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Abstract

We investigate the role of settlement in a dynamic model of a payment sys-
tem where the ability of participants to perform certain welfare-improving
transactions is subject to random and unobservable shocks. In the absence
of settlement, the full information first-best allocation cannot be supported
due to incentive constraints. In contrast, this allocation is supportable if
settlement is introduced. This, however, requires that settlement takes place
with a sufficiently high frequency.
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1 Introduction

A distinguishing feature of payment systems is settlement, or the discharge
of past obligations through the transfer of an asset.1 Actual settlement has
three defining properties. First, it is not a welfare-improving activity by
itself. Rather, settlement involves a mere transfer of an asset between par-
ticipants in order to fulfill the obligations created by previous transactions.
Second, it takes place periodically. For instance, credit card transactions are
generally settled on a monthly basis, while settlement of interbank transac-
tions generally takes place daily. Finally, settlement gives the opportunity
to all participants in the system to start afresh since, after settling their
obligations, they are no longer liable to the system.

In this paper we employ the dynamic model of a payment system devel-
oped in Koeppl, Monnet, and Temzelides (KMT, 2005) in order to study the
role of settlement. Our main finding is that settlement is an essential part
of an optimal payment system as it enables agents to engage in beneficial
transactions that would otherwise not be realized. As in KMT, we employ a
version of the model of exchange developed by Kiyotaki and Wright (1989,
1993). Our model, however, departs from monetary economics and, instead,
emphasizes the role of private information in a way related to the dynamic
contracting literature.2 The use of a dynamic framework is essential since
some of the questions that optimal payment system design poses are inher-
ently dynamic and, therefore, very hard or impossible to study within the
existing literature, which is almost exclusively static.3

Agents in our model need to engage in transactions that are subject
to a private information friction. Thus, incentives are needed in order to
induce truthful revelation. This implies that, in the absence of settlement,
it is impossible to support the full information first-best allocation. We
introduce a periodic pattern in which each transaction stage, consisting of a
finite number of bilateral trades, is followed by a centralized stage in which
a planner may reallocate a general good that is produced using a linear
technology. We demonstrate that the full information first-best allocation is

1For references to different notions of settlement, we refer the reader to BIS (2003).
2See, for example, Green (1987). Other classic references include Spear and Srivastava

(1987) and Atkeson and Lucas (1993).
3See Kahn and Roberds (1998, 2004) for two papers in this literature. Aiyagari and

Williamson (1999, 2000) and Temzelides and Williamson (2001) investigate some of the
issues studied here. Their model and conclusions, however, are very different from ours.
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attainable in this setup.
As in KMT, we decentralize this allocation via a payment system. This

involves assigning individual balances and optimally adjusting these balances
given the agents’ histories of transactions. Agents can trade balances in a
centralized settlement stage which we decentralize as a competitive market.4

The settlement stage is essential since the first-best allocation cannot be
supported in its absence.

Our model displays the following properties. First, the introduction of
periodic settlement rounds does not increase welfare by itself. The increase in
welfare is accomplished indirectly through the interplay between settlement
and intertemporal incentives. Second, the first-best is supportable only if
settlement takes place with a sufficiently high frequency. Finally, payment
system participants must exit the settlement stage with identical balances.
In this sense, agents start afresh as their history does not affect their future
transactions.

The reason for settlement being essential in achieving the first-best can
be summarized as follows. In the presence of private information, in order for
any transactions to take place, the payment system must provide intertempo-
ral incentives. This is costly and, in the absence of settlement, these costs can
only be borne directly, creating a distortion during the bilateral transactions
stage. Settlement allows accumulating and shifting these costs to the cen-
tralized stage. This is efficient since incentives in bilateral transactions can
then be set properly. More precisely, under a linearity assumption, balance
adjustments in the settlement round do not create direct welfare gains or
losses on average. In addition, periodic settlement limits the obligations an
agent can accumulate over time. Hence, when settlement occurs frequently
enough, and the net value of future transactions is high enough, agents will
choose to participate in the system.

The paper proceeds as follows. In Section 2, we present the model and
discuss optimal allocations. In Section 3, we study decentralization through
a payment system. A brief conclusion follows.

4A novelty of this approach is that it involves non-cooperative implementation together
with a Walrasian equilibrium aspect.
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2 The Model

Time, t, is discrete and measured over the positive integers. There is a
[0, 1] continuum of infinitely lived agents. The common discount factor is
β ∈ (0, 1). To generate a role for transactions, we assume that in any given
period, agents are randomly matched bilaterally. Randomness in payments
is captured by assuming that an agent needs to transact with the agent he is
matched with as a producer or as consumer, each with probability γ. More
precisely, in each period an agent is in a trade meeting with probability 2γ.
In this case, he is a potential producer or a potential consumer with equal
probability. With probability (1− 2γ) the agent is in a no-trade meeting.

We assume that production of goods is perfectly divisible. Producing
q units implies disutility −e(q), while consumption of q units gives utility
u(q). We assume that e′(q) > 0, e′′(q) ≥ 0, limq→0 e′(q) = 0, and limq→∞
e′(q) = ∞. In addition, we assume that u′(q) > 0, u′′(q) ≤ 0, limq→0

u′(q) = ∞, and limq→∞ u′(q) = 0. Thus, there exists a unique q∗ such
that u

′
(q∗) = e

′
(q∗). The quantity q∗ uniquely maximizes the joint surplus

created in a transaction.5 Since we will concentrate on this quantity, in order
to simplify notation, we will hence denote u(q∗) by u, and e(q∗) by e.

Our environment is subject to private information and commitment fric-
tions. More precisely, we will assume that whether a meeting is a trade
meeting; i.e., whether the consumer likes what the producer can offer, is not
observable outside the meeting. In addition, agents cannot pre-commit to
producing in such meetings. While the opportunity to produce cannot be
verified, we assume that production itself, when it takes place, is verifiable.
For simplicity, we assume that consumption is not verifiable.6

Our efficiency benchmark is the full information first-best allocation, in
which the efficient level of production takes place in all trade meetings. The
difficulty in supporting this allocation lies in the fact that, due to the private
information friction, the planner cannot verify whether a trade meeting has
taken place. For example, consider a distinguished agent who, say, for the k-

5Assuming that u(•) and e(•) are linear would not affect our results provided that the
quantity q is restricted to belonging to a compact set, say [0, q]. In that case, q∗ = q.

6Our results are strengthened if a positive fraction of the transactions are assumed
to be fully monitored and, thus, not subject to a private information problem. Similarly,
assuming that consumption is verifiable would change the structure of the optimal payment
system but would not affect our main result regarding the efficiency of settlement. We
refer to KMT for details.
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th time in a row, reports that he did not produce since he had k consecutive
no-trade meetings. Given the information structure, the planner can verify
that the agent did not produce in any of the last k meetings. What the
planner cannot verify, however, is whether the agent had an opportunity to
produce and simply declined, or whether he did not have any trade meetings
(an event of probability (1− γ)k).

A moment’s reflection should convince the reader that the first-best allo-
cation is not supportable. Indeed, if an agent always receives q∗ independent
of his history of reports, there is no incentive for him to ever produce. Thus,
an agent must receive a quantity less than q∗ at least on some occasions.

2.1 Periodic Centralized Rounds

We proceed by imposing a periodic pattern in which each transaction stage,
consisting of a finite number of bilateral transaction rounds, is followed by
a centralized round. In this round agents can consume or produce a general,
non-storable good. We assume that the (dis)utility from this good is linear.
More precisely, we assume a periodic pattern of length n + 1. The first
n periods of each cycle involve bilateral transactions. This is followed by
one centralized round in which producing ` units of a general good implies
disutility −`, while consuming ` units gives utility `.

We can imagine that agents report their state (producer p, consumer c,
neither n) in each round of the transactions stage to a planner who instructs
them how much to produce (consume) in each bilateral transaction. In ad-
dition, the planner instructs agents how much to produce (consume) in the
subsequent centralized round. The planner’s recommendations will, in gen-
eral, depend on the agents’ past history of reports. An allocation, therefore,
specifies the quantity produced (consumed) in each transaction as well as in
the centralized round. An allocation is supportable if it respects incentive, ex
ante participation and resource feasibility constraints. Throughout, we re-
strict attention to outcomes that are stationary and symmetric across agents.
We want to characterize the best allocation that the planner can support.
We term this allocation (ex ante) efficient. It turns out that this corresponds
to the full information first-best allocation, in which q∗ is produced in each
trade meeting. We only consider here the case where n = 1. That is, we im-
pose a periodic pattern in which each bilateral transactions round is followed
by centralized settlement. Later on we discuss how to decentralize ex-ante
efficient allocations for the general case where n > 1. We have the following.
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Proposition 1 Suppose that n = 1. The allocation where consumption of
q∗ occurs in all bilateral trade meetings and where E[`∗] = 0 is supportable if
and only if βu ≥ e.

In other words, provided that β is sufficiently high, the full information
first-best is incentive feasible. This is easy to demonstrate by showing that
the full information first-best can be supported by repeating a “static” allo-
cation.

Notice that, following the decentralized stage, there are two possible rel-
evant histories. Either the agent was a producer, in which case we assume
that the planner instructs him to produce `p during the centralized stage, or
the agent was a consumer, in which case the planner instructs him to pro-
duce `c. Since consumption is not verifiable, agents who were in a no-trade
meeting will also be instructed to produce `c; i.e., `n = `c.

Consider a planner who maximizes ex ante expected utility subject to
resource, participation, and incentive constraints. The planner’s problem at
the beginning of a transactions round is

max
q,`p,`c,`n

1

1− β
[γ(u(q)− e(q))− γ`p − γ`c − (1− 2γ)`n] (1)

subject to

γ`p + γ`c + (1− 2γ)`n = 0 (2)

−e(q)− `p +
β

1− β
[γ(u(q)− e(q))− γ`p − γ`c − (1− 2γ)`n] ≥ 0(3)

u(q)− `c +
β

1− β
[γ(u(q)− e(q))− γ`p − γ`c − (1− 2γ)`n] ≥ 0 (4)

−`n +
β

1− β
[γ(u(q)− e(q))− γ`p − γ`c − (1− 2γ)`n] ≥ 0 (5)

−e(q)− `p ≥ −`n. (6)

The first constraint captures aggregate feasibility. The second, third, and
fourth constraints are participation constraints for a producer, a consumer,
and a no-trader, respectively. Finally, since the planner cannot observe
whether or not an agent has an opportunity to produce during the transaction
round, the last constraint is an incentive compatibility constraint. It is easy
to verify that q = q∗, `p = −(1− γ)e, and `c = `n = γe solve the above prob-
lem provided that βu ≥ e. In addition, the resulting allocation satisfies the
ex-ante participation constraint that 1

1−β
[γ(u(q)−e(q))−γ`p−(1−γ)`c] ≥ 0.
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A few remarks are in order. First, note that the average production of
the general good equals zero, which implies that, as mentioned earlier, there
is no ex ante direct gain from introducing the centralized round. Second,
βu ≥ e is necessary in order to support a positive volume of transactions
even under full information. Thus, it is not possible to improve over the
conditions of the above Proposition, in the sense of supporting the first-best
allocation for a wider range of parameter values.

To summarize, when settlement is introduced, and provided that it in-
volves costs that enter the agents’ expected utility in a linear fashion, the
full information first-best allocation is supportable in our model even though
the planner is subject to a private information friction. Next we demonstrate
how the efficient allocation for this environment can be supported via a pay-
ment system. This involves assigning balances to individual participants and
specifying rules for how these balances are updated in order to satisfy in-
centive and participation constraints. In addition, we will decentralize the
settlement stage by assuming that it operates as a competitive market.

3 Payment Systems

In the previous analysis we assumed that, subject to a participation con-
straint, the planner has the ability to re-allocate the output produced in the
centralized stage. Here we will discuss how the first-best allocation can be
decentralized. As in KMT, we assume that agents face a payment system
(PS) which assigns balances to participants. The PS specifies rules for how
the balances are updated given the histories of reports regarding bilateral
transactions. As before, settlement implies that participants can periodi-
cally trade balances for the general, non-storable good. Here the settlement
stage is modelled as a competitive market in which agents that are “low” can
increase their balances by producing, while those with high balances end up
as consumers. The price, p, at which balances are traded, is determined by
market clearing conditions.

In each of the first n periods of the cycle, agents engage in bilateral
transactions. Recall that whether an agent is a potential producer in a trade
meeting is not observable to the PS. We begin by assuming that n = 1 and
proceed to study the optimal PS given the above setup. In what follows, we
analyze a generic period, t, and work backwards, first considering the agent’s
problem in the settlement stage, and then moving on to the transactions
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stage.
Let V (d, p) denote the value function of an agent that exits the transac-

tion round with balance d, given that the anticipated price in the following
settlement round is p. Let v(d̂, Ψ) denote the value of an agent who exits

the settlement round with balance d̂, given that the resulting distribution of
balances is denoted by Ψ.7 Given p and Ψ, agents at the beginning of the
settlement round solve the following:

V (d, p) = max
`, bd {−` + βEv(d̂, Ψ)} (7)

s.t. pd̂ = pd + `. (8)

We now turn to the problem faced by the agents during the transactions
round. We assume that balances of any two agents that are in a meeting
during the transactions round are observable to the PS. As before, agents
make reports to the PS about the type of the meeting that they are in (c, p,
or n). Those that report a trade meeting as producers receive instructions
from the PS on how much to produce. Consumers report the quantity they
consumed. The PS subsequently makes balance adjustments depending on
these reports.8

Not taking into account the agents’ balances, there are three possibilities.
An agent can be in a consumption, a production, or a no-trade meeting. The
vector of policy rules (Lt, Kt, Bt, qt) determines the respective balance adjust-
ments and the quantity produced in a trade meeting, qt. These functions in
general may depend on the agents’ histories of transactions, as summarized
by their current balances, as well as on the distribution of balances, Ψ. More
precisely, Lt(Kt) is the adjustment for an agent who consumes (produces),
while Bt is the adjustment for an agent who does not transact. Recall that
balances are represented by real numbers not restricted in sign, while pro-
duction of goods during trade meetings is restricted to be positive. After
each transaction stage, agents enter the settlement round knowing their new
balances.

We will concentrate on arrangements that satisfy certain incentive and
participation constraints in the transaction stage. Incentive constraints re-

7We describe E[v(d̂, Ψ)] in detail below.
8Note that we rule out joint reports by the consumer and the producer in a meeting.

See KMT (2005) for a discussion.
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quire that the following inequalities hold:

V (d + L, p) = V (d + B, p), (9)

−e(q) + V (d + K, p) ≥ V (d + B, p). (10)

The first constraint equates the continuation utility of a consumer to that of
an agent in a no-trade meeting. The equality captures the fact that consump-
tion is not verifiable. The second constraint ensures that agents truthfully
report a production meeting. In addition, participation constraints require
that producers, consumers, and agents in no-trade meetings, respectively, are
better off staying in the system; i.e.,

−e(q) + V (d + K, p) ≥ 0, (11)

u(q) + V (d + L, p) ≥ 0, (12)

V (d + B, p) ≥ 0. (13)

We are now ready to formally define a Payment System.

Definition 2 A Payment System, S, is an array of functions S = {Lt, Kt, Bt, qt}.
S is incentive feasible if it satisfies the incentive and participation constraints.
S is simple if balance adjustments do not depend on the agents’ current bal-
ances. An incentive feasible S is optimal if it supports the efficient alloca-
tion.9

Given an incentive feasible payment system, the value function of an agent
with balances d at the end of the settlement round, E[v(d, Ψ)], is then given
by

E[v(d, Ψ)] =

∫
d′
{γ[u(q(d, d′)) + V (d + L(d, d′), p)]+

γ[e(q(d, d′)) + V (d + K(d, d′), p)] + (1− 2γ)V (d + B(d, d′), p)} dΨ.

(14)

Note that the balance adjustments are in general functions of the agent’s own
balance, d, and the balance of his trading partner, d′. We next investigate
properties of an optimal payment system.

9To simplify notation, we suppress the dependence of S on t.
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3.1 Optimal Payment Systems

We let qt(d̂t−1, d̂
′
t−1) stand for the quantity that the PS requires to be pro-

duced in a trade meeting, as a function of the balances of the two trading
partners. The next Proposition presents a necessary and sufficient condi-
tion for an optimal PS to exist in the case where each transaction round is
followed by settlement (n = 1).

Proposition 3 There exists a simple optimal PS if and only if βu ≥ e.

Proof. Let qt(d̂t−1, d̂
′
t−1) be defined by

qt(d̂t−1, d̂
′
t−1) =

{
q∗, if d̂t−1 = d̂′t−1 = 0;

0, o.w.
(15)

Hence, if the balances of both agents are equal to 0, the producer is instructed
to produce q∗; otherwise, no production takes place. For all t, define the
balance adjustments (Kt, Lt, Bt) by the following three equations:

Bt = Lt, (16)

−e + V (d̂t−1 + Kt, pt) = V (d̂t−1 + Bt, pt), (17)

γKt + γLt + (1− 2γ)Bt = 0. (18)

The first two equations express the incentive constraints (IC). The third
equation expresses that, since E[`] = 0 in each period, aggregate balances
remain constant over time. Note that the second equation implies that

V (d̂t−1 + Kt, pt) > V (d̂t−1 + Bt, pt). (19)

We guess that, given balance adjustments (Kt, Lt, Bt) defined above, every
agent chooses balances d̂t = 0 in all settlement rounds. To verify that this
is consistent with an equilibrium, we need to verify that all participation
constraints (PC) hold. These are given by

V (d̂t−1 + Bt, pt) ≥ 0, (20)

u + V (d̂t−1 + Bt, pt) ≥ 0, (21)

−e + V (d̂t−1 + Kt, pt) ≥ 0. (22)

Since the second inequality above is satisfied whenever the first one holds,
and the third inequality holds whenever the IC conditions hold, it remains to
verify the participation constraint which requires that V (d̂t−1 + Bt, pt) ≥ 0.
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Let Xt ∈ {Kt, Bt, Lt} denote the balance adjustment in period t. Sta-
tionarity of aggregate equilibrium balances implies that E[Xt+1] = 0. Using
the linearity of V and the stationarity of d̂, we then obtain

V (d̂t−1 + Bt, pt) = −ptd̂t + ptd̂t−1 + ptBt + βE[v(d̂t, Ψ)]

= ptBt + βγ(u− e) + βE[V (d̂t + Xt+1, pt+1)]

= ptBt + βγ(u− e) + βV (d̂t, pt+1) + βpt+1E[Xt+1]

= ptBt + βγ(u− e) + βV (d̂t, pt+1). (23)

Since d̂t−1 = d̂t, and since V is linear in balances, this yields

V (d̂t, pt) =
β

1− β
γ(u− e). (24)

It is easy to check that, given the definition of (Kt, Lt, Bt), setting Kt =
(1 − γ) e

p
and Bt = −γ e

p
, for all t, satisfy the IC and the constant-balances

constraint. Hence, by the linearity of V ,

V (d̂t−1 + Bt, pt) = ptBt + V (d̂t−1, pt)

= −γe +
β

1− β
γ(u− e) ≥ 0, (25)

which holds if βu ≥ e.
For the converse, suppose that βu < e. Since Bt+1 = Lt+1, for all t, the
following three conditions must hold for a simple PS to be optimal.

γKt+1 + (1− γ)Bt+1 = dt+1 − dt (26)

pt+1Kt+1 − e ≥ pt+1Bt+1 (27)

(dt − dt+1)pt+1 +
β

(1− β)
γ(u− e) ≥ −pt+1Bt+1. (28)

The first equation is the law of motion on balances implied by market clear-
ing, while the second one expresses incentive compatibility. The last inequal-
ity is the participation constraint, V (dt+Bt+1, pt+1) ≥ 0. We can now replace
pt+1Kt+1 everywhere to obtain two inequalities that involve only Bt+1:

(dt+1 − dt)pt+1 − γe ≥ pt+1Bt+1 (29)

(dt − dt+1)pt+1 +
β

(1− β)
γ(u− e) ≥ −pt+1Bt+1. (30)
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Combining these two we obtain

β

(1− β)
γ(u− e) ≥ γe. (31)

This is a contradiction. It is easy to check that the above condition, which
can be simplified to give βu ≥ e, also ensures that no agent chooses to exit
the economy after selling his balances in the settlement round.

Note that the above scheme requires that all agents exit the settlement
round with d = 0, in all periods. Therefore, the PS requires that Ψ is degen-
erate.10 While this adds an additional constraint on the agents, the above
Proposition demonstrates that this leads to the first best being supported
under the same condition as in the full information case.

It is straightforward to adjust this argument to the case where some
transactions are monitored. In addition, using the incentive and participation
constraints, we can derive additional properties of the optimal S. Since
consumption is not verifiable, in order for an agent that consumed to report
truthfully, S needs to treat him the same way as if he reported a no-trade
meeting; i.e., B = L < 0, which means that irrespective of whether agents can
consume q∗ or are in a no-trade meeting, they are penalized with decreasing
balances. In addition, it must be that pt(K−B) ≥ e for all t. In other words,
agents are rewarded for producing. Finally, the aggregate net production of
the general good is zero in the settlement round; i.e., E[`] = 0 for all agents.
It should be clear, however, that the incentive constraints imply that different
agents actually end up with different values of ` during the settlement round.

3.2 Settlement Frequency

The case where n = 1 literally implies that settlement takes place after every
transaction. Next, we assume that a settlement round occurs after each
transaction stage of length n > 1. In particular, we will derive conditions
for a PS to support the efficient allocation with respect to (q∗, E[`∗]) when
n > 1. We will assume that the agents’ discount factor between transactions
is β̃, but that there is no discounting between the last transaction and the

10Lagos and Wright (2004) study a monetary model in which trade is periodically cen-
tralized. They assume quasi-linearity and bargaining in order to obtain a degenerate
distribution of money holdings. Since we do not impose bargaining in the transactions
round, their result does not hold in our model.
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settlement round. We consider two cases. In the first case, there is equal
discounting within and across transaction stages (β̃ = β). In the second case,
there is no discounting within the transaction stage (β̃ = 1).

Definition 4 A PS is history-independent if the balance adjustments in any
round s, 1 < s ≤ n, of the transaction stage do not depend on the transactions
in the previous s− 1 rounds.

In what follows we will concentrate on a particular class of history-
independent PS, which we term simple repeated PS. Such PS employ identical
discounted balance adjustments during each transaction round. Formally, let
Xt ∈ {Kt, Lt, Bt} be the balance adjustment for a PS when n = 1. A simple
repeated PS has balance adjustments equal to

Xt+s =
Xt+n

β̃n−s
(32)

for all s = 1, . . . , n, where n− s represents the number of transaction rounds
until the next settlement stage. The next Proposition gives conditions that
are necessary and sufficient for an optimal simple repeated PS to exist.

Proposition 5 Assume that β̃ = β < 1. There exists an optimal simple
repeated PS if and only if βnu ≥ e. Thus, there exists n̄ ≥ 1 such that a
simple repeated PS is optimal if and only if n < n̄.

Proof. Assuming a simple repeated PS, let balances within the transaction
rounds be given by

Xt+s =
X

βn−s
(33)

for all s = 1, . . . , n, and all t, where X ∈ {K, L, B} is the balance adjustment
for the optimal PS when n = 1.

First, note that for a simple repeated PS, all participation constraints
are satisfied if the participation constraint for the n-th period holds in the
worst-case scenario. Hence, all participation constraints are satisfied if the
constraint resulting from consuming n times in a row is satisfied, or if

(dt − dt+n)pt+n +
β

1− βn

(
n−1∑
s=0

βs

)
γ(u− e) ≥ −pt+n

n∑
s=1

Bt+s. (34)
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Using Bt+s = Lt+s, for all s = 1, . . . , n, the aggregate law of motion on
balances is given by[

γ

n∑
s=1

Kt+s + (1− γ)
n∑

s=1

Bt+s

]
= E[

n∑
s=1

Xt+s] = dt+n − dt. (35)

Finally, in every period, the incentive compatibility constraint is given by

−e + βn−spt+nKt+s ≥ βn−spt+nBt+s, (36)

for all s = 1, . . . , n. Using the definition of Xt+s, this can be written as

−e + pt+nKt+n ≥ pt+nBt+n. (37)

Since we are employing a simple repeated PS, the last equation implies that
incentive compatibility constraints are identical for all periods of the cycle.
Using the fact that

n∑
s=1

Xt+s =
1− βn

βn−1(1− β)
X, (38)

we obtain for the law of motion

pt+nKt+n =
1

γ

βn−1(1− β)

1− βn
(dt+n − dt)pt+n −

1− γ

γ
pt+nBt+n. (39)

Replacing pt+nKt+n in the incentive compatibility and the participation con-
straints, we obtain two inequalities that involve only the term

∑n
s=1 Bt+s:

(dt+n − dt)pt+n − γe
1− βn

βn−1(1− β)
≥ pt+n

n∑
s=1

Bt+s (40)

(dt − dt+n)pt+n +
β

(1− β)
γ(u− e) ≥ −pt+n

n∑
s=1

Bt+s. (41)

The efficient allocation is supportable if and only if both inequalities are
satisfied. This is the case whenever

β

1− β
γ(u− e) ≥ γe

1− βn

βn−1(1− β)
, (42)

or, whenever βnu ≥ e. Finally, note that if n is large, the left hand side of
the above condition converges to zero. Thus, for every β < 1, there exists N
such that for n > N an optimal simple repeated PS does not exist.

The following discusses the case where there is no discounting within the
transaction stage. It easily follows from the above Proposition.
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Corollary 6 Assume that β̃ = 1. For any n ∈ N , an optimal simple repeated
PS exists if and only if there exists a simple optimal PS for n = 1.

Returning to the general case where β̃ < 1, it should be clear that, if the
optimal allocation can be supported for a given ñ, then it remains supportable
for all n < ñ. Since the converse is not true, our model suggests that a high
frequency of settlement can be beneficial. The intuition behind the case
where an optimal simple PS does not exist is related to the one obtained
in Levine (1991), but comes from a very different model. More precisely, if
settlement is sufficiently infrequent, a positive fraction of agents experience a
long sequence of no-production opportunities during the transaction round,
resulting in a high balance that eventually needs to be settled. Sufficiently
impatient agents will choose to exit the economy rather than going through
the settlement process; i.e., the participation constraint will fail.

4 Discussion

We studied simple optimal payment systems in a dynamic model in which the
ability of agents to perform certain welfare-improving transactions is subject
to random and unobservable shocks. In the absence of settlement, incentive
constraints imply that the first-best allocation is not incentive feasible. The
first-best is supportable, however, if settlement is introduced, provided that
it takes place with a sufficiently high frequency.

The linearity assumption was necessary in order for settlement to affect
welfare only indirectly.11 If the disutility from balance adjustments was non-
linear, it would not be possible to achieve the first-best allocation in both
the bilateral and the settlement stage. Thus, linearity is necessary in order
to support the first-best in our model. One interpretation of this assumption
is that settlement costs are linear. For example, if settlement involves the
liquidation of certain assets, such as government bonds, such costs are linear
in the number of assets liquidated. Alternatively, if settlement uses central
bank money, the cost of settlement involves the opportunity cost from holding
such money, which corresponds to the interest rate on an equivalent number

11Other examples in which some form of linearity is invoked in static mechanism design
environments include the classic papers by Clarke (1971) and Groves and Loeb (1975).
See also Jarque (2003) for a more recent reference that deals with an intertemporal envi-
ronment.

16



of risk-free bonds. A second interpretation is that if settlement involves the
need for a sale of indivisible (large-denomination) assets or the supply of
extra work hours, linearity captures the fact that it is typically beneficial
to use lotteries in order to randomize over the amount of assets that are
liquidated, or over the extra work hours supplied.12

12See Rocheteau, Rupert, Shell and Wright (2005) for a discussion of how the linear
structure of lotteries can be beneficial in that regard.
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