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Abstract

This paper proposes a new test of the Protection for Sale (PFS) model by

Grossman and Helpman (1994). Unlike existing methods in the literature, our

approach does not require any data on political organizations. We formally

show that the PFS model provides the following prediction: in the quanitle

regression of the protection measure on the inverse import penetration ratio

divided by the import demand elasticity, its coefficient should be positive at the
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quantile close to one. We examine this prediction using the data from Gawande

and Bandyopadhyay (2000). The results do not provide any evidence favoring

the PFS model.

1. Introduction

Recently there has been much interest in political economy aspects of trade policy.

This growing interest is in part triggered by the theoretical framework in the Gross-

man and Helpman (1994) “Protection for Sale” model (hereafter the PFS model).

Empirical studies such as Goldberg and Maggi (1999) and Gawande and Bandyopad-

hyay (2000) found that the data on trade protection are consistent with predictions

by the PFS model. In particular, their results show that as predicted by this frame-

work, protection is positively related to the import penetration ratio for politically

unorganized industries, while negatively related for politically organized ones.

An important issue in these empirical studies is how to classify industries into

politically organized and unorganized ones. When classifying industries, Goldberg

and Maggi (1999) and Gawande and Bandyopadhyay (2000) have encountered the

following problem: while only politically organized industries are assumed to make

campaign contributions in the PFSmodel, their data indicate that all industries make

Political Action Committees’ (PAC) contributions. Thus, if they were to follow the
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assumption in the model, all industries would be classified as politically organized.

To overcome this problem, Goldberg and Maggi (1999) and Gawande and Bandy-

opadhyay (2000) used some simple rules for classification. However, those rules are

somewhat arbitrary and subject to the possibility of misclassification.

More recently, a second generation of empirical studies has taken a different ap-

proach to reconciling theory and the data. For example, Ederington and Minier

(2006) extend the PFS model by hypothesizing that industries can lobby for both

trade and domestic policies. In their model, it is possible that some industries are

politically unorganized for trade policies but make contributions for domestic poli-

cies. Matschke (2006) takes a similar approach. Since the models by Ederington

and Minier (2006) and by Matschke (2006) are more comprehensive than the PFS

model, the authors impose additional assumptions to make the models tractable for

estimation.

This paper proposes a new approach to testing the PFS model. Unlike most

previous studies, our approach does not require classification of industries into orga-

nized and unorganized ones. This is important both because of the above mentioned

problems in such a classification and because political contribution data itself is not

available for most countries. In this manner, our approach can expand the realm of

application of such models.
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Our approach exploits the following prediction of the PFS model: politically

organized industries should have higher protection than unorganized ones given the

inverse import penetration ratio and other control variables. This suggests that

industries with higher protection are more likely to be politically organized, and

thus for those industries, we should expect a positive relationship between the inverse

import penetration ratio and the protection measure.

We provide a formal proof of the above argument within the framework of recent

work on quantile regressions and quantile IV’s. To empirically test this implication,

we use estimation techniques such as quantile regression (Koenker and Bassett, 1978)

and instrumental variable quantile regression (Chernozhukov and Hansen, 2004a;

2004b, 2006). Our results suggest that there is no strong evidence in favor of the

PFS model. The point estimates indicate that the inverse import penetration ratio

is negatively related to the protection measure at high quantiles, which is the exact

opposite of what the PFS model predicts. Importantly, this evidence is robust to a

number of sensitivity analyses.

The remainder of the paper is organized as follows. In Section 2, we review the

PFS model and past empirical studies. Section 3 details our approach to testing the

PFS. Section 4 briefly describes the data used in this study. Section 5 presents the

estimation results. In Section 6, we further discuss our results and also examine the
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validity of an alternative model. Section 7 concludes.

2. The PFS Model and Its Estimation in the Literature

2.1. The PFS Model

The exposition in this section relies heavily on Grossman and Helpman (1994). There

is a continuum of individuals, each of infinitesimal size. Each individual has prefer-

ences that are linear in the consumption of the numeraire good and are additively

separable across all goods. As a result, there are no income effects and no cross price

effects in demand which comes from equating marginal utility to own price. On the

production side, there is perfect competition in a specific factor setting: each good

is produced by a factor specific to the industry, ki in industry i, and a mobile factor,

labor, L. Thus, each specific factor is the residual claimant in its industry. Some in-

dustries are organized, and being organized or not is exogenous to the model. Tariff

revenue is redistributed to all agents in a lump sum manner. Owners of the specific

factors in organized industries can make contributions to the government to try and

influence policy if it is worth their while.

Government cares about both social welfare and contributions made to it and

puts a relative weight of α on social welfare. The timing of the game is as follows:

first, lobbies simultaneously bid contribution functions that specify the contributions
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made contingent on the trade policy adopted (which determines domestic prices).

The government then chooses what to do to maximize its own objective function.

In this way, the government is the common agent all principals (organized lobbies)

are trying to influence. Such games are known to have a continuum of equilibria.1

By restricting agents to bids that are “regret free” equilibrium bids have the same

curvature as welfare, and a unique equilibrium can be obtained.2 The equilibrium

outcome, thus, is as if the government was maximizing weighted social welfare (W (p)

where p is the domestic price and equals the tariff vector plus the world price vector,

p∗) with a greater weight on the welfare of organized industries. Thus, equilibrium

tariffs can be found by maximizing

G(p) = αW (p) +
P
j�J0

Wj(p),

where J0 is the set of politically organized industries and the welfare of agents in

1Given the bids of all other lobbies, each lobby wants a particular outcome to occur, namely,
the one where it obtains the greatest benefit less cost. This can be attained by offering the minimal
contribution needed for that outcome to be chosen by the government. However, what is offered
for other outcomes (which is part of the bid function) is not fully pinned down as given other bids,
it is irrelevant. However, bids at other outcomes affect the optimal choices of other lobbies and as
their behavior affects yours, multiplicity arises naturally. Uniqueness is obtained by pinning down
the bids at all outcomes to yield the same payoff as at the desired one, i.e., the bids are “regret
free”.

2For a detailed discussion of this concept, see Bernheim and Whinston (1986).
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industry j is

Wj(p) = πj(pj) + lj +
Nj

N
[T (p) + S(p)] ,

where πj(pj) is producer surplus in industry j, lj is labor employed in industry j, wage

is unity, Nj

N
is the share of workers employed in the jth industry, while T (p) + S(P )

is the sum of tariff revenue and consumer surplus in the economy.

Differentiating Wi(p) with respect to pj gives3

xj(pj)δij + αi

£−xj(pj) + (pj − p∗j)m
0
j(pj)

¤

where so δij = 1 if i = j and 0 otherwise, αi is the share of labor employed in industry

i, m0
j(pj) is the derivative of the demand for imports, and xj(pj) = π0j(pj) denotes

supply of industry j. Differentiating W (p) with respect to pj gives

(pj − p∗j)m
0
j(pj).

Hence, maximizing G(p) with respect to pj gives

α
£
(pj − p∗j)m

0
j(pj)

¤
+
X
i∈J0

£
xj(pj)δij + αi

£−xj(pj) + (pj − p∗j)m
0
j(pj)

¤¤
= 0.

3This follows from the derivative of consumer surplus from good j with respect to pj being equal
to −dj(pj), where dj(pj) is the demand for good j.
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Now
P

i∈J0 αi = αL, the employment share of organized industries and
P

i∈J0 δij = Ij

is unity if j is organized and zero otherwise. Therefore, this equation can be reduced

to

xj(pj)(Ij − αL) + (pj − p∗j)m
0
j(pj)(α+ αL) = 0.

If we further use the fact that (pj − p∗j) = tjp
∗
j , it can be also expressed as

tj
1 + tj

=

µ
Ij − αL

α+ αL

¶µ
zj
ej

¶

where zj =
xj(pj)

mj(pj)
and ej = −m0

j(pj)
pj

mj(pj)
. This is the basis of the key estimating

equation. Note that protection is predicted to be positively related to zj
ej
if the

industry is organized, but negatively related to it if the industry is not organized,

and that the sum of the coefficients is predicted to be positive.

2.2. A Problem in Estimation – the Classification of Industries

For the key equation to be estimable, an error term is added in a linear fashion:

tj
1 + tj

= γ
zj
ej
+ δIj

zj
ej
+ εj. (2.1)

The error term is interpreted as the composite of variables potentially affecting pro-

tection that may have been left out and the measurement error of the dependent
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variable. To deal with the fact that a significant fraction of industries have zero

protection in the data, equation (2.1) can be modified as follows:

tj
1 + tj

=Max

½
γ
zj
ej
+ δIj

zj
ej
+ �j, 0

¾
. (2.2)

The PFS model provides the following well-known predictions on the coefficients on

zj
ej
and Ij

zj
ej
: γ < 0, δ > 0 and γ + δ > 0.4 To test these predictions, equations (2.1)

and (2.2)(hereafter called the PFS equations) have been estimated in a number of

previous studies (e.g., Goldberg and Maggi (1999), Gawande and Bandyopadhyay

(2000), McCalman (2001)).

Although data on the measure of trade protection, the import penetration ratio,

and the import-demand elasticities are often available, it is harder to define whether

an industry is politically organized or not. To deal with this problem, Goldberg and

Maggi (1999) use data on campaign contributions at the three-digit SIC industry

level. An industry is categorized to be politically organized if the campaign contri-

bution exceeds a specified threshold level. Gawande and Bandyopadhyay (2000) used

4Goldberg and Maggi (2000) and others note that γ < 0, δ > 0 and γ + δ > 0 are only
necessary conditions for the validity of the PFS specification. However most empirical research
in the political economy of trade claim that the right sign of the coefficients of the PFS equation
gives strong empirical support of the PFS paradigm. Recently, Imai et al. (2006) criticize them by
pointing out that even when estimating the PFS equation on an artificial data simulated from a
simple quota model that has no PFS element, one will obtain the parameter estimates consistent
with the PFS hypothesis.
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a different procedure for classification. They run a regression where the dependent

variable is the log of the corporate Political Action Committee (PAC) spending per

contributing firm relative to value added and the regressors include the interaction

of the import penetration from five countries into the sub industry and the two-digit

SIC dummies. Industries are classified as politically organized if any of the coef-

ficients on its five interaction terms are found to be positive. The idea is that in

organized industries, an increase in contributions would likely occur when import

penetration increased.

Note that both these two procedures are questionable. The procedure used in

Goldberg and Maggi (1999) implicitly assumes that all the contributions are di-

rected towards influencing trade policies. Moreover, any non zero cutoff level of

contributions as indicating organization seems relatively arbitrary. In addition, the

procedure does not control for other variables that potentially influence political

clout such as industry size and electoral districts where the industry is concentrated.

The procedure used by Gawande and Bandyopadhyay (2000) might have a potential

identification problem, since a function of the import penetration is used to classify

industries and the import penetration divided by the exchange rate is concurrently

used as a regressor in the PFS equation. That is, the positive coefficient on the

interaction term of the political organization and inverse import penetration ratio
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could be because the protection measure is a nonlinear function of the inverse import

penetration ratio and the exchange rate.

Recently, Cadot et. al. (2006) propose a different approach that that does not

require any data on political organization. Instead of deriving the political organiza-

tion dummy in an ad-hoc manner, they propose to recover it as a by-product of the

estimation process. Specifically, they initially set the political organization dummy

to zero for every industry. Then, they estimate the PFS equation and obtain the

error terms. If the error term of an industry is greater than some threshold value,

its political organization dummy is set to be one. The idea is that such industries

do not fit the unorganized category.

Using the generated political organization dummies, they again estimate the PFS

equation and obtain the error terms. They repeat the procedures of generating the

political organization dummies and estimating the PFS equation until the parame-

ters converge. Their method is attractive since information that has been used to

classify industries (e.g., contributions) is unavailable in many countries. However,

their approach by construction creates a positive correlation between the error term

and the generated political organization dummies, which cannot be overcome by any

conventional instruments.
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3. A Proposed Approach

3.1. Quantile Regression

In this section, we detail our approach to testing the PFS model. The advantage

of our approach is similar to that of Cadot, Grether and Olarreaga (2006) (C-G-O

for short) in the sense that the approach allows us to test the PFS model without

using data on political contributions, directly as in G-M or indirectly as in G-B or

iteratively as in C-C-O, to construct an organization dummy. However, our approach

substantially differs from theirs: instead of classifying industries as organized or not

in some manner, our estimation procedure relies heavily on the relationship between

observables implied by the PFS model.

Equation (2.2) and the restrictions on the coefficients have at least two implica-

tions. First, as has been discussed in the literature, zj
ej
has a negative effect on the

level of protection for politically unorganized industries while it has a positive effect

for politically organized industries. Second, given zj
ej
, politically organized industries

have higher protection. These implications lead to the following claim: given zj
ej
, high

protection industries are more likely to be politically organized and thus effect of an

the increase in zj
ej
on protection tends to be that of politically organized industries.

The relevant proposition, and proof, can be found in Appendix 1. The proposition

essentially states that in the quantile regression of tj
1+tj

on zj
ej
, the coefficient on zj

ej
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should be close to at the quantile close to γ + δ > 0 at the quantiles close to τ = 1.

Let Tj =
tj
1+tj

and Zj =
zj
ej
. Using quantile regression (Koenker and Bassett,

1978), we estimate the following equation:

QT (τ |Zj) = α (τ) + β (τ)Zj/10000. (3.1)

where τ denotes quantile, Tj =
tj
1+tj

and Zj =
zj
ej
, and QT (τ |Zj) is the conditional

τ−th quantile function of T . If the PFS model is correct, it is expected that β (τ)

converges to (γ + δ) > 0 as the quantile, τ , approaches its highest level of unity from

below.5 We use part of the data used in Gawande and Bandyopadhyay (2000)6. The

data consist of 242 four-digit SIC industries in the U.S. See Gawande and Bandy-

opadhyay (2000) for a description of the variables.

In the quantile regression, Z is assumed to be an exogenous variable. However,

Z is likely to be endogenous as discussed in the literature and hence the parameter

estimates of the quantile regression are likely to be inconsistent. It is therefore

important to allow for the potential endogeneity of Z. We formally show that even

in the presence of endogeneity, the main prediction of the PFS model in terms of

5The estimation results are presented in Table 1. The estimation is
done by using a MATLAB code written by Christian Hansen (available at
http://faculty.chicagogsb.edu/christian.hansen/research).

6We are grateful to Kishore Gawande for kindly providing us with the data.
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our quantile approach does not change. The relevant proposition (proposition 2), an

analogue of proposition 1, is presented in Appendix 1B. To test the prediction in the

presence of possible endogeneity of Z, we estimate the following equation by using

IV quantile regression (Chernozhukov and Hansen, 2004a; 2004b; 2006):

P (Tj ≤ α (τ) + β (τ)Zj/10000|Wj) = τ (4)

where W is a set of instrumental variables.

Importantly, nowhere in equations (3) and (4) is the political organization dummy

present; these equations involve only variables that are readily available. This way

our approach does not require classification of industries in any manner whereby we

can avoid biased results due to misclassification.

4. A Brief Description of the Data

We use part of the data used in Gawande and Bandyopadhyay (2000) (hereafter also

referred to as GB). The data consist of 242 four-digit SIC industries in the United

States. In the dataset, the extent of protection t is measured by the nontariff barrier

(NTB) coverage ratio. This is a standard exercise in the literature (e.g., Goldberg

and Maggi, 1999; Mitra et al., 2002). z is measured as the inverse of the ratio of

consumption to total imports scaled by 10,000. e is derived from Shiels et al. (1986)
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and corrected for measurement error by GB. A brief description of the variables used

in the current study is provided in Table 1. See GB for more details. Table 2 provides

the sample statistics of the variables. As is clear from Table 2, 114 of 242 industries

(47%) have zero protection. This suggests the potential importance of dealing with

the corner solution outcome of T .

5. Estimation Results

5.1. Quantile Regression Results

Column 1 of Table 2 presents the estimation results of equation (3). The results do

not appear to provide any supporting evidence for the PFSmodel; the null hypothesis

that β (τ) = 0 cannot be rejected at high quantiles (in fact, all quantiles) in favor of

the one-sided alternative that β (τ) > 0. Moreover, the point estimates indicate that

contrary to the PFS prediction, β (τ) are all negative at high quantiles and decrease

as τ goes from 0.4 to 0.9.

Note that α and β are estimated to be zero at the 0.1−0.4 quantiles. This suggests

that the corner solution (T = 0) greatly affect the estimates at the lower quantiles.

From this evidence, it is conjectured that the existence of corners also affects the

estimates at the mean. Thus, findings based on the linear model in Gawande and

Bandyopadhyay (2000), Bombardini (2005), and others are likely to be subject to bias
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due to the corner solution problem. In contrast, our method does not suffer from the

problem, since the focus is mainly on the higher quantiles where the effect of corner

solution is minimal. In addition, our method has a distinct advantage over the other

estimation strategy in the literature. To address the corner solution problem, several

studies (e.g., Goldberg and Maggi, 1999; Biesebroeck et al., 2004) estimate a system

of equations: equation (2) as well as an import penetration equation and an equation

for political organization. While dealing with the existence of corners, this strategy

requires the joint normality assumption on the error terms which potentially affects

the estimation results. In contrast, our results are not driven by the parametric

assumption on the error term; it is not required by the quantile regression.

As the table indicates, β (τ) starts from zero at the quantile τ = 0.4 (since there

are a large number group of unprotected industries for whom the coverage ratio is

zero) and decreases as τ goes from 0.4 to 0.9. Note that this is the opposite of

what the PFS model predicts, casting doubt on the validity of the PFS model. It

is fair to say that our argument here relies on the point estimates. The estimated

standard errors are rather large and none of the β (τ)’s is significantly different from

zero. If the reader is not satisfied with our argument based on the point estimates,

the evidence should be interpreted as suggesting that there is no strong evidence

in favor of the PFS model (This applies to also to evidence from the instrumental
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variable quantile regression presented in the next subsection). Two aspects of the

results are worth mentioning. First, α and β are estimated to start from zero at

the 0.4 quantile, suggesting the corner solution (Tj = 0) greatly affect the estimates

at the lower quantiles. From this evidence, it is conjectured that the existence of

corners also affects the estimates at the mean. Thus, findings based on the linear

model in Gawande and Bandyopadhyay (2000), Bombardini (2005), and others are

likely to be subject to bias due to such corners. To address this issue, several studies

(e.g., Goldberg and Maggi (1999), Biesebroeck et. al., (2004)) estimate a system

of equations: equation (2.2), explicitly allowing for such truncation of protection

at zero, as well as an import penetration equation, and an equation for political

organization. On the other hand, the assumption of normality of the error terms is

usually made and this may affect the estimation results. In contrast, our estimation

results are unlikely to be subject to the corner solution problem, since we focus mainly

on the higher quantiles where the effect of corner solution is minimal. Second, our

results are not driven by the parametric assumption on the error term; the quantile

regression does not require them.

One might wish to control for various factors as well. Following Gawande and

Bandyopadhyay (2000), we control for tariff of intermediate goods (INTERMTAR)

and NTB coverage of intermediate goods (INTERMNTB). As column 2 of Table 2
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shows, our main findings do not change; β (τ) decreases (for the most part) from zero

to a negative value with the increase in , contrary to what the PFS model predicts. α

and β are found to be be zero at the and quantiles, again suggesting the importance

of corner solution.

5.2. IV Quantile Regression Results

Table 3 presents the estimation results of equation (4). Our choice of instruments

is guided by GB where they used 34 distinct instruments, their quadratic terms,

and some of the two-term cross products. We use a subset of their instruments (17

instruments) indicated in Table 1. These are also used in Bombardini (2005) as

the basic instruments. We use two sets of instruments. Instrument set 1 consists

of the 17 instruments, their squared terms and the squares of INTERMTAR and

INTERMNTB. Instrument set 2 includes instrument set 1 and the interaction

terms of the 17 instruments. The IV quantile results for the instrument set 1 are

reported in columns 1 and 2 of Table 3.1. As in the quantile regression, we cannot

reject the null hypothesis that β(0.9) = 0 in favor of the one-sided alternative. The

point estimates are not favorable for the PFS model, either. Even after correcting

for the endogeneity of Z, the estimate of β at the highest quantile is not positive as

required by the PFS model. The results remain virtually the same when we use the
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instrument set 2 as IV’s. (columns 3 and 4).

We further control for capital-labor ratio in equation (4). This is essentially equiv-

alent to allowing capital-labor ratio to be a determining factor for the probability of

political organization. This specification is motivated by Mitra (1999) who provides

a theory of endogenous lobby formation. The model predicts that among others,

industries with higher levels of capital stock are likely to be politically organized.

The estimation results are presented in Table 3.2. β (τ) again are estimated to be

zero at quantiles τ = 0.1, and are negative at higher quantiles, except at the 90%

quantile when instrument set 2 is used.

Another potential source of bias is when the political organization dummy is

econometrically endogenous. That is, when the error term of the equation deter-

mining the political organization is correlated with the error term of the protection

equation (4). In this paper, we are less concerned about it for the following three

reasons. First, in GM correlation comes from the measurement of the political or-

ganization dummy coming from the campaign contribution, which is likely to be

correlated with the protection measure. Since we do not use the political organiza-

tion dummy, we are not subject to it. Secondly, GM and others have shown that

the results do not change when they control for the endogeneity of the political or-

ganization. Thirdly, as long as the error term of the equation determining political
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organization and that of the protection equation are positively correlated, which is

the likely direction of correlation, if there is any, then out quantile IV procedure will

still be consistent. This is because the political organization dummies do not enter in

the RHS of the estimating equation, and with positive correlation, after controlling

for Z we still would see most of the industries in high quantiles (i.e. industries whose

error term of the protection equation are high) to be politically organized. The only

case where the IV quantile regression results for high quantiles gives biased estimate

of γ + δ is when, given Zj the politically organized industries have equal or less

protection than the unorganized ones, which we believe to be an unlikely scenario.

Although we use a subset of GB’s instruments, our results may be driven by too

many instruments. Thus, we further estimate equation (4) using only one of the

following instruments at a time: SCIENTISTS, MANAGERS, and CROSSELI

and using all of them (see Table 1 for their definitions). These instruments are found

to be strongly correlated with Z in GB. The results are presented in Table 4. The re-

sults suggest that having many instruments affect the estimates of β (τ). Specifically,

the absolute magnitude of the coefficients now become far larger than that obtained

with the larger number of instruments. Nonetheless, our main findings appear to be

robust; regardless of which instrument we use and whether we control for capital-

labor ratio, the null hypothesis at the highest quantile cannot be rejected. Moreover,
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the point estimates of β (τ) are all negative at high quantiles, and significant when

all three IV’s are used and capital labor ratio is included in the set of controls, which

is inconsistent with the PFS’s prediction.

6. Discussion

There are several possibilities to explain our results. The first possibility is het-

eroskedasticity. If the error term has higher variance when the industry is politically

unorganized, i.e.,

εj = wj + (1− Ij) ζj

then politically unorganized industries would have error terms with much higher

variance. As a result, they would be the ones that dominate in high quantiles as

well as in low quantiles, whereas the politically organized industries would be found

mostly around the median. Hence, at high quantiles, the negative quantile regres-

sion coefficients correspond to γ, which is negative, and not γ + δ > 0. This may

explain the presence of negative slope coefficients in the higher quantiles. The pos-

sibility cannot be completely ruled out. However, it is worth pointing out that

Goldberg and Maggi (1999) did test for heteroskedasticity and the null hypothesis
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of homoskedasticity could not be rejected.7

Second, the small sample may make it difficult for our approach to provide evi-

dence favoring the PFS model. This problem can be overcome by using more disag-

gregated data, although such an exercise is beyond the scope of the current paper.

The third possibility is that the PFS model is indeed not the one that explains

the data well. If so, what model would better explain the data? Here, we consider an

alternative model, the “Surge Protection” model (hereafter, the SP model) recently

proposed by Imai et al. (2006). The SP model is meant to loosely replicate the

institutional setup in the United States. It is a simple non-optimizing model where

politically organized industries can obtain a limit on imports if imports increase above

a specified threshold. The idea is that today most countries have signed the GATT

and joined the WTO. In doing so, they have bound their tariffs and committed

to limits on their ability to change trade policy. As a result, the main scope for

trade policy lies in the safeguard or escape clause realm where temporary protection

may be afforded an industry that is under stress and organized enough to lobby for

7If equation (??) is indeed the error structure, then the PFS equation is modified to be:

tj
1 + tj

= γ
zj
ej
+ δ

zj
ej
Ij + ςj (1− Ij) + wj .

Importantly, the modified equation has an additional term 1 − Ij with a random coefficient ςj .
Then, the original lobbying model needs to be substantially modified so that the reduced form
of the PFS equation results to the modified equation above. Then, it would be unclear whether
findings in past studies (i.e., γ < 0, δ > 0, and γ + δ > 0) can be interpreted as being in support of
the PFS paradigm.
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protection. The detail of the SP model is provided in Appendix 2 and further details

are explicated in Imai et al. (2006).

To examine the validity of the SP model, we conduct the following exercise.

First, artificial data are simulated from a calibrated version of the SP model. The

parameters in the model are set in the exactly same manner as in Imai et al. (2006);

the simulated data reasonably match the aggregate statistics of the U.S. data, as

illustrated in Imai et al. (2006). We then estimate equations (3) and (4) on the

simulated data using quantile and IV quantile regressions, respectively . We ask

whether the parameter estimates from the simulated data resemble those reported

in the previous section. If the SP model is valid, then the patterns exhibited in the

former are expected to be similar with those in the latter.

In the original SP model, all politically organized subindustries are assumed to

have a uniform level of quota, (See Appendix 2). Since this is rather a strong as-

sumption, we slightly extend the SP model by allowing the quota to be stochastically

determined. Specifically, we add some randomness to the quota, i.e.,

Q̂ij = bQ+ ς, ς˜N(0, 1)

where is the quota level for politically organized subindustries ij. Using simulated

data from this model (the modified SP model), we estimate equations (3) and (4)
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again. The quantile regression results are presented in columns 1 and 2 of Table 5.

The coefficients on Z are found to be zero at lower quantiles, and thereafter decrease

with quantile, which is consistent with the results of the actual data. A similar

pattern is observed for the IV quantile regression (Table 6 Column 1 and 2). It is

also noteworthy that the size of β’s is by and large similar with that obtained from

the actual data with one instrument (Table 4).

The results overall suggest that the feature of the SP model is more consistent

with the actual data than the PFS model. The intuition behind the negative coef-

ficient estimate of the SP model is simple. A surge in imports, which increases the

import penetration ratio, tends to result in the quota being binding, which corre-

sponds to an increase in the NTB coverage ratio. Hence, the negative relationship is

observed between the inverse import penetration ratio and the NTB coverage ratio.

7. Conclusion

In this paper, we proposed a new test of the PFS model that does not require data

on political organizations. The test is based on a certain prediction of the PFS

model which has not been explored in the literature: given that industries with

higher protection measures are more likely to be politically organized, the effect

of the inverse import penetration ratio on protection at higher quantiles tends to
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reflect that of politically organized ones. We tested this prediction using the quantile

regression and IV quantile regression techniques. The findings are not supportive

of the PFS model, unlike those in past studies in the literature. Clearly, more

evidence is needed to conclude the empirical validity of the PFS. One fruitful research

avenue is to analyze different countries than United States. Such an exercise can be

done relatively easily, as our method does not require data on political organization.

Another research avenue is to use more disaggregated data so that our approach can

provide statistically more clear-cut evidence.

We also examined the validity of the SP model proposed in Imai et al. (2006).

Using simulated data arising from the SP model, we run the same regressions as in

those for the actual data. The estimated coefficients are more in line with those of

the actual data. The findings overall seem to suggest that the SP model is consistent

with the data while the PFS is not so.
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Table 1: Definition of the Variables

Variable IV Description

t
All NTB coverage ratios

at the 4-digit SITC level

z
Consumption in 1983

/Total Imports

INTERMTAR
Average tariff on

intermediate goods use

INTERMNTB
Average NTB coverage

of intermediate goods use

e 1

Absolute import elasticity after

correcting for measurement

errors

ln (e) 2

Log of absolute import elasticity

after correcting for measurement

errors

ln (HERF ) 3
Log of Hefindahl index

of firm concentration
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Table 1 Continued

ln (DOWNSTREAMHR) 4

Log of percentage of an

industry’s shipment used as

intermediate goods in others

ln(DOWN

−STREAMHERF )

5
Log of intermediate-goods

-output buyer concentration

SCIENTISTS 6
Fraction of employees classified

as scientists and engineers, 1982

MANAGERS 7 Fraction of employees classified as managerial,1982

UNSKILLED 8 Fraction of employees classified as unskilled,1982

CONC4 9 Four-firm concentration ratio, 1982

FIRMSCALE 10 Measure of industry scale: Value added per firm, 1982

TAR 11 U.S. post-Tokyo round ad valorem tariffs (Ratio)

PERMELAST 12 Real exchange rate elasticity of imports

CROSSELI 13 Cross price elasticity of imports

(K/L)1 14 Capital-Labor ratio, food processing

(K/L)2 15 Capital-Labor ratio, resource intensive

(K/L)3 16 Capital-Labor ratio, general manufacturing

(K/L)4 17 Capital-Labor ratio, capital intensive
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Table 2: Quantile Regression8

(QT (τ |Zj)= α (τ)+β (τ)Zj/10000)

(1) (2)

τ (quantile) α(τ) β(τ) α(τ) β(τ)

0.1 0.000 (0.004) 0.000 (0.056) 0.000 (0.013) 0.000 (0.060)

0.2 0.000 (0.005) 0.000 (0.079) 0.000 (0.017) 0.000 (0.080)

0.3 0.000 (0.006) 0.000 (0.091) −0.026 (0.014) −0.099 (0.153)

0.4 0.000 (0.006) 0.000 (0.097) −0.029 (0.014) −0.020 (0.092)

0.5 0.002 (0.006) −0.003 (0.099) −0.026 (0.014) −0.032 (0.094)

0.6 0.028 (0.006) −0.046 (0.098) −0.053 (0.024) −0.082 (0.093)

0.7 0.077 (0.010) −0.126 (0.095) −0.044 (0.017) −0.125 (0.090)

0.8 0.157 (0.026) −0.258 (0.094) −0.046 (0.018) −0.145 (0.086)

0.9 0.308 (0.040) −0.505 (0.089) −0.001 (0.021) −0.225 (0.075)

GB Controls No Yes

8Note: This table provide the estimation results of equation (3). Standard errors are in paren-
these. “GB Controls” indicate whether INTERMTAR and INTERMNTB are controlled for.
For the definition of these variables, see Table 1.

28



Table 3.1: IV Quantile Regression9

τ α(τ) β(τ) α(τ) β(τ)

0.1 0.000 (0.003) 0.000 (0.407) 0.000 (0.002) 0.000 (0.270)

0.2 0.000 (0.012) 0.000 (0.402) 0.000 (0.011) 0.000 (0.369)

0.3 −0.025 (0.011) −0.370 (0.357) −0.026 (0.011) −0.370 (0.287)

0.4 −0.028 (0.009) −0.200 (0.621) −0.029 (0.009) −0.200 (0.421)

0.5 −0.031 (0.023) −0.270 (1.395) −0.026 (0.023) −0.270 (1.091)

0.6 −0.053 (0.023) −0.080 (2.153) −0.053 (0.024) −0.080 (1.184)

0.7 −0.044 (0.015) −0.130 (2.403) −0.044 (0.014) −0.130 (1.611)

0.8 −0.046 (0.016) 0.020 (2.722) −0.046 (0.014) 0.020 (1.826)

0.9 −0.002 (0.044) −0.230 (3.572) −0.001 (0.042) −0.230 (3.383)

GB Controls Yes Yes

K/L No No

Instruments Set 1 Set 2

9Note: This table provide the estimation results of equation (4). Standard errors are in paren-
these. They are calculated by 200 bootstrap resampling. “GB Controls” and “K/L” indicate
whether INTERMTAR and INTERMNTB are controled for and whether (K/L)i, (i =1,2,3,4) are
controled for, respectively. “Instruments” indicates which variables are used as instrumental vari-
ables. “Set 1” include IV1-17, their quadratic terms, and the quadratic terms of GB controls. “Set
2” include “Set 1” plus the interaction terms involving IV1. For the definition of these variables,
see Table 1.
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Table 3.2 IV Quantile Regression

τ α(τ) β(τ) α(τ) β(τ)

0.1 0.000 (0.013) 0.000 (0.592) 0.000 (0.013) 0.000 (0.582)

0.2 −0.037 (0.018) −0.050 (0.496) −0.036 (0.017) −0.110 (0.944)

0.3 −0.037 (0.012) −0.050 (0.391) −0.036 (0.010) −0.190 (0.338)

0.4 −0.060 (0.017) −0.020 (0.798) −0.043 (0.017) −0.140 (0.359)

0.5 −0.043 (0.030) −0.250 (1.241) −0.060 (0.033) −0.250 (0.828)

0.6 −0.100 (0.033) −0.540 (2.085) −0.103 (0.035) −0.270 (1.602)

0.7 −0.080 (0.028) −0.120 (2.388) −0.080 (0.031) −0.120 (2.031)

0.8 −0.059 (0.022) −0.160 (2.794) −0.059 (0.024) −0.160 (2.387)

0.9 −0.037 (0.054) −0.250 (3.077) −0.070 (0.064) 4.190 (3.444)

GB Controls Yes Yes

K/L Yes Yes

Instruments Set 1 Set 2
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Table 4: IV Quantile Regression 10

τ α(τ) β(τ) α(τ) β(τ)

0.1 0.000 (0.013) 0.000 (0.566) 0.000 (0.017) 0.000 (0.667)

0.2 0.000 (0.017) 0.000 (0.755) −0.040 (0.037) 0.690 (5.422)

0.3 −0.018 (0.047) −4.270 (15.28) −0.042 (0.061) 3.340 (14.78)

0.4 −0.024 (0.033) 2.290 (10.25) −0.034 (0.033) −0.270 (4.210)

0.5 −0.027 (0.018) −0.140 (1.205) −0.042 (0.060) −2.910 (13.43)

0.6 −0.032 (0.034) −4.740 (10.23) −0.070 (0.076) −6.210 (18.40)

0.7 −0.043 (0.027) −3.890 (7.039) −0.060 (0.043) −3.400 (8.382)

0.8 −0.040 (0.022) −2.910 (4.023) −0.057 (0.064) −7.380 (15.69)

0.9 0.111 (0.047) −9.590 (8.541) 0.089 (0.114) −10.53 (21.70)

GB Controls Yes Yes

K/L No Yes

Instruments Scientists Scientists

10GB Controled for,with strong instruments only Note: This table provide the estimation results
of equation (4). Standard errors are in parenthese. They are calculated by 200 bootstrap resam-
pling. Both INTERMTAR and INTERMNTB are controled for. “K/L” indicate whether (K/L)i, (i
=1,2,3,4) are controled for. “Instruments” indicates which variables are used as instrumental vari-
ables. “Set 1” include IV1-17, their quadratic terms, and the quadratic terms of GB controls. “Set
2” include “Set 1” plus the interaction terms involving IV1. For the definition of these variables,
see Table 1.
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Table 4 Continued

τ α(τ) β(τ) α(τ) β(τ)

0.1 0.000 (0.014) 0.000 (0.878) 0.000 (0.018) 0.000 (0.744)

0.2 0.000 (0.018) 0.000 (1.171) −0.038 (0.020) 0.000 (0.958)

0.3 −0.030 (0.025) 0.870 (4.928) −0.043 (0.033) 0.440 (3.955)

0.4 −0.032 (0.024) −0.600 (4.548) −0.043 (0.024) −0.010 (1.162)

0.5 −0.037 (0.026) −1.300 (6.201) −0.055 (0.035) −0.840 (5.087)

0.6 −0.037 (0.033) −4.370 (10.02) −0.078 (0.047) −3.290 (10.04)

0.7 −0.040 (0.033) −5.350 (9.584) −0.047 (0.072) −6.680 (16.39)

0.8 −0.002 (0.045) −9.450 (11.36) 0.053 (0.094) −12.89 (18.19)

0.9 0.098 (0.046) −8.690 (8.081) 0.095 (0.069) −12.14 (10.84)

GB Controls Yes Yes

K/L No Yes

Instruments Managers Managers
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Table 4 Continued

τ α(τ) β(τ) α(τ) β(τ)

0.1 0.000 (0.013) 0.000 (0.687) 0.000 (0.017) 0.000 (0.713)

0.2 0.000 (0.017) 0.000 (0.916) −0.029 (0.087) −7.490 (23.21)

0.3 −0.023 (0.043) −4.070 (12.70) −0.034 (0.046) −2.270 (8.778)

0.4 −0.027 (0.032) −2.570 (8.367) −0.041 (0.035) −0.780 (4.799)

0.5 −0.038 (0.024) −1.260 (5.271) −0.057 (0.036) −1.570 (5.868)

0.6 −0.051 (0.024) −0.510 (7.201) −0.077 (0.041) −4.040 (8.927)

0.7 −0.041 (0.038) −7.720 (11.80) −0.060 (0.043) −3.550 (10.07)

0.8 −0.031 (0.031) −5.280 (8.244) −0.054 (0.048) −6.450 (10.61)

0.9 0.098 (0.053) −8.690 (11.19) 0.087 (0.092) −7.870 (15.12)

GB Controls Yes Yes

K/L No Yes

Instruments CROSSELI CROSSELI
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Table 4 Continued

τ α(τ) β(τ) α(τ) β(τ)

0.1 0.000 (0.004) 0.000 (0.857) 0.000 (0.014) 0.000 (1.054)

0.2 0.000 (0.013) 0.000 (2.763) −0.027 (0.012) −11.90 (4.915)

0.3 −0.018 (0.043) −17.81 (5.865) −0.032 (0.012) −4.810 (4.567)

0.4 −0.021 (0.015) −7.160 (4.612) −0.036 (0.019) −4.740 (4.228)

0.5 −0.019 (0.025) −7.180 (5.405) −0.040 (0.037) −8.320 (5.529)

0.6 −0.033 (0.023) −8.500 (5.132) −0.075 (0.039) −4.150 (4.335)

0.7 −0.043 (0.020) −3.890 (3.976) −0.056 (0.037) −3.610 (3.873)

0.8 −0.029 (0.037) −4.970 (4.058) −0.057 (0.060) −7.360 (4.680)

0.9 0.079 (0.070) −5.780 (4.700) 0.090 (0.113) −10.90 (5.084)

GB Controls Yes Yes

K/L No Yes

Instruments All 3 IV’s All 3 IV’s
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Table 5: Quantile Regression Estimates of Surge Protection Model

SP Modified SP

τ α(τ) β(τ) α(τ) β(τ)

0.1 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)

0.2 0.000 (0.000) 0.000 (0.091) 0.000 (0.000) 0.000 (0.030)

0.3 0.000 (0.006) 0.000 (2.658) 0.000 (0.002) −0.045 (0.696)

0.4 0.020 (0.066) −6.672 (5.798) 0.006 (0.006) −1.973 (1.985)

0.5 0.042 (0.007) −11.333 (2.641) 0.020 (0.006) −5.125 (1.759)

0.6 0.044 (0.001) −9.615 (1.618) 0.033 (0.006) −6.686 (1.721)

0.7 0.046 (0.001) −7.841 (1.479) 0.049 (0.006) −7.854 (2.022)

0.8 0.046 (0.000) −6.076 (1.388) 0.072 (0.008) −8.666 (2.469)

0.9 0.047 (0.000) −4.276 (1.186) 0.111 (0.013) −9.214 (3.103)
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Table 6: Quantile IV Regression Estimates of Surge Protection Model

SP Modified SP

τ α(τ) β(τ) α(τ) β(τ)

0.1 0.000 (0.001) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)

0.2 0.004 (0.008) −2.000 (4.755) 0.000 (0.031) −0.093 (0.009)

0.3 0.031 (0.015) −15.330 (7.286) 0.000 (0.002) −2.931 (0.292)

0.4 0.042 (0.004) −17.000 (2.153) 0.006 (0.670) −7.210 (0.718)

0.5 0.043 (0.001) −14.240 (1.613) 0.018 (1.921) −8.934 (0.891)

0.6 0.044 (0.000) −11.540 (1.349) 0.038 (1.836) −9.866 (0.985)

0.7 0.044 (0.000) −9.450 (1.141) 0.053 (2.162) −10.832 (1.082)

0.8 0.045 (0.000) −7.430 (1.138) 0.073 (2.618) −11.078 (1.109)

0.9 0.045 (0.003) −5.390 (1.074) 0.110 (3.342) −10.531 (1.078)

8. Appendix 1A: Quantile Regression

Let Tj =
tj
1+tj

and Zj =
zj
ej
.

Proposition 1. (Quantile Regression) Assume that (1) Zjis bounded below by

a positive number, i.e. there exists Z > 0 such that Zj ≥ Z, (2) � has a smooth
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density function which has support that is bounded from above and below, (3) � is

independent of both Zj and and Ij, and (4) δ > 0. Then, for τ sufficiently close to

1, τ quantile conditional on Zj can be expressed as

QT (τ |Zj) = F−1� (τ 0) + (γ + δ)Zj (8.1)

where

τ 0 =
τ − P (Ij = 0)

P (Ij = 1)
. (8.2)

Proof. For any 0 < τ < 1, for any T > 0,

P
¡
Tj ≤ T |Zj

¢
= P

¡
�j ≤ T − γZj

¢
P (Ij = 0) + P

¡
�j ≤ T − (γ + δ)Zj

¢
P (Ij = 1) .

(8.3)

Let

T = F−1� (τ 0) + (γ + δ)Zj (8.4)

where

τ 0 =
τ − P (Ij = 0)

P (Ij = 1)
, or τ = P (Ij = 0) + τ 0P (Ij = 1) . (8.5)
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From equation (8.5), we can see that for τ % 1, τ 0 % 1 as well. Hence, for τ

sufficiently close to 1, we have τ 0 close enough to 1 such that

F−1� (τ 0) + δZj ≥ F−1� (τ 0) + δZ > F−1� (1) .

Hence,

T = F−1� (τ 0) + (γ + δ)Zj > F−1� (1) + γZj

and

P
¡
�j ≤ T − γZj

¢ ≥ P
¡
�j ≤ F−1� (1)

¢
= 1

which results in

P
¡
�j ≤ T − γZj

¢
= 1. (8.6)

Substituting equations (8.4), (8.5), and (8.6) into (8.3), we obtain

P
¡
Tj ≤ T |Zj

¢
= P (Ij = 0) + P

¡
�j ≤ F−1� (τ 0)

¢
P (Ij = 1)

= P (Ij = 0) + τ − P (Ij = 0) = τ .

Therefore, for τ sufficiently close to 1,

QT (τ |Zj) = T = F−1� (τ 0) + (γ + δ)Zj.
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We make two remarks on the assumptions. First, we assume that � has bounded

support (assumption 2). This assumption is reasonable since the protection measure

is usually derived from the NTB coverage ratio (e.g., Goldberg and Maggi (1999),

Gawande and Bandyopadhyay (2000)) and therefore it is clearly bounded above and

below. Second, we assume that � is independent of both Zj and and Ij (assumption

3). This is rather a strong assumption and will be relaxed when quantile IV’s are

discussed.

When we introduce IV’s we show that β (τ)→ (γ + δ) > 0 as τ % 1.

Assume the model is as follows:

T ∗j = γZj + �j if Ij = 0

T ∗j = (γ + δ)Zj + �j if Ij = 1

where

Zj = g (Wj, vj) .
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Wj is an instrument vector and vj is a random variable independent of Wj. Let us

define uj as follows:

�j = E [�j|vj] + uj, uj ≡ �j −E [�j|vj] ,

where uj is assumed to be i.i.d. distributed. Furthermore,

Tj = max
©
T ∗j , 0

ª
.

Then, for Ij = 0 the model satisfies the assumptions A1-A5 of Chernozhukov and

Hansen (2006). Similarly for Ij = 1. Therefore, from Theorem 1 of Chernozhukov

and Hansen (2006), it follows that

P
¡
T ≤ F−1� (τ) + γZj|Wj

¢
= τ for Ij = 0,

and

P
¡
T ≤ F−1� (τ) + (γ + δ)Zj|Wj

¢
= τ for Ij = 1.

Proposition 2. (Quantile IV) Assume that Zj is bounded below by a positive

40



number, i.e. there exists Z > 0 such that Zj ≥ Z. Then, for τ sufficiently close to 1,

P
¡
T ≤ F−1� (τ 0) + (γ + δ)Zj|Wj

¢
= τ ,

where τ 0 = τ−P (Ij=0)
P (Ij=1)

.

Proof.

τ 0 =
τ − P (Ij = 0)

P (Ij = 1)
, or τ = P (Ij = 0) + τ 0P (Ij = 1) .

Then,

P
¡
Tj ≤ F−1� (τ 0) + (γ + δ)Zj|Wj

¢
= P

¡
�j + γZj ≤ F−1� (τ 0) + (γ + δ)Zj|Wj

¢
P (Ij = 0)

+P
¡
�j + (γ + δ)Zj ≤ F−1� (τ 0) + (γ + δ)Zj|Wj

¢
P (Ij = 1)

= P
¡
�j ≤ F−1� (τ 0) + δZj|Wj

¢
P (Ij = 0) + P

¡
�j ≤ F−1� (τ 0) |Wj

¢
P (Ij = 1)

= P
¡
�j ≤ F−1� (τ 0) + δZj|Wj

¢
P (Ij = 0) + τ 0P (Ij = 1)

From the definition of τ 0, for τ % 1, τ 0 % 1 as well. Hence, for τ sufficiently close to

1, we have τ 0 close enough to 1 such that

F−1� (τ 0) + δZ > F−1� (1) .
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Hence,

P
¡
�j ≤ F−1� (τ 0) + δZj|Wj

¢
= 1.

Therefore,

P
¡
Tj ≤ F−1� (τ 0) + (γ + δ)Zj|Wj

¢
= P (Ij = 0) + τ 0P (Ij = 1) = τ .

It follows that for τ sufficiently close to 1,

P
¡
T ≤ F−1� (τ 0) + (γ + δ)Zj|Wj

¢
= τ .

9. Appendix 2: Surge Protection Model.

In what follows, we detail the SP model. Our procedure follows Imai et. al. (2006)

and is explained in Appendix 2. First, consider the domestic and foreign goods

equilibrium without quota. For each industry i and subindustry j, there are two

types of goods: domestic and foreign goods. To make matters simple, we assume

that each good’s demand depends only on its own price and random shocks and that

home is the only source of demand. Let xHij be the equilibrium quantity of home
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goods in industry i subindustry j, and let pHij be its equilibrium price.

The equilibrium is described by the demand and supply equations. The demand

for industry i subindustry j of the home good depends on a constant, the price of

the good, and random terms as follows:

lnxHd
ij = ahd1 + ahd2 ln p

H
ij + xhdi + uhdij.

Similarly, the supply of the same good follows the supply equation:

lnxHs
ij = ahs1 + ahs2 ln p

H
ij + xhsi + uhsij.

The random terms xhdi and xhsi are industry specific demand and supply shocks,

and hence, common across all subindustries, while uhdij and uhsij are subindustry

specific demand and supply shocks and are idiosyncratic to each subindustry. All

shocks are assumed to be i.i.d. with mean zero normal distributions with standard

errors σxhd, σxhs, σuhd, and σuhs, respectively. Equilibrium satisfies

xHd
ij = xHs

ij = xHij .
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Similarly, let import demand be given by

lnxMd
ij = amd1 + amd2 ln p

M
ij + xmdi + umdij

and supply by

lnxMs
ij = ams1 + ams2 ln p

M
ij + xmsi + umsij.

As before, the random terms xmdi, xmsi, umdij, and umsij are industry and subindus-

try specific demand and supply shocks. They are distributed i.i.d. normally with

means zero and standard errors σxmd, σxms, σumd, and σums respectively. Equilibrium

satisfies

xMd
ij = xMs

ij = xMe
ij .

We assume that there are nt = 250 industries and each industry has nj = 6

subindustries. Each subindustry ij is politically organized with probability Poi.

We simulate the output and prices of each subindustry by first drawing nt industry

demand and supply shocks xmdi and xmsi for i = 1, ..., nt and for each industry i,

drawing ns subindustry demand and supply shocks umdij and umsij for j = 1, ..., ns.

Then, given these shocks and parameters of the demand and supply equations, we

compute the equilibrium price and quantities for each subindustry ij.
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We then simulate the political organization for each subindustry and introduce

a uniform quota level Q̂ for all politically organized subindustries. That is, the

quota becomes binding in subindustry ij if the equilibrium output for the foreign

goods exceeds Q̂. Let dqij be the indicator for a binding quota. That is, if x
Me
ij for

subindustry ij exceeds Q̂, then actual imports, xMij , equal Q̂ and d
q
ij = 1. Otherwise,

xMij = xMe
ij and dqij = 0. One way of interpreting this is that there is a trigger level of

imports, Q̂, above which the relevant agency would restrict imports if asked, but only

politically organized agencies ask for such protection. In other words, that there are

provisions for preventing a surge of imports, but only organized subindustries can

actually make use of these provisions perhaps because they can overcome the usual

free rider problems.

Next we aggregate subindustry output to the industry level. Total industry equi-

librium output is computed as

XH
i =

njX
j=1

xHij

for home goods and

XM
i =

njX
j=1

xMij

for foreign goods.

We then generate the variables that we use in the estimation as follows. First,
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we compute the coverage ratio Ci of industry i to be:

Ci =

njP
j=1

xMij d
q
ij

XM
i

.

That is, coverage ratio is the fraction of industry output i where quota is binding.

Furthermore, the inverse import penetration ratio, zi, for industry i is the ratio of

domestic production to imports or

XH
i +XM

i

XM
i

= 1 + zi.

We also derive the political organization dummy of industry i, Ii, as:

Ii = 1 if

njX
j=1

Iij >
nj
2

= 0 otherwise.

10. References

Bombardini, M. (2005) “Firm Heterogeneity and Lobby Participation.” Mimeo.

University of British Columbia.

46



Cadot Olivier, Jean-Marie Grether and Marcelo Olarreaga (2006) “Endoge-

nous Tariffs in a Common-Agency Model: A New Empirical Approach Applied

to India.” mimeo. World Bank

Chernozhukov, V. and Hansen, C. (2006) “Instrumental Quantile Regression

Inference for Structural and Treatment Effect Models,” Journal of Economet-

rics, Vol. 132, pp. 491− 525.

Ederington Josh and Jenny Minier (2005) “Reconsidering the Empirical Evi-

dence on the Grossman-Helpman Model of Endogenous Protection” University

of Kentucky Working Paper.

Gawande Kishore and Usree Bandyopadhyay (2000) “Is Protection for Sale?

Evidence on the Grossman-Helpman Theory of Endogenous Protection.” Re-

view of Economics and Statistics, Vol. 82, No. 1, pp. 139− 152.

Goldberg Pinelopi K. and Giovanni Maggi (1999) “Protection for Sale: An

Empirical Investigation.” American Economic Review, Vol. 89, No. 5, pp.

1135− 1155.

Grossman Gene and Elhanan Helpman (1994) “Protection for Sale.” Ameri-

can Economic Review, Vol. 84, No. 4, pp. 833− 50.

47



Imai Susumu, Hajime Katayama, and Kala Krishna (2006)“Protection for Sale

or Surge Protection?” NBER Working Paper No. 12258.

Matschke Xenia (2006) “Costly Revenue-Raising and the Case for Favoring Import-

Competing Industries” University of Connecticut Working Paper.

Shiells, C.R., Stern, R.M. and Deardorff, A.V. (1985)“Estimates of the Elas-

ticities of Substitution between Imports and HomeGoods for the United States,”

Weltwirtschaftliches Archiv, 122, pp. 497− 519.

48




