# ECDNETOR 

# Working Paper <br> The Economic Opportunity Cost of Capital for Canada - An Empirical Update 

Queen's Economics Department Working Paper, No. 1133

## Provided in Cooperation with:

Queen's University, Department of Economics (QED)


#### Abstract

Suggested Citation: Jenkins, Glenn; Kuo, Chun-Yan (2007) : The Economic Opportunity Cost of Capital for Canada - An Empirical Update, Queen's Economics Department Working Paper, No. 1133, Queen's University, Department of Economics, Kingston (Ontario)


This Version is available at: https://hdl.handle.net/10419/189409

## Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

## Terms of use:

Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

## QED

# The Economic Opportunity Cost of Capital for Canada - An Empirical Update 

Glenn Jenkins<br>Queen's University, Kingston, On, Canada<br>Chun-Yan Kuo<br>Queen's University, Kingston, On, Canada

Department of Economics
Queen's University
94 University Avenue
Kingston, Ontario, Canada
K7L 3N6

# The Economic Opportunity Cost of Capital for Canada -- An Empirical Update -- 

Glenn P. Jenkins, Queen's University, Canada, and<br>Eastern Mediterranean University, Cyprus<br>e-mail: jenkins@ econ.queensu.ca<br>Chun-Yan Kuo, Queen's University, Canada<br>e-mail: gkuo@usa.net

July 2007


#### Abstract

The authors are grateful to Helen Ma for research assistance. Nevertheless, responsibilities for any errors are solely the authors' and any opinions expressed herein are those of the authors alone.


#### Abstract

The social or economic discount rate is the threshold rate used to calculate the net present value of an investment project, a program or a regulatory intervention to see whether the proposed expenditures are economically worthwhile to undertake. The size of the economic rate of discount has been a policy issue in Canada for many years. The debate has been primarily concerned with the empirical measurement of the economic opportunity cost of funds. The purpose of this paper is to reexamine and update the empirical estimation of what is the appropriate economic discount rate for Canada. The results suggest that estimates of the economic discount rate can range from 7.78 percent to 8.39 percent real. As a consequence, we conclude that for Canada an 8 percent real rate is an appropriate discount rate to use when calculating the economic net present value of the flows of economic benefits and costs over time.


JEL Code: H43
Keywords: discount rate, opportunity cost, project evaluation

# The Economic Opportunity Cost of Capital for Canada -- An Empirical Update -- 

## I. Alternative Approaches to Finding the Economic Net Present Value

Choosing the correct economic discount rate has been one of the most continuous issues in the field of cost-benefit analysis. This discount rate is used to calculate the economic net present value of the resource cost and the benefits that accrue over time from an investment or policy initiative according to the net present value criterion. If the net present value of a project is positive then from the perspective of a country the project is worthwhile to implement. If it is negative, the project should not be undertaken. Because the size of the discount rate is so important in determining whether the economic NPV of a project or program is positive or negative, the choice of rate to be used is often a controversial issue. The economic discount rate is similar to the concept of the private opportunity cost of capital used to discount the financial cash flows of an investment to find its financial net present value. The issues raised in the determination of the economic discount rate are, however, fundamental to our understanding of how scarce resources are allocated within the economy.

People prefer to make payments later and receive benefits sooner. This is due to the fact that they have a time preference for current consumption over future consumption. Similarly, there is an opportunity cost of the resources used in an activity as they could have been invested elsewhere and produced a positive return that could be consumed later. This opportunity cost needs to be taken into consideration in the appraisal of any proposal that involves the creation of costs and benefits that occur in different time periods.

One approach to economic discounting is based on the fact that present consumption is valued differently from future consumption. Following this approach all benefits and costs are first converted into quantities of consumption equivalents before being discounted. In this case, the discount rate is the rate of time preference at which individuals are willing to exchange consumption over time. To be analytically correct,
under this approach all changes in investment outlays must be multiplied by the shadow price of investment to convert them into units of consumption. Estimates of the shadow price of investment forgone are typically significantly larger than one. After this is done then all the benefits and costs, now expressed in consumption units, can be discounted by the rate of time preference for consumption. ${ }^{1}$

Another approach considers what society forgoes in terms of the pre-tax returns of displaced investment in the country. Using this approach no account is made for time preference in terms of present versus future consumption. The discount rate is based purely on the opportunity cost of forgone investments.

An approach that captures the essential economic features of these two alternatives is to use a weighted average of the economic rate of return on private investment and the time preference rate for consumption. ${ }^{2}$ This opportunity cost of capital measures the economic value of funds forgone in all their alternative uses in the private sectors of the economy when resources are shifted into the public sector. It captures the repercussions not only of the forgone consumption but also of the forgone investment due to the expenditures being undertaken. ${ }^{3}$

The social or economic discount rate is the threshold rate used to calculate the net present value of an investment project, a program or a regulatory intervention to see whether the proposed expenditures are economically feasible. The magnitude of the economic opportunity cost of the resources used by any public or private sector investment is of utmost importance given its role as a guide in the selection of projects or programs, including the choice of their timing and scale.

[^0]The size of the discount rate has been a policy issue in Canada for many years. The debate has been primarily concerned with the empirical measurement of the economic opportunity cost of funds, and even that discussion has been focused on a relatively narrow range of values. The main purpose of this paper is to empirically reexamine what is the appropriate economic discount rate for Canada.

## II. Background

The weighted average concept has been used previously in the measurement of the economic opportunity cost of capital for Canada. ${ }^{4}$ A 10 percent social opportunity cost of capital was first estimated using a detailed industrial data and macroeconomic environment over the period of 1965-69 ${ }^{5}$ and it was endorsed by the Treasury Board in 1976. ${ }^{6}$ Jenkins subsequently refined the estimates and extended the time period of the data base on the rates of return from investment in Canada from 1965 to 1974, but reaffirmed his 10 percent estimate. ${ }^{7}$

Using the data for the same time period, the magnitude of the discount rate for Canada was questioned by Burgess for a variety of theoretical and empirical reasons. He suggested that the social opportunity cost of capital for Canada should be lowered to 7 percent real, due to a number of biases in the derivation of the 10 percent figure. ${ }^{8}$ The main points of disagreement between Jenkins and Burgess lie in the use of different values for the parameters employed in the estimation of the economic opportunity cost of

[^1]capital. ${ }^{9}$ In particular, the issues were related to (a) relative contribution of foreign funding and its social opportunity cost, (b) the interest elasticity of domestic saving and its social cost, and (c) the distortions associated with labor, foreign exchange and subsidies in the Canadian economy. The difference between using a discount rate of 7 percent and 10 percent is not small and could easily lead to a different recommendation of whether to accept or reject a project when using the net present value criterion to measure the expected efficiency of the resources employed.

Subsequently, the social discount rate of 10 percent real was reviewed by Watson in 1992 and it was again recommended for use in Canada by the Treasury Board in 1998. ${ }^{10}$ In 2004, the social or economic discount rate was re-estimated for Canada by Starzenski who found it to be a real rate of approximately 8 percent. ${ }^{11}$ In 2005, Burgess also revisited his estimate of the social discount rate and proposed a rate of 7.3 percent using fairly aggregate economic data with alternative simulation scenarios. ${ }^{12}$

With the exception of Starzenski, the above empirical estimates were largely based on the data over the period 1965 to 1974. The effects of inflation and changes in business taxes and the structure of the Canadian economy since 1974 have not been fully taken into consideration. The estimation of the economic rates of return from investment that are derived from data for individual industries is a time consuming process. An alternative approach is to use aggregate national income accounts data to estimate the pre-tax returns of domestic investment, one of the key parameters in the estimation of the social discount rate. ${ }^{13}$ For the other components of the discount rate, more recent data are also available and will be incorporated in the calculation of the social discount rate.

[^2]
## III. An Empirical Update

While Canada operates in a global capital markets, the intensity by which it finances its capital formation from abroad will affect the cost it pays for such funds. In such an economy, when funds are raised in the capital markets, the cost of funds will tend to rise. Because of the higher financial cost, the funds obtained to finance a project are normally diverted from three alternative sources. First, funds that would have been invested in other investment activities have now been postponed or displaced by the expenditures required to undertake the project. The cost of these funds for society as a whole is the gross-of-income tax return that would have been earned on the alternative investments in the economy. Second, funds would come from different categories of domestic savers who postpone their consumption in the expectation of getting a higher net of tax return now so that they can purchase additional consumption later. Third, some funds may be coming from abroad, that is from foreign savers. The cost of these funds should be measured by the marginal cost of foreign capital inflows. This parameter is estimated by the direct cost of the incremental funds to the users of these funds plus any effects the additional foreign financing has on the future financing cost of other foreign capital already in Canada.

The social or economic discount rate will be measured by a weighted average of the economic costs of funds from these three sources: the rate of return on postponed or displaced investment, the social cost of newly stimulated domestic savings, and the marginal cost of additional foreign capital inflows. The weights are equal to the proportion of funds sourced from domestic private-sector investors, domestic privatesector savers, and foreign savers. They should be measured by the reaction of investors and savers to a change in market interest rates brought about by the increase in government borrowing. This can be written as:

Mphahlele, "The Economic Opportunity Cost of Capital in South Africa", the South African Journal of Economics, Vol. 71:3, (September 2003).

$$
\begin{equation*}
\mathrm{EOCK}=f_{1} \rho+f_{2} \mathrm{r}+f_{3}\left(\mathrm{MC}_{\mathrm{f}}\right) \tag{1}
\end{equation*}
$$

Where $\rho$ stands for the gross-of-income tax return on domestic investments, $r$ for the social cost of newly-stimulated domestic savings, and $\mathrm{MC}_{\mathrm{f}}$ for the marginal cost of incremental capital inflows from abroad; $f_{1}, f_{2}$, and $f_{3}$ are the corresponding sourcing fractions associated with displaced investment, newly stimulated domestic savings, and newly stimulated capital inflows from abroad. Obviously, $f_{1}+f_{2}+f_{3}$ should equal one.

The weights can be expressed in terms of the elasticities of demand and supply yielding the following,

$$
\begin{equation*}
\text { EOCK }=\frac{\varepsilon_{\mathrm{r}}\left(\mathrm{~S}_{\mathrm{r}} / \mathrm{S}_{\mathrm{t}}\right) * \gamma+\varepsilon_{\mathrm{f}}\left(\mathrm{~S}_{\mathrm{f}} / \mathrm{S}_{\mathrm{t}}\right) * \mathrm{MC}_{\mathrm{f}}-\eta\left(\mathrm{I}_{\mathrm{t}} / \mathrm{S}_{\mathrm{t}}\right) * \rho}{\varepsilon_{\mathrm{r}}\left(\mathrm{~S}_{\mathrm{r}} / \mathrm{S}_{\mathrm{t}}\right)+\varepsilon_{\mathrm{f}}\left(\mathrm{~S}_{\mathrm{f}} / \mathrm{S}_{\mathrm{t}}\right)-\eta\left(\mathrm{I}_{\mathrm{t}} / \mathrm{S}_{\mathrm{t}}\right)} \tag{2}
\end{equation*}
$$

where $\varepsilon_{\mathrm{r}}$ is the supply elasticity of domestic savings, $\varepsilon_{\mathrm{f}}$ is the supply elasticity of foreign funds, $\eta$ is the elasticity of demand for domestic investment with respect to changes in the cost of funds, $\mathrm{S}_{\mathrm{t}}$ is the total private-sector savings available in the economy, of which $\mathrm{S}_{\mathrm{r}}$ is the contribution to the total savings by residents, $\mathrm{S}_{\mathrm{f}}$ is the total contribution of net foreign capital inflows, and $\mathrm{I}_{\mathrm{t}}$ is the total private-sector investment.

We begin by estimating the economic cost of each alternative source of funds in equation (1). It will be expressed as a percentage of the respective stock of reproducible capital.

## (a) The Gross-of-Tax Return to Domestic Investment

In this study, the rate of return on domestic investment is calculated based on the country's national income accounts. This is a comprehensive account of the full range of economic activities in the country. It covers not only manufacturing and nonmanufacturing sectors but also the imputed rents for owner-occupied houses.

The economic return of capital on domestic investment is the contribution of capital to the economy as a whole, which can be measured by the sum of the private net-of-tax returns on capital and all direct and indirect taxes generated by this capital. There are alternative ways of estimating this gross-of-tax return to a country's reproducible capital. Our approach is to sum all the returns to capital and then divided the total by the value of the stock of reproducible capital including buildings, machinery and equipment. The return on capital consists of the sum of interest, rent and profit incomes that are recorded in the national accounts. However, some items, such as the surplus of unincorporated enterprises, do not separate out the return to capital explicitly. These are mainly small businesses and farm operations. Because the owners of the businesses and their family members are also workers and are often not formally paid with wages, the operating surplus of this sector includes the returns to both capital and labor. In this study, the labor content of this mixed income is assumed to be approximately 70 percent of the total. This is approximately labor's overall share of total value added for the economy.

Taxes include corporate income taxes, property taxes as well as the share of sales and excise taxes attributed to the value added of reproducible capital. In the case of sales tax, if it is a consumption-type value-added tax, the tax is applied to the sales of goods and services at all stages of the production and distribution chain. At each stage, vendors are able to claim tax credits to recover the tax they paid on their business inputs, including capital goods such as machinery, equipment and building. As a result, the value-added tax is not embodied in the value added of capital; it is effectively borne by labor. In 1991 Canada introduced a federal Goods and Services Tax (GST) at a rate of 7 percent to replace the manufacturer's sales tax. ${ }^{14}$ At the same time, the Government of Quebec also replaced its retail sales tax by the same GST at 8 percent. Later on April 1, 1997, the provincial retail sales taxes in Nova Scotia, New Brunswick, and Newfoundland and Labrador were also replaced and harmonized with the federal GST at a single rate of 15 percent to the same base of goods and services. ${ }^{15}$

[^3]In addition, there has been a considerable amount of the federal and provincial excise taxes and duties that are imposed on alcoholic beverages, tobacco products, motor vehicle fuels, and so on. These taxes are mainly levied on consumer goods. Excise taxes on business inputs such as fuels, are not creditable in the same way as is the GST paid on the purchase of inputs. The share of these excise taxes that are a component of the value added of capital needs to be estimated and included in the return to reproducible capital.

The value of the stock of reproducible capital excludes the value of land, so the income stream accruing to capital we should also exclude the portion that is attributable to the unimproved land. This is significant only in the cases of agriculture and housing. However, all improvements to land, like clearing, leveling, installation of infrastructure for utilities, fencing, irrigation, and drainage should be considered part of reproducible capital. Thus the share of unimproved land in the total capital stock is quite small. The precise data on the contribution of land are not readily available. From the analysis of farm budgets it is estimated that for Canada approximately 25 percent of the total value added of the agricultural sector could be attributed to land. In the case of the housing sector, information is not available on the value of land embodied in this sector, nor is the land component of the value added available for the sector. In the estimates of the total return to capital in the economy the value of imputed rent on owner-occupied houses is included. However, the value of imputed rent excludes the contribution of land to the value added of the housing sector. By excluding from the income to capital the contribution of land in residential housing, we are able to derive the rate of return to reproducible capital alone.

To calculate the rate of return on reproducible private-sector capital, we use the values for the year-end residential and non-residential capital stock estimated by Statistics Canada. These values are derived by breaking down investment into its components such as buildings, machinery, and equipment. Different depreciation rates are applied yearly to the cumulated value of the stock of the capital for each of these categories while the value of the stock is augmented by the value of new gross investment made each year. The time
path of capital stock, appropriate depreciation rates and new investment by categories are estimated for individual sectors to arrive the year-end values for the net capital stock. ${ }^{16}$ Given the year-end net capital stocks, we can calculate the mid-year fixed capital stocks. We include in the stock of reproducible capital the value of the investment made by Canadian public-sector enterprises that operate as business firms. However, we exclude the capital used in the general public administration from the capital base since this part of the public sector involves activities such as public security, national defense, and public administration for which no valuation is made in the national accounts for the services they produce. Investment in these types of operations would generally not be affected by government borrowing in the capital markets. The figures are deflated by the GDP deflator and expressed in 1997 prices.

The detailed computations for the estimation of the gross-of-tax rate of return on domestic investments are presented in Table 1. For the past 40 years, the average real rate of return on investment ( $\rho$ ) in Canada has been about 12.70 percent in 1966-75, 13.00 percent in 1976-85, 11.32 percent in 1986-95, and 11.77 percent in 1996-2005. The rate of return ranges from 10.00 to 14.00 percent over these years with the exception of the recession years of 1991 and 1992. For the purpose of this analysis, we use 11.5 percent as the value of the rate of return on domestic investment for the estimation of the EOCK.

## (b) The Cost of Newly Stimulated Domestic Savings

When new project funds are raised in a country's capital market, it will result in an increase in the cost of funds that in turn stimulates additional private-sector savings. This additional savings comes at the expense of postponed consumption that has an average opportunity cost equal to the return obtained from the additional savings, net of all taxes and financial intermediation costs.

[^4]The opportunity cost of the newly stimulated domestic savings can therefore be measured by the gross-of-tax return to reproducible capital minus the amount of corporate income taxes paid directly by business entities, and the property taxes paid by these entities and homeowners. It is further reduced by the personal income taxes that are paid on the income generated from reproducible capital. This net-of-tax income received by individual owners of capital is further reduced by the costs of financial intermediations provided by banks and other deposit-taking institutions. These intermediation costs are one of the components that create a gap between the gross of tax return to investment and the net of tax return to savings. The final result is the net return on domestic savings. It also reflects the rate of time preference of individuals for consumption forgone.

Our empirical estimation of this parameter starts with the gross-of-tax return to reproducible capital generated in the previous section. As was shown in Table 2, the gross-of-tax return is reduced by the amounts of corporate income taxes and the property taxes paid by corporations and homeowners, as well as imputed rents for owner-occupied housing to arrive at the net-of-capital tax return to reproducible capital in the non-housing sector. The estimate is further reduced by the amount of the personal income tax on these capital incomes as well as intermediation services charged by financial institutions in order to derive the net return to domestic savings.

It should be noted that we estimate the costs of financial intermediation services provided by banks, trust companies, credit unions and other deposit-taking institutions by deducting the total payments to labor as part of the general deduction for the value added of labor and deducting the value of gross profits for the sector. The depreciation component of the gross value added of the financial sector has already been deducted in the calculation of net after tax profits, hence, only the net profits of the financial sector needs to be deducted. Overtime, the proportion of these intermediation services that are charged for through the levy of fees has been increasing. For the purpose of this exercise, the financial intermediation services are assumed to account for 50 percent of the total net-of-tax profits in deposit-taking institutions. To estimate the net return to newly domestic savers, one has to further subtract personal income taxes on capital income. Due
to lack of data on taxes paid by savers exclusively on their capital income, we are making the estimation based on the assumption that income taxes on the income from capital are the same effective tax rate as income taxes on wages and salaries. This assumption might bias downward the amount of taxes paid on the income from capital as investors tend to be relative wealthy and are likely to be at a higher marginal rate of personal income tax than are wage earners. With these assumptions, we can estimate the annual amount of the personal income tax on capital.

The rate of time preference for consumption can then be estimated by dividing the estimated net return income accruing to domestic savings by the stock of reproducible capital. This is presented in the last column of Table 2 . Over the past 30 years, the economic cost of newly stimulated domestic savings for Canada would be on average 5.62 percent in 1976-85, 3.91 percent in 1986-95 and 4.02 percent in 1996-2005. For the purpose of this analysis, we use 4 percent as the value of $r$ in the estimation of the EOCK. It is an average rate of time preference.

## (c) Marginal Economic Cost of Foreign Financing

The last component of the EOCK arising from the raising of funds in the capital markets is the marginal economic cost of newly-stimulated capital inflows from abroad. Foreign capital inflows reflect an inflow of savings from foreigners which augments the resources available for investment. When the demand for investible funds is increased, the market interest rates are increased to attract funds and an additional cost is created in the case of foreign borrowing. As the quantity of foreign obligations rises relative to the country's capacity to service these foreign obligations, one would expect the return demanded by foreign investors to rise. For the country as whole, the cost of foreign borrowings is not just the cost of serving the additional unit of foreign fund but also the extra financial burden on all other borrowings that are responsive to the market interest rate. As a consequence, the marginal cost of additional foreign borrowing increases as the proportion of the country's capital stock that is financed from foreign sources increases.

The marginal economic cost of foreign borrowing $\left(\mathrm{MC}_{\mathrm{f}}\right)$ can be expressed as follows:

$$
\begin{equation*}
M C_{f}=i_{f} \times\left(1-t_{w}\right) \times\left\{1+\phi \times\left(1 / \varepsilon_{s}^{f}\right)\right\} \tag{3}
\end{equation*}
$$

where $i_{f}$ is the real interest rate on foreign borrowing by the project, $t_{w}$ is the rate of withholding taxes charged on interest payments made abroad, $\phi$ is the ratio of [the total foreign financing whose interest rate is flexible and will respond to additional foreign borrowing] to [the total amount of foreign borrowing and foreign direct investment], $\varepsilon_{\mathrm{s}}^{\mathrm{f}}$ is the supply elasticity of foreign funds to a country with respect to the interest rate the country pays on its incremental foreign capital flows.

The Canadian capital markets are highly integrated with the rest of the world, especially with the United States. The real rate of return on total U.S. direct investment net of any withholding tax that is either repatriated to the U.S. or reinvested in Canada was estimated to average 6.11 percent from 1964 to $1973 .{ }^{17}$ The cost of the U.S. foreign investment in Canada was subsequently re-estimated by Evans and Jenkins over the period from 1951-1978. ${ }^{18}$ They found that the net income received and accrued by the U.S. owners of direct investment in Canada ranged from 5.75 percent to 6.03 percent. No further update has been made in recent years. For the purpose of this analysis, 6 percent will be assumed for the average rate of return for non-resident owners of investment in Canada.

It is also reasonable to assume that about thirty percent of foreign investment in Canada is represented by variable interest rate loans and thus $\phi$ is taken as .3 . The supply curve of funds facing a country would generally be upward sloping. If we assume an elasticity of supply at 3.0 , the marginal cost of foreign capital inflow would be about 6.60 percent. ${ }^{19}$

[^5]As our estimate of the marginal cost of foreign financing including only the cost of servicing Canada's direct investment, both debt and equity, and not the portfolio investment in Canada that might cost less, our estimated cost of foreign financing might be biased upward. To adjust for this bias we assume that the marginal cost of all foreign financing in Canada to be approximately 6 percent.

## (d) Measurement of the EOCK

As was mentioned earlier, the economic opportunity cost of capital is estimated as the weighted average of the gross-of-tax rate of return on domestic investment, the cost of newly stimulated domestic savings, and the marginal cost of newly induced foreign capital inflows as shown in equation (2). The marginal cost for each of the three components was estimated in the previous sub-sections. The weights associated with each source of funding at the margin depends upon the average contributions made from each source and their responses to the change in interest rate as a result of borrowing in the capital market.

The annual gross fixed investments made by private corporations and public corporations and general public administration services are shown in Table 3. Over the past 40 years, the contribution by the general public administration services has accounted for an average of 21.73 percent of national gross investment. This share, however, has declined to an average of 19.74 percent over the past 20 years and to 17.56 percent over the past 10 years. This is consistent with the cumulated reproducible capital used to calculate the rate of return on domestic investment and the cost of newly stimulated domestic savings.

Over the years the private-sector investment in Canada has been financed by privatesector savings. The situation has been quite different for the public sector. The Government of Canada was in deficit in 1980s and for a period the deficit was as high as one-third of the national budget. The fiscal situation later improved and in recent years the federal government has been running a surplus. As of January 31, 2007, the federal debt was approximately $\$ 526,697$ million, which accounts for almost 35 percent of GDP.

If the debt is expressed as the percentage of the current private- and public-sector reproducible capital, it would be about 11.7 percent. ${ }^{20}$ In other words, investment by the general public administration has been financed in part by private-sector savings. For the purpose of this analysis, the ratio of the private-sector investments to the private-sector savings from residents and non-residents $\left(\mathrm{I}_{\mathrm{t}} / \mathrm{S}_{\mathrm{t}}\right)$ is set at 0.9 in the base case. Taking into account the debt held by provincial and municipal governments, this ratio could be slightly lower.

During the period 1947 to 1973, on average approximately 20 percent of gross fixed capital formation in Canada was financed by foreign capital inflows. With the introduction of NAFTA in 1990 and the further integration of the Canadian capital markets with those of the rest of the world, one would expect a higher proportion of gross capital formation being financed by foreign savings. ${ }^{21}$ For this analysis, we assume the percentage $\left(\mathrm{S}_{\mathrm{f}} / \mathrm{S}_{\mathrm{t}}\right)$ to have increased to 25 percent. The remainder $\left(\mathrm{S}_{\mathrm{r}} / \mathrm{S}_{\mathrm{t}}\right)$ will be financed by domestic savings.

Following equation (2), to estimate the weights assigned to each source of funding, we need to specify the elasticity of supply of each source with respect to the real cost of funds. The initial estimation is carried out using a value for the demand elasticity for domestic investment of -1.0 , a supply elasticity of newly stimulated domestic savings of 0.4 , and a supply elasticity of foreign savings of $3.0 .{ }^{22}$ With these assumptions, the proportions of funds obtained from these three sources are 15.38 percent from domestic savings, 38.46 percent from foreign capital, and 46.16 percent from displaced or postponed domestic investment. Substituting these data into equation (2), one obtains a

[^6]base-case estimation of the economic opportunity cost of capital for Canada of 8.23 percent.

## IV. Sensitivity Analysis

The above empirical estimates depend upon the value of several key parameters such as the rate of return on domestic investment ( $\rho$ ), the supply elasticity of foreign capital inflow $\left(\varepsilon_{\mathrm{f}}\right)$, the ratio of the private-sector investments to the private-sector savings from residents and non-residents ( $\mathrm{I}_{\mathrm{t}} / \mathrm{S}_{\mathrm{t}}$ ), and time preference for consumption. In the sensitivity analysis, we assess the impact of changes in the value of these key parameters on our estimate of the economic opportunity cost of capital for Canada.

## (a) The Rate of Return on Domestic Investment

If the average rate of return on domestic investment is 0.5 percentage point lower than the base case, it would imply a value of 11 percent instead of 11.5 percent. With this value, the economic opportunity cost of capital for Canada is about 8.00 percent, 0.23 of one percentage point lower than the base case.

## (b) The Supply Elasticity of Foreign Capital

We have assumed a value of 3.0 in the base case for the supply elasticity of the stock of foreign savings to Canada. Suppose the elasticity of foreign capital is as high as 5.0 instead of 3.0 assumed earlier, the share of financing from foreign funds to investment projects will be much larger. The sourcing of funds would become 12.25 percent from domestic savings, 51.02 percent from foreign capital, and 36.73 percent from displaced or postponed domestic investment. As a result, the economic opportunity cost of capital decreases to 7.78 percent, or 0.45 of one percentage point lower than the estimate for the base case.

## (c) The Ratio of the Private-Sector Investments to the Private-Sector Savings

As was discussed earlier, the 90 percent ratio for the private-sector investments to the private-sector savings was based on the federal debt alone. If the debt for the provincial and municipal governments is also taken into account, the 90 percent share could go down to 80 percent. Let us assume the ratio of $\mathrm{I}_{\mathrm{t}} / \mathrm{S}_{\mathrm{t}}$ is 80 percent. The proportions of funds diverted to finance the investment project would become 16.22 percent from newly stimulated domestic savings, 40.54 percent from foreign savings, and 43.24 percent from displaced or postponed domestic investment. As a consequence, the economic opportunity cost of capital would decrease to 8.05 percent.

On the contrary, as the federal and several provincial governments have in recent years exhibited budget surplus, we may assume the ratio of $I_{t} / S_{t}$ would be equal to unity. In this scenario, the sourcing of funds directed from the private sectors to the government borrowing would be 14.63 percent from domestic savings, 36.59 percent from foreign capital inflow, and 48.78 percent from displaced or postponed domestic investment. This suggests that the economic opportunity cost of capital would rise to 8.39 percent, approximately 0.16 of one percentage point higher than the base case.

## (d) Time Preference for Consumption

The time preference for consumption is measured by the cost of newly stimulated domestic savings. The 4 percent estimate was based on average rate over the past 25 years. As a matter of fact, it has been declining over years. In the past 15 years, it was averaged at 3.55 percent. Suppose it is 3.0 percent instead of 4 percent assumed for the base case, the economic opportunity cost of capital would become 8.08 percent, about 0.15 of one percentage point lower than the base case.

From the above sensitivity analyses, we find that the economic opportunity cost of capital ranges from 7.78 percent to 8.39 percent. We can conclude that a conservative estimate of the economic opportunity cost of capital for Canada would be a real rate of 8.00 percent.

## V. Concluding Remarks

The economic or social discount rate is a key parameter used for investment decisionmaking. The value of this variable has been controversial and debated for years. The issue is even more critical when applied to the social sector projects and programs such as health, education, environment and regulations.

This paper has reviewed some theoretical issues and described a practical framework for the estimation of the economic cost of capital for Canada. It is in the framework of a small open economy in both commodity and capital markets. When funds are raised in the capital markets for use in an investment project, these funds are obtained from three sources: displacement or postpone of private domestic investment, newly stimulated domestic savings, and newly stimulated inflows of capital from abroad. Employing this framework, we estimate that the real economic opportunity cost of capital would be approximately 8.23 percent in the base case.

We have preformed a sensitivity analysis by allowing the key parameters that have an impact on the measurement of the economic discount rate. These parameters include the rate of return on domestic investment, the supply elasticity of foreign capital inflows, the ratio of the total private investment to the total private savings, and the time preference for consumption. The results suggest that estimates of the discount rate can range from 7.78 percent to 8.39 percent real. As a consequence, we conclude that for Canada an 8 percent real rate is an appropriate discount rate to use when calculating the economic net present value of the flows of economic benefits and costs over time.

Table 1 Return to Domestic Investment 1965-2005

| Gross-of- |  |  |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  |  |  |  |  |  |  |  |  |
| Tax Income |  |  |  |  |  |  |  |  |
| to Capital |  |  |  |  |  |  |  |  |



Table 1 Return to Domestic Investment 1965-2005 (Cont'd)

| Year | Gross-of- <br> Tax Income to Capital Taking into Account Indirect Taxes | $\begin{gathered} \text { GDP } \\ \text { Deflator } \\ {[1997=100]} \end{gathered}$ | Real Gross-of-Tax Income to Capital Taking into Account Indirect Taxes [\$1997] | Year-End <br> Real nonresidential capital stock [\$1997] | Year-End Fixed Residential Capital Stock [\$1997] | Year-end Capital Stock for Public Administrati on [\$1997] <br> dollars) | Year-End Real Capital Stock net of Public Administrati on [\$1997] | Mid-Year <br> Real Capital Stock net of Public Administrati on [\$1997] | Real Rate of Return to Capital (\%) | 10-Year <br> Average return to Capital <br> (\%) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1965 | 17,680 | 18.51 | 95,516 | 666,687 | 219,181.20 | 150,265 | 735,604 | 367,802 | 12.98 |  |
| 1966 | 19,203 | 19.42 | 98,881 | 705,683 | 228,048.40 | 157,582 | 776,149 | 755,876 | 12.74 |  |
| 1967 | 20,357 | 20.29 | 100,331 | 742,946 | 237,090.80 | 164,821 | 815,216 | 795,682 | 12.31 |  |
| 1968 | 22,778 | 21.13 | 107,798 | 777,811 | 248,029.10 | 171,807 | 854,033 | 834,624 | 12.62 |  |
| 1969 | 24,921 | 22.16 | 112,458 | 812,671 | 261,240.00 | 179,098 | 894,813 | 874,423 | 12.57 |  |
| 1970 | 25,721 | 23.13 | 111,200 | 849,038 | 272,873.10 | 186,137 | 935,774 | 915,293 | 11.88 |  |
| 1971 | 28,349 | 24.25 | 116,905 | 886,412 | 287,027.30 | 194,296 | 979,143 | 957,459 | 11.94 |  |
| 1972 | 32,670 | 25.68 | 127,218 | 923,433 | 302,687.20 | 202,957 | 1,023,163 | 1,001,153 | 12.43 |  |
| 1973 | 40,701 | 28.17 | 144,485 | 963,977 | 319,468.80 | 211,312 | 1,072,133 | 1,047,648 | 13.48 |  |
| 1974 | 51,532 | 32.45 | 158,804 | 1,007,225 | 336,657.70 | 219,596 | 1,124,286 | 1,098,210 | 14.12 |  |
| 1975 | 54,704 | 35.92 | 152,295 | 1,053,439 | 352,712.00 | 228,175 | 1,177,976 | 1,151,131 | 12.93 | 12.70 |
| 1976 | 62,498 | 39.33 | 158,907 | 1,097,450 | 373,358.60 | 236,030 | 1,234,778 | 1,206,377 | 12.87 |  |
| 1977 | 70,257 | 42.01 | 167,239 | 1,141,524 | 393,621.70 | 243,996 | 1,291,150 | 1,262,964 | 12.95 |  |
| 1978 | 82,664 | 44.78 | 184,601 | 1,185,390 | 413,377.40 | 251,526 | 1,347,241 | 1,319,195 | 13.70 |  |
| 1979 | 100,092 | 49.25 | 203,233 | 1,235,370 | 432,013.40 | 258,506 | 1,408,877 | 1,378,059 | 14.43 |  |
| 1980 | 112,715 | 54.21 | 207,923 | 1,292,781 | 447,951.20 | 265,154 | 1,475,579 | 1,442,228 | 14.09 |  |
| 1981 | 122,795 | 60.05 | 204,489 | 1,360,731 | 465,828.40 | 272,848 | 1,553,712 | 1,514,645 | 13.16 |  |
| 1982 | 120,126 | 65.15 | 184,384 | 1,416,399 | 479,168.30 | 280,298 | 1,615,270 | 1,584,491 | 11.42 |  |
| 1983 | 137,339 | 68.69 | 199,940 | 1,462,207 | 496,570.60 | 287,128 | 1,671,650 | 1,643,460 | 11.96 |  |
| 1984 | 155,005 | 70.94 | 218,501 | 1,506,562 | 513,844.00 | 294,507 | 1,725,899 | 1,698,774 | 12.66 |  |
| 1985 | 166,226 | 73.14 | 227,271 | 1,553,298 | 533,011.00 | 302,708 | 1,783,601 | 1,754,750 | 12.74 | 13.00 |
| 1986 | 167,279 | 75.36 | 221,973 | 1,596,208 | 556,010.30 | 310,079 | 1,842,139 | 1,812,870 | 12.05 |  |
| 1987 | 186,805 | 78.83 | 236,972 | 1,641,104 | 584,993.20 | 317,547 | 1,908,550 | 1,875,345 | 12.42 |  |
| 1988 | 207,593 | 82.37 | 252,025 | 1,695,129 | 613,797.50 | 324,878 | 1,984,048 | 1,946,299 | 12.70 |  |
| 1989 | 217,424 | 86.11 | 252,496 | 1,751,518 | 643,943.40 | 332,894 | 2,062,567 | 2,023,308 | 12.24 |  |
| 1990 | 212,916 | 88.84 | 239,662 | 1,803,230 | 670,133.50 | 341,025 | 2,132,338 | 2,097,453 | 11.24 |  |
| 1991 | 199,576 | 91.47 | 218,188 | 1,847,236 | 689,164.00 | 348,658 | 2,187,742 | 2,160,040 | 9.97 |  |
| 1992 | 204,137 | 92.67 | 220,284 | 1,881,169 | 710,008.80 | 356,018 | 2,235,160 | 2,211,451 | 9.86 |  |
| 1993 | 216,472 | 94.01 | 230,265 | 1,911,096 | 728,755.60 | 362,573 | 2,277,279 | 2,256,219 | 10.11 |  |
| 1994 | 247,830 | 95.09 | 260,627 | 1,947,075 | 748,568.20 | 369,714 | 2,325,930 | 2,301,604 | 11.21 |  |
| 1995 | 263,888 | 97.24 | 271,378 | 1,984,251 | 762,478.50 | 376,870 | 2,369,860 | 2,347,895 | 11.45 | 11.32 |
| 1996 | 271,451 | 98.81 | 274,720 | 2,023,949 | 778,242.90 | 383,010 | 2,419,182 | 2,394,521 | 11.36 |  |
| 1997 | 283,296 | 100 | 283,296 | 2,079,298 | 797,597.00 | 387,625 | 2,489,270 | 2,454,226 | 11.38 |  |
| 1998 | 286,220 | 99.57 | 287,456 | 2,138,742 | 815,621.80 | 391,608 | 2,562,756 | 2,526,013 | 11.22 |  |
| 1999 | 319,138 | 101.31 | 315,011 | 2,206,295 | 834,388.70 | 395,686 | 2,644,997 | 2,603,877 | 11.91 |  |
| 2000 | 361,876 | 105.5 | 343,010 | 2,277,928 | 855,170.80 | 400,859 | 2,732,239 | 2,688,618 | 12.55 |  |
| 2001 | 354,904 | 106.68 | 332,681 | 2,348,605 | 879,570.80 | 407,521 | 2,820,655 | 2,776,447 | 11.79 |  |
| 2002 | 366,283 | 107.82 | 339,717 | 2,411,844 | 909,665.60 | 414,620 | 2,906,889 | 2,863,772 | 11.69 |  |
| 2003 | 388,045 | 111.45 | 348,179 | 2,482,241 | 942,421.30 | 421,624 | 3,003,039 | 2,954,964 | 11.59 |  |
| 2004 | 429,443 | 114.77 | 374,177 | 2,559,240 | 978,687.30 | 428,817 | 3,109,111 | 3,056,075 | 12.03 |  |
| 2005 | 464,977 | 118.46 | 392,518 | 2,646,432 | 1,015,901.50 | 436,909 | 3,225,425 | 3,167,268 | 12.17 | 11.77 |



## Table 3 Gross Fixed Investment, 1965-2005

| Year | The Amount of Investment |  |  |  | Percentage Distribution |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Private Corporations | Public Corporations (millio | Government Public Administrations of dollars) | Grand Total | Private Corporations | Public Corporations | Government Public Administrations <br> (\%) | Grand Total |
| 1965 | 6,352 | 1,640 | 2,804 | 10,796 | 58.84 | 15.19 | 25.97 | 100.00 |
| 1966 | 7,464 | 1,877 | 3,289 | 12,630 | 59.10 | 14.86 | 26.04 | 100.00 |
| 1967 | 6,423 | 1,997 | 3,457 | 11,877 | 54.08 | 16.81 | 29.11 | 100.00 |
| 1968 | 6,557 | 1,881 | 3,627 | 12,065 | 54.35 | 15.59 | 30.06 | 100.00 |
| 1969 | 8,106 | 1,977 | 3,553 | 13,636 | 59.45 | 14.50 | 26.06 | 100.00 |
| 1970 | 8,316 | 2,186 | 3,625 | 14,127 | 58.87 | 15.47 | 25.66 | 100.00 |
| 1971 | 9,034 | 2,304 | 4,292 | 15,630 | 57.80 | 14.74 | 27.46 | 100.00 |
| 1972 | 10,234 | 2,386 | 4,472 | 17,092 | 59.88 | 13.96 | 26.16 | 100.00 |
| 1973 | 12,532 | 3,419 | 4,454 | 20,405 | 61.42 | 16.76 | 21.83 | 100.00 |
| 1974 | 16,814 | 4,289 | 5,967 | 27,070 | 62.11 | 15.84 | 22.04 | 100.00 |
| 1975 | 15,341 | 6,475 | 7,035 | 28,851 | 53.17 | 22.44 | 24.38 | 100.00 |
| 1976 | 17,354 | 7,057 | 6,904 | 31,315 | 55.42 | 22.54 | 22.05 | 100.00 |
| 1977 | 17,414 | 8,499 | 7,925 | 33,838 | 51.46 | 25.12 | 23.42 | 100.00 |
| 1978 | 19,050 | 8,852 | 7,905 | 35,807 | 53.20 | 24.72 | 22.08 | 100.00 |
| 1979 | 28,424 | 9,180 | 8,406 | 46,010 | 61.78 | 19.95 | 18.27 | 100.00 |
| 1980 | 31,777 | 8,377 | 9,487 | 49,641 | 64.01 | 16.88 | 19.11 | 100.00 |
| 1981 | 40,694 | 11,507 | 10,987 | 63,188 | 64.40 | 18.21 | 17.39 | 100.00 |
| 1982 | 25,171 | 13,436 | 12,510 | 51,117 | 49.24 | 26.28 | 24.47 | 100.00 |
| 1983 | 30,022 | 12,797 | 12,269 | 55,088 | 54.50 | 23.23 | 22.27 | 100.00 |
| 1984 | 38,831 | 12,264 | 13,173 | 64,268 | 60.42 | 19.08 | 20.50 | 100.00 |
| 1985 | 44,024 | 11,500 | 15,470 | 70,994 | 62.01 | 16.20 | 21.79 | 100.00 |
| 1986 | 47,596 | 9,448 | 15,031 | 72,075 | 66.04 | 13.11 | 20.85 | 100.00 |
| 1987 | 56,700 | 8,696 | 15,534 | 80,930 | 70.06 | 10.75 | 19.19 | 100.00 |
| 1988 | 63,984 | 11,056 | 16,634 | 91,674 | 69.80 | 12.06 | 18.14 | 100.00 |
| 1989 | 68,776 | 11,862 | 18,989 | 99,627 | 69.03 | 11.91 | 19.06 | 100.00 |
| 1990 | 57,256 | 12,966 | 20,748 | 90,970 | 62.94 | 14.25 | 22.81 | 100.00 |
| 1991 | 49,164 | 13,639 | 21,047 | 83,850 | 58.63 | 16.27 | 25.10 | 100.00 |
| 1992 | 46,531 | 11,191 | 20,656 | 78,378 | 59.37 | 14.28 | 26.35 | 100.00 |
| 1993 | 51,671 | 9,542 | 19,887 | 81,100 | 63.71 | 11.77 | 24.52 | 100.00 |
| 1994 | 64,505 | 8,123 | 21,251 | 93,879 | 68.71 | 8.65 | 22.64 | 100.00 |
| 1995 | 74,645 | 9,117 | 21,661 | 105,423 | 70.81 | 8.65 | 20.55 | 100.00 |
| 1996 | 73,887 | 9,069 | 19,368 | 102,324 | 72.21 | 8.86 | 18.93 | 100.00 |
| 1997 | 100,411 | 7,376 | 20,317 | 128,104 | 78.38 | 5.76 | 15.86 | 100.00 |
| 1998 | 104,432 | 7,487 | 20,188 | 132,107 | 79.05 | 5.67 | 15.28 | 100.00 |
| 1999 | 113,938 | 6,937 | 20,133 | 141,008 | 80.80 | 4.92 | 14.28 | 100.00 |
| 2000 | 124,911 | 6,892 | 24,710 | 156,513 | 79.81 | 4.40 | 15.79 | 100.00 |
| 2001 | 109,581 | 7,967 | 27,448 | 144,996 | 75.58 | 5.49 | 18.93 | 100.00 |
| 2002 | 107,126 | 8,196 | 28,544 | 143,866 | 74.46 | 5.70 | 19.84 | 100.00 |
| 2003 | 114,078 | 9,350 | 30,100 | 153,528 | 74.30 | 6.09 | 19.61 | 100.00 |
| 2004 | 126,471 | 9,354 | 31,574 | 167,399 | 75.55 | 5.59 | 18.86 | 100.00 |
| 2005 | 140,884 | 12,513 | 34,264 | 187,661 | 75.07 | 6.67 | 18.26 | 100.00 |

## References

Boskin, M.J., "Taxation, Saving, and the Rate of Interest", Journal of Political Economy, (1978).

Burgess, David F., "The Social Discount Rate for Canada: Theory and Evidence", Canadian Public Policy, (1981).

Burgess, David F., "An Update Estimate of the Social Opportunity Cost of Capital for Canada", University of Western Ontario, (March 2005).

Burgess, David, "Removing Some Dissonance from the Social Discount Rate Debate", University of Western Ontario, (June 2006).

Department of Finance Canada, Goods and Services Tax - Technical Paper, (August 1989).

Evans, John C. and Glenn P. Jenkins, "The Cost of U.S. Direct Foreign Investment", Harvard Institute for International Development, Development Discussion Paper No. 104, (November 1980).

Harberger, Arnold C., "On Measuring the Social Opportunity Cost of Public Funds" in Project Evaluation: Selected Papers, (Chicago: University of Chicago Press, 1972). Harberger, Arnold C., "Private and Social Rates of Return to Capital in Uruguay", Economic Development and Cultural Change, (April 1977).

Huang, Kuen H., "The Method of the Quarterly Capital Stock Estimation and User Cost of Capital", paper prepared for Investment and Capital Division, Statistics Canada, (December 2004).

Jenkins, Glenn P., Analysis of Rates of Return from Capital in Canada, unpublished Ph.D. Dissertation, University of Chicago, (1972).

Jenkins, Glenn P., "The Measurement of Rates of Return and Taxation from Private Capital in Canada", in W.A. Niskanen, et. al. (eds.), Benefit-Cost and policy Analysis, (Chicago: Aldine, 1973).

Jenkins, Glenn P., Capital in Canada: Its Social and Private Performance 1965-1974, Economic Council of Canada, Discussion Paper No.98, (October 1977).

Jenkins, Glenn P., "The Public-Sector Discount Rate for Canada: Some Further Observations", Canadian Public Policy, (1981).

Jenkins, Glenn P. and M. Mescher, "Government Borrowing and the Response of Consumer Credit in Canada", paper prepared for Department of Regional Economic Expansion, (1981).

Kuo, Chun-Yan, Glenn P. Jenkins and M. Benjamin Mphahlele, "The Economic Opportunity Cost of Capital in South Africa", the South African Journal of Economics, Vol. 71:3, (September 2003).

Leipziger, D.M., "Capital Movements and Economy: Canada under a Flexible Rate", Canadian Journal of Economics, (February 1974).

Sandmo, Agnar and Jacques H. Dreze, "Discount Rates for Public Investment in Closed and Open Economies", Economia, XXXVIII, 152, (November 1971).

Sjaastad, Larry A. and Daniel L. Wisecarver, "The Social Cost of Public Finance", Journal of Political Economy 85, No. 3, (May 1977), pp. 513-547.

Starzenski, Nahuel Arruda, The Social Discount Rate in Canada: A Comprehensive Update, a M.A. thesis submitted to Queen's University, (November 2004).

Treasury Board Secretariat, Benefit Cost Analysis Guide, (Ottawa: Minister of Supply and Services Canada, 1976).

Treasury Board Secretariat, Benefit Cost Analysis Guide, (July 1998).
The Governments of Canada, Nova Scotia, New Brunswick, Newfoundland and Labrador, Harmonized Sales Tax, Technical Paper, (Ottawa: Department of Finance).

Watson, Kenneth, "The Social Discount Rate", Canadian Journal of Program Evaluation, Vol. 7, No. 1, (1992).


[^0]:    ${ }^{1}$ See, e.g., Larry A. Sjaastad and Daniel L. Wisecarver, "The Social Cost of Public Finance", Journal of Political Economy 85, No. 3 (May 1977), pp. 513-547.
    ${ }^{2}$ See, e.g., Agnar Sandmo and Jacques H. Dreze, "Discount Rates for Public Investment in Closed and Open Economies", Economia, XXXVIII, 152, (November 1971); Arnold C. Harberger, "On Measuring the Social Opportunity Cost of Public Funds" in Project Evaluation: Selected Papers, (Chicago: University of Chicago Press, 1972).
    ${ }^{3}$ As has been shown elsewhere, the weighted average approach and the approach by the time preference for consumption are similar, but the latter can lead to incorrect results in a number of situations. See, David Burgess, "Removing Some Dissonance from the Social Discount Rate Debate", University of Western Ontario, (June 2006).

[^1]:    ${ }^{4}$ See, e.g., Glenn P. Jenkins, Analysis of Rates of Return from Capital in Canada, unpublished Ph.D. Dissertation, University of Chicago, (1972); and "The Measurement of Rates of Return and Taxation from Private Capital in Canada", in W.A. Niskanen, et. al. (eds.), Benefit-Cost and policy Analysis, (Chicago: Aldine, 1973); David F. Burgess, "The Social Discount Rate for Canada: Theory and Evidence", Canadian Public Policy, (1981).
    ${ }^{5}$ Jenkins, ibid.
    ${ }^{6}$ Treasury Board Secretariat, Benefit Cost Analysis Guide, (Ottawa: Minister of Supply and Services Canada, 1976).
    ${ }^{7}$ Glenn P. Jenkins, Capital in Canada: Its Social and Private Performance 1965-1974, Economic Council of Canada, Discussion Paper No.98, (October 1977).
    ${ }^{8}$ David F. Burgess, "The Social Discount Rate for Canada: Theory and Evidence", Canadian Public Policy, (1981).

[^2]:    ${ }^{9}$ Glenn P. Jenkins, "The public-Sector Discount Rate for Canada: Some Further Observations", Canadian Public Policy, (1981).
    ${ }^{10}$ Kenneth Watson, "The Social Discount Rate", Canadian Journal of Program Evaluation, Vol. 7, No. 1, (1992); Treasury Board Secretariat, Benefit Cost Analysis Guide, (July 1998).
    ${ }^{11}$ Nahuel Arruda Starzenski, The Social Discount Rate in Canada: A Comprehensive Update, a M.A. thesis submitted to Queen's University, (November 2004).
    ${ }^{12}$ David F. Burgess, "An Update Estimate of the Social Opportunity Cost of Capital for Canada", University of Western Ontario, (March 2005).
    ${ }^{13}$ E.g., Arnold C. Harberger, "Private and Social Rates of Return to Capital in Uruguay", Economic Development and Cultural Change, (April 1977); Chun-Yan Kuo, Glenn P. Jenkins and M. Benjamin

[^3]:    ${ }^{14}$ Department of Finance Canada, Goods and Services Tax - Technical Paper, (August 1989). The current government lowered the GST rate to 6 percent now.
    ${ }^{15}$ The Governments of Canada, Nova Scotia, New Brunswick, Newfoundland and Labrador, Harmonized Sales Tax, Technical Paper, (Ottawa: Department of Finance).

[^4]:    ${ }^{16}$ See, e.g., Kuen H. Huang, "The Method of the Quarterly Capital Stock Estimation and User Cost of Capital", paper prepared for Investment and Capital Division, Statistics Canada, (December 2004).

[^5]:    ${ }^{17}$ Glenn P. Jenkins, Capital in Canada: Its Social and Private Performance, 1965-1974, Economic Council of Canada, Discussion Paper No. 98, (October 1977).
    ${ }^{18}$ John C. Evans and Glenn P. Jenkins, "The Cost of U.S. Direct Foreign Investment", Harvard Institute for International Development, Development Discussion Paper No. 104, (November 1980).
    ${ }^{19}$ The elasticity of supply of foreign funds investment is measured with respect to changes in the stock of foreign investment for changes in the return to foreign investment.

[^6]:    ${ }^{20}$ This is calculated by the ratio of the federal debt, $\$ 527$ billion, to the total national reproducible capital, $\$ 4,500$ billion, expressed in 2007 prices. See Table 1.
    ${ }^{21}$ In fact, more than 1.3 million corporations currently exist in Canada; of which about 8,000 are foreign controlled and account for 21.9 percent of the assets for the country as a whole.
    ${ }^{22}$ See, e.g., M.J. Boskin, "Taxation, Saving, and the Rate of Interest", Journal of Political Economy, (1978); G.P. Jenkins and M. Mescher, "Government Borrowing and the Response of Consumer Credit in Canada", paper prepared for Department of Regional Economic Expansion, (1981); D.M. Leipziger, "Capital Movements and Economy: Canada under a Flexible Rate", Canadian Journal of Economics, (February 1974).

