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Abstract

We use mechanism design to study efficient intertemporal payment arrangements when the

ability of agents to perform certain welfare-improving transactions is subject to random and

unobservable shocks. Efficiency is achieved via a payment system that assigns balances to

participants, adjusts them based on the histories of transactions, and periodically resets

them through settlement. Our analysis has several implications for the design of actual

payment systems. Efficiency requires that, in order to overcome informational frictions,

agents participating in transactions that do not involve monitoring frictions subsidize those

that are subject to such frictions. Optimal settlement frequency should balance liquidity

costs from settlement against the need to provide intertemporal incentives. Settlement costs

must be borne by agents for whom the incentives to participate in the system are highest.

Finally, an increase in settlement costs implies that, in order to counter a higher exposure

to default, the frequency of settlement must increase and, at the same time, the volume of

transactions must decrease.

Keywords: Payment Systems, Frequency of Settlement, Liquidity Costs, Subsidization

across Transactions
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1 Introduction

One of the features of the economy that Walrasian models abstract from concerns the in-

stitutions through which payments for goods and services take place: the payment system

(PS). This results in the need for a framework that can guide policy makers in the efficient

design of such systems. This paper builds such a framework using mechanism design.

Our approach involves three main ingredients. First, it is explicitly dynamic, emphasizing

the role of intertemporal incentives. This is important since actual payment systems almost

always involve repeated interactions between the system and its participants.1 For example,

the PS might need to make use of intertemporal incentives in order to explore the agents’

willingness to participate and carry out transactions efficiently. Second, we emphasize the

role of private information.2 Actual PS design is subject to a private information problem

since whether or not participants can perform certain transactions is not directly observable.

For example, within a retail PS, the ability of a consumer to make a credit-card payment

might not be observable. Similarly, within a wholesale system, banks might have private

information about their ability to meet certain payment obligations. The third distinguishing

feature of our analysis is that, unlike most of the literature in mechanism design, since we

model the entire payment system, rather than a particular transaction or participant in

isolation, we must take into consideration general equilibrium effects.

We employ a version of the search model that Kiyotaki and Wright (1989, 1993) devel-

oped in order to study monetary exchange. In contrast to the monetary theory approach,

however, our model involves a “cashless” environment. This framework is appropriate for

1The existing literature on PS is almost exclusively static (see Kahn and Roberds (1998, 2001) for two

prominent papers). Kahn (2006) provides an excellent summary of the current literature and outlines some

of the main open questions in PS research.
2Hence, our work is related to the dynamic contracting literature (see Green (1987), and Spear and

Srivastava (1987), among others). Our analysis also relates to recent work by Kocherlakota (2005), who

extends the model of Mirrlees (1971) to a dynamic economy. The payment system in our model plays an

analogous role to that of the tax authority in Kocherlakota (2005): it explores intertemporal incentives in

order to decentralize efficient allocations under private information.
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our objective for several reasons. First, it involves an explicit role for transactions, and it

naturally incorporates frictions such as private information and lack of commitment. Second,

the random matching shocks that agents are subject to in this model are a tractable way of

modelling random needs for liquidity. This is important in actual PS where participants are

subject to random needs for making payments to one another. Third, the model is consis-

tent with the fact that actual transactions are bilateral and, frequently, subject to private

information. Finally, this setup naturally lends itself to mechanism design.

We will assume that each transaction involves an agent that enjoys an instantaneous

benefit: the “consumer,” and an agent that suffers an instantaneous cost: the “producer.”3

In the presence of private information about the ability of agents to produce or consume,

the rules imposed by the PS must provide the right incentives for its participants to be

part of the arrangement and to reveal their information truthfully. The PS in our model

accomplishes this by assigning individual “balances” and by specifying rules on how these

balances are updated given the participants’ trading histories. Furthermore, the PS requires

that balances are periodically “settled”.4 This implies that participants are required to

periodically “reset” their balances through centralized trading in what we will model as a

Walrasian market. Optimal PS design involves providing incentives so that the efficient

volume of transactions is carried out.

We use our framework to study two issues pertinent to the design of actual PS. The first

concerns the structure of optimal balance adjustments in transactions between settlement

periods. Our model shows that an optimal PS must shift the costs of providing incentives

from the transactions stage to the settlement stage. Producers in the transactions stage

3There are several ways to rationalize such costs and gains. In a wholesale PS, for example, a payer bank

might need to incur a cost in order to make a payment, while the payee enjoys a direct benefit from receiving

the payment. In the context of a retail PS, the instantaneous benefit is usually enjoyed by a consumer who

receives a good or service, while the cost is borne by its supplier. To fix ideas, we will hence refer to the two

agents in the transaction as the “consumer” and the “producer,” respectively.
4In a sequel to this paper, Koeppl, Monnet, and Temzelides (2006) demonstrate that settlement is a

necessary feature of optimal payment systems.
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are rewarded through balance increases, while consumers are penalized through balance

decreases. These rewards and costs materialize when participants equalize their balances

during settlement. One case of particular interest arises when some of the transactions are

subject to monitoring, in which case the ability of the two parties to perform a transaction is

observable to the PS.5 In this case, we demonstrate that an optimal PS will “tax” monitored

transactions in order to “subsidize” the costs of providing incentives in transactions that are

subject to private information.

The second issue we study involves the frequency of settlement when there are oper-

ational costs associated with the settlement stage. Optimal settlement frequency implies

evaluating such operational costs against the constraints arising from the need to provide in-

tertemporal incentives. We discuss the optimal allocation of settlement costs. In our model,

such costs must be borne by those participants for whom some participation constraints are

slack. More generally, our approach provides a novel prescription for the optimal sharing

of costs associated with the operation of a PS (an example of which could be interchange

fees for credit-card use), across PS participants. In contrast to the standard arguments that

emphasize the role of competition, our approach highlights the role of default risk.

Settlement frequency is a key variable in actual PS design. High settlement frequency,

such as in real time gross settlement systems, implies high liquidity costs. On the other hand,

less frequent settlement, such as in net settlement systems, might lead to large net exposures

and to an increased probability of default by participants that have built high negative

balances. Currently, most actual large-value PS involve immediate settlement. As a response

to increased liquidity costs, several PS offer short-term credit facilities, at the expense of

potentially re-introducing default risk. We argue that optimal PS design should explore the

trade-off between minimizing liquidity costs and dealing with default exposures. A strength

5For example, in some wholesale PS, banks interact mostly, but not exclusively, through a local network.

Such networks, which are often run by large correspondent banks, might have detailed information about

their participants. The same information, however, might not be available to the PS when a bank transacts

outside its network. Similarly, in the context of retail PS, a consumer’s credit card history might be readily

available within a credit card network, but not necessarily within other networks.
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of our approach is that these two costs have a clear counterpart in the model. The liquidity

costs in our model are represented by the fixed costs of settling transactions. The default

exposure arises from the possibility of a long sequence of unfavorable balance adjustments.

This allows us to study this trade-off directly from fundamentals. We demonstrate that,

in an optimal PS, an increase in liquidity costs results in an increase in the frequency of

settlement and a decreased volume of transactions.

The paper proceeds as follows. Section 2 introduces the model and discusses the concept

of a PS. Sections 3 and 4 discuss optimal balance adjustments, the optimal frequency of

settlement, and the distribution of settlement costs. Section 5 offers a brief conclusion and

discusses some of the many possible directions for future research. The Appendix introduces

a continuous-time extension of the model and contains most of the proofs.

2 A Dynamic Model of Payments

2.1 The Environment

Time, t, is discrete and measured over the natural numbers. There is a [0, 1] continuum of

infinitely lived agents. The common discount factor is β ∈ (0, 1). We assume a periodic

pattern of length n, in which n transactions stages, each consisting of exactly one bilateral

meeting for every agent, is followed by a round of centralized trading (termed settlement

stage) at the end of the last period.6 Discounting applies after each period, except between

the last transactions stage and the settlement stage. We describe the transactions stage and

the settlement stage in turns.

During the transactions stage, agents are randomly matched bilaterally in each period.

Randomness in the transactions needs is captured by assuming that in each period an agent

can trade with the agent he is matched with as a producer or as a consumer, each with

6Lagos and Wright (2006) introduced similar periodic trading patterns in monetary models. The contin-

uum assumption precludes aggregate risk. Issues related to optimal PS design in the presence of aggregate

risk are of great interest, but beyond the scope of this paper.
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probability γ. Thus, in each period during the transactions stage, an agent is in a trade

meeting with probability 2γ. Agents cannot pre-commit to produce in such meetings. With

probability (1− 2γ), an agent is in a no-trade meeting. Production in the transactions stage

is perfectly divisible, and the produced goods are non-storable. Producing q units implies

disutility −c(q), while consumption of q units gives utility u(q) where q ∈ R+. We assume

that c′(q) > 0, c′′(q) ≥ 0, limq→0 c
′(q) = 0, and limq→∞ c′(q) = ∞. In addition, u′(q) > 0,

u′′(q) ≤ 0, limq→0 u
′(q) = ∞, and limq→∞ u′(q) = 0. Thus, there exists a unique q∗ such

that u′(q∗) = c′(q∗). The quantity q∗ gives the efficient level of output, in the sense that it

uniquely maximizes the joint surplus created in a transaction. Since we concentrate on this

quantity for most of the paper, we will simplify notation by letting u denote u(q∗) and c

denote c(q∗).7

The information structure during the transactions stage is as follows. Whether or not

a trade meeting has occurred is always observable to the two agents in the meeting. This,

together with the identities of the two agents, is also publicly observable with probability α.

On the other hand, with probability 1− α, neither the identities of the two agents, nor the

type of their meeting is observable by anyone outside the meeting.8 While the opportunity to

trade is not observable in non-monitored meetings, we assume that, should they take place,

production and consumption are always verifiable.

During the settlement stage, each agent can produce and consume a general non-storable

good. No other good can be produced or consumed during this stage. Producing ` units of

the general good implies disutility −`, while consuming ` units gives utility `. Thus trading

this good does not directly increase welfare. The settlement stage is frictionless in the sense

7We reiterate that what is important is that each transaction involves an agent that enjoys an instan-

taneous benefit and an agent that suffers an instantaneous cost. In a wholesale system these costs and

benefits will typically be associated with costly payments of size q made by one participant to the other.

The functions c and u provide a reduced-form way of capturing such costs and benefits.
8This information structure can be interpreted as the result of the agents being divided into two symmetric

networks. Each agent needs to transact within his network with probability α, and with another participant

outside his network with probability 1−α. In this interpretation, “within-network” meetings are monitored,

while during “inter-network” meetings the ability to transact is private information of the trading partners.
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that, just as in Walrasian markets, agents interact in a centralized fashion, and there are no

informational frictions.

2.2 Payment Systems

An allocation for the above environment specifies the quantity produced and consumed

during bilateral transactions, as well as the production and consumption of the general

good for each agent during settlement. In general, allocations may well exhibit history-

dependence. In this paper we largely study whether efficient allocations can be decentralized

through a Payment System. A PS keeps a record of past transactions by assigning balances

to its participants. In addition, the PS instructs participants to produce or consume certain

quantities in trade meetings and specifies rules for how the balances are updated given the

participants’ current transactions. Finally, during the settlement stage, participants trade

their balances against the general good in order to achieve a particular starting balance for

the next transactions stage. Agents with low balances can then increase their balances by

producing, while those with high balances can reduce them by purchasing consumption of

the general good. Since we model the settlement stage as a Walrasian market, the price, p,

at which balances are traded, is determined by market clearing conditions. We make three

additional assumptions. First, we restrict attention to allocations that are stationary and

symmetric across agents.9 Second, we assume that the PS can permanently exclude from all

future transactions agents that do not produce or consume the prescribed amount during

monitored transactions or do not settle their balances. Finally, we rule out short-sales of

balances in the Walrasian market. Later we will assume that each settlement stage involves

an aggregate (average) resource cost δ > 0 and study the implications of this cost for optimal

settlement frequency. For simplicity, in this section we first formulate the general framework

assuming that δ = 0.

Formally, the PS keeps a record of all transactions. For any agent, in any given period,

9This is without loss of generality when, as is the case in most of the paper, the full-information-first-best

allocation is decentralized.
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t, this record is summarized by his balance, dt ∈ R. First, consider the problem of an agent

in the settlement stage at time t. Let Vt(dt, pt) denote his value function if he exits the

last bilateral meeting in the transactions stage with balance dt, given that the anticipated

price in the following settlement stage is pt. Let Etvt+1(d̂t,Ψt+1) denote the expected future

value of an agent who exits the settlement stage with balance d̂t, given that the resulting

distribution of balances is denoted by Ψt+1. The problem of the agent is then given by

Vt(dt, pt) = max
`t,bdt
−`+ βEtvt+1(d̂t,Ψt+1) (1)

subject to

ptd̂t = ptdt + `t (2)

d̂t ≥ min{0, dt}. (3)

In this problem we have imposed the constraint that agents cannot short sell their bal-

ances in the Walrasian market. Note that, given a price level pt, Vt is linear in balances, dt.
10

While it is not necessary for the results, linearity greatly simplifies our analysis.

We now turn to the problem faced by the participants during the transactions stage. In

each period, agents are bilaterally matched. In non-monitored meetings, the PS receives a

joint report from the agents in the match. Formally, the two agents, say i and j, each report

a number ηi, ηj ∈ {0, 1}. The agents’ identities become known to the system if and only if

ηiηj = 1. If either agent chooses 0, so that ηiηj = 0, the agents’ identities are not revealed

and the PS instructs them to exchange nothing. If both choose 1, they identify themselves

to the PS as being in a trade meeting. The potential producer is then instructed to produce

qt(dt, d
′
t,Ψt) for the potential consumer. Note that qt can depend on both participants’

balances as well as on the overall distribution of balances. In a monitored meeting, no such

reporting needs to occur since in that case the type of the meeting is observable to the PS.

Hence, the PS instructs people directly to trade a quantity q̄t(dt, d
′
t,Ψt). Again, this quantity

can depend on the balances of both participants as well as on the overall distribution.

Upon observing the reports, production, and consumption by every agent, the PS ad-

10This follows from an argument similar to that in Lagos and Wright (2005).

9



justs their balances. An adjustment, Xt(dt, d
′
t,Ψt), is added to an agent’s current balance,

conditional on his current trading history. Recall that an agent can be in a consumption,

a production, or a no-trade meeting. In addition, the meeting is either monitored or non-

monitored. This results in six possible adjustments for each transactions round which we

denote by {Lt, Kt, Bt, L̄t, K̄t, B̄t}. More precisely, Lt(Kt) is the adjustment for a participant

who consumes (produces), while Bt is the adjustment for a participant who does not trans-

act in a non-monitored meeting. The variables L̄t, K̄t, and B̄t are defined analogously for

monitored meetings. Balances are represented by real numbers not restricted in sign, while

production of goods during trade meetings is restricted to be positive.11 Agents may decide

to leave the PS at any point. In that case, we assume that they cannot be re-admitted and

that they receive a permanent future payoff that is normalized to zero. We can now formally

define a PS.12

Definition 1. A Payment System is an array

St(dt, d
′
t,Ψt) = {Lt, Kt, Bt, qt, L̄t, K̄t, B̄t, q̄t}, for all t.

We restrict attention to PS that are incentive feasible. We term a PS incentive feasible if

(i) all agents have an incentive to participate in each transaction as well as in the settlement

stage, (ii) all agents in non-monitored transactions truthfully reveal their type of meeting

they are in, and (iii) the market clears in each settlement stage. The last requirement implies

11To further clarify the information-related problem, the difficulty is that whether or not a trade meeting

has taken place is not always observable to the PS. Thus, any arrangement must rely on reports by the

agents about the type of the meeting that has taken place. The transaction protocol we have formulated for

non-monitored meetings obtains the following interpretation. Each participant in the system has access to

both a “card” and a “card-reading machine.” Agents can choose to identify themselves to the PS by having

their card read by their partner’s machine (ηi = ηj = 1). In that case, the system becomes aware that the

two agents are in a trading meeting. The balances of both parties are then updated given their reports and

the production/consumption that has taken place.
12Strictly speaking, a PS must also condition on whether an agent chooses to participate in the system or

not. For simplicity, we leave this indicator variable out of the formal definition of a PS.
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that, in each t that corresponds to a settlement stage,
∫

dt

(d̂t − dt)dΨt = 0. (4)

This, in turn, immediately implies that
∫
dt
ltdΨt = 0.13 To formulate incentive compatibility

(IC) and participation constraints (PC), we first describe the value functions of participants

during the transactions stage. Recall that there are n bilateral meetings (one in each period)

between settlement stages. To ease notation, we denote the current-period immediate return

in period t by f(Xt), where Xt ∈ {Lt, Kt, Bt, L̄t, K̄t, B̄t}. Thus, f (Lt) = u (qt), f (Kt) =

c (qt), and f (Bt) = 0. The adjustments for monitored meetings, L̄t, K̄t, and B̄t, are defined

similarly. If the last settlement stage occurred in period t, the value function during each

round s, s = 1, . . . , n− 1, of the current transactions stage is given by

Et+s−1[vt+s(dt+s−1,Ψt+s−1)]

=

∫

d′t+s

E[f(Xt+s) + βEt+s[vt+s+1(dt+s−1 +Xt+s,Ψt+s)]]dΨt+s−1, (5)

where E denotes the expectation over the type of meeting the agent will be in during the

current period.14 For the last period of the transactions stage, t+ n, we have

Et+n−1[vt+n(dt+n−1,Ψt+n−1)]

=

∫

d′t+n

E[f(Xt+n) + V (dt+n−1 + X̄t+n, pt+n)]dΨt+n−1. (6)

Since consumption and production are verifiable, agents can only misreport during a non-

monitored transaction by claiming that they are in a no-trade meeting. Assuming that the

last settlement stage occurred at time t, allocations are IC during each round s = 1, . . . , n−1

of the current transactions stage if in all non-monitored transactions we have

f(Xt+s) + βEt+s[vt+s+1(dt+s−1 +Xt+s,Ψt+s)] ≥
f(Bt+s) + βEt+s[vt+s+1(dt+s−1 +Bt+s,Ψt+s)],

(7)

13As discussed earlier, the settlement round does not generate welfare. It redistributes welfare in a way

that results in a “re-initialization” of the agents’ histories. For a detailed discussion on this issue, we refer

to Koeppl, Monnet and Temzelides (2006).
14For example, αγ gives the probability that the agent is engaged in a monitored production meeting. To

ease notation, we have suppressed the dependence of the PS on (dt+s, d′t+s,Ψt+s).
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where Xt+s ∈ {Kt+s, Lt+s, Bt+s}. Similarly, for s = n, IC requires that for all Xt+n,

f(Xt+n) + V (dt+n−1 +Xt+n, pt+n) ≥ f(Bt+n) + V (dt+n−1 +Bt+n, pt+n). (8)

Finally, PC require that agents have an incentive to remain in the PS during both the

transactions and the settlement stages. Thus, if the last settlement stage occurred at t, we

require

f(Xt+s) + βEt+s[vt+s+1(dt+s−1 +Xt+s,Ψt+s)] ≥ 0, (9)

for all Xt+s, and all s = 1, . . . , n− 1. Finally, for s = n we require

f(Xt+n) + V (dt+n−1 +Xt+n, pt+n) ≥ 0, (10)

for all Xt+n. The absence of short-sales implies that settlement involves a positive expected

lifetime payoff, independent of any balance adjustments. Otherwise, agents would default

on their obligations. Formally,

V (dt+n−1 +Xt+n, pt+n) ≥ 0. (11)

In most of the paper, we will concentrate on implementing the full-information-first-best

allocation, in which the efficient transaction level q∗ is exchanged in all trade meetings, both

monitored and non-monitored.15 We have the following.

Definition 2. A PS is optimal if it is incentive feasible and if it decentralizes the efficient

level of production, q∗, in all trade meetings.

To conclude this section, it is useful to specify two particular types of PS that we will

use extensively in what follows. A PS is simple if balance adjustments do not depend on the

agents’ current balances. A PS is simple and repeated (SRPS) if, in addition, it satisfies

Xt+s =
Xt+n

βn−s
, and (12)

Xt+kn = X, (13)

15Linear utility in the settlement stage implies that the utility from consuming any amount of the general

good equals the disutility to the producer. Hence, the efficient amount of the general good production is

indeterminate.
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where X ∈ {L,K,B, L̄, K̄, B̄}, s = 1, . . . , n, and k ∈ N. In the above expressions, t

represents the date of a settlement round. In words, adjusting for discounting, a repeated

PS imposes the same balance adjustments in each period of the transactions cycle. To

ease notation, we will drop the time index whenever possible. SRPS are convenient since

the linearity of V implies that, in any optimal SRPS, the incentive constraints for all s =

1, . . . , n−1 are fulfilled whenever those for s = n hold. In what follows, we restrict attention

to SRPS.

3 Optimal Balance Adjustments

In the previous section, we described an environment in which certain transactions are subject

to a private information problem. We introduced a payment system as a way to decentralize

incentive feasible allocations for that environment. In this section, we use this setup in

order to analyze some of the properties of optimal PS. We are particularly interested in

investigating how the PS can use monitored transactions in order to alleviate the incentive

problem in non-monitored transactions. To this end, we will first take the length of the

transactions stage, n, as given, and assume that there are no settlement costs (δ = 0). In

the next section we study the issue of optimal settlement frequency when δ > 0.

3.1 Perfect Monitoring

It is instructive to first discuss the case in which all transactions are perfectly monitored;

i.e., α = 1. This special case is convenient as it implies that there are no IC constraints.

Thus, incentive feasible allocations need to satisfy only market clearing in the settlement

stage and, of course, the PC. We will consider two optimal PS for this environment. First,

suppose that the PS sets all balance adjustments permanently equal to zero, and imposes a

“gift-giving” game in which agents are induced to produce in all trade meetings under the

threat of permanent exclusion in the case of a deviation. Since this PS does not rely on

any balance adjustments, there is never a need to trade balances in the settlement stage.
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Furthermore, agents have an incentive to participate if and only if

β

1− βγ(u− c) ≥ c, (14)

or, if the future expected discounted utility from staying in the PS is greater than the current

cost of producing the efficient quantity, c. Provided that the above participation constraint

holds, this PS is optimal.

Second, consider a PS which uses balance adjustments in order to shift all costs related

to incentive provision to the settlement stage. Denote the minimum balance adjustment in

any given period by Xmin
t = min{K̄t, L̄t, B̄t}. Normalize the required starting balance after

the settlement stage in period t to d̂t = 0.16 Agents that do not leave the settlement stage

with d̂t = 0, as well as those that do not exchange q∗ in a trade meeting, are permanently

excluded from the PS. Hence, in equilibrium, the distribution of balances, Ψt, at the end

of each settlement stage is degenerate, for all t. The only potentially binding PC are then

given by

V (d̂t +
n∑
s=1

Xmin
t+s , pt+n) ≥ 0, (15)

and

f(Xt+n) + V (d̂t +
n−1∑
s=1

Xmin
t+s +Xt+n, pt+n) ≥ 0. (16)

The first constraint implies that an agent chooses to settle and remain in the PS even under

the worst possible history of adjustments. The second constraint is the PC for agents in the

last transaction round, conditional on having had the worst balance adjustment until this

round. Such agents still need an incentive to carry out the transaction as they can always

avoid the cost f (Xt+n) by leaving the PS prior to the settlement stage. Finally, the PS must

satisfy the market clearing condition during settlement (4) with d̂t+n = 0; i.e.,

γpt

n∑
s=1

K̄t+s + γpt

n∑
s=1

L̄t+s + (1− 2γ)pt

n∑
s=1

B̄t+s = 0. (17)

16This implies that the minimum adjustment will be negative, while agents that produce are rewarded

with a positive adjustment.
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When we restrict the PS to be simple and repeated, we can use (12) and (13) to simplify

this market clearing condition to

γptK̄ + γptL̄+ (1− 2γ)ptB̄ = 0. (18)

Let p denote the (constant) equilibrium price in the settlement round. We then have the

following.

Proposition 3. Suppose that α = 1. If β
1−βγ(u−c) ≥ c, the PS with no balance adjustments

(K̄t = L̄t = B̄t = 0, for all t) is optimal. If βnu ≥ c, the simple repeated PS with balance

adjustments pK̄ = pL̄+ c = pB̄ + c is optimal.

All proofs are relegated to the Appendix. Notice that the condition that βnu ≥ c requires

that settlement is sufficiently frequent. Thus, if n is large, the second PS is no longer optimal

since it is not incentive feasible. It is easy to check that as long as

γ ≥ βn

1− βn
(1− β)

β
, (19)

the first PS is optimal for the widest set of parameter values. In other words, provided that

this inequality holds, if an optimal PS exists, the first PS is optimal. Of course, there exist

parameters for which both the above PS are optimal. The main difference between the two

is that the first PS does not make use of the settlement stage, while the second one collects

all costs from incentive provision during the transactions stage and periodically resets the

participants’ balances through settlement.

3.2 Cross-subsidizing Transactions

Before we analyze the possibility of cross-subsidization, it is useful to first consider the other

extreme case in which there are no monitored transactions (α = 0). In this case, the PS

relies on reports by participants about whether or not they are in a trade meeting. By the

linearity of V in d, the relevant IC in any period s, s = 1, . . . , n, during the transactions
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stage are given by

−c(qt+s) + βn−spt+nKt+s ≥ βn−spt+nBt+s, and (20)

u(qt+s) + βn−spt+nLt+s ≥ βn−spt+nBt+s. (21)

In this case, the SRPS that uses the balance adjustments described in the second part of

Proposition 3 is optimal if and only if βnu ≥ c.17 Of course, as long as βnu ≥ c, this PS

also remains optimal for any α ∈ [0, 1]. Indeed, even if α > 0, the PS can always treat all

transactions as if they are non-monitored, and make balance adjustments as in Proposition

3.

The above PS, however, does not exploit the fact that, as long as α > 0, some transactions

are monitored. The question then becomes whether an optimal PS exists in this case for

a wider range of parameters (that is, even if βnu < c). Such a PS would “tax” some of

the surplus created in monitored transactions in order to relax the incentive constraints by

“subsidizing” non-monitored transactions. The following Proposition asserts that this is

indeed possible.

Proposition 4. Assume that βnu < c. There exists an optimal simple repeated PS if and

only if
β

1− βγ(u− c)− c ≥ (1− α)γ

(
β

βn
1− βn
1− β

)
c. (22)

For any parameter values satisfying the above inequality, the PS with balance adjustments

pK̄ = pL̄ = pB̄ = pB = pL = −(1− α)γc and pK = pB + c is optimal.

The intuition behind this result is straightforward. First, recall that cross-subsidization

is only useful when βnu < c (otherwise we already know that an optimal PS exists). This,

together with (22), implies that (19) holds. Thus, without loss of generality, we employ

the PS that uses a gift-giving game during monitored transactions. The left hand side of

inequality (22) is the maximum total tax revenue that an optimal PS can extract when

it employs a gift-giving game. The right hand side gives the total subsidy required in a

17See Koeppl, Monnet and Temzelides (2006) for a formal analysis of this special case.
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settlement stage for the incentive constraints to be satisfied for non-monitored producers.

In other words, the above PS imposes a uniform lump-sum tax on all participants and then

uses the proceeds in order to make the incentive constraints for non-monitored producers

hold. Such a PS is optimal as long as the available taxes are high enough to subsidize the

cost of providing incentives to non-monitored producers.

We remark that the restriction to SRPS likely involves some loss of generality as such a PS

cannot extract all possible surplus. Indeed, a PS that would condition on the entire history

of all transactions since the last settlement stage could potentially redistribute surplus more

efficiently. Finally, note that, since we assume that βnu < c, condition (22) cannot be met

if α = 0, in which case there are no monitored transactions to finance the incentive subsidy.

It is worth pointing out that, as the above analysis suggests, balances in our model

are distinct from currency in at least one important way. When two agents transact using

currency, the amount of money that the seller receives is equal to the amount that the buyer

offers. Here, however, in order for non-monitored transactions to be subsidized, it is necessary

that both the buyer and the seller in monitored transactions receive a negative balance

adjustment. The ability to implement such a policy, which is analogous to a transaction-

specific tax or subsidy, distinguishes the PS in our model from a monetary authority imposing

an inflation tax.

4 Optimal Settlement Frequency

4.1 Settlement Costs

In actual PS, settlement occurs only periodically due to both operational costs associated

with the activity itself, as well as liquidity costs that settlement imposes on PS participants.18

On the other hand, it is also recognized that infrequent settlement allows for the buildup

18While the former cost is the natural point of discussion in retail PS, the latter is a key issue for whole-

sale PS, in particular, for what practitioners call Real-Time-Gross-Settlement (RTGS) versus Deferred-Net-

Settlement (DNS).
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of overly large adverse balances by some participants. This trade-off raises the question

how to optimally balance such costs against the higher default exposure associated with less

frequent settlement. Our model captures the fact that infrequent settlement increases the

potential for default. However, the analysis so far has abstracted from settlement costs and

assumed the length of the transactions stage as exogenously given. For the remainder of

the paper, in order to investigate this trade-off, we assume that there is a fixed cost, δ > 0,

that is incurred in each period in which settlement takes place. The existence of this cost is

important if one wants to study the frequency of settlement as a policy variable chosen by

the PS. Indeed, in the absence of such costs, our model implies that an optimal PS will have

settlement occurring after each transaction; i.e., n = 1.

To streamline the analysis, for the remainder of the paper we abstract from questions

related to cross-subsidization of transactions and study the benchmark case in which there

is no monitoring (α = 0). We will also assume that δ is small enough, so that settlement

must periodically occur as part of an optimal PS. Finally, we assume that δ is covered by

production of the general good during settlement.

Our first goal is to characterize the values of n for which an optimal PS exists in the

presence of the fixed settlement cost δ > 0. Building on our earlier findings, we consider a

PS that sets balance adjustments such that pK = pB + c = pL + c. This satisfies all IC

and PC (see equation (20) and (21)). The PS must also recover the cost δ. Hence, market

clearing during the settlement stage is now given by

γ

n∑
s=1

Kt+s + γ

n∑
s=1

Lt+s + (1− γ)
n∑
s=1

Bt+s = − δ

pt+n
. (23)

Assuming that participants share the settlement costs equally19, the value function, V , of

an agent prior to entering the settlement stage is now given by

V (dt, pt) = dtpt +
β

1− βγ(u− c) + δ

(
βn

1− βn
)

. (24)

We have again assumed, without loss of generality, that the PS sets the desired balance

at the end of the settlement stage to d̂t = 0. Like before, the first two terms of the value

19As we show in the next section, this is without loss of generality.
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function give the value of the agent’s current balances and the future expected utility from

participating in the PS, respectively. The last term gives the present value of all future

settlement costs.20

Like before, it is sufficient to check that the PC under the worst possible balance ad-

justments holds during the last period of the transactions stage. For the above PS, this

constraint is given by

pL

(
β

1− β
) (

1− βn
βn

)
≥ − β

1− βγ(u− c) + δ

(
βn

1− βn
)

. (25)

One can use the market clearing condition to solve for the implied adjustment for consumers,

L, which is given by

pL = −δ
(

1− β
β

) (
βn

1− βn
)
− γc. (26)

Substituting this into the PC, we obtain

βnu− c ≥ δ

γ

(
1− β
β

)(
βn

1− βn
)

. (27)

Hence, any n satisfying this condition allows the above PS to decentralize the efficient trans-

action level, q∗. We then have the following.

Proposition 5. Assume that α = 0. There exists an optimal simple repeated PS if and only

if

βnu− c ≥ δ

γ

(
1− β
β

)(
βn

1− βn
)

. (28)

For any parameter values satisfying the above inequality, the PS with balance adjustments

pK = pB + c = pL+ c is optimal. The optimal settlement frequency, n∗, is the maximum n

for which this condition holds.

Conditional on decentralizing an efficient allocation, an optimal PS should minimize the

incurred costs from settlement. In other words, the PS must choose the longest length of a

transactions stage that is compatible with optimality, given the costs δ as expressed by (27).

Such an n exists as long as δ ≤ γ(βu− c). Note also that if n is large enough, we have that

βnu < c. (29)

20The current settlement cost is contained in the agent’s balance, dt.
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Thus, if settlement is sufficiently infrequent (n is sufficiently large), the PC of an agent that

consumed n times in a row will be violated. In other words, there exists a maximum n such

that constraint (27) is satisfied.

4.2 Financing Settlement Costs

Throughout, we are assuming that the PS is self-financed. This implies that the fixed cost,

δ, associated with its operation must be entirely financed by PS participants. In our analysis

so far, we assumed that δ is shared equally by all participants. Actual PS, however, differ

substantially on their policies regarding the financing of such costs.21

Here we study the division of δ across participants as a policy variable by performing a

comparative statics exercise for the case where there is a small increase in δ from its current

value, which we normalize to zero. For simplicity, we also set n = 1. Denote the value of the

cost paid by each producer by δK . Consumers and non-traders pay δL and δB, respectively.

Clearly, since we assume that the PS is self-financed, we have

γδK + γδL + (1− 2γ) δB = δ. (30)

The IC (20) and (21) are then given by

pK − δK − c ≥ pB − δB, and (31)

u+ pL− δL ≥ pB − δB. (32)

Assuming, as before, that d̂t = 0, and since the expected settlement cost in any future period

is given by δ, the PC (16) is given by

f(X) + pX − δX ≥ − β

1− β [γ(u− c)− δ] . (33)

21While we associate δ with settlement costs here, our analysis applies to other costs associated with the

operation of a PS. One example is credit card fees in retail PS. There is an ongoing debate about whether

consumers or stores should be responsible for such fees. Another example is cost recovery in wholesale PS

involving banks. The discussion there involves whether the “payee” or “payer” should pay, as well as whether

the fees should be fixed or volume-based.
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This PC implies that if an optimal PS exists, one can always construct an optimal PS by

setting balances such that pK − δK − c = pB− δB = pL− δL. Hence, we have the following.

Proposition 6. Suppose that an optimal simple repeated PS exists. Then, there exists an

optimal PS in which settlement costs are shared equally across all agents; i.e., δL = δB =

δK = δ.

The intuition for this result is straightforward. The right-hand side in (33) gives the

value of an agent who stays in the PS after settlement. This value is independent of any

history of past transactions. An optimal PS can always set balance adjustments so as to

make all PC exactly binding.22 In that case, when δ = δK = δB = δL = 0, the PS sets

pK = pB + c = pL+ c. If δ increases, such a PS would increase the costs to all agents so as

to keep the incentives to participate the same across all agents.

The above argument continues to hold even if n > 1, as long as α = 0. Of course, other

cost allocations can also be consistent with an optimal PS. However, it is worth mentioning

that when α > 0, it is the PC for agents that have consumed n-times in a row that will

bind first. In that case, any optimal PS will levy a higher share of the settlement costs

on non-consumers; i.e., δL = δB < δK . The rationale for this policy prescription is different

from the standard argument that competitive forces drive the allocation of PS costs. Rather,

the above argument suggests that, in order to reduce their incentive to default during the

settlement stage, it is the agents who are most constrained that must pay the lowest share

of the costs.23

22This is not a necessary feature of optimal PS. However, if an optimal PS exists, one can always construct

another optimal PS that satisfies this property. In this sense, this property characterizes PS that are optimal

for the widest range of parameter values.
23This observation is consistent with the fact that interchange fees for credit cards are more likely to

be passed to consumers in countries where consumer credit-card debt and default rates on such debt are

relatively low.
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4.3 Settlement Frequency and Transaction Size

It is recognized that in actual PS frequent settlement involves high liquidity costs. Less

frequent settlement, on the other hand, allows for the netting of exposures by different

participants. At the same time, this could lead to default problems since it allows for

exposures to become too large. Recognizing this trade-off, actual PS often make provisions,

such as offering short-term credit facilities, in order to economize on liquidity costs. A

strength of our approach is that the trade-off between liquidity costs and default exposure has

a counterpart in the context of our model. The liquidity costs are represented by the shared

fixed costs associated with settling transactions. The exposure arises from the possibility of

building large negative balances if settlement is too infrequent.

So far in our analysis we termed a PS optimal if it decentralizes the efficient level of

production, q∗, in all transactions. However, in the presence of settlement costs, an optimal

PS must explore the trade-off between reducing the size of transactions versus lengthening

the transactions stage. We now turn to the more general problem of determining jointly the

efficient settlement frequency and the efficient transaction size.

We assume that δ ≤ γ(βu− c). These costs must be small enough, so that it is optimal

for settlement to occur eventually. Based on our earlier result, since α = 0, the fixed cost δ

is shared equally across all participants and is covered by production of the general good in

the settlement stage. In the Appendix we use a continuous-time formulation of our model in

order to set up the joint choice of settlement frequency and transaction size by the PS as a

planning problem. In order for the constraint set of this problem to be convex, it is sufficient

that the cost function c(q) is log-convex. Under these assumptions, we derive the following.

Proposition 7. Assume that c(q) is log-convex. Any optimal simple PS implies that qt =

q̂ < q∗, for all t. Furthermore, as δ increases, the optimal transaction size, q̂, as well as the

optimal length of the settlement cycle, T̂ , decrease.

The first part of the Proposition confirms our intuition. Proposition 5 already established

that (given that q∗ can be decentralized) the PS must optimally reduce settlement frequency
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as much as possible in order to economize on settlement costs. The above Proposition asserts

that it is also optimal to economize further on settlement costs by reducing the intensive

margin (i.e., the transaction size) below its first-best level.24 This is equivalent to reducing

participants’ exposures prior to the settlement stage, by imposing a tighter cap on the total

amount of goods produced during bilateral transactions.

The second part of the Proposition is somewhat more surprising. It asserts that as a

response to an increase in settlement costs, an optimal PS must adjust both q̂ and T̂ in

the same direction. In other words, an optimal PS must reduce the volume of balance

adjustments that need to be settled in two complementary ways: by shortening the length of

the transactions stage, and by reducing the transactions size. The explanation for this is as

follows. The binding constraint on the PS is the PC of an agent that has consumed the most

during the transactions stage and, as a result, has to settle a large negative balance. An

increase in δ makes it more likely that this agent’s participation constraint will be violated.

Hence, in order to avoid default, the PS must decrease the potential exposure of this agent

by reducing his negative balance adjustments. This involves reducing both the quantity

produced and the time between settlement periods.

5 Conclusion

Under what conditions can a PS decentralize the efficient volume of intertemporal transac-

tions in the presence of private information? We studied this question in a dynamic model in

which the ability of agents to perform at least some welfare improving transactions is subject

to random and unobservable shocks. In particular, we examined the interplay between mon-

itored and non-monitored transactions. In general, the optimal PS will tax the first type of

transactions in order to subsidize incentive provision for the latter type. We also discussed

key issues for PS design related to optimal settlement frequency and cost recovery.

Our framework is certainly not limited to these questions and can be used to further

24One can show that an optimal PS involves a constant level of production across transactions.
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investigate several other issues related to payments. One open question is whether more

complicated payment systems than the ones considered here could decentralize efficient out-

comes under less restrictive conditions. For the no-monitoring case (α = 0), restricting

attention to simple, repeated payment systems is without loss of generality. Due to linearity

in the settlement round, whenever the IC in the last period of the transaction stage hold as

equalities under such a PS, all other IC in earlier rounds also hold as equalities.

When some transactions are monitored, a PS that is simple but not repeated still cannot

improve on SRPS. Under any simple PS, only the total adjustments accumulated for the next

settlement stage matter. Thus, a SRPS can decentralize a constant production level in all

transactions that lead to at least as high total adjustments as any other simple PS. However,

a PS where balance adjustments are history-dependent within a transactions cycle can likely

improve on a SRPS. Hence, we would expect more conditional balance adjustments in PS

with better information about participants’ transactions.

An important current debate concerns the public versus private provision of payment

services. Given that our framework deals with dynamic incentives, we could investigate the

time consistency of various payment system policies since optimal dynamic schemes might

require some commitment. Finally, the existence of different competing payment networks

and of tiered structures in PS, as well as extending the model to incorporate aggregate risk,

outlines a whole range of interesting issues that our framework can potentially address.

6 Appendix

Proof of Proposition 3

For the first part of the proof, note that zero balance adjustments imply that there is no

trade in the settlement stage. It can then be easily verified that, when qt = q∗, for all t, the

PC for consumers, producers, and non-traders are the same for every period. The PC for

producers is fulfilled if and only if equation (14) holds.
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For the second part of the proof, we first show that the PC (15) and (16) imply that all

other PC are satisfied. First, note that the value function V (dt, pt) is linear in pt and given

by

V (dt, pt) =
β

1− β (u− c) + pt(dt − d̂t). (34)

Having normalized d̂t = 0 for all t, the PC at t+ n− 1 gives

f(Xt+n−1) + βEt+n−1[vt+n(dt+n−2 +Xt+n−1,Ψt+n−1)] ≥

f(Xt+n−1) + βEt+n−1[vt+n(
n−2∑
s=1

Xmin
t+s +Xt+n−1,Ψt+n−1)] =

f(Xt+n−1) + β

[
γ(u− c) + Et+n−1[V (

n−2∑
s=1

Xmin
t+s +Xt+n−1 +Xt+n, pt+n)]

]
=

f(Xt+n−1) + β

[
1

1− βγ(u− c) + pt+n

(
n−2∑
s=1

Xmin
t+s +Xt+n−1

)
+ pt+nE[Xt+n]

]
=

f(Xt+n−1) + βptXt+n−1 +
β

1− βγ(u− c) + βpt+n

(
n−2∑
s=1

Xmin
t+s

)
+ βpt+nE[Xt+n] =

f(Xt+n) + pt+nXt+n +
β

1− βγ(u− c) + pt+n

(
n−1∑
s=2

Xmin
t+s

)
+ βpt+nE[Xt+n] ≥

f(Xt+n) + pt+nXt+n +
β

1− βγ(u− c) + pt+n

(
n−1∑
s=1

Xmin
t+s

)
=

f(Xt+n) + V (
n−1∑
s=1

Xmin
t+s +Xt+n, pt+n),

which is just the PC for adjustment X in the last transactions round. The last inequality

follows since Xmin ≤ 0, and market clearing implies E[Xt+n] = 0. Hence, the PC at t+n−1

hold provided that they hold for t + n. By induction, it follows that they also hold for any

t+ s, s = 1, . . . , n− 2.

Next, suppose that βnu ≥ c, and let ptK̄ = ptL̄ + c = ptB̄ + c. Market clearing implies

that ptK̄ = (1 − γ)c. It then follows that both PC (15) and (16) are satisfied. The PS is

thus incentive feasible. Since it decentralizes q∗, it is also optimal.
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Proof of Proposition 4

First note that condition (22) is equivalent to

c

γ
(1− βn)

[
αγ − βn

(1− βn)

1− β
β

]
≥ c− βnu. (35)

Define a PS as in the statement of the Proposition. It is clear that K 6= Xmin. In addition,

all IC are fulfilled and the PC for producers holds since pK ≥ pB + c. Market clearing

requires that

αpK̄ + (1− α) (pB + γc) = 0, (36)

or that

pK̄ = −(1− α)γc. (37)

The necessary and sufficient condition for the PS to decentralize the efficient allocation in

the transactions stage is, thus, given by

pK̄

(
1 +

1

β
+ · · ·+ 1

βn−1

)
− c ≥ − β

1− βγ(u− c). (38)

All other PC hold if this PC involving the worst balance adjustment is fulfilled. Hence, we

obtain a single condition in terms of parameters which is given by

(1− α)γc
β

1− β
1− βn
βn

− c ≥ − β

1− βγ(u− c). (39)

Rewriting this expression we obtain

βnu ≥ c+ cβn
1− β
β

1

γ
− αc(1− βn), (40)

or
c

γ
(1− βn)

[
αγ − βn

(1− βn)

1− β
β

]
≥ c− βnu. (41)

This is condition (35).

For the converse, consider again the PS specified in the statement of the Proposition.

Under this PS, only the PC for monitored producers is binding. Suppose that one increases

K̄ by any amount ∆ > 0, and, at the same time, lowers all other balance adjustments by
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− αγ
1−αγ∆, so as to satisfy the market clearing condition. This relaxes the constraint (38) if

and only if

αγ <
βn

β

1− β
1− βn . (42)

First, suppose that this condition is satisfied. The PS can then set pK = pB + c,

pK̄ = pL̄ = pB̄ = pB = pL, and pK̄ such that

pB
β

βn
1− βn
1− β = − β

1− βγ(u− c), and (43)

αγpK̄ + (1− α)γc+ (1− αγ)pB = 0. (44)

This PS is optimal for the widest possible range of parameters. Since B = Xmin, in order to

satisfy all PC, it must be the case that pK̄ − c ≥ pB, or,

βn

1− βnγ(u− c) ≥ γc. (45)

But this implies that βnu ≥ c, a contradiction. Hence, it must be the case that αγ > βn

β
1−β

1−βn .

Suppose now that there exists an optimal PS while condition (35) is not satisfied. We have

just shown that in that case the PS with pK̄ = pL̄ = pB̄ = pB = pL = −(1 − α)γc and

pK = pB + c is optimal for the widest possible range of parameters. But then, as condition

(35) is violated, the PC for non-monitored producers, equation (38), cannot be satisfied, a

contradiction.

Proof of Proposition 7

In order to demonstrate Proposition 7, we find it convenient to use differential calculus. To

this end, we develop a continuous-time version of the model. We assume that consumption

and production opportunities follow a Poisson process with arrival rate γ. The (continuous)

rate of time preference is now denoted by ρ. The fixed cost, δ, is incurred whenever the

transaction process stops and settlement occurs. This occurs after a deterministic interval

27



of length T . As before, we denote balance adjustments by (K(t), L(t), B(t)). All other

assumptions remain the same as in the text.

We let the random time before the next arrival of a trading opportunity be denoted by

τ . In that case, τ has a distribution function given by

F (t) = Pr(τ ≤ t) = 1− Pr(τ > t) = 1− e−γt. (46)

Hence, the time until the next arrival of a trading opportunity is an exponentially distributed

random variable with distribution function F (t) = 1− e−γt.
In order to determine, for any given q, the expected future payoff for an agent at the end

of the settlement stage, we first consider a PS that employs a gift-giving game as described

in the main body of the paper. Denote this expected utility by V0. It is straightforward

to show that an optimal PS involves a constant level of transactions. First, assume that

there are no settlement costs. Since both consumption and production opportunities are

independent, arrive at rate γ, and have the same continuation value, we have

V0 =

∫ ∞

0

e−ρt(u(q)− c(q) + V0)d(1− e−γt)

=
γ

γ + ρ
(u(q)− c(q) + V0), (47)

which yields

V0 =
γ

ρ
(u(q)− c(q)). (48)

This is analogous to the lifetime utility under a PS that employs a gift-giving game in

the discrete-time version of the model presented in the text. In the absence of settlement

costs, equation (48) also gives the life-time expected payoff of an incentive feasible PS that

decentralizes transactions of size q.

When costly settlement occurs after each time length T , it involves an aggregate (average)

fixed cost δ. Hence, the net present value of the settlement costs is given by

∞∑
n=1

e−nρT δ = δ
e−ρT

1− e−ρT . (49)
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This implies that the continuous-time version of the value function, V0, is given by

V0 =
γ

ρ
(u(q)− c(q))− δ e−ρT

1− e−ρT . (50)

As before, we define the PS adjustments conditional on the agents’ reports by

pKt − c(q) = pLt = pBt, (51)

for all t. Also, since the PS is repeated, we have that adjustments, X, satisfy

XnT+t = Xeρ(T−t), (52)

for all t ∈ [nT ; (n + 1)T ], where n is an integer. As in the discrete-time case, such a PS

implies that all IC are fulfilled. In addition, this PS satisfies all PC for the largest set of

parameter values. Next, we derive the market clearing condition for the settlement stage.

This is accomplished by approximating total balance adjustments in an interval of length T .

First, note that the probability of having exactly n arrivals of trading opportunities in the

interval [0, t] is given by

P [Nt = n] = e−γt
(γt)n

n!
. (53)

For small ∆, we then have that

P [N∆ = 1] ≈ γ∆, (54)

where P [N∆ > 1] = o(∆). Next, define ∆ = T
m

, where m ∈ [0, T ] is an integer. The total

adjustment for producers over an interval of length T is then approximately given by

γ∆K∆ + · · ·+ γ∆K(m−1)∆ + γ∆Km∆

= γ∆K
[
eρ(T−∆) + · · ·+ eρ(T−(m−1)∆) + eρ(T−m∆)

]

= γ∆KeρT

[
1− (

e−ρ∆
)m

1− e−ρ∆
− 1

]

= γK

[
∆eρ(T−∆) −∆

1− e−ρ∆

]
. (55)

As ∆→ 0, an agent will receive either none or one opportunity to trade during a time length

∆. In that case, using L’Hôpital’s rule,25 the expected total adjustments to producers are

25Note that both the numerator and the denominator in this expression go to zero. In addition, we have

lim∆→0
f ′(x)
g′(x) = lim∆→0

−∆ρeρ(T−∆)+eρ(T−∆)−1
ρeρ∆ = lim∆→0−∆eρT + eρT

ρ − 1
ρe−ρ∆ = 1

ρ (eρT − 1).
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given by γ
ρ
K

(
eρT − 1

)
. The expected total balance adjustments to consumers are similarly

determined and given by γ
ρ
L

(
eρT − 1

)
. Finally, expected balance adjustments over all agents

who have received no trading opportunities over this time interval can be determined as

follows. For each interval of length ∆, a measure 2γ∆ of agents are engaged in transactions

(γ∆ of them as consumers and γ∆ as producers). Therefore, the measure of agents who are

not involved in any transactions over an interval of length ∆ is (1− 2γ) ∆. As a result, the

aggregate balance adjustments for non-trading activities over the interval of length T are

given by

(1− 2γ) ∆B∆ + · · ·+ (1− 2γ) ∆B(m−1)∆ + (1− 2γ) ∆Bm∆

=
(1− 2γ)

ρ
B

(
eρT − 1

)
. (56)

Market clearing during the settlement stage is then given by the following equation

1

ρ

(
eρT − 1

)
[γpK + γpL+ (1− 2γ)pB] = −δ. (57)

Using the above balance adjustments, one obtains

pB = −δρ 1

eρT − 1
− γc(q). (58)

The worst possible balance adjustment is assigned to agents that either never traded

or never produced in the interval [0, T ]. Following the above discussion, this adjustment is

given by 1
ρ

(
1− e−ρT )

pB. This implies that the only PC that is potentially binding is given

by
1

ρ

(
eρT − 1

)
pB +

γ

ρ
(u(q)− c(q))− δ e−ρT

1− e−ρT ≥ 0. (59)

This constraint is identical to the one in discrete-time, simply adjusting for the continuous

time discount factor. Given these adjustments, an optimal PS chooses q and T in order to
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solve the following maximization problem:

max
q,T

γ

ρ
(u(q)− c(q))− δ e−ρT

1− e−ρT (60)

subject to

1

ρ

(
eρT − 1

)
pB +

γ

ρ
(u(q)− c(q))− δ e−ρT

1− e−ρT ≥ 0,

pB = −δρ 1

eρT − 1
− γc(q).

The objective function expresses the discounted lifetime utility of a representative partici-

pant. The second constraint summarizes the PC that is potentially binding, while the third

constraint summarizes the IC and the market clearing conditions that must be satisfied in

any incentive feasible PS. The equality in the last equation follows from the fact that the PS

works for the largest set of parameters if it makes all IC exactly bind. The constraint set

can be rewritten to obtain

γ

ρ

[
u(q)− eρT c(q)] ≥ δ

1

1− e−ρT , (61)

or
(
1− e−ρT )

u(q)− (
eρT − 1

)
c(q) ≥ ρ

γ
δ. (62)

The objective function is strictly concave in (q, T ). In order to guarantee that the constraint

set is convex, we need an additional assumption. Given any T (q), the function on the

left-hand side of the above inequality is concave in q (T ). However, the left-hand side is not

necessarily jointly concave in (q, T ) due to the second term, which is a product of two convex

functions. We have the following sufficient condition for the constraint set to be convex.26

Lemma 8. Suppose that c(q) is log-convex. Then eρT c(q) is a strictly convex function in

(q, T ), and the constraint set is convex.

Proof. A function is log-convex if its natural logarithm is convex. Since c(q) is log-convex,

we have that
∂2 ln c(q)

∂q2
=
c(q)c′′(q)− (c′(q))2

(c(q))2
> 0. (63)

26A weaker condition is given by − 1
eρT

u′′(q)c(q) ≥ c′2 − c′′(q)c(q).
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The first term of the LHS in equation (61) is strictly concave in q, while the RHS is strictly

convex in T . The remaining term has a Hessian given by

H(q, T ) =


 ρ2eρT c(q) ρeρT c′(q)

ρeρT c′(q) eρT c′′(q)


 . (64)

The first principal minor is positive, while the second principal minor is positive if and only

if

c(q)c′′(q)− (c′(q))2 > 0. (65)

Hence, as c(q) is log-convex, eρT c(q) is convex. The result follows since the sum of two

concave functions is concave.

Taking first-order conditions with respect to q and T , we obtain the following character-

ization of the solution:

u′(q)− c′(q)
c′(q)

=
λ

1 + λ

(
eρT − 1

)
, and (66)

δ

c(q)

ρ

γ

(
1

eρT − 1

)
=

λ

1 + λ

(
eρT − 1

)
, (67)

where λ is the multiplier on the single constraint. This leads us to the following.

Lemma 9. Let c(q) be log-convex. For any optimal PS with settlement, we have q̂ < q∗.

Proof. Since δ, γ, and ρ are positive, and the optimal settlement length is finite (T̂ ∈ (0,∞)),

we must have that λ > 0. Hence, equation (66) implies that u′(q̂) − c′(q̂) > 0. Since c is

increasing and strictly convex, and u is increasing and strictly concave, this implies that

q̂ < q∗.

Eliminating λ from the first-order conditions (66) and (67) we obtain a single first-order

condition
γ

ρ

u′(q)− c′(q)
c′(q)

(
eρT − 1

)
=

δ

c(q)
. (68)

This condition, together with the constraint (61), characterize the solution (q̂, T̂ ). Solving

these equations yields the optimal length of the transactions stage, T̂ , as a function of ρ and
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q̂; i.e.,
u(q)

u′(q)
c′(q)
c(q)

= eρT . (69)

The optimal transaction size, q̂, is given by

u(q)

(
1− c′(q)

u′(q)

)
+ c(q)

(
1− u′(q)

c′(q)

)
= δ

ρ

γ
. (70)

A solution to the last equation exists by the Intermediate Value Theorem. Furthermore, any

solution must lay in an interval [q, q∗], where q > 0. The problem is that the left-hand side of

equation (70) is non-monotonic. Hence, there will, in general, be more than one solution to

this equation. The optimal solution, however, corresponds to the one closest to (and below)

q∗. The next Proposition relies solely on the fact that at this solution, q̂, the left-hand side

of equation (70) is locally strictly decreasing.

Lemma 10. Assume that c(q) is log-convex. As the settlement cost, δ, increases, the optimal

transaction size, q̂, as well as the optimal length of the transactions stage, T̂ , decrease.

Proof. We establish first that q̂ and T̂ move in the same direction; i.e., that dT̂
dq̂
> 0. Differ-

entiating the left-hand side of equation (69) with respect to q, we obtain

1

(u′(q)c(q))2

[
u(q)u′(q)

(
c(q)c′′(q)− (c′(q))2

)
+ c(q)c′(q)

(
(u′(q))2 − u(q)u′′(q)

)]
, (71)

which is strictly positive, as u is strictly increasing and strictly concave, while c is log-convex.

Next, we show that q̂ is decreasing in δ. Denote the left-hand side of equation (70) by

Γ(q). Differentiating Γ(q) with respect to q and collecting terms we obtain

∂Γ

∂q
= c′′(q)

[
c(q)

c′(q)
u′(q)
c′(q)

− u(q)

u′(q)

]
+ u′′(q)

[
c′(q)
u′(q)

u(q)

u′(q)
− c(q)

c′(q)

]
. (72)

We can rewrite equation (70) as

γ

ρ

u′(q)− c′(q)
c′(q)

(
u(q)

u′(q)
c′(q)
c(q)

− 1

)
=

δ

c(q)
. (73)

Since u′(q) > c′(q), for q < q∗, we obtain that u(q)
u′(q) >

c(q)
c′(q) . Letting q → q∗, this implies that

c(q)

c′(q)
u′(q)
c′(q)

− u(q)

u′(q)
< 0, (74)
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and
c′(q)
u′(q)

u(q)

u′(q)
− c(q)

c′(q)
> 0. (75)

Hence, ∂Γ
∂q
< 0, or, equivalently, the left-hand side of equation (70) is strictly decreasing for

q sufficiently close to q∗. Furthermore, Γ(q) converges to 0 as q → q∗. Hence, Γ(q) > 0 for q

sufficiently close to q∗ and, by the continuity of Γ(q), there must exist a solution to equation

(70) for small enough δ > 0. Finally, since Γ(q) ↓ 0 as q → q∗, we must have that Γ′(q̂) ≤ 0

(with Γ having possibly a local maximum at q̂). This completes the proof.
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