - 1  k i + l  1 - 1  k i + l '  tin-ai-i ( j k . k n ) .  I 

( 4 .7 , i , n )  

3 .  k i + l  or a sibling of k i + l  ( fo r  n z i + l )  i s  the parent of k i - 1 :  

'ki+l = 'knl  n = jki-l and then from (4.5,i,n) provided a k i k n  = 0 ,  



The models w i t h  possible unique solution t(G1)=O must be those for 
which the bil inear system consisting of G1 / 2  equations and unknowns 
from the three equations above can be reduced further to  a linear system 
of fewer equations and unknowns. These modeis are: 

a) [~.jk,.m.jk,,..,m.jkGll which has jk i - ,= jk i+ l  =m, w i t h  the parent m 

any one of the variables (k2,k4,. . ,k~1).  The coeff icient of r k i - 1  2- k i + l  i s  

zero and (4.6,i)) i s  a l inear equation i n  t and t 
k i + l  

. When the 
k i -  I 

variables (k l ,k3, . . ,k~1- l )  are a l l  siblings, the equations form a linear 

homogeneou.~ system i n  t k , , t k  3 , . . ,  t w i t h  matr ix  having zl(G1) - 
k ~ - 1 '  

z2(G1) i l S  determinant. The solution t ( G , ) = O  is  unique i f  and only i f  this 
i s  different from zero. 

b) The adjacent equations (4.8,i,n) and (4.7,i+2,n) correspond to the 
model assurnption that k i + l  and k n  are siblings w i th  kn  the parent of k i - 1  

and k i + 3 ,  not excluding the possibi l i ty that k n = k i + l ,  and provided 

'k lkn 
= O .  Eliminating t from these t w o  equations, we get the 

k i + l  
equation 



from (P4) of Appendix 3. provided oknki=o k,ki+2=o' 

When k n z k i + l ,  both covariances are zero and the equation (4.9,i) i s  
linear. For instance, when i -2 ,  n-3 and we have the model [k3,jk2,jk3,jk4, 

k3,jks ,.., k3 , jkG 1 w i t h  the vector of unknowns ( z k , z k z .  . .z 
1 k - 1  

1 

sat isfy ing the homogeneous linear system of equations (4.9,2) and 
(4.6,i),  i=6,..,G1. Again zl(G1)-z2(G,)zO impl ies the nul l  solut ion i s  
unique. 

C) When j k ,= j k i +2  the equation (4.9.i) i s  l inear i f  aknkizak,ki+2 = O .  
I 

For example if i.2, n=6 we have the model [k6.jk2.jk6,jk ,k6,jk6,...k6,jkG I. 
1 

d) The adjacent equations (4.7,i,n) and (4.8,i+2,n) correspond t o  the 
niodel assumption that k i - 1 ,  k n  and k i + 3  are siblings w i t h  k n  the parent 
o f  k i + l ,  not excluding the possibi l i ty that k n  i s  either k l - 1  or k i + 3 ,  and 

provided a k k  = o k  I( = O  i n  the population. El iminating z from 
n 1+2 n k i + l  

these two equations, we get the equation 

wi th 



T h e  equation (4.10.i)  is linear i f  j k = j k ,  , or k i = ~ ~ , + ~ ,  or k i + 2 = 1  
I l + 2  I 

with k i k : k ,  I( = 0. Corresponding to  the g i v e n  model, the equations 
+ 2  n 

(4.1 0 , 2 )  and (4.6.i) ,  i.6.8 .... GI, determine values of ( t k ,  , t k , . . . , t  k ~ , - l  ) .  I f  

z l (G1)  - z2 (G , )  z 0,  the zero solurion is unique. 
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