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dobal Identifiability under Uncorrelated Residuals

by Leon L. Wegge
Economics, University of California, Davis 9567 6

Suppose in each equation, not counting covariance restrictions, we
need one more restriction to meet the order condition. If we now add to
each equation a restriction that its structural residual is uncorrelated
with the residual of some other equation, is the parameter of the new
model identifiable globally? That is the question.

In general the answer is no. The parameter could remain either not
identifiable or is locally identifiable, possibly globally under additional
inequality restrictions. In this paper we find families of models for
which the answer to the question is yes without the help of inequalities.

The families share common characteristics. First, the sufficient
condition for local identifiability must hold. Secondly, the string of zero
correlations between residuals contains a closed cycle of length at least
four. Thirdly, with the variables, equations and residuals all numbered
as they are in the cycle, the odd numbered variables must satisfy a
kinship relationship and lastly, the structural residuals can not all be
uncorrelated. There are also differences in the families, but these come
from the difference in the required kinship relationship.

When there are four or more equations containing external variables,
the variety of models with uniquely identifiable parameter under a
string of uncorrelated residuals is considerable. In particular, when
correlated inverse demand shocks are uncorrelated with correlated
supply shocks, our results show that many flexible inverse demand and
supply equations reproducing exactly the observed price and quantity
moments are members of the above families.

JEL ClLassification: C3
Keywords: unique identifiability, uncorrelated shocks, cyclical
covariance restrictions kinship, siblings, parental lists



. Introduction.

Global identifiability under covariance restrictions is a delicate
matter. For one reason, all equations have to be considered
simultaneously and an equational perspective, as in Hausman & Taylor
(1983) or in some parts of Bekker & Pollock (1986), reveals the links
between the parts but not necessarily the wholeness of the system.

Consider the linear model By=u, E(u)=0, E(uu’)=£=(0{j), where B=(8j),
Bii=-1. 1,j=1,...G. Let Zx be the kth row of Z. The parameter (B,%) of
recursive models when B is lower triangular and £ diagonal is globally
identifiable because (By,011) is identifiable without any covariance
restriction, (B,,071,,09,) is identifiable with the help of the restriction
012=0 and the last equation (Bg.Zg) is identifiable because of the G-1
restrictions on Zg. Extensions to other cases of global identifiability
under covariance restrictions as stated in Koopmans (1950) and in
Theorem 4 of Wegge (1965) all have the characteristic that a first
equation is identifiable without any covariance restrictions and that the
restriction ¢{j=0, i<j, can be applied unambiguously to the
identifiability of (Bj,04j,..,0yj) given that (B{,0,i,..,0ii) is identifiable
already without it.

In an effort to expand on the scope of globally identifiable model
parameters, Mallela and Patil (1976), Mallela (1989) and Mallela, P.,
Porter-Hudak S. and Yoo S-H. (1993) considered models and restrictions
of the type

-1 12 0 O G171 013 0 O
0 -1 B3 O G21 022 0 O
° 185 0 -1 0 57| 0 0 og0
0 B4 O -1 O 0 OC43 Cayg

in which not a single equation is identifiable without covariance
restrictions. We will call this the model {[2312]l613:(532:624:64120}.
They have obtained some fragmented results and their examples are the
inspiration for the design of the more general models considered here.



2. The model {[jj....ic!| O in=0: 12T H, G<H}.

Assume that in the ith row of B with Bii=-1, all its other elements

are zero except for one unknown element Biji' Jizl, in column ji, i=1....G.

Call jj the parent of variable i. Including the normalization restriction
there are only G-1 restrictions on Bj and additional restrictions
essential for identifiability are covariance restrictions. To this end,

assume in the structural covariance matrix £ the elements omini, mizni,

i=1,...H, G < H are required to be zero.
In this paper we seek to find the special cases of the model

{[j1...,je]fommi=0. 1 ,..H, G<H) that have a globally identifiable
parameter o = ((vecB)’, (vecz\)')’, where £\ are all elements of £ on or
below the diagonal. The results are extended readily to the general
model with external variables in which the parameter (B, I', £) 1s
required to satisfy G-1 restrictions on (B, I');, i=]..,G.

The analytic formulation is sirnple enough. For GxG nonsingular T, the
parameter (TB,T=T’) is equivalent to the parameter (B.Z) if and only if

T=lg+ (zq(B1)j," (B 1), ..., ‘CG(B‘1)J-G')'.

with z=(z,...,zg) satisfying the set of bilinear equations (TZT')mmi:O

l.e. T is a solution of

O:(jmi'”i) T +(jni.mi) Thot W T, T, miznj, i=1,..H, (1)

my i i mi Ny

1

where we often let (m,n) = (B-1E)mn o ((QB')mn and Q o B-1EB'-1 = (wij),
1,]=1,..,G, is the reduced form covariance matrix.

If T satisfies (1) the alternative parameter (TB,TxT’') satisfies

(TB)U = Bij+8jjiti’ (TZT')‘”' = Oy + (ji.])Ti + (JJvl)-CJ ¥ wjijjtitj,



where SJ-J-1 Is the Kronecker delta. If (1) implies zi{=0, Bj is identifiable

and if z=0, the parameter « is identifiable.

In general bilinear equations (I ) have multiple solutions and therefore
only local identifiability properties are expected to hold. If ¢(8,0) = O,
with f=vecB, o=vec:\, is the list of restrictions, the local
identifiability condition is that the Jacobian matrix J(«) of the system
of restrictions @((vecTB)'.(vecTET'\)')=0 has rank G2 at T=Ig. Or
equivalently with B nonsingular

J(llg @ (B)- 1] =[¢Pg(lc @ B) + 2¢95:Qcllg @ L) 1llg @ (B')-1] (2)

has rank G2. From (2), after deletion of rows and columns corresponding
to the restrictions on B, the parameter o is locally identifiable if, and
under constant rank conditions, only if the matrix of coefficients in the
linear parts of the equations (1) has rank G. Local identifiability is
equivalent to z=0 is an isolated solution of (1).

Whereas local identifiability is necessary, global identifiability
results of any generality have to be based on conditions under which the
solution to the system of equations (1) can be shown by algebraic
manipulations to be unique. This involves much more than knowing the
rank of the Jacobian matrix.

[dentifiability can also be stated as the condition that the population
moment estimator {(B*,Z*)|B*QB*'—Z*:O} satisfying the restrictions

O:cs*mim IS unique i.e. the system

0= w - B* - g* + B g
U It Ml IpME Nidpe Imdng My,

N T* o+ (jm,mi) TP T* _T* i=1,..H, (3)

mi i ]mijﬂi mi~ Nj

-8

where t=_=8* -8 . and T*.=8* . has a unique
m; . - N; - ’
1 mljmi mllmi 1 m]m N

solution T*=0. The system (1) defining alternative parameters through
the linear transformation operaticn is identical to the system (3)

Nij



defining alternative values of the population moment estimator.
Identifiability means (B*,£*) is unique and consistent.

In (2) and in the analysis below the elements of the matrix B-1¢ o
RB' o E(yu') play a crucial role. This is the matrix of covariances
between variables and residuals. If (i,]) = (B-1£)ij = Bj'Q; o E(yjuj) = O,
the variable yi is an exogenous or instrumentsl variable with respect to
the jth equation, or the jth residual is an instrument in the ith equation.
The latter interpretation is developed in Hausman and Taylor (1983) in
the context of an equational analysis. In recursive models with B lower
triangular. B-1% is lower triangular with E(yjuj) = O, i<j, or variable i is
exogenous in all equations j>i. In the type of models considered here,
non-exogeneity is the rule and exogeneity relations are the exception.

3. Cycles of Uncorrelated Residuals.

To a single covariance restriction ok,k, =0 corresponds in (1) an
equation containing the two unknowns (zg,,zk,) and corresponding to two
restrictions Ok,k, =Oksk, =0 We have two equations containing three or
four unknowns. To three or G, restrictions of the type

corresponds in (1) a subsystem of G; equations in Gy unknowns z(G;) o

(tk1,tk2,..,’ck61).

Definitions:

1. With G the number of equations, the H restrictions
dm1n1 =..= <5mmi =8 Oy
a) are adequate if H > G and for each integer j there exists a
different pair of subscripts (mi,n;), with j € (mji,n;), j=1,...G.
b) are connected if adequate and mi e{m;y....mi-1.Ny,...Ni-1}, i=2,...H.
c) are disjoint if {mi,n; I i=1....G61}n{mi,n; l i=Gq+1,...H} is empty. G,<G.

=0, mijzni, 1 =1,...H,



2. A Gy-cycle is a set of G4 restrictions

c(Gy) Tkiky = Tkoks T Tkeyky ® 0,
with ki, 1=2,..,kg, distinct.

3. A G;-cyclical G-tuple is the set of G restrictions

C(G‘]):O, ckG1+] Q—G1+] = .. = deQG :O, G] ﬁ G.

A disjoint G-tuple of covariance restrictions could be adequate, but

is not connected. As is clear from (1), if (jm.mi)zo i.e. if the parent of

variable nj is not exogenous in the mijth equation, connected restrictions
have the property that the ni-th equation is identifiable if the equations
{my...mi-1, ny,..,ni-1} are identifiable.

Examples of Gi-cyclical G-tuples are rectangular G-tuples which are
systems of G covariance restrictions containing the 4-cycle Ck,,=
Ck,k;=Oksks*Okqk,=0. Every 4-cycle can be represented as a rectangle in

the covariance matrix £ by locating some dk}'kin at c5ki Ko if

necessary. Similarly 3-cycles, 5-cycles and 6-cycles can be represented
as triangles, pentagons and sexagons in £.

A connected 4-cyclical A 6-cycle of covariance
6-tuple of restrictions restrictions
C14=043=035-051=019=C56=0 012707237 0 3470 45 T56= 0170
: O O O @ O
2
£= 3 O O r =
4
5 O
6
1 2 3 4 5 6 1 2 3 4 5 6



Our main result concerns the identifiability under a connected G, -
cyclical G-tuple of zero correlations. In considering the total number of
Gy-cyclical G-tuples, the order in which the covariance restrictions are
written does not matter. Their numbers for values of G=4,5,6,...G are
stated in Table 1 where G#=G(G-1)/2 is the number of distinct off-
diagonal elements in GxG |.

Table 1. Total Number of G;-cyclical G-tuples in GxG |.

B  Connected 4-tuple 5-tuple 6-tuple’) G-tuple 3
3-cyclical 12 150 2160 G!GG-4/2(G-3)!
4-cyclical' 3 60 1080 GIGG-5/2(G-4)!
S-cyclical 0 12 360 || G!GS-8/2(G-5)!
6-cyclical 0 60 GIGG-7/2(G-6)!
G-cyclical 0 0 (G-1)1/2

Not connected 0 30 1345
Total 15 252 5005 ) \G#!/G!(G#—G)! y,

To see this, the total number of G-tuples is the number of different
tuples of G elements that can be selected from G# off-diagonal
elements of Z£. Of these (G-1)!/2 are G-cycles since in the G-cycle

O1ky, = Okoky @ .. = GKG1 = 0,
ki in turn can be selected in G-i+| different ways and reading the G-
cycle backwards is the same G-cycle. When G=3 there is one 3-cycle,
namely (5122023203120.

As shown in Appendix 1 in GxG £ the total number of G;-cycles is
equal to G!/2G4(G-6G4)! and each G,-cycle can be embedded in G;GG-G1-1
connected G-tuples. The product G!G6-61-1/2(G-G¢)! is the number of
connected Gy-cyclical G-tuples. Riordan (1958) studies cycles and
related constructions.



Among the 1345 not connected 6-tuples, 100 have all 6 integers
present in their subscripts. Of the latter, ten are two disjoint triangles
and ninety contain a rectangle, one element doubly joint and one disjoint
element. The results of Theorem 1 below apply to the former but not to
the latter. 1245 of the not connected 6-tuples have missing integers in
their subscripts.

With these preliminaries the main results are now stated. Lemma 1
states that under local identifiability conditions and a Gj-cycle of
uncorrelated residuals, a solution z(G;)z0 of (1) implies each
component of z(G,) is not zero. It is proved in Appendix 2.

4. Lemma 1. p

Consider system (1) consisting of the Gy cyclical covariance
restrictions

(TZT')Mkz = (TZT')kgkg, = .. = (TET") = 0,

kG1k1

and either (jk1,kz)(jkz,ka)x..><(jkG ki) z 0
1
or (kg K1) (kg.ko) % x(jk, .ka,) = 0.

If t(G1)::(?:|<1,'Ck2,..,‘ck61)10 is a solution of (1), ‘Ck1‘ck2><..X'CkG1ZO-

This means that if the model {[j;....jc]. Smin; =0 1=1 ....H} contains the

Gq-cycle Ok k,= .. = de1k1:O’ the equations (kq.ky,...kg,) are either all

identifiable or none is identifiable when either the parent of variable k;
is not exogenous in the ki.1-th equation or the parent of variable ki.1 is
not exogenous in the ki-th equation, i=1,..,6;. Our main result is stated
as Theorem 1 and it is proved in Appendix 4.



Theorem 1.

Given the model {[j;....j6,.jG,+1....JGl, S min =0 i=1,..G} assume:

(A.1) The covariance restrictions are a connected Gj-cyclical G-tuple

with Gy even, 4 < Gy < G and its first Gy restrictions are the Gq-
cycle

Fkiky © Okoky = ° Gko1-1ke1 - GkG1K1 = 0.
(A2) (B-15), _ 20, i=67+1.....

Jniml

(A.3) In {1,2,..,G1} for some integer i, i even, and for all 2, 2 odd, one of
the following holds:

Kiv1, L21+1,

c) ij: kn, L=zi+1, neven, nz{i,i+2} satisfies

Jkn = ki okikn * Okiokp ” O, i ® Jkiup
) iy Jkpe  Aziel. nz{iise1.i+2} satisfies
Kn = Jgi,o Okikn = Okiokp = O and

either Jk1: jki+?' or k = jki+2' or kif2 = ‘]kl

The parameter o = ((vecB)',(vecZ\)')’ is globally identifiable if and
only if A(Gy)=z1(Gq)-2,(G4) a 0, where cyclically Gy+m stands for m and

G, G,
z1(Gy)= [IaQ, z,(Gy)= HDQ. aQE(B"Z): , byp=(B-1%),
Q::] 0=1 ]kQ_kQ+] JKQ*"IKQ

In the proof the G; bilinear equations are reduced to G{/2 linear
homogeneous equations. Uniqueness of the solution T=0 thein follows
from standard rank conditions A(G;)z0. (A.3) are the reduction
permitting assumptions in the G,-cycle.



5. Interpretation and implementation remarks.

1. The verbal understanding of (A.3) is that in a Gy-cycle of uncorrelated
equations, the odd numbered variables are siblings. Variable ki.1 where 1
is an even number, is a possible exception. The common parent is

a) ki under (A.3) a), with no exception,

b) ki.1 under (A.3) b), ki.1 itself is the exception,

c) kn. a sibling of ki.1, under (A.3) c), where kn is an odd numbered
variable that is the exception and provided the adjacent variables
ki and ki.o> are siblings with residuals that are uncorrelated with
the residual of the common parent kp,

d) kn, a grandpprent of ki.1, under (A.3) d), where kn is an odd
numbered variable that is the exception and provided the adjacent
variables ki and ki.2 are either siblings or direct descendants of
each other with residuals that are uncorrelated with the residual
of the common parent kp.

Since a cycle can be traversed forwards or backwards, in Theorem 1
the variable ki.1 and its neighbors ki and ki.> could be replaced by kj-1
and its neighbors ki and ki-».

Clearly under (A.3) a), c) and d) at least one variable is parent to at
least two variables. As we will show next, this is also implied by (A.3)
b) and local identifiability. Therefore under Theorem 1 at least one
variable is not a parent i.e. B containing at least one unit column is
reducible.

2. The inequality conditions (A.2) (B-1%), m.zO. i=G4+1,..,6, and
ni !

A(G4)z0 are equivalent to the local identifiability conditions (2). Define

-1 X -1 ) -1 , -1 .
8, = (B Z)]k2k1 (B z)]k2k3 5 (B Z)Jk1k2 (B Z)Jk1k4
1= ' 2 =

-1 . -1 X -1 . -1 .
(B Z)Jk4k1 (B Z)Jk4k3 (B Z)Jkskz (B Z)Jk3k4

10



Under (A.3) b) with either kz=jk, or ky=jk,. (P.4) of Appendix 3

ol : - _(B-1%). 15,
implies §,=0 and A(4)= -(B Z)}k1k2(B Z)]kg

requires 8,20 and therefore we must have jk,z]jk,, Kozjk,. KaZ]k,.
Therefore, when k3=jk,, the same variable k3 must also be either the
parent of k, or of k4. One of the latter two variables could be the parent
of k3 but then the other has no descendant and the assumption (A.3) b)
together with A(G)z0 also imply that B is reducible, having at least
one unit column.

If both B and £ are conformably reducible, B-1% contains null
submatrices and the local identifiability condition would fatl. in
particular, the parameter of a model satisfying (A.3) of Theorem 1 is
riot locally identifiable when £ is diagonal or also for Gy=4, when B has
two columns that are unit vectors. For larger systems B may contain
more unit vectors provided enough off-diagonal elements in £ are
different from zero so that B-1£ does not contain null submatrices. More
precisely and operationally speaking the local identifiability condition
(2) has to be verified.

We now list the models with globally identifiable parameter defined
in Theorem 1 when G=4, followed by G=5 and G=6.

K §;. The condition A(4)z0

6. Four equation models with identifiable parameter.

There are three 4-cycles when G=4. These are the restriction systems
S1(4) = 013=032=024=04;=0,
S$5(4) = 012=023=054204=0,
S3(4) = 012=024=043=031=0,

Let [j1.j2.i3.74] be the list of parents i.e. the column indices of the
non zero unknown elements in the rows (1,2,3,4) of B. There are 81
different sets of parents for each restriction system. The parameter is
globally identifiable in 24 cases under (A.3) a) and in 48 cases under
(A.3) b). These cases are the following.



a). 24 Globally Identifiable Cases: One variable is not a parent.

Let Fa(Si(4)) be the family of models with B nonsingular, £ positive
definite and globally identifiable parameter « under the covariance
restrictions Si(4) and (A.3) a) of Theorem 1. We have

[3312] [3321] [4412] [4421] ifG3420
Fa(Sq(4)) = _ )

[3422] [4322] [3411) [4311] ifo,,20

[2123] [2321] [4143] [4341] (0,420
Fa(Sy(4)) = ( )

[2343] [4323] [2141] [4121] ifoq320

[2142] [2412] [3143] [3413] ifo,320
Fa(S3(4)) = ( .

[2443]) [3442] [2113] [3112] ifG 420

Each family has eight members satisfying (A.3) a) and the local
identifiability condition A(4)z0. There are two members in each of four groups:

D Jky=lkg=ka. JkpZike Jko=Ka, JkgZKa. ‘£s|:6k2k26k2k4pk1k3/‘B‘szo
) Jky=ikg=ka To=ike Tkp=kar Jke=ko. | A|=okqk, TkakoPkske/ B3] 320
W) Jky=lkge=Kae Jka®iky. Jkg=ka. Jky=ks. 1A):0k3k3°k3k1pk2k;’151320
V) Jk,=lke=Ke. JkgZikyr JkzzKi. kg zKs. |A‘:dk1k1ok1k3pk2k4/1813z0

where Prikj® CkikiCk ki ki Ok kg 2 |a] is the absolute value of A(4).

The last two groups are obtained from the first two by rotating the
subscripts of the 4-cycle one place i.e. by placing the first restriction last.

In each case the hypotheses that the unrestricted off-diagonal coefficients
of B or £ are zero, are testable. However the coefficients needed to keep
A(4)z0 are riot testable. In the graph below. 034=0 is not testable.

12



The graph of

Model {[3312]|5;(4)}

-1 - B3 >
< :) Ys B s U3
G2 f
23
(V:) o U2 Bes > Yg

-1

C3420

The graph gives a representation of the local identifiability conditions i.e

residuals uz and us must be correlated. The assumption (A.3) a) is shown by
having Yy and y, as siblings with yz their parent,

and y4 having no descendant.

b). 48 Globally Identifiable Caseg: One variable is not a parent.

Let Fp(Si(4)) be the family of models with B nonsingular, £ positive
definite and globally identifiable parameter o under the covariance

restrictions Si(4) and (A.3) b) of Theorem 1. We have

[2312] [2321]
(5.(4)) (31211 [3112]
Sq1(4))=
bt=n (3441] [4341]
[

(4313] [3413]

(3123] [3321]

. [2311] [2113]
Fp(S,(4))=

bt=2 [2441] [4421]

{

[4122] [2142]

4142]

[ [4412
(24111

(

[

]

(5-(4)} (2141]
Fr(S3(4))=
bt>3 2313] ]
]

3122]

[3312
[2123

11 $23035420;
11 B13503420;
ifﬁ¢“0'1220;

ifBa1d1220;

11 B300,5420;
1f B12049420;
1fB4109320;
1f By70,320;

1f B4p0,320;
if By120,320;
if B3101420;
1f By101420;

13

[2421]
(4112]
[4342]
(3423]

[3341]
(4113]
[4423]
[2342]

[4413]
[3141]
[2343]
[2423]

(2412]
[4121]
[3442]
[4323]

[3143]
[4311]
[2443]
[4322]

[4143]
(3411]
13342}
[(3422]

1f B2404320
11 B1404320
if 4202120

ifﬂ3202120

11 B354042%0
1 B1404220
1f Bagozq120

lf 523(53120

11 B4303220
ifB]sGszIO
1 B3404120

11 Br404120



Each family has eight members satisfying (A.3) b) and the local
identifiability condition A(4)z0. There are four members in each of four
groups:

Dk K3,k % ik iky2Ka ik qzka jkszky, | A] =8 Pk ks’ | B|3=0
Kok 4

. g, . O
k;s]ks Jk3]k3

i0]kg=K1.0kpZ kg Tk #Ka Jk 42Kk 2ks. | A= dk‘2k4pk3k1/'5’320

o I
k1‘lk1 Jk]“(1

iii)jkz:k4'jk32jk1-jkszki'jk1zk3'jk4ﬁ:k2v IA I :5 k3k1pk2k4/ ' B l 520

. 6. . ©
kq]k4 ]k4]k4

W) jky=Ko Jkg2 ik, Jky =K1 ik 2ks. k2K, |A]=B O, o Pkek,/ |B |20
3 KKy

5. .
k2]k2 sz]kz
c

where pkikackikickjkj_okikj Kiki

The elements of (B.Z) not required to be different from zero are testable.
Thus in the model {[2312]|S1(4)} the restrictions By9=831=$42=042=0 Or any
subset are testable, but f,3034=0 is not.

In all cases one and only one of the four variables has no descendant
and one has two. The twenty-four sets of parents listed under (A.3) a)
reappear under (A.3) b) with a different 4-cycle of covariance
restrictions. Graphically there are two types of models. Above we listed
the cases with an example of one type followed by an example of the
second type. In the first type, three variables stand in a triangular
relationship and one of the three variables has the fourth variable as
direct descendant. The four structural errors fall into two uncorrelated
pairs. The second pair contains the fourth error that must be
intracorrelated with that of its partner in the pair. This causes the
latter's structural error to have an effect on the residual and on the
parent of the fourth variable, where they collide.. A graphical
1llustration with the correlated error uz and the fourth variable Y4 is
this:

14



The graph of Model { [2312]|S,(4)}

In the second type of models the triangular relation is replaced by a
direct two-way relation between two of the variables. Again one
variable is not a.parent, but its residual and its grandparent are
influenced by its partner's residual. A graphic illustration with y4 as
fourth variable and u; as its partner's residual is this:

The graph of Model {[3312]|S3(4)}

L 3120 32 <_]_®

(5141 \ 542 523 | 0'23:?

B ' ﬁ@

c) With G,=4, (A.3) c) is empty.

d). 24 Not Locally Identifiable Cases under any 4-cyclical restrictions

A. Under (A.3) d) when i=2, n=I we have the group of cases having
Ki=Jk;. jk,=]kq and therefore A(4)=0. In this group are each one of the 12
cases with one variable having 3 descendants i.e.

(21111, (31111, [4111], [2122], [2322], [2422],
[3313], [3323], [3343], [44411], [4442], [4443],

under each 4-cycle of restrictions after suitable permutation.
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B. The 12 cases with two variables having two descendants are

[2112], [2121], [3113], [2323], [2442], [3311],
[3322], [3443], [4141], [4411], [4343], [4422].

In all these cases A(4)=0, either because the model is equivalent to a
model under S;(4) with (B,Z£) conformably reducible satisfying

km = jkrn+n = jkm+1+n' km+2 = jkm+2+n - jkm+3+n, m€(1,2). ﬂ€(1.2).

or it satisfies for some value m € (0,1,2,3), either

k]+m = Jk:2+m - jk3+m' k2+m - Jk]+m - Jk4+m' or
k1+m - jk2+m - Jlk4»fm' k2+m - jk1+m - Jlk3+m

To see this, under the former conditions with m=0, we have

A(4) = (kp,ko)(kq,k3)(ks, )(k Ka) - (kq.ko)(Ko,k3)(kq,kq)(ko,kg)
= (ka.ko)(ky,k3)(ky 2.K4)(Bi,yk, B ko= Biky Boky)
kj

using the relation Bki(B-1Z) o dkikj o -(kikj) + ’Bkijki(jki'kj)'

The problem occurs with the imposition of vanishing covariance
restrictions, not if covariances have known values that are not zero.

e). 9 Locally Identifiable Cases: Each variable is a parent.

For completeness sake we record the remaining parental lists and
cycles of zero correlations under which the parameter is locally
identifiable. With each variable having one descendant, these models do

not satisfy (A.3) and the parameter is not globally identifiable. These
models are:

{{34211, [4312] | s,(4)}. 01,=0, 034=0 are testable locally.
{(23411], [4123] | S,(4)}. 013=0, 0,4=0 are testable locally.
{[24131, [31421 | Sz(4)}. C14=0, ©,3=0 are testable locally.
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{{3412], [4321] Sq(
{(34121, (432171 | S4(
{[2143], [4321]1 | Syl
{[21431, [4321] | Sy
{21431, [3412]) | sS;l(
{[2143], [3412] Sa(

), 01220}, G34=0 is testable locally.
), 03420}, ©,,=0 is testable locally.
), 61320}, 0,4=0 is testable locally.
), ©9420}. ©43=0 is testable locally.
), 01420}. 0,3=0 is testable locally.
). O5320}

. O14=0 Iis testable locally.

An important application of Case [3412] is the inverse demand-supply
system

-1 0 B3 O P1 Uy G137 012 0 O
0 -1 0 Bag || P2 . 2| G21 G2 0 O
X = =
Bsy 0 -1 0 q Us 0 O O33034
0 B4 O -1 q2 Ug O 0 043044
with
A = (0336446122—6116220342)/‘812, ‘B} = (1"5]3531)(1_524342)'
.- 1-B13Ba . - 1-B24B842 .. - 1-B1383 .. - 1-B24B42
By 2T B YT By 0 T Baa

The parameter is locally identifiable if either c1,20 or T3420. It is
moment equivalent to one alternative parameter o* of the system
B*y+T*x=u®, with B43%=1/83qy, Bos*=1/B42. B31*=1/815. 842%=1/8,,.
Under the inequality constraints B;3<0, B,4<0, B3>0, B42>0, this
alternative parameter (B*,I'*,£*) is not admissible. The parameter & is
not locally identifiable if £ is diagonal. The assumptions on £ are
justified under the theory that inverse demand and supply disturbances

are uncorrelated. Below we seek alternative specifications with
.identifiable parameter.
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7. Five equation models with identifiable parameter.

There are sixty connected 4-cyclical quintuplets when G-5, there
being fifteen 4-cycles and each can have anyone of four different
restrictions from the missing column (row) as fifth element. These are
the restriction systems

R1(5) =013=032:094=041=0ms=0. R21(5)=012=073=034=041=9ms=0,
Rs(S) =013=032=025=051=0m4=0, R25(5)=0122023=0352051=0m4=0,
Re(5) =03=0352054=04120m,=0, R29(5)=0127025=054=041=0m3=0,
R13(5)=015=052=024=041=0m3=0, R33(5)=015=053=034=C41=0m2=0,
R17(5)=053=032=024=045=0m1=0. R37(5)=059=073=034=045=0m1=0.

R41(5) = 01230,47043:031=0ms=0,

R4s(S) = 012=024=045=051=0m3=0,

'349(5) O 0123075=C53=031=0m4=0,

Rs3(5) = 015=054=043=031=0m2=0,

R57(5) = O52:024=043=035=0m1=0,

where omk 1s a covariance with m € {1,...5}, mzk.
Any model with identifiable parameter when G=4 could be augmented
with a parent js and a restriction o =0, me{1....4}, to constitute a

model with identifiable parameter when G=5, provided (B-1Z)]~5m20,

js€{1,..,4}. This would hold under the local identifiability condition (2).

Examples of families of models Fa(Rk(S)) with B nonsingular and £ positive
cefinite having identifiable parameter under the covariance restrictions Rk(5S)
and (A.3) a) of Theorem 1 are

[3312X;1 [3321%,] [4412X3] [4421X,] if 53420
Fa(Ry(5)) = L (815), =20,

[3422Xx5] [432206] [3411X,] [431124] if 04,20 %n1
(2123 1,1 [23211,] [4143 3] [4341,) if 0,420

Fa(Rp1(5))= . (B~ 12)
(2343 5] (4323 1] [21414] [41211g] if 013520
21427)1 24]21)2] [31437.]3] [34131)4 lfczazo

Ray(S) . . (B ]Z) ZO
[2443v5] [3442v¢] [2117v4] [3112vg] if 0420
(0154221 [0,4522] [055433] [044533] ifG,320

a(Rgo(5)) (B- ]Z) z0
(0544321 [044423] [075532] [045523] if 5420
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where

Ane(1,2,3,4},  upe(1,3,2,4}, vne(1.,3,4,2}, ope(5,3,4,2}

and Fa(Ry¢(S)) is obtained from Fz(Ry(S)) by interchanging rows and columns
two and three, where Fa(R41(S)) is obtained from Fa(R,,(5)) by interchanging
rows and columns three and four and where Fa(Rgq(5)) is obtained from
Fa(R41(5)) by interchanging rows and columns one and five.

Examples of families of models Fp(Rk(5))
definite having identifiable parameter under
and (A.3) b) of Theorem 1 are

, /
[23]2)\1] [2321 )\2] if523(53410;
[3121%s] [3112X] if 1303420,

FD(R](S)) = .
[3441)\9] [434])\10]1fﬁ4161220;
\[43]3)\13] [3413)\14] if5310'1220;
3123}11 [3321}12] ifﬁszgzqzo;
(s [23]1}15] [2]13}15] if51202420:
p(R
21 (2441 j1g] (4421 114] if BayOq320;
4]22}.113] 2142}114 1f321(51320;
1414201 [44120,] if BqeyOy520;
241]1)5 [2]4]U6] if51262310;
b(R41(5))= .
23]3Ug 33]2U‘|0] 1f53161410:
[31221}13 2]23U14]if321614202
015424] [024524] ifB42(52310;
054552 [065452] ifﬁszdzazo;
Fb(Rgp(5)) :
093532] 0103523] lfﬁ3565410:
0135223] 0145232] 1(52505420
where

with B nonsingular and £ positive
the covariance restrictions Rk(5)

(2421X3] [2412X4] ifBys04320
[4112X7] [4121Xg] if By404320
[(4342X1]1 [3442X,,] if B4p0y120
[3423X,5] [4323N44] if B390,120

(3341 3] [31434] if B3s04,920
(4113 47] (4311 g] if 1404720
(442311111 (2443 ,,] if Ba3o3720
[2342)1,5] [43221,6] if By3G3,20

[4413v3] [41430,] if BazO320
[3141v;] [3411vg] if By303,20
[23430,11 [33420,5] if B340 4,20
[2423v45) [3422V,4] if BpsC 4,20

[054534] [045434] if 4303520
[0,5453] [054553] if Bs353,20
[0113432] [01,3423] if B3404520
[0154232) [0754223] if BygqC 4520

Ne—— N N



Ake{1.2,3,4} with (B-1g) 170 Hkel1.3,2.4} with (8-1g) . =z0,,

N WAl

20, 0ke{5,3,4,2} with (8-12)0 20, k={1,..,12}.

‘ -1
vkel{l,3,4.2 with (B~1%) K5

k1

With G=5, Theorem 1 only contains results when the restrictions
contain a 4-cycle. Pentagona! restrictions do not imply unique
identifiability.

8. Six equation models with identifiable parameter.

When G=6 we could have identifiability under anyone of the 1080 4-
cyclical sixtuples. Anyone of the 45 4-cycles can be augmented with a
pair of restrictions from 24 different possible pairs, each pair
containing one element in each of the two columns not included in the 4-
cycle. For example from S,(4) we can construct the 24 connected
sixtuples

Omg = 0, L e {1,...4}, me {1,..,5}}, k= 1,.,20,
Osg = 0, L € {1,...4} } k=21,..,24.

Rk(B) = {$:(4) = 045
Rk(8) = {S1(4) = oy

The parameter of the model is identifiable under Rg(8), k=1,..,20,
under the conditions of Theorem 1 on {ji.j,.j3.j4} provided (B-1£)j 320
and (B-1£)j,m=z0. Letting k=1 when 8=m=1, examples of families of
identifiable parameters are

(3312X144] (3321, u,] [4412X3u3] [4421X404] ifd“sz

Fa(Ry(8)) = _
[(3422x5us] [4322xgpg] [3411x707] (4311 xgHg] ifoq,p20

[23]21]101] [23211)202] if32303410: [24210303] [2412'0404] if524(54320
([3]211)505] [31]20606] ifB13C53420; [41121)707] [41210808] if51464320

(3441 UgOg], (4341 010010]if 54161220; [43421)]1011][3442U12012]if54262110
([43] 32)1301;5] (341 3U140‘4] if 3310'1220; (34237)15015] [4323U16016] if 53262120}

with

20



An €{1...4}, une{l...4 }, with (B-1%) n1<B-1z) z0, n=1....8,

PN Hnl

vn €{1....4 }, one{l....4 }, With (B“Z)U 1(B-‘z)o ;0. n=1....16.

n n

When G=6 we could have identifiability also with a sexagon of
restrictions of which there are 60. With kj, i=1,..,6, all distinct in the
set {1,..,6}, define

Sk(B) = Okyky = Okypks = Okzkg = Okgeks = Okskg = Okgky = O-

From Theorem 1 we have the families of models [jk,.Jk,.Jkz Jkg Ik kel
with identifiable parameters

Fa(Sk(8).1) = { [Ki.jkyKijkeKivikgl  (ikpk3) (kg Ks)(jkg.Kq) 2
(jkzyk1)(]'k‘,.ks)(jke.ks). (ki,ko)(kiks)kikg) z O, ieven}

FD(SK(B).1:2): {[kSvjkzvjksijk4'k3vjke]v (k3'k2)(Jk21k3)(Jk31k4)(_]k4’k5)(Jk6'k1) z
(jkz.k1)(jkts-kz)(jk4.k3)(k3,k4)(jk5.ks), (k3,k5)10 }

Fe(Sk(8),122,n=8) = { [Kg.jky Jks Tkp K. dkg) (Ko k) ks ka)(Jky ke) (kg Ke) 2
(Jky k1) (g ko) (kg Ka) (kg ks), (Jkyk3)(kgkg) 2 O, Ok,ke=Okyk=0}

Fd(Sk(S)-1:2.n:1) = { [jk1jk2-k1'jk21jk1vjk6]- (Jk1vk2)(k‘|yk4)(Jk21k5)(Jk6»k]) z
(iey k1)K 1K)k, Ka)Gkgoks). (kpoke)(jk, k3)20, Ok, =01

For the 6-cycle S4(8)=013:039:024=045=05=041=0., examples with &
positive definite and nonsingular B with the parents written in the order
[j1.]2.J3.]4.15.J6] are

1) [33]23’1] € Fa(S](B),2), 1f O]2((525+ﬁ23(535)1022(615+513(535),
|B|=1-B13B831.

2) [231221] € Fp(Sk(6).1=2) if By3(B31014+034)20, O19(025+8,3035) =
G2201s, 'B’=1‘312523531-

3) [632263) € Fe(S¢(6),122,126) if Bs3021034035 = 0. |B|=1-B,3B32.
C36=046=0.



4) [315531] € Fd(Sk(B),i:2,n:1) 1f 652636513634((533*‘535(553)20,
G11055-0150512035(051813-0118s3), |B|=1‘535653v T14=0.

The above inequalities are the conditions that A(6)z0 and correspond
to the sufficient rank conditions (2) for local identifiability.

For general models their satisfaction almost everywhere can be
checked by calculating B-1x for some numerically chosen matrices (B.%)
that satisfy the equality restrictions. This is due to the fortunate fact
that if all the coefficients in the system (1) are different from zero,

the reciprocals (1/*cki) satisfy a linear system. Under (A.3) and A(G;)z0

of Theorem 1, ”an =0 and under (A.3) b) /Ty o - Uﬁkinjk . The

i+
nonexistence of a solution for the system (1) translates into a zero
value for some of the reciprocals.

If some coefficients in (1) are zero, a more careful procedure with
subsets of equations is needed.

All null-hypotheses under which the inequality A(6) =z 0 continues to
hold are testable. But by imposition of additional over-identifying
restrictions, especially covariance restrictions that make &£ into a
diagonal matrix, we could lose identifiability.

For G=7, Theorem 1 describes models with identifiable parameter
either under 4-cyclical or 6-cyclical septuples. When G=8 we also have
cases identifiable under 8-cyclical or two disjoint 4-cyclical octuples.
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9. Extensions to Models having External Variables.

If the structural model is the standard By+ I'x=u, u = 1.1.4(0,%), with
M=(714j)=-B-1T, Q=(wij)=B-1EB'-', the results of this paper hold if there
are G-1 restrictions on each row (B, I')y, 2=1,..G. If n(2)+1 elements of
By are unknown, n(2) elements in I'y are zero, 0 < n(%) < G-2, where
Bpg=-1. We need some new notation.

Let (BQjQ’ ’8511'21' . .BQ“MQ)) be the unknown elements in By

standing in the columns (jgo.j21....Jan(x)) and let (D’Qm“,..,b’ngn(Q)):O

be the zero elements in I'y standing in the columns (mg1,...Mgn(2)). The
parameter (TB, TP, T&T') is equivalent to (B,I',£) under a cycle of
covariance restrictions if and only if

T=Is.PB-1, where Pp=(0 ..290..0.. 231 .0 .. Tgn(1)) .. O).

with the unknowns (zgg.zg1....29n(2)) in row Py standing in its columns
(Jeo.j21. .. .Jen(2)) and satisfying

0=(Tr) = (PT) j=1,...n(2), (4)

Amy; Amyj

= ' = -1 + -1 + ! [ =
0=(TET )y ., 7(PBIE) o +(PBIE), y +(PQP) 1216, (5)

1

With ¢. | k=0,..,n(2), the signed determinant of order n(2) in

Jek
( \
Tiomar = eomun(a)
Ry = thmmm N ﬁijQn(Q) n(L) > 1,
kﬁjnn(a)mm T anman(a)
after deleting its row (T'lmm“, . ,ﬂijan(Q)). the equations (4) imply
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(Too, To1, .. .Tan(R)) = Ty (chO, ij' . ,CJ-Qn(Q)). (6)

If there are no restrictions on I'g, put cjno-l. Substituting into (5)

we have (TB,TI,TET’') is equivalent to (B.I'.=) under a G-cycle of
covariance restrictions if and only if z=(z;.%5,...,zg) satisfies the
system

O = al tk[ + E -Ckl+1 + a ‘Ck‘zkl+], i:],..,G, (7)

where 3aj = (CB-‘Z)kiki .

bi = (CB-‘Z)kMki, di o (CQC')kikm and

Cg=(..0..¢c; .0..c. .0

j20 “Jo1 “Ciany 0.

Again (7) is a system of G bilinear equations in G unknowns and if its
solution z=0 is unique, the parameter (B,I",£) is globally identifiable.

Special Cases

A. As in the proof of Theorem 1, the G bilinear equations (7), with G
even, can be reduced to G/2 linear equations if

-1 ' - -1 . .
(CB-1E)y ki, (CQCD . = (CBTE) . (CQCT. .. for i even.  (8)

i
. - . - C, . e o
This condition holds if CkM = “ki,y l.e. if ki T g for { ©

0.1. .., n(ki-1) @ n(ki.1) and RkH: k.

1+

. This is the case if the rows
ki-1 and ki.1 have unknown elements in the same columns of B and zero
elements in the same columns of I.

When G=4 there is only the condition that Ckf Cks' Any model in

Fa(S1(4)) can be modified into a model satisfying this condition. For
example {[3312]] S;(4), 03420} € Fa(S;(4)) can be modified into the
model
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-1 0 By3B14 0 017092 0 O
B L 5) O -1 BazBag O 099023 0 O (9)
7T Bs 0 -1 0 ¥z 0 0 O33034

O B4z O -1 T4y O O O43 044

| . o o M4 1 T34
in which (jyg.j11)=(j20.]21)=(3.,4), n(1)=n(2)=1, [sz i (] ) Ri=Ry (TTM }

Its parameter is identifiable under local identifiability conditions (2)
(F31044-T41043)(-F310354+7410353) 2 0.

Other examples can be constructed from a member of Fa(S4(4)) by
leaving its rows k; and k3 unchanged and by replacing the exclusion

restrictions on B, and B, by exclusion restrictions onT, and [, .
Ko Kq Ko ky

B. If a model in Fr(S,(4)) satisfying jx,=kz is modified by replacing
the exclusion restrictions in B4 (or B,y) by exclusion restrictions in I'y
(or Ty), the new model has an identifiable parameter. For example the
model

-1 B12 0 0 &4y 7y, G11012 0 O

6. 1) - 0 -1 B3 0 ¥y Uy : G210, 0 O (10)
Bs1 0 -1 0 T3 75 O 0 C335034
Bgr Bag Baz-1 0 O O O ©43044

is a modification of the model {l[2312]|81(4), B5303420} € Fp(S4(4)). To
see this when G=4, reduce the four equations (7) to two equations and
then to the single equation
4 4

(T131 - [Ibu)z«, =813 (3385 - B4l3) - byby (317, - Bpdp)(zi,)2 (1)

Q=1 2=1
With ji,=k3z, Bk,(B-12)ki=0, i=2,4, By,(QC")k4=b3 imply azds-bsd; = -a3b;,
3,d, - b,d; = D23, and the coefficient of the quadratic term is
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-15). -15).
B15)j, i, B1E)j, ¢,

(B_1Z)jk

azb3 (-a733 + boby ) = arb3 =0

_] )
and (10) has an identifiable parameter under the local identifiabitlity

conditions (2) i.e. when

11 T2
T31 T3z

T T

z 0.
T31 032 )

+

B23034 (

Similar extensions of members in Fp(S,(4) stated above result in
models with identifiable parameter. By special calculation, Mallela et.
al. (1993) established the identifiability of the model

-1 0 0 By4 %4y Ty J19012 0 O
B21 -1 0 0 ¥y Ty G210 0 0O
(B, )= I (11)
Bs1 0 -1 0 o5 T3 0O 0 033034
Bar1 Bap Baz -1 0 O O 0 043044

This is an extension of the model {[41121|S1(4),514<54320} € Fp(S;(4)}
with jk, =k, and therefore it has an identifiable parameter under its
local identifiability conditions (2) that are

11 %12
¥31 032

T1 T

) z 0.
31039

B14(c44+Ba3034)(043+B43033) ( +B14B a2
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10. Concluding Remarks.

Unique identifiability under- covariance restrictions is generally
understood to be a property of recursive models or models where there
is at least one equation identifiable without covariance restrictions. The
parameters of the other equations can be further restricted by the zero
correlations with residuals that are identifiable already. Without such
first equation covariance restrictions in general imply local
identifiability only and inequality restrictions must be relied upon for
uniqueness.

Taking inspiration from the special model (11) analyzed by Mallela
et.al. (1993), we have characterized four families of models with
parameter identifiable under a subset of uncorrelated residuals and
without having to invoke inequality restrictions. In these families, not
counting the zero correlation, there is one coefficient restriction
missing per equation so that riot one single equation is identifiable
without the covariance restrictions. Further for all members of the
family the string of zero correlations is a closed cycle of order at least
four and the odd-numbered variables are siblings. For these families
Theorem 1 states that the parameter is globally identifiable if it is
locally identifiable.

We derived the complete membership list of four equation models
with the above properties and we described by example how models with
five and six equations are to be recognized as members of the above
families. Since the analysis can be applied immediately to models that
contain external variables, the results of this paper are important in
rnodeling price and quantity variables under first and second moment
reproducing inverse demand and supply equations with intercorrelated
inverse demand shocks and intercorrelated supply shocks that are
Lncorrelated with the demand shocks. Models (9) and (10) provide an
tllustration.
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Appendix.
1. Total Number of G;-cyclical G-tuples in GxG & .
A. The number of G,-cycles is G!/2G(G-G;)!.

To see this, a G;-cycle in GxG ¥ has two elements in a row or

column. The G¢-cycle with vertices (0,i,0i1) contains the vertices
O1i = Oims = .. = Gmk_u = Gj1,  My=Mg.1=1, My=1, Mg=].

Given the subscripts 1,1,j, the remaining subscripts are G;-3 integers
out of G-3 possible, which implies the pair (c4i,01j), 1<i<j<G, can be
the side of (G-3)(G-4)..[G-(G,-1)] different Gy-cycles. G;>3. When i=2
there are G-2 different values for j, when i=3 there are G-3 different
values for j and for i=G-1, j=G is the only value of j. Therefore the first
row pairs (04i,01j), 1<i<j, are a side of

1
(G-3)(G-4)..[G-(G1-1)I(G-2)+(G-3)+..+1 ]:5(6—1 )(G-2)(G-3)..[G-(Gy-1)]

different G,-cycles. When G,=3, this is (G-1)#.

Next, the pair (c2i,02j), 2<i<j, j<G, can be combined with G;-3
integers out of G-4 to form (G-4)(G-5)..(G-G,) different polygons, also
different from the polygons constructed before. When i=3 there are G-3
different values for j and when i=G-1 there is only one value for j.
Therefore the second row pairs (o2{,02j), 2<i<j, are a side of

1
(6-4)(6-5)..(6-G1) [(6-3)+(G-4)+..+1] = 5 (6-2)(G-3)(G-4)..(G-Gy)

different G;-cycles.
in this sequence the last row pairs are (Gg-(G,-1)-i. CG-(Gy-1)-j)

1
G-(G4-1) <i<j, j<G, which are a side of 5(61—1)(61—2)..(1) different

cycles. Therefore, adding over the sequence, the number of different G, -
cycles in GxG X is
1 & 1
5 (m-1)(m-2)..[m-(G,-1)] = 26, G(G-1)(G-2)..[G-(Gy-1)].
m:G'|
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B. The number of connected G-tuples per Gi-cycle is G;GG-(Gy+1).

G#-G
G-Gy
choices of G-k restrictions to constitute assignable and not assignable
sets of G restrictions.

Clearly the number of G;-laterals per polygon of order G; is one.
Renumbering the subscripts so that the vertices of the polygon stand in
the first G; rows and columns, let the polygon of order G; be denoted

Each polygon of order G;<G can be combined with ( ") different

PGy = 012 = 93 = - = Ig1 -
Connected G-tuples linked to the Gq-cycle number

i) Gy in the form

'ﬂGm:O' nG,+1 € {1,2,...G11, when G=G,+1,

Pe1 =96 41
i1) G1(Gq1+1) and G, repectively in the form
pG1:OG1+] 'n61+1:661+2'n61+2:0' NG,+2 € {1 2,...G1,G1+1 }, or

DG1:GG1+2-HG1+1: 061*1-61*220' when G=G,+2,

|||)G1(G‘g+1)(61+2). G](G1+]), G1(G1+2), G1(G1+]), G1, G1, G'I
respectively in the form

= =0 =g =
PG, Gy+1:ng,+1 “G1+2:NG,+z  G1+3NG,+3 0

nG1+3€{1 ,2....61,61*1 ,G‘|+2},
or

DG1:6G1+1‘DG”]:OG1+3'DG1¢2 = OG1+2-G1+3:0' or

Pe170G,1.2n6,417061+1:61+2 9643 5,370 O
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= =0 =0 =
PG1ZO G, 42:nG, 01 G1+3NG 2 BGy+1:Gye3 0, or

pG1:OG1+3nG‘+]: OG«]+1(31+3 - OG1+2G1+]:O’ or
PG170G,+3n6,c1~ CGy+1-G1+3 0G6,+2.6,+3 O OF
=0, for G=G+3.

= = O =
DG1 OG1+3nG1+] G1+2(31+3 OG1+1GI+9

Adding all forms shows the result.

2. Proof of Lemma 7 .

We proceed in steps. With a single covariance restriction (TET )k k,=0
we have zk,z0, z(,=0 only if (jk,.kp)=0. Also zk,=0, zk,z0 only if
(Jk,.k1)=0, or the parent of the k,th variable is exogenous in the k;th
equation. Therefore, we have

(TET)k,k,=0, (jk,.k2)2z0, = " not (zk,z0, zk,=0) ~
(TET )k k,=0. (jk,.k1)z0, = " not (zk,=0, zk,z0)

and the combined conclusion that:
(jky k)i, ke)z O, (TET)k,k,=0 and (zk,.Tk,)z 0 = Tk, Tk,z 0. (2.1)

If two connected covariance restrictions Ok,k,=Ck,k;=0 are imposed.
the two equations (TET Jk,k,=(TZT )k,k;=0 are

0= (]k]tkz) tk] + (]k?»k'\) -CK2 + tk1tk2 (L)]k1]k2 '
0 = (kgka) Thy + Ukyka) Tup + ThaThg @5y
By the argument applied to (TET')k,k,=0 leading to (2.1), conclude

(iky k) K 3) (kg ko) (kg k)20, (TET Yk k,=(TET Jk k=0 and
(Tk,. Tk, Tk)20 = Tk, Tk, Tk3Z O.
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With three cyclical covariance restrictions Ok k,=Ok,k3=Oksk,=0 we
have the implications

(jk1,k2)20 = "not (‘Ck1z0,tk2=0)", (jkz,k1)z0 = "not (zk,=0,zk,=z0)",

(Jk,.kK3)2z0 = "not (‘ckzzO,tka:O)", (Jk;-K2)20 = "not (CKZZOIKSIO)“,

(Jks5.K1)20 = "not (zk,20,7k,=0)", (jk,-k3)2z0 = "not (’Ck3=0-Tk120)"-
Therefore,

(TET Dieykg=(TET Vegis=(TZT Diegky =0, (k. 2k, Tk3)20  and either
(jk1vk2)(jk2'k3)(jk3'k'l)zo Of (jkz"k'l)(jkrkz)(jk"ks)zo =3 Z:k1tk2tk3zo.

To see this, if (Tk,.Tk, . Tk;)20 with z,z0, then (jk,.k9)z0 implies
Tk,%20 and then (jk,.k3)z0 implies zy,=z0. If (zk,.Zk,. Tk;)20 with z,=z0,
then (jk,.k3)z0 implies zk,z0 and then (ji,.kq)=0 implies zx,z0. Finally.
if (T, Tk, Tk3)20 because zk,=z0, then (jk,.k1)z0 implies zk,=z0 and then
(jk,.k2)20 implies zx,z0. We could also use the implications from the
second column above to prove the or part of the statement.

The same argument goes through for general G;-cycles.

3. Relations between elements of ¢ ¥, B-1% and Q.
The equations (1) to be solved contain elements of B-1%£ and of Q.
Observe the following properties :

(P1) BmQJn = (jp.m) = -w . + B

Min Mim wjm]n'

(P2) @ = Bm(B15) = -(mn) + By (imin)
m
Onm = Bn(B‘1Z) = -(n,m) + ﬁnjn (jn'm)
Gmnzo lmplles (m.n) O.)jmjn - (jm,n) (.L)mjn = (jm.n“) (jn,m).

(P3) omn=0, (m,n)z0, ijmzo imply

(jn,m) (—1/ijm) + (jm.n) (—wmjn/(m,n)) =05,
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(P4) Omn;=Smn,=0, imply ijm((jm.FH) (jm.ng)) = ((m,ny)  (m,ny)).

Snm,=9nm,=0, imply ﬁnjn((jn.m1) (jn,m3)) = ((n,my)  (n,my)).

(P5S) Gn1m]:(5n1m2:0'n2m1:Onzmzzo, Bn1jn120, 5n2jn220 imply
(ny.m1) (jnymy) (ny.myq) (ny.my)
P (jnz.m1) (jnz.mz) =P (ng,mq) (ng,my) -

4. Proof of Theorem 1

We have to show that the solution "C(G1)E(”Ckl,2?k2,..,"c.'k6 )=0 of the
1

system (TZT')kikM =0, 1=1,..,G4, is unique under the stated conditions.

This is the system of G; equations

81 .Ck + bl tk+ = _-Ck_ck \‘1) . s i:]...,G1, (4-1)
1 1+1 1 1+1 ]kijkp]

Observe that the Jacobian matrix of these equations at z(G;)=0 has
determinant A(G4)=z,(G4)-2,(G,). By assumption, either a;z0, i=1,..,G;,
or bjz0, 1 ,...Gy. Therefore from Lemma 1, z(G;)z0 implies each
component of z(G,) is different from zero.

Eliminating tkle from the equations corresponding to (TZT')kl_”<1 =

(TZT‘)kiki+1 = 0, we have the G;/2 equations
Tkidkisg Jkio1 kg -1 Kis

£ 21181 Ty - D1_1b1tki+1:0, i=2,4,..,64. (4.2.1)

From (P2), Appendix 3. we have
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Syk; ® 0 - (kn.ki) w "(jkn'ki) '(jkn'ki) (jki'k”) - 0. (4.3)

L. w
Jkijkn knlki

Hence, when okiknzo adding (4.3) to (4.2,i), the latter is equivalent to
{laro, (ki) I-lbiw, . -(knpkidw, . ]

w , )
Jkidkieg Knly, Tkiot kg JkiJkn

—(Jki'k”) (]kn,ki)} tki-ltki+]+ ai-14ai tki—1_ bi-1bi -Ckiq -0, (4.4,i,n)

or subtracting (4.3) from (4.2,i), the latter is also equivalent to

Hagy ., -(knkidw. . 1-1Ibjw, - Oy kDo, ]
Jkidki.g JeiJkn Yeioq dkg o™ k”Jki

t (jk:i'kn)(jkn'ki) } tk'

Ty .
i-1°kK

* ai-1aij .Cki_1_ Di-1bj 'ck“] = 0. (4.5,i,n)

The first quadratic term does not depend on elements of Q if

1. ki-7 and kij.q are siblings i.e.

iy = Ik and then from (4.2,1)

ai_1aij tki—? - bi_1bj tkp] = 0, (4.6,1)

2. ki1 or a sibling of ki-1 (for nzi-1) is the parent of ki.1:

Jki-171k, Kn=Jk.,, and then from (4.4,i,n) provided okikn=0,

ai-i aitki-fbi'1bitki+1 =CinTy, , Ty, CinEai—1(jk}.kn). (4.7.1.n)

3. Kis1 or a sibling of ki.1 (for nzi+1) is the parent of ki_;:

i1 ™k Kn = Jk,_, and then from (4.5,i,n) provided okikn = 0,
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3i-13iTy . -bi-1bizy, L =-dinTy, Ty

din = bi(jy,kn). (4.8,1.n)

The models with possible unique solution z(G1)=0 must be those for
which the bilinear system consisting of G,/2 equations and unknowns
from the three equations above can be reduced further to a linear system
of fewer equations and unknowns. These modeis are:

a) [nn,jkz,m,jk4,..,m,jk61] which has ij:jkM:m, with the parent m
any one of the variables (kj.k4....kg,). The coefficient of zki-1zki.1 is

zero and (4.6,i)) is a linear equation in T and Ty .- When the

variables (k,.k3....kg,-1) are all siblings, the equations form a linear

homogeneous system in Thy Ty Ty with matrix having z1(G4) -

z,(G¢) as determinant. The solution z(G;)=0 is unique if and only if this
Is different from zero.

b) The adjacent equations (4.8,i,n) and (4.7,i+2,n) correspond to the
model assurnption that ki.1 and kn are siblings with kn the parent of ki-1

and ki.3, not excluding the possibility that kn=ki.1., and provided

Okiknzo' Eliminating LN from these two equations, we get the
equation

ai-12i@ia121:2%) Di-1bibisibi2Ty. =4y T Ty o (4.9.0)
with

dy = ai-12iCi+2.n-bi+1bi+2din = ai-1aiai+1(jki+2.kn)‘bi+1bi+2bi(jki-Kn)-

= (Jkl—1 vkl)(]klvkl+])(lkl+] 'ki+2)(jki+2'kn)

- (jki+2.ki+])(]'ki+3-ki+2)(]'ki+] ,ki)(jki,kn)
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- (jki'k“])(jkpz'kn) | ) R if kn = ki+] or jki:jki+2’

(kn.ki) (knKi.2)

= (Jki'kid-])(lki+2.kn) (Jkn,kl) (Jkn'k“2) =0,

from (P4) of Appendix 3. provided dknki:Oknan:O'

When kn=ki.1, both covariances are zero and the equation (4.9,1) is
linear. For instance, when i=2, n-3 and we have the model [K3.jk,.Jks.jkq:

- )

Ke,-1
satisfying the homogeneous linear system of equations (4.9,2) and
(4.6.1), i=6,..,6,. Again z;(G4)-z,(G1)=z0 implies the null solution is
unique.

k3'jk5""k3'jkel] with the vector of unknowns (Zk,.ZTks.Tky.-

c) When jkfjki,g the equation (4.9,1) is linear if Sk ki=Tknkio=0

For example if i=2, n=6 we have the model [kg.jk,.jkq. jk ,ks,jke,..,ke,jke l.
1

d) The adjacent equations (4.7,i,n) and (4.8,i+2,n) correspond to the
model assumption that ki-1, ky and ki.3 are siblings with kn the parent
of ki.1. not excluding the possibility that knis either ki-y or ki.3, and

provided ck‘;knzokmzknzo in the population. Eliminating Tk from

1+

these two equations, we get the equation

with

dz = ai-18idj.2.n-Cinbi+1bj+2 = aj-1bj.2
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The equation (4.10,i) is linear if jkfjkhg’ or kizjk_z. or Kiv2=1y,
with oy =0y, .= 0. Corresponding to the given model, the equations

(4.10,2) and (4.6,1), i=6,8,...6,, determine values of (vk, . Tks....TKG,-1). If
21(Gy) - z,(G4) =z 0, the zero solution IS unique.
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