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Abstract

Various versions of the wild bootstrap are studied as applied to regression models
with heteroskedastic errors. We develop formal Edgeworth expansions for the er-
ror in the rejection probability (ERP) of wild bootstrap tests based on asymptotic
t statistics computed with a heteroskedasticity consistent covariance matrix estima-
tor. Particular interest centers on the choice of the auxiliary distribution used by
the wild bootstrap in order to generate bootstrap error terms. We find that the
Rademacher distribution usually gives smaller ERPs, in small samples, than the ver-
sion of the wild bootstrap that seems most popular in the literature, even though
it does not benefit from the latter’s skewness correction. This conclusion, based on
Edgeworth expansions, is confirmed by a series of simulation experiments, which we
also use to study some other points, such as the use of constrained or unconstrained
residuals in the HCCME, about which the expansions give no definite conclusions.
We conclude that a particular version of the wild bootstrap is to be preferred in al-
most all practical situations, and we show analytically that it, and no other version,
gives perfect inference in a special case.
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1. Introduction

Inference on the parameters of the linear regression model

y = Xβ + u,

where y is an n-vector containing the values of the dependent variable, X an n× k
matrix of which each column is an explanatory variable, and β a k-vector of para-
meters, requires special precautions when the error terms u are heteroskedastic, a
problem that arises frequently in work on cross-section data. With heteroskedas-
tic errors, the usual OLS estimator of the covariance of the OLS estimates β̂ is in
general asymptotically biased, and so conventional t and F tests do not have their
namesake distributions, even asymptotically, under the null hypotheses that they
test. The problem was solved by Eicker (1963) and White (1980), who proposed
a heteroskedasticity consistent covariance matrix estimator, or HCCME, that per-
mits asymptotically correct inference on β in the presence of heteroskedasticity of
unknown form.

MacKinnon and White (1985) considered a number of possible forms of HCCME,
and showed that, in finite samples, they too, as also t or F statistics based on them,
can be seriously biased; see also Chesher and Jewitt (1987), who showed that the
extent of the bias is related to the structure of the regressors, and in particular to
the presence of observations with high leverage. But since, unlike conventional t and
F tests, HCCME-based tests are at least asymptotically correct, it makes sense to
consider whether bootstrap methods might be used to alleviate their small-sample
size distortion.

Bootstrap methods normally rely on simulation to approximate the finite-sample
distribution of test statistics under the null hypotheses they test. In order for such
methods to be reasonably accurate, it is desirable that the data-generating process
(DGP) used for drawing bootstrap samples should be as close as possible to the true
DGP that generated the observed data, assuming that that DGP satisfies the null
hypothesis. This presents a problem if the null hypothesis admits heteroskedasticity
of unknown form: If the form is unknown, it cannot be imitated in the bootstrap
DGP.

In the face of this difficulty, the so-called wild bootstrap was developed by Liu (1988)
following a suggestion of Wu (1986) and Beran (1986). Liu established the ability
of the wild bootstrap to provide refinements for the linear regression model with
heteroskedastic errors, and further evidence was provided by Mammen (1993), who
showed, under a variety of regularity conditions, that the wild bootstrap is asymp-
totically justified, in the sense that the asymptotic distribution of various statistics is
the same as the asymptotic distribution of their wild bootstrap counterparts. These
authors also show that, in some circumstances, asymptotic refinements are available,
which lead to agreement between the distributions of the raw and bootstrap statistics
to higher than leading order asymptotically.
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In this paper, we consider a number of implementations both of the Eicker-White
HCCME and of the wild bootstrap applied to them. We show that, when the error
terms are symmetrically distributed about the origin, the wild bootstrap applied
to HCCME based statistics benefits from better asymptotic refinements than when
they are asymmetrically distributed. We obtain an explicit Edgeworth expansion,
valid through order n−1, for the rejection probability of tests based on the wild
bootstrap. The expansion yields results that do not agree very well quantitatively
with results obtained by simulation, but it usually gives a fairly good idea of the
order of magnitude of the error in the rejection probability (ERP). In particular, by
providing explicit expressions for the coefficients in the expansion, it shows that the
order of a term, as a negative power of n, is by no means always the most important
determinant of its quantitative importance in not very large samples.

In section 2, we discuss a number of implementations of the wild bootstrap for asymp-
totic t and χ2 tests based on various versions of the HCCME. Then, in Section 3, we
study the ERPs of wild bootstrap tests by means of formal Edgeworth expansions. In
Section 4, we prove a theorem that shows that one of these tests yields perfect infer-
ence, up to a small error due to discretization, for a special case. Then, in section 5,
simulation experiments are described designed to measure the reliability of various
tests, bootstrap and asymptotic, in various conditions, including very small samples,
and to compare ERPs estimated by simulation with the predictions of Edgeworth
expansions. These experiments give strong evidence in favor of the version of the
wild bootstrap that gives perfect inference in the special case. A few conclusions are
drawn in section 6.

2. The Wild Bootstrap

Consider the linear regression model

yt = Xt1β1 + Xt2β2 + ut, t = 1, . . . , n, (1)

in which the explanatory variables are assumed to be strictly exogenous, in the sense
that, for all t, Xt1 and Xt2 are independent of all of the error terms us, s = 1, . . . , n.
The row vectors Xt1 and Xt2 contain observations on k1 and k2 variables respectively,
with k1 +k2 = k. We wish to test the null hypothesis that the parameter vector β1 is
zero. The error terms are assumed to be mutually independent and to have a common
mean of zero, but they may be heteroskedastic, with E(u2

t ) = σ2
t . We write ut = σtvt,

where E(v2
t ) = 1. We consider only unconditional heteroskedasticity, which means

that the σ2
t may depend on the exogenous regressors, but not, for instance, on lagged

dependent variables. The different DGPs contained in model (1) are characterized
by the parameters β1 and β2, the variances σ2

t , and the probability distributions of
the vt. The regressors are taken as fixed and the same for all DGPs contained in
the model. HCCME-based χ2 statistics for testing whether β1 = 0, or t statistics
if k1 = 1, are then asymptotically pivotal for the restricted model in which we set
β1 = 0, under weak regularity conditions on the regressors and the σt.

– 2 –



We write Xi for the n× ki matrix with typical row Xti, i = 1, 2, and by X we mean
the full n × k matrix [X1 X2]. Then the basic HCCME for the OLS parameter
estimates of (1) is

(X>X)−1X>Ω̂X(X>X)−1, (2)

where the n × n diagonal matrix Ω̂ has typical diagonal element û2
t , where the ût

are the OLS residuals from the estimation either of the unconstrained model (1) or
the constrained model in which β1 = 0 is imposed. We refer to the version (2)
of the HCCME as HC0. Bias is reduced by multiplying the ût by the square root
of n/(n − k), thereby multiplying the elements of Ω̂ by n/(n − k); this procedure,
analogous to the use in the homoskedastic case of the unbiased OLS estimator of the
error variance, gives rise to form HC1 of the HCCME. In the homoskedastic case,
the variance of ût is proportional to 1 − ht, where ht ≡ Xt(X>X)−1Xt

>, the tth

diagonal element of the orthogonal projection matrix on to the span of the columns
of X. This suggests replacing the ût by ût/(1−ht)1/2 in order to obtain Ω̂. If this is
done, we obtain form HC2 of the HCCME. Finally, arguments based on the jackknife
lead MacKinnon and White to propose form HC3, for which the ût are replaced by
ût/(1 − ht). MacKinnon and White (1985), and Chesher and Jewitt (1987), show
that, in terms of size distortion, HC0 is outperformed by HC1, which is in turn
outperformed by HC2 and HC3. The last two cannot be ranked in general, although
HC3 has been shown in a number of Monte Carlo experiments to be superior in
typical cases.

As mentioned in the introduction, heteroskedasticity of unknown form cannot be
mimicked in the bootstrap distribution. The wild bootstrap gets round this problem
by using a bootstrap DGP of the form

y∗t = Xtβ̂ + u∗t , (3)

where β̂ is a vector of parameter estimates, and the bootstrap error terms are

u∗t = ft(ût)εt,

where ft(ût) is a transformation of the OLS residual ût, and the εt are mutually inde-
pendent drawings, completely independent of the original data, from some auxiliary
distribution such that

E(εt) = 0 and E(ε2
t ) = 1. (4)

Thus, for each bootstrap sample, the exogenous explanatory variables are reused un-
changed, as are the OLS residuals ût from the estimation using the original observed
data. The transformation ft(·) can be used to modify the residuals, for instance by
dividing by 1− ht, just as in the different variants of the HCCME.

In the literature, the further condition that E(ε3
t ) = 1 is often added. Liu (1988)

considers model (1) with k = 1, and shows that, with the extra condition, the first
three moments of the bootstrap distribution of an HCCME-based statistic are in
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accord with those of the true distribution of the statistic up to order n−1. Mammen
(1993) suggested what is probably the most popular choice for the distribution of the
εt, namely the following two-point distribution:

F1 : εt =
{ − (

√
5− 1)/2 with probability p = (

√
5 + 1)/(2

√
5)

(
√

5 + 1)/2 with probability 1− p.
(5)

Liu also mentions the possibility of Rademacher variables, defined as

F2 : εt =
{

1 with probability 1/2
−1 with probability 1/2, (6)

which, for estimation of a mean, satisfies necessary conditions for refinements in the
case of unskewed error terms. Unfortunately, she does not follow up this possibility,
since (6), being a lattice distribution, does not lend itself to rigorous techniques based
on Edgeworth expansion.

Conditional on the random elements β̂ and ût, the wild bootstrap DGP (3) clearly
belongs to the model constituting the null hypothesis if the subvector β̂1, correspond-
ing to the regressors in X1, is zero, since the bootstrap error terms u∗t have mean zero
and are heteroskedastic for any distribution of the εt satisfying (4). Since (1) is lin-
ear, we may also set the remaining components of β̂ to zero, since the distribution of
any HCCME-based statistic does not depend on the value of β2. Since the HCCME-
based statistics we have discussed are asymptotically pivotal, inference based on the
wild bootstrap using such a statistic applied to model (1) is asymptotically valid. In
the case of a nonlinear regression, the distribution of the test statistic does depend
on the specific value of β2, and so a consistent estimator of these parameters should
be used in formulating the bootstrap DGP.

The arguments in Beran (1988) show that bootstrap inference benefits from asymp-
totic refinements when used with asymptotically pivotal statistics if the random ele-
ments in the bootstrap DGP are consistent estimators of the corresponding elements
in the unknown true DGP. These arguments do not apply directly to (3), since the
squared residuals are not consistent estimators of the σ2

t . In the next section, we
develop formal Edgeworth expansions for the ERP of a bootstrap test based on a
t statistic in model (1), and show that asymptotic refinements are nonetheless avail-
able in certain circumstances.

3. Formal Edgeworth Expansions

The conventional asymptotic theory of the bootstrap as found, for instance, in Hall
(1992), and, in particular, in the theory presented in Liu (1988) and Mammen (1993),
relies on Edgeworth expansions in order to prove the existence of asymptotic refine-
ments. In this section we present formal Edgeworth expansions up to order n−1 for
the distribution of an HCCME-based t statistic and its wild bootstrap counterpart,
and for the ERP of a wild bootstrap test based on such a statistic. It is not hard to
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formulate regularity conditions for the validity of the expansion for the statistic itself,
but, since the wild bootstrap statistic has a discrete distribution, it would be much
more complicated to find rigorous regularity conditions of sufficient generality. It is
not the aim of this paper to investigate this issue, and we therefore limit ourselves to
consideration of conditions for the validity of the expansion for the HCCME-based
t statistic itself.

The most important of these is just that the regressors in model (1) satisfy the
usual condition for the validity of OLS estimation, namely that plimn→∞ n−1X>X
is a finite, positive definite, deterministic matrix. In addition, we assume that the
regressor matrix X is independent of the error terms ut. We also require some
conditions that involve both the regressors and the error variances; these will be
formulated explicitly in a moment. Basically, they require the existence of various
moments, and the finiteness of the limits of these moments as the sample size tends
to infinity. Conditions of this sort are enough since we are firmly in the context of the
smooth function model, as set out, for instance, in Hall (1988). Precisely to avoid
the problem caused by the discreteness of the wild bootstrap statistic, we assume
that the error terms ut are drawn from a continuous distribution on the real line or
a subset of the real line.

We suppose that k1 = 1, so that the vector β1 becomes a scalar β1, and the matrix X1

becomes a vector x1. All t statistics based on the HCCME for the hypothesis that
β1 = 0 can be written as

τ ≡ x1
>M2y/(x1

>M2Ω̂M2x1)1/2. (7)

Here y is the n-vector with typical element yt, Ω̂ is an n × n diagonal ma-
trix with diagonal elements that depend on the version of the HCCME and on
whether residuals from the constrained or unconstrained regression are used, and
M2 = I−X2(X2

>X2)−1X2
> is the orthogonal projection matrix on to the orthogonal

complement of the span of the columns of X2.

Because Ω̂ is diagonal, we can express the matrix product x1
>M2Ω̂M2x1 as

n∑
t=1

at(M2x1)2
t ü2

t , (8)

where üt is the tth residual, constrained or unconstrained, and at depends on the
choice of the functions ft: at = 1 for HC0, n/(n−k) for HC1, 1/(1−ht) for HC2, and
1/(1−ht)2 for HC3. Under the assumed conditions on the regressors, at = 1+O(n−1)
for all t. Under the null, M2y = M2u, and so the statistic (7) is equal to

τ =
∑n

t=1(M2x1)t ut

(
∑n

t=1 at(M2x1)2
t ü2

t )1/2
. (9)

It is clear from this that the statistic depends on the regressor design only through the
vector x1 and the space spanned by the columns of X2. In fact, only the component
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of x1 orthogonal to the columns for X2, that is, the vector M2x1, has any influence
on τ , and then only through its direction; τ is homogeneous of degree 0 in the
components of M2x1, and so does not depend on the norm of that vector. In addition,
it is clear that τ is independent of the scale of the error terms, in the sense that
multiplying all of the σt by the same constant leaves τ unchanged.

We may therefore, without loss of generality, choose to express the regressors in the
matrix X2 in such a way that n−1X2

>X2 = I, the n × n identity matrix. Further,
we normalize the vector M2x1 to have squared norm of n; these operations are
admissible for all n on account of our assumption about plim n−1X>X. To simplify
notation, we henceforth write x = M2x1, with components xt, t = 1, . . . , n, and
redefine X accordingly as X ≡ [x X2], with typical element Xti.

Our main aim at this point is to obtain Edgeworth expansions for the ERP of a test
based on applying one of several versions of the wild bootstrap to a t statistic of the
form τ in (9), based on one of several versions of the HCCME. These expansions
depend on a number of quantities defined in terms of the regressors and the error
variances. We make the following definitions:

S2 = n−1
∑

t

x2
t σ

2
t , C = n−1

∑
t

x3
t (σt/S)3,

D = n−1
∑

t

x4
t (σt/S)4, (10)

Ei = n−1
∑

t

xtXti(σt/S)2, and Fi = n−1
∑

t

x3
t Xti(σt/S)2, i = 1, . . . , k.

We assume that the limits as n →∞ of all the quantities in the set of definitions (10)
are finite, and that the limit of S is bounded away from zero. Because the distribution
of τ is independent of the scale of the σt, it would be possible to specify that S = 1 and
thereby replace the normalized σt/S in the definitions following that of S by just σt.
We do not do so, because all of the above quantities have bootstrap counterparts, and
the value of S is different for these, while the matrix X is the same for the original
and the bootstrap statistics.

The indexed quantities Ei and Fi can be thought of as the components of vectors
of k components. The invariance properties of model (1) imply that these vectors
can influence the distribution of τ only through invariant scalar functions defined in
terms of them. This will be clear in the results to follow.

We assume that the standardized error terms vt share the same distribution for all t.
This is not a necessary assumption, but making it saves us from further notational
complexity. For this common distribution, then, we write e3 = E(v3

t ) and e4 = E(v4
t ).

We also define e∗3 = E(ε3
t ), and e∗4 = E(ε4

t ).

We may now state the following theorem.

Theorem 1: For an HCCME-based t statistic τ of type (9), and a wild
bootstrap DGP with bootstrap error terms u∗t = ft(üt)εt, where the üt
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are the constrained or unconstrained residuals, the transformations ft corre-
spond to one of the HCi, i = 0, 1, 2, 3, and the εt are independent drawings
from a distribution satisfying (4), the error in the rejection probability of a
one-tailed bootstrap test at nominal level α with rejection in the left-hand
tail of the distribution, under a DGP of the form

yt = Xt2β2 + σtvt, t = 1, . . . , n,

where the vt are mutually independent, and all follow the same mean-zero,
unit-variance distribution, has the following formal expansion through or-
der n−1:

φ(zα)
(

1−
6
n−1/2(1− e∗3)e3C(1 + 2z2

α) + n−1
(
e2

3C
2( 1−

6
zα − 1−

9
z3
α − 1−−

18
z5
α)

+e∗3e
2
3C

2( 1−
6
zα + 7−−

18
z3
α + 1−

9
z5
α) + (e∗3)2e2

3C
2(− 1−−

12
zα + 2−

9
z3
α − 1−−

18
z5
α) (11)

+ 1−−
12

e4D
(
zα(3(e∗4 − 1)− 2e∗3)− z3

α((e∗4 − 1) + 4e∗3)
)

+ e∗3E( 1−
2
zα + z3

α)
))

.

Here, φ(·) is the standard normal density and zα is the α-quantile of that
distribution.

The quantities C and D are defined in (10), and the scalar E is defined in
terms of the components Ei and Fi by

E ≡
∑

i

EiFi.

The sum over i runs from 2 to k if constrained residuals are used, and from
1 to k if unconstrained residuals are used.

Proof: In the Appendix.

Remarks and Corollaries:

The regressor design and the pattern of heteroskedasticity influence (11) through just
three quantities, C, D, and E. Indeed, for given n and α, (11) depends only on these
three quantities and e3, e4, e∗3, and e∗4.

For the distribution F1 of (5), we have e∗3 = 1, e∗4 = 2. Thus, for F1, (11) becomes

φ(zα)n−1
(
e2

3C
2( 1−

4
zα + 1−

2
z3
α) + 1−−

12
e4D

(
zα − 5z3

α

)
+ E( 1−

2
zα + z3

α)
)
, (12)

of order n−1 at most. For F2 in (6), e∗3 = 0 and e∗4 = 1, and (11) becomes

φ(zα)
(

1−
6
n−1/2e3C(1 + 2z2

α) + n−1e2
3C

2( 1−
6
zα − 1−

9
z3
α − 1−−

18
z5
α)

)
. (13)
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Whereas (12), like (11), depends on C, D, E, e3, and e4, (13) depends only on C
and e3. It can, however, have a leading-order term of order n−1/2.

With symmetric error terms, e3 = 0, and (11) simplifies to n−1φ(zα) times

1−−
12

e4D
(
zα(3(e∗4 − 1)− 2e∗3)− z3

α((e∗4 − 1) + 4e∗3)
)

+ e∗3E( 1−
2
zα + z3

α). (14)

This expression depends only on D and E for given e∗3 and e∗4, and it is of order no
higher than n−1.

As can be seen from (13), if either e3 or C is zero, the ERP for the Rademacher
distribution F2 vanishes completely to order n−1, so that the ERP is at most of
order n−3/2. This is a very satisfactory degree of refinement for the wild bootstrap.
It is obtained if the error terms are not skewed (e3 = 0), or if the projected regressor x
is not skewed in the metric of the error variances (C = 0). This result is the analog
for heteroskedastic models of the result in Hall (1992), according to which bootstrap
tests on the coefficients of homoskedastic regression models benefit from refinements
unless both the regressors and the errors are skewed.

If the error terms are homoskedastic, then Ei = 0 for i = 2, . . . , k. This follows
from the definition in (10) of Ei and the fact that, for i = 2, . . . , k, the vector x is
orthogonal to the other columns of X. Thus, if, but only if, constrained residuals
are used in forming the HCCME, we have E = 0.

Although C and E can be zero for certain regression designs and patterns of het-
eroskedasticity, the quantity D, as is clear from (10), cannot be less than 1. Similarly,
the fourth moment e4 of the standardized error terms cannot be less than 1. Thus the
only distribution satisfying (4) for which it is possible that the ERP of the bootstrap
test vanishes through order n−1 is F2. To see this, note that, for the term propor-
tional to e4D in (11) to vanish, it is necessary that e∗3 = 0 and e∗4 = 1. But it can
readily be shown that the only distribution satisfying (4) and these two conditions
is F2. The standard normal distribution, for instance, satisfies E(εt) = 0 E(ε2

t ) = 1,
E(ε3

t ) = 0, but then has E(ε4
t ) = 3.

The coefficients of the different terms of order n−1 in (11) are subject to a couple
of inequalities, which indicate that, in many circumstances, the term proportional
to e4D, if it is not annihilated by use of the F2 distribution, will be the dominant
term. The first of these inequalities is C2 ≤ D, which follows from the definitions
in (10) and the Cauchy-Schwartz inequality. The second is e2

3 ≤ e4− 1; it holds with
equality for the F2 distribution.

The expansion (11) does not go far enough for there to be any effect associated with
the choice of HCCME. Such effects will however be clear in the simulation results
presented in section 5.

Theorem 2: For the setup of Theorem 1, the ERP of a two-tailed boot-
strap test, for which rejection occurs if the absolute value of τ exceeds a
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critical value calculated as the 1−α quantile of the distribution of the abso-
lute value of the bootstrap statistic, has the following Edgeworth expansion:

2n−1φ(zα/2)
(

((e∗3)2 − 1)e2
3C

2
( 1−

6
zα/2 + 1−

9
z3
α/2 + 1−−

18
z5
α/2

)

+ 1−−
12

(e∗4 − 1)e4D
(
3zα/2 − z3

α/2

))
. (15)

For the F1 distribution, this reduces to

2n−1φ(zα/2)e4D(z3
α/2 − 3zα/2),

and for the F2 distribution to

2n−1φ(zα/2)e2
3C

2
( 1−

6
zα/2 + 1−

9
z3
α/2 + 1−−

18
z5
α/2

)
.

If the error terms are not skewed (e3 = 0), the ERP becomes

2n−1φ(zα/2) 1−−
12

(e∗4 − 1)e4D
(
3zα/2 − z3

α/2

)
.

Proof: In the Appendix.

Remarks:

When two-tailed tests are used, the ERP of a bootstrap test is usually of lower
order than for a one-tailed test. This is the case here only for the case in which the
Rademacher F2 distribution is used for the wild bootstrap, and e3C 6= 0. However,
this does mean that, in all cases, the ERP is of order no higher than n−1. As with
a one-tailed test, if e3C = 0, use of the F2 distribution causes the ERP to vanish
through order n−1.

For tests with more than one degree of freedom, where the statistic is in asymptot-
ically chi-squared form, the rates of convergence are the same as for the two-tailed
one degree of freedom test.

In the Appendix, we give the Edgeworth expansion for statistics τ of type (9). It is
straightforward to use it to obtain Edgeworth expansions of the ERP of the asymp-
totic test based on τ . As expected, the leading-order term is of order n−1/2 for a
one-tailed test, and n−1 for a two-tailed one. These are just the same orders as those
we have obtained for the wild bootstrap. Remarkably, the contribution of order n−1/2

to the ERP of the one-tailed asymptotic test is the same as that of the wild bootstrap
test based on F2; the two contributions therefore vanish under the same conditions.
The terms of order n−1 are, however, more numerous and more complicated for the
asymptotic test than for the bootstrap test. As simulation results in section 5 will
show, even when the term of order n−1/2 in (11) does not vanish, the ERP of the
bootstrap test is usually very much smaller than that of the asymptotic test.

Chesher and Jewitt (1987) showed that the ERP of asymptotic tests based on various
versions of the HCCME depend strongly on whether high leverage observations are
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present in the sample. This fact emerges from the Edgeworth expansion for the
asymptotic test, but it is conspicuously absent from that for the bootstrap test. Of
the three quantities on which the bootstrap expansion depends, C and D are not
directly related to leverage at all. The third quantity, E, which does not appear in
the expansion for the F2 version of the wild bootstrap, does depend on the projection
matrix on to the space spanned by the regressors, but not exclusively on the diagonal
elements of that matrix, which are the conventional measures of leverage. In fact, if P
denotes the orthogonal projection on to the span of the columns of X2, if constrained
residuals are used, or of X if unconstrained, then, recalling the fact that X>X = nI
by construction, it is easy to show that

E = n−1
n∑

t=1

n∑
s=1

xtσ
2
t (P )tsx

3
sσ

2
s .

Our simulation results confirm that, for the F2 bootstrap, the presence of high lever-
age observations has little effect on the ERP of the wild bootstrap tests.

4. A Special Case

There is an interesting special case in which the wild bootstrap using F2 yields almost
perfect inference. This case arises when the entire parameter vector β vanishes under
the null hypothesis and constrained residuals are used for both the HCCME and the
wild bootstrap DGP.

Theorem 3: Consider the linear regression model

yt = Xtβ + ut (16)

where the n × k matrix X with typical row Xt is independent of all the
symmetrically distributed and mutually independent error terms ut, and
where the regressors and error terms satisfy the same regularity conditions
as for Theorem 1. Under the null hypothesis that β = 0, the χ2 statistic
for a test of that null against the alternative represented by (16), based on
any of the four versions HCi, i = 0, 1, 2, 3 of the HCCME, constructed with
constrained residuals, has the same distribution, conditional on the absolute
values |ut| of the error terms, as the same statistic bootstrapped, if the εt of
the bootstrap DGP are generated by the Rademacher distribution F2 of (6).

The bootstrap P value is independent of the |ut|, and, for sample size n,
follows a discrete distribution supported by the set of points pi = i/2n,
i = 0, . . . , 2n − 1, with equal probability mass 2−n on each point.

Proof: We have assumed that the error terms follow a continuous distribution,
which therefore can have no atom of positive probability at the origin. Thus, for each
error term ut, we can write ut = |ut|st, where st, equal to ±1, is the sign of the error
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term. If the ut are symmetrically distributed, it is easy to see that |ut| and st are
independent, and that the st are independent drawings from F2.

The OLS estimates from (16) are given by β̂ = (X>X)−1X>y, and any of the
HCCMEs we consider for β̂ can be written in the form (2), with an appropriate
choice of Ω̂. The χ2 statistic thus takes the form

τ ≡ y>X(X>Ω̂X)−1X>y. (17)

Under the null, y = u. Define the 1×k row vector Zt as |ut|Xt, and the n×1 column
vector s with typical element st. Then the n × k matrix Z with typical row Zt is
independent of the vector s. If the constrained residuals, which are just the elements
of y, are used to form Ω̂, the statistic (17) becomes

s>Z

(
n∑

t=1

atZt
>Zt

)−1

Z>s, (18)

where the at are defined as in (8).

If we denote by τ∗ the statistic generated by the wild bootstrap with F2, then τ∗ can
be written as

ε>Z

(
n∑

t=1

atZt
>Zt

)−1

Z>ε, (19)

where ε denotes the vector containing the εt. The matrix Z is exactly the same as
in (18), because the exogenous matrix X is reused unchanged, and the wild bootstrap
error terms u∗t = ±ut, since, under F2, εt = ±1. Thus, for all t, |u∗t | = |ut|. By
construction, ε and Z are independent under the wild bootstrap DGP. Under the
null hypothesis, s and Z are independent, and s follows exactly the same distribution
as ε. It follows that τ under the null and τ∗ under the wild bootstrap DGP with F2

have the same distribution conditional on the |ut|. This proves the first assertion of
the theorem.

This common conditional distribution of τ and τ∗ is of course a discrete distribution,
since ε and s can take on only 2n different, equally probable, values, with a choice
of +1 or −1 for each of the n components of the vector. The statistic τ must take
on one of the 2n possible values, each with the same probability of 2−n. If we denote
the 2n values, arranged in increasing order, as τi, i = 1, . . . , 2n, with τj > τi for
j > i, then, if τ = τi, the bootstrap P value, which is the probability mass in the
distribution to the right of τi, is just pi ≡ 1 − i/2n. As i ranges from 1 to 2n, the
P value varies over the set of points pi, i = 0, . . . , 2n − 1, all with probability 2−n.
This distribution, conditional on the |ut|, does not depend on the |ut|, and so is also
the unconditional distribution of the bootstrap P value, which is thus independent
of the |ut|.
Remarks: For small enough n, it may be quite feasible to enumerate all the
possible values of the bootstrap statistic τ∗, and thus obtain an exact bootstrap
P value without simulation.
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If k = 1, a very minor adaptation of the proof shows that the result of the Theorem
applies to the t form of the one degree of freedom statistic.

Although the discrete nature of the bootstrap distribution means that it is not possi-
ble to perform exact inference for an arbitrary significance level α, the problem is no
different from the problem of inference with any discrete-valued statistic. For the case
with n = 10, which will be extensively treated in the following section, 2n = 1024,
and so the bootstrap P value cannot be in error by more than 1 part in a thousand.

If the null hypothesis does not require all the regression parameters to be zero, or if
unconstrained residuals are used, the expressions (18) and (19) for τ and τ∗ continue
to hold if Zt is redefined as |üt|(M2X1)t, where X1 is the matrix of regressors
admitted under the null. However, although ε in τ∗ is by construction independent
of Z, s in τ is not, and its elements are not mutually independent, because the
covariance matrix of the residual vector ü is not diagonal in general, unlike that of
the error terms u.

5. Experimental Design and Simulation Results

Since bootstrap tests usually behave better in large samples than in small, most of
our experiments are performed with a sample of size 10, in order to stress-test the
wild bootstrap. All the tests we consider are of the null hypothesis that β1 = 0 in
model (1), with k1 = 1 and k2, the number of regressors in the matrix X2, varying
from 0 to 5 across experiments. The regressor x1 associated with the parameter β1

has elements which are independent drawings from N(0, 1), except for the second,
which is equal to 10, so as to create very substantial skewness in the regression
design, and also an observation of very high leverage. For k2 ≥ 1, the first column
of X2 is a constant. For k2 = 2, . . . , 5, additional regressors are used which are linear
combinations of x1 and independent normal vectors. In Table 1, the components of
all the regressors except the constant are given.

The data in all the simulation experiments discussed here are generated under the
null hypothesis. Since (1) is a linear model, we set β2 = 0 without loss of generality.
Thus our data are generated by a DGP of the form

yt = σtvt, t = 1, . . . , n, (20)

where n is the sample size, 10 for most experiments. For homoskedastic data, we
set σt = 1 for all t, and for heteroskedastic data, we set σt = |xt1|, the absolute
value of the tth component of x1. Because of the high leverage observation, this
gives rise to very strong heteroskedasticity, which leads to serious bias of the OLS
covariance matrix; see White (1980). The vt are independent mean zero variables of
unit variance, and in the experiments will be either normal or else drawings from the
highly skewed χ2(2) distribution, centred and standardized.

In Table 2, we give, for the regression designs considered and the above pattern of
heteroskedasticity, the values of the quantities C, D, and E on which the approximate
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ERP (11) depends. The quantity denoted E0 is the sum over i = 2, . . . , k (k =
k1 +k2), appropriate if constrained residuals are used in the HCCME, E1 adds in the
term for i = 1. For comparison purposes, the values are also given for homoskedastic
errors.

The main object of our experiments is to compare the size distortions of wild boot-
strap tests using the distributions F1 and F2. Although the latter gives exact infer-
ence only in a very restricted case, it always leads to less distortion than the former,
in the cases we consider, for sample sizes up to 100. We are also interested in the
impact on ERPs of the use of unconstrained versus constrained residuals, and the
use of the different sorts of HCCME. We consider only one-tailed tests, since these
typically lead to greater distortions than two-tailed tests. We present our results as
P value discrepancy plots, as described in Davidson and MacKinnon (1998). These
plots show ERPs as a function of the nominal level α. They also provide enough
information to have a good idea of the ERP of a two-tailed test. All plots are based
on experiments using 100,000 replications.

We now present our results as answers to a series of pertinent questions.
• In a representative case, with strong heteroskedasticity and regressor skewness,

is the wild bootstrap capable of reducing the ERP relative to asymptotic tests?
Figure 1 shows plots for the regression design with k = 3, sample size n = 10, and
normal heteroskedastic errors. The ERPs are plotted for the conventional t statistic,
based on the OLS covariance matrix estimate, and for the four versions of HCCME-
based statistics, HCi, i = 0, 1, 2, 3, all using constrained residuals. P values for the
asymptotic tests are obtained using Student’s t distribution with 7 degrees of freedom.
The ERP is also plotted for what will serve as a base case for the wild bootstrap:
Constrained residuals are used both for the HCCME and the wild bootstrap DGP,
the F2 distribution is used for the εt, and the statistic that is bootstrapped is the HC3

form. To avoid redundancy, the plots are drawn only for the range 0 ≤ α ≤ 0.5, since,
as is clear from (9), all these statistics are symmetrically distributed when the errors
are symmetric. In addition, the bootstrap statistics are symmetrically distributed
conditional on the original data, and so the distribution of the bootstrap P value
is also symmetrical about α = 0.5. It follows that the ERP for nominal level α is
the negative of that for 1 − α. Not surprisingly, the conventional t statistic, which
does not have even an asymptotic justification, is the worst behaved of all, with far
too much mass in the tails. But, although the HCi statistics are less distorted, the
bootstrap test is manifestly much better behaved.
• The design with k2 = 0 (k = 1) satisfies the conditions of Theorem 3 when the

errors are symmetric and the HCCME and the bootstrap DGP are based on
constrained residuals. If k2 > 0, bootstrap inference is no longer perfect, but,
according to the Edgeworth expansion, should still be good, since the ERP is
of order less than n−1. To what extent is this so? Do the design-dependent
quantities given in Table 2 have any predictive power for the ERP?

P value discrepancy plots are shown in Figure 2 for the designs k = 1, . . . , 6 using the
base-case wild bootstrap as described above. Errors are normal and heteroskedastic.
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As expected, the ERP for k = 1 is just experimental noise, and for most other cases
the ERPs are significant, but not large, even for the very small sample size. They
are particularly small for k = 2, and, by what is presumably a coincidence induced
by the specific form of the data, for k = 6. Such a result might perhaps be predicted
on the basis of Table 2, but not in any conclusive fashion: Presumably the remainder
of order less than n−1 in the Edgeworth expansion depends on the regression design
through other things than just C, D, and E.
• How do bootstrap tests based on the F1 and F2 distributions compare? We

expect that F2 will lead to smaller ERPs if the errors are symmetric, but what if
they are asymmetric? How effective is the skewness correction provided by F1?

In Figure 3 plots are shown for the k = 3 design with heteroskedastic normal errors
and skewed χ2(2) errors. The F1 and F2 bootstraps give rather similar ERPs, whether
or not the errors are skewed. But the F2 bootstrap is generally better, and never
worse. Very similar results, leading to same conclusion, were also obtained with the
k = 4 design. For k = 1 and k = 2, on the other hand, the F1 bootstrap suffers from
larger ERPs than does F2.
• What is the penalty for using the wild bootstrap when the errors are homoskedas-

tic and inference based on the conventional t statistic is reliable, at least with
normal errors? Do we get different answers for F1 and F2?

Again we use the k = 3 design. We see from Figure 4, which is like Figure 3 except
that the errors are homoskedastic, that, with normal errors, the ERP is very slight
with F2, but remains significant for F1. Thus, with unskewed, homoskedastic errors,
the penalty attached to using the F2 bootstrap is very small. With skewed errors, all
three tests give substantially greater ERPs, but the F2 version remains a good deal
better than the F1 version.
• Do the rankings of bootstrap procedures obtained so far for n = 10 continue to

apply for larger samples? Do the ERPs become smaller rapidly as n grows?
In order to deal with larger samples, the data in Table 1 were simply repeated as
needed in order to generate regressors for n = 20, 30, . . .. In this way, the design-
dependent quantities like C and D do not depend on n. The plots shown in Figures 3
and 4 are repeated in Figure 5 for n = 100. The rankings found for n = 10 remain
unchanged, but, as suggested by the results of Section 3, the ERP for the F2 bootstrap
with skewed, heteroskedastic, errors improves less than that for the F1 bootstrap with
the increase in sample size. It is noteworthy that none of the ERPs in this diagram
is very large.

In Figure 6, we plot the ERP for α = 0.05 as a function of n, n = 10, 20, . . ., with
the k = 3 design and heteroskedastic errors, normal for F1 and skewed for F2, chosen
because these configurations lead to comparable ERPs for n around 100, and because
this is the worst setup for the F2 bootstrap. It is interesting to observe that, at least
for α = 0.05, the ERPs are not monotonic. What seems clear is that, although the
absolute magnitude of the ERPs is not disturbingly great, the rate of convergence
to zero does not seem to be at all rapid. As the Edgeworth expansions suggest, it
is slower for the F2 bootstrap. Since C, D, etc., do not vary with n, these results
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do not support the idea that a power of n−1/2 is a good way to measure the rate of
convergence.
• How do the ERPs as estimated by simulation compare with the approximations

given by Edgeworth expansions?
In some cases, of course, very badly indeed, as when the Edgeworth approximation
is zero, but the ERP is significant. Very badly again for the F1 bootstrap, where,
because the term of order n−1/2 vanishes, the expression (11) is antisymmetric with
respect to zα, implying an ERP that is antisymmetric about α = 0.5. We see from
Figure 3 that, although the ERP does have this form for the F2 bootstrap with
symmetric errors, for F1 the ERP is very far indeed from antisymmetric with skewed
errors, being negative for almost all α. For another comparison with no requirement
of antisymmetry, we consider the k = 3 design with the F2 bootstrap and χ2(2)
errors, for which it can easily be seen that e3 = 2 and e4 = 9. In Figure 7a, we plot
the order n−1/2 and order n−1 contributions in (11) as functions of α. For n = 10,
the order n−1 term is clearly quantitatively greater than the order n−1/2 term. Then,
in Figure 7b, we plot the differences between the approximate ERP (11) and the true
one, as estimated by simulation, for both the F1 and the F2 bootstraps, for sample
sizes n = 10 and n = 100, with χ2(2) errors throughout. For n = 10, there is no
apparent relation at all between the approximation and the true ERP. For n = 100,
things are much better, although the discrepancy for F1 remains quite significant.
For F2, on the other hand, the approximation is nearly perfect.

We now move on to consider some lesser questions, the answers to which justify, at
least partially, the choices made in the design of our earlier experiments. We restrict
attention to the F2 bootstrap, since it is clearly the procedure of choice in practice.
• Does it matter which of the four versions of the HCCME is used?

It is clear from Figure 2 that the choice of HCi has a substantial impact on the ERP
of the asymptotic test. Since the HC0 and HC1 statistics differ only by a constant
multiplicative factor, they yield identical bootstrap P values, as do all versions for
k = 1 and k = 2. For k = 1 this is obvious, since the raw statistics are identical,
and for k = 2, the only regressor other than x1 is the constant, and so ht does not
depend on t. For k > 2, significant differences appear, as seen in Figure 9 which
treats the k = 4 design. HC3 has the least distortion here, and also for the other
designs with k > 2. This accounts for our choice of HC3 in the base case.
• What is the best transformation ft(·) to use in the definition of the bootstrap

DGP? Plausible answers are either the identity transformation, or the same as
that used for the HCCME.

No very clear answer to this question emerged from our numerous experiments on
this point. A slight tendency in favour of using the HC3 transformation appears,
but this choice does not lead to universally smaller ERPs. However, the quantitative
impact of the choice is never very large, and so the HC3 transformation is used in
our base case.
• How is performance affected if the leverage of observation 2 is reduced?
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The ERPs of the asymptotic tests are greater with a high leverage observation. The
Edgeworth expansions suggest that the same should be true of bootstrap tests only
to a limited extent. The presence of a high leverage observation does however appear
to have a considerable impact if the HC0 statistic is used, but only for it and HC1.
In Figure 9, this is demonstrated for k = 3, and normal errors, and the effect of
leverage is compared with that of heteroskedasticity. The latter is clearly a much
more important determinant of the ERP than the former. Similar results are obtained
if the null hypothesis concerns a coefficient other than β1. In that case, the ht differ
more among themselves, since x1 is now used in their calculation, and HC0 gives
more variable results than HC3, for which the ERPs are similar in magnitude to
those for the test of β1 = 0.
• How important is it to use constrained residuals?

For Theorem 3 to hold, it is essential, and Theorem 1 shows that an extra term
is introduced into the expansion of the ERP if unconstrained residuals are used.
This term can be obtained from the numerical values in the last two rows of Table 2,
where the difference between E1 and E0 is the extra term for unconstrained residuals.
Simulation results show that, except for the k = 1 and k = 2 designs, it is not
very important whether one uses constrained or unconstrained residuals, although
results with constrained residuals tend to be better in most cases. The simulations
do however show clearly that it is a mistake to mix unconstrained residuals in the
HCCME and constrained residuals for the bootstrap DGP.

6. Conclusion

The wild bootstrap is commonly applied to models with heteroskedastic error terms
and an unknown pattern of heteroskedasticity, most commonly in the form that uses
the asymmetric F1 distribution in order to take account of possible skewness of the
error terms. In this paper we have shown that the wild bootstrap implemented
with the symmetric F2 distribution and constrained residuals, which can give perfect
inference in one very restricted case, is no worse behaved than the F1 version, or either
version with unconstrained residuals, in the rather extreme cases we investigate by
simulation, and is usually markedly better. We therefore recommend that this version
of the wild bootstrap should always be used in practice in preference to other versions.
If it should turn out that it has a higher ERP than the F1 version, it is very likely
that, in such cases, the ERPs of both versions will be small. Our recommendation
is supported by the results of simulation experiments designed to expose potential
weaknesses of both versions, and by the approximate expressions of the ERP, based
on Edgeworth expansions, for both versions. The approximations make clear that
the leading negative power of the sample size is by no means the only useful index of
a test’s performance.

It is important to note that conventional confidence intervals cannot benefit from our
recommended version of the wild bootstrap, since they are implicitly based on a Wald
test using unconstrained residuals for the HCCME and, unless special precautions
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are taken, also for the bootstrap DGP. If reliable confidence intervals are essential, we
recommend that they be obtained by inverting a set of tests based on the preferred
wild bootstrap. Although this can be a computationally intensive procedure, it is
well within the capacity of modern computers and seems to be the only way currently
known to extend refinements available for tests to confidence intervals.

A final caveat seems called for: Although our experiments cover a good number of
cases, some caution is still necessary on account of the fact that the extent of the
ERP of wild bootstrap tests appears to be very sensitive to details of the regression
design and the pattern of heteroskedasticity.

In this paper, we have tried to investigate worst case scenarios for wild bootstrap
tests. This should not lead readers to conclude that the wild bootstrap is an unreliable
method in practice. On the contrary, as Figure 6 makes clear, it suffers from very little
distortion for samples of moderate size unless there is extreme heteroskedasticity. In
most practical contexts, use of the F2-based wild bootstrap with constrained residuals
should provide satisfactory inference.
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Appendix

Proof of Theorems 1 and 2:
Many parts of the proof apply to both theorems, and so we distinguish only when
necessary. The proof is divided into several steps. First, we develop a formal stochas-
tic expansion through order n−1 for any of the HCCME-based t statistics we consider
in the paper, and show how the same expansion applies as well to the bootstrapped
statistic by simply redefining certain quantities. Next, approximate expressions are
obtained for the low order cumulants of these statistics on the basis of the stochastic
expansion. These approximate cumulants are used to obtain the (formal) Edgeworth
expansion of the distributions of the statistics. In the next step, the Edgeworth ex-
pansion for a bootstrap statistic is inverted to yield the Cornish-Fisher expansion
of its α-quantile. This quantile is needed in order to express the condition that the
statistic τ is less than the α-quantile of the bootstrap distribution, the probability
of which is the rejection probability of the bootstrap test at nominal level α. The
quantile is of course different for one- and two-tailed tests; for the latter it is an abso-
lute value that is required. Then, because the quantile of the bootstrap distribution
is random, the condition for rejection is rearranged so as to put all random terms
on the left-hand side. This gives rise to another random variable, the distribution of
which is described by an Edgeworth expansion obtained in the next step by applying
some easily computed perturbations to that for the basic statistic τ . Finally, the
approximate bootstrap rejection probability, and hence also the ERP, is found by
evaluating the Edgeworth expansion at the desired nominal level α.

Step 1: stochastic expansion of the statistic.

In (9), it was seen that, under the null hypothesis, any of the statistics we consider
can be written as

τ =
n∑

t=1

(M2x1)tut/
( n∑

t=1

at(M2x1)2
t ü

2
t

)1/2
, (21)

with appropriate choice of the at and the residuals (constrained or unconstrained) üt.
In the notation of the statement of the theorem, (M2x1)t = xt. If constrained
residuals are used, the vector ũ with typical element ũt is

M2u = u−X2(X2
>X2)−1X2

>u = u− n−1X2X2
>u,

since we define X2 such that X2
>X2 = nI. In terms of the IID variables vt, we find

that

ũt = σtvt − n−1
k∑

i=2

Xti

n∑
s=1

Xsiσsvs. (22)

If unconstrained residuals ût are used, (22) is modified so that the sum over i runs
from 1 to k, rather than from 2 to k. To avoid having to distinguish the two cases,
we write just

∑
i in subsequent expressions, and maintain the ambiguous notation

üt for the residuals.
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Let us make the definition

wi ≡ n−1/2S−1
n∑

t=1

Xtiσtvt, i = 1, . . . , k; (23)

recall the definition of S in (10). By the central limit theorem, the wi are asymp-
totically normal, mean zero, and O(1). The numerator of the statistic (21), divided
by n1/2, is just Sw0. For the denominator, we need the stochastic expansion of the
residuals, which from (22) and (23) is

üt = σtvt − n−1/2S
∑

i

Xtiwi.

Make the following definitions, for i, j = 1, . . . , k:

wai ≡ n−1/2S−1
n∑

t=1

atx
2
t Xtiσtvt, q ≡ n−1/2S−2

n∑
t=1

atx
2
t σ

2
t (v2

t − 1),

Aij ≡ n−1
n∑

t=1

atx
2
t XtiXtj , and H ≡

n∑
t=1

(at − 1)x2
t σ

2
t /(n−1

∑
t

x2
t σ

2
t ).

Clearly the wai and q are asymptotically normal, mean zero, and O(1), while the
Aij and H are deterministic and O(1). (Recall that at − 1 = O(n−1).) Then the
denominator of (21), also divided by n1/2, is S times

(
1 + n−1/2q + n−1H − 2n−1

∑

i

wiwai + n−1
∑

i

∑

j

Aijwiwj

)1/2
.

With this, we can formulate the stochastic expansion of τ through order n−1:

τ1
a= w0

(
1− 1−

2
n−1/2q + n−1

∑

i

wiwai− 1−
2
n−1H − 1−

2
n−1

∑

i

∑

j

Aijwiwj + 3−
8
n−1q2

)
.

(24)
A wild bootstrap statistic is defined by the same formula (21) as τ itself, but the error
terms ut are replaced by the wild bootstrap error terms u∗t . If we write u∗t = stεt,
then

st = a
1/2
t (σtvt − n−1/2S

∑

i

Xtiwi). (25)

Since the bootstrap DGP generates data conditional on the realised vt, the only
random elements in a bootstrap sample are the εt, just as the random elements in a
drawing from the true DGP are the vt. Thus the factorisation u∗t = stεt plays exactly
the same role for the bootstrap DGP as the factorisation ut = σtvt does for the true
DGP. It follows that the stochastic expansion of the bootstrap statistic (conditional
on the vt) is given by (24), with all the variables redefined with st and εt in place of
σt and vt respectively.
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Step 2: Formal Edgeworth expansion based on cumulants.

The Edgeworth expansion of the CDF F of an asymptotically N(0, 1) statistic τ can
be written as

F (x) = Φ(x)− n−1/2φ(x)
∞∑

i=1

λiHei−1(x). (26)

Here Φ(·) and φ(·) are respectively the CDF and the density of the N(0, 1) distribu-
tion, and Hei(·) is the Hermite polynomial of degree i (see for instance Abramowitz
and Stegun (1965), Chapter 22 for details of these polynomials). The expansion as
written in (26) is more properly referred to as the Gram-Charlier series, but, unless
truncated, the Edgeworth and Gram-Charlier series are equivalent. In this proof, we
truncate everything of order lower than n−1, and so we obtain true Edgeworth series.
The λi in (26) are coefficients that are at most of order unity, defined by the relations

λj =
n1/2

j!
E

(
Hej(τ)

)
, (27)

so that, for the first few values of j, λ1 = n1/2µ1, λ2 = n1/2(µ2 − 1)/2, λ3 =
n1/2(µ3−3µ1)/6, λ4 = n1/2(µ4−6µ2 +3)/24, etc, where µi is the uncentred moment
of τ of order i.

The leading-order term of the stochastic expansion τ1 in (24) is w0, which is a nor-
malized sum of mean-zero variables that converges to the N(0, 1) distribution as
n →∞ by the central limit theorem. Under the regularity conditions of all the the-
orems in this paper, the cumulant of w0 of order j, for j > 2, is of order n−(j−2)/2

– see Chapter 5 of McCullagh (1987) for many more details on cumulants as ap-
plied to Edgeworth expansions. It also follows from the theory of that chapter that
E(Hej(w0)) is equal to the “formal moment” of order j corresponding to a sequence
of “formal cumulants,” κj , say, where κj is the j th cumulant of w0, except for j = 2,
for which κ2 is the second cumulant of w0 minus 1.

The first-order cumulant of w0 is its expectation, which is zero. The second order
cumulant is the variance, which is unity, and so the formal cumulant of second order is
also zero. With zero mean and unit variance, the third and fourth cumulants, which
are also the formal cumulants, are respectively the third moment and the fourth
moment minus 3, that is, n−1/2e3C and n−1(e4D− 3). It can be seen to follow from
this (see McCullagh (1987) again) that the formal moments associated with these
formal cumulants of order higher than 4 are all of order lower than n−1, except the
sixth, which is 10 times the square of the third formal cumulant. Further discussion
of these points can also be found in Kendall and Stuart (1977), Chapter 6.

For ease of notation, write τ1 = w0 + n−1/2ξ, where

ξ ≡ − 1−
2
w0q + n−1/2w0

(∑

i

wiwai − 1−
2

∑

i

∑

j

Aijwiwj − 1−
2
H + 3−

8
q2

)
. (28)

– 21 –



For j = 1, we find from (27) that λ1 = n1/2E
(
w0 + n−1/2ξ) = E(ξ). To compute

E(ξ), note that

E(w0q) = e3(nS3)−1
n∑

t=1

atx
3
t σ

3
t = e3C + O(n−1)

The expectations of the terms in ξ of order n−1/2 all involve a product of three
random variables, and hence implicitly a triple sum over the observations. They are
thus of order n−1/2, because only the terms for which all three observation indices
coincide have a nonzero expectation, and the resulting sum over n terms is multiplied
by a factor of n−3/2. Thus λ1 = − 1−

2
e3C + O(n−1).

In order to compute λ2, we note that

τ2
1 = w2

0 + 2n−1/2w0ξ + n−1ξ2

= w2
0 − n−1/2w2

0q + n−1w2
0

(
q2 + 2

∑

i

wiwai −
∑

i

∑

j

Aijwiwj −H
)

Now we have

E(w2
0q) = n−1/2D(e4 − 1), E(w2

0wiwj) = Bij + 2EiEj ,

E(w2
0q2) = D(e4 − 1) + 2e2

3C
2, E(w2

0wiwai) = Gi + 2EiFi,

where we have implicitly defined the following deterministic, order 1, quantities

Bij = S−2n−1
n∑

t=1

XtiXtjσ
2
t and Gi = S−2n−1

n∑
t=1

atx
2
t X

2
tiσ

2
t .

Hence, to order n−1, we obtain

λ2 = 1−
2
n1/2E(τ2

1 − 1) = n−1/2
(
e2

3C
2 +

∑

i

(Gi + 2EiFi)

− 1−
2

∑

i

∑

j

Aij(Bij + 2EiEj)− 1−
2
H

)
+ O(n−1).

Similar calculations, of which we skip the details, show that λ3 = − 1−
3
e3C + O(n−1),

and

λ4 = n−1/2
(
− 1−−

12
e4D + 2−

3
e2

3C
2 +

∑

i

EiFi − 1−
2

∑

i

∑

j

AijEiEj

)
+ O(n−1).

Finally, λ6 is n1/2/720 times the sixth formal moment, which was seen to be 10 times
the square of the third formal cumulant. The third formal cumulant is 6n−1/2λ3 =
−2n−1/2e3C, and so λ6 = 1−−

18
n−1/2e2

3C
2.
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For the wild bootstrap statistic, we define coefficients λ∗j by the same formulas as
those for the λj , but with st instead of σt and εt instead of vt in the definitions. As
with the λj , we need work only through order n−1/2. Using a star systematically to
denote a quantity defined for the bootstrap distribution, we find, using the definition
(25) of st, that

(S∗)2 ≡ n−1
n∑

t=1

x2
t s

2
t = n−1

n∑
t=1

atx
2
t (σ2

t v2
t − 2n−1/2Sσtvt

∑

i

Xtiwi) + O(n−1)

= S2(1 + n−1/2q) + O(n−1),

since n−1
∑

i win
−1/2

∑
t x2

t Xtiσtvt = O(n−1). Then through order n−1/2,

C∗ = (S∗)−3n−1
n∑

t=1

x3
t s

3
t = (S∗)−3n−1

n∑
t=1

x3
t (σ3

t v3
t − 3n−1/2Sσ2

t v2
t

∑

i

Xtiwi).

Define the asymptotically normal, variable c ≡ n−1/2S−3
∑n

t=1 x3
t σ

3
t (v3

t − e3), of
order 1 and mean 0. Then

C∗ = (S∗)−3S3(e3C + n−1/2c− 3n−1/2
∑

i

wiFi) + O(n−1)

= e3C + n−1/2(− 3−
2
qe3C + c− 3

∑

i

wiFi) + O(n−1).

From this, we see that, through order n−1/2

λ∗1 = − 1−
2
e∗3C

∗ = − 1−
2
e∗3e3C + n−1/2e∗3( 3−

4
qe3C − 1−

2
c + 3−

2

∑

i

wiFi), (29)

λ∗3 = 2−
3
λ∗1, and λ∗6 = 1−−

18
n−1/2(e∗3)2e2

3C
2.

Since λ∗2 and λ∗4 are of order only n−1/2, we do not need the quantities on which they
depend past leading order. Thus, to order 1,

D∗ = (S∗)−4n−1
n∑

t=1

x4
t s

4
t = S−4n−1

n∑
t=1

x4
t σ

4
t v4

t = e4D,

and one easily checks that to that order, and for i, j = 1, . . . , k, B∗
ij = Bij , E∗

i = Ei,
F ∗i = Fi, and G∗i = Gi. Since Aij and H depend neither on the σt nor on the vt, they
are the same for the true and the bootstrap DGP. We thus see that, to order n−1/2,

λ∗2 = n−1/2
(

(e∗3)2e2
3C

2 +
∑

i

(Gi + 2EiFi)− 1−
2

∑

i

∑

j

Aij(Bij + 2EiEj)− 1−
2
H

)
,

λ∗4 = n−1/2
(
− 1−−

12
e∗4e4D + 2−

3
(e∗3)2e2

3C
2 +

∑

i

EiFi − 1−
2

∑

i

∑

j

AijEiEj

)
.
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Step 3: Determination of the quantile of the bootstrap distribution.

For the CDF (26), the α-quantile is defined implicitly by the equation F (xα) = α.
An expansion of xα in powers of n−1/2, usually called the Cornish-Fisher expansion,
can be obtained by inverting the definition (26) of F . The result is

xα = zα + n−1/2
∑

i

λiHei−1(zα) + 1−
2
n−1

∑

i

∑

j

λiλjhij(zα) + O(n−3/2), (30)

where the polynomials hij(z) can be defined in terms of the Hermite polynomials.
See Kendall and Stuart (1977), Chapter 6, for details of this sort of expansion.
Let us denote by Qα({λi}) the quantile (30) for the sequence {λi} ≡ {λ1, λ2, . . .}.
Let li ≡ λ∗i − λi. For a one-tailed bootstrap test at nominal level α, with rejection
in the left-hand tail of the distribution, the event that corresponds to rejection is
τ < Qα({λ∗i }) = Qα({λi + li}). If we write Qα({λi + li}) = Qα({λi}) + n−1/2q∗α,
then

q∗α =
∑

i

liHei−1(zα) + 1−
2
n−1/2

∑

i

∑

j

(liλj + λilj)hij(zα) + O(n−1), (31)

Write Qα = Qα({λi}), νi = E(li), and let qα = E(q∗α). We have

qα =
∑

i

νiHei−1(zα) + 1−
2
n−1/2

∑

i

∑

j

(νiλj + λiνj)hij(zα) + O(n−1). (32)

Comparison with (31) shows that, through order n−1, Qα +n−1/2qα is the α-quantile
of the distribution characterised by the sequence {λi + νi}. Finally, let γα = q∗α− qα.
Rejection by the bootstrap test is the event τ < Qα + n−1/2q∗α, or, equivalently,
τ − n−1/2γα < Qα + n−1/2qα, in which all random terms are on the left-hand side of
the inequality.

Suppose that the distribution of the random variable τ − n−1/2γα is given by an
expansion of the form (26) with a sequence of coefficients {λi + ηi}. Then it follows
that the rejection probability of the bootstrap test is given by the expansion

Φ(Qα + n−1/2qα)− n−1/2φ(Qα + n−1/2qα)
∑

i

(λi + ηi)Hei−1(Qα + n−1/2qα).

Since Qα + n−1/2qα is the α-quantile of the distribution characterised by {λi + νi},
we have

Φ(Qα + n−1/2qα)− n−1/2φ(Qα + n−1/2qα)
∑

i

(λi + νi)Hei−1(Qα + n−1/2qα) = α,

and so, on subtraction, we find that the RPE of the bootstrap test is

n−1/2φ(Qα + n−1/2qα)
∑

i

(νi − ηi)Hei−1(Qα + n−1/2qα). (33)
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For a two-tailed test, the critical value cα for a test at nominal level α is defined
implicitly in terms of the CDF F of the statistic by the equation α = F (−cα) + 1−
F (cα). If F is given by the expansion (26), this equation becomes

α/2 = Φ(−cα)− n−1/2φ(cα)
∑

i

′λiHei−1(−cα), (34)

where the notation
∑′

i means that the sum is over even values of i only. The re-
sult (34) follows from the fact that the Hermite polynomials of even degree are even,
and of odd degree odd. The right-hand side of (34) is of the form (26), and so the
Cornish-Fisher expansion of −cα for the wild bootstrap distribution can be written
as Qα/2({λi + li}′), where the prime means that the elements for odd i are zero.

Through order n−1, it can be seen that Qα/2({λi + li}′) is nonstochastic, since for
i even, the λ∗i are nonstochastic through order n−1/2. This implies that for i even,
li = νi. With this simplification, it follows that the rejection probability of the two-
tailed bootstrap test can be computed directly as the sum of the probabilities that
τ < Qα/2({λi + νi}′) and τ > −Qα/2({λi + νi}′). A calculation just like that leading
to (33), but simpler, shows that the ERP of the two-tailed bootstrap test is, through
order n−1,

2n−1/2φ(zα/2)
∑

i

′νiHei−1(zα/2), (35)

independently of the ηi.

Step 4: Computation of the bootstrap ERP.

We begin with the computation of the νi. From (29), we see that, through or-
der n−1/2,

ν1 = E(λ∗1 − λ1) = − 1−
2

(e∗3 − 1)e3C,

since E(q) = E(c) = E(wi) = 0. Similarly, through order n−1/2,

ν3 = − 1−
3

(e∗3 − 1)e3C, ν6 = 1−−
18

n−1/2((e∗3)2 − 1)e2
3C

2,

ν2 = n−1/2((e∗3)2 − 1)e2
3C

2, ν4 = n−1/2
(− 1−−

12
(e∗4 − 1)e4D + 2−

3
((e∗3)2 − 1)e2

3C
2
)
.

We saw above that, through order n−1/2, l2 = ν2, l4 = ν4, and l6 = ν6. Thus, from
(31) and (32), we have that

γα =q∗α − qα = l1 − ν1 + (l3 − ν3)(z2
α − 1) (36)

+ n−1/2(l1 − ν1)
∑

j

λjh1j(zα) + n−1/2(l3 − ν3)
∑

j

λjh3j(zα) + O(n−1).

Define the zero mean random variable

ζ ≡ n1/2 1−
3

(l1 − ν1) = n1/2 1−
2

(l3 − ν3) = e∗3( 1−
4
qe3C − 1−

6
c + 1−

2

∑

i

wiFi).
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We see from this that we need only the first two terms in the expression (36) for γα,
since the last two are O(n−1). To the desired order,

γα = n−1/2ζ
(
3 + 2(z2

α − 1)
)

= n−1/2ζ(1 + 2z2
α).

For the ηi, we note first that λ1 + η1 = n1/2E(τ −n−1/2γα) = n1/2E(τ) = λ1, so that
η1 = 0. For η2, since γα = O(n−1/2), we have

λ2 + η2 = 1−
2
n1/2E

(
(τ − n−1/2γα)2 − 1

)
= λ2 − E(τγα) + O(n−3/2).

Now, since τ = w0 + O(n−1/2),

η2 = −E(τγα) = −E(w0γα) + O(n−1) = −n−1/2(1 + 2z2
α)E(w0ζ) + O(n−1)

= −n−1/2(1 + 2z2
α)e∗3

( 1−
4
e2

3C
2 − 1−

6
e4D + 1−

2

∑

i

EiFi

)
+ O(n−1),

since, as we have already seen, E(w0q) = e3C, and, as can easily be checked, E(w0c) =
e4D and E(w0wi) = Ei. For η3, we compute

λ3 + η3 = 1−
6
n1/2E

(
(τ − n−1/2γα)3 − 3(τ − n−1/2γα)

)

= λ3 − 1−
2
n−1/2(1 + 2z2

α)E(w2
0ζ) + O(n−1).

But E(w2
0q), E(w2

0c), and E(w2
0wi) are all O(n−1/2), and so η3 = O(n−1). For η4, we

find that

λ4 + η4 = 1−−
24

n1/2E
(
(τ − n−1/2γα)4 − 6(τ − n−1/2γα)2 + 3

)

= λ4 − 1−−
24

n−1/2(1 + 2z2
α)

(
4E(w3

0ζ)− 12E(w0ζ)
)

+ O(n−1)

Now it can be checked that E(w3
0ζ) = 3E(w0ζ), since E(w3

0q) = 3e3C, with similar
results for E(w3

0c) and E(w3
0wi). Thus η4 = O(n−1). Since in general λ6 is through

order n−1 a function of λ3, and since η3 = O(n−1), it follows that η6 = O(n−1).

We now return to the evaluation of (33). Since to relevant order Qα + n−1/2qα is the
α-quantile of the distribution characterised by {λi + νi}, we obtain from (30) that

Qα + n−1/2qα = zα + n−1/2
∑

i

(λi + νi)Hei−1(zα) + O(n−1).

Performing a Taylor expansion of (33) about zα gives for the ERP of the bootstrap
test

n−1/2φ(zα)
∑

i

(νi − ηi)Hei−1(zα)

− n−1φ(zα)
∑

j

(λj + νj)Hej−1(zα)
∑

i

(νi − ηi)Hei(zα) + o(n−1), (37)
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since the derivative of φ(z)Hei(z) is −φ(z)Hei+1(z). Of the λi + νi, only those for
i = 1 and i = 3 are O(1). Further, to leading order, 2(λ1+ν1) = 3(λ3+ν3) = −e∗3e3C.
Thus, to leading order,

∑

j

(λj + νj)Hej−1(zα) = −e∗3e3C
( 1−

2
+ 1−

3
(z2

α − 1)
)

= − 1−
6
e∗3e3C(1 + 2z2

α).

With this, the ERP (37) is

n−1/2φ(zα)
∑

i

(νi − ηi)
(
Hei−1(zα) + 1−

6
n−1/2e∗3e3C(1 + 2z2

α)Hei(zα)
)
. (38)

If we first concentrate on the contribution of order n−1/2 to this ERP, we see that
this contribution comes only from the terms with i = 1, 3, and it is

− 1−
6
n−1/2φ(zα)(e∗3 − 1)e3C(1 + 2z2

α),

in accord with (11). The contribution of order n−1 from these same two terms is

1−−
36

n−1φ(zα)((e∗3)2 − e∗3)e2
3C

2(3zα + 4z3
α − 4z5

α). (39)

For i = 2, the leading-order contribution to (38) is n−1φ(zα) times

zα

(
((e∗3)2 − 1)e2

3C
2 + (1 + 2z2

α)e∗3( 1−
4
e2

3C
2 − 1−

6
e4D + 1−

2

∑

i

EiFi)
)
. (40)

For i = 4, we get a contribution of n−1φ(zα) times

(z3
α − 3zα)

(− 1−−
12

(e∗4 − 1)e4D + 2−
3

((e∗3)2 − 1)e2
3C

2
)
, (41)

and, for i = 6, n−1φ(zα) times

(z5
α − 10z3

α + 15zα) 1−−
18

((e∗3)2 − 1)e2
3C

2. (42)

Adding up the contributions (39), (40), (41), and (42) yields the term of order n−1

in (11). This completes the proof of Theorem 1.

For Theorem 2, we must evaluate (35), a relatively simple matter, since it depends
only on the νi for even i. A straightforward calculation yields (15).

The rejection probability of the asymptotic test based on τ (one-tailed with rejection
in the left-hand tail) is the probability mass to the left of zα in the distribution
with expansion (26). Thus, with the values of the λi computed here, the ERP is
n−1/2φ(zα) times

1−
6
e3C(1 + 2z2

α) + n−1/2
(

1−
2
Hzα + e2

3C
2( 1−

6
zα − 1−

9
z3
α − 1−−

18
z5
α) + 1−−

12
e4D(z3

α − 3zα)

+
( 1−

2

∑

i

∑

j

AijEiEj −
∑

i

EiFi

)
(z3

α − zα) +
( 1−

2

∑

i

∑

j

AijBij −
∑

i

Gi

)
zα

)
.

As stated in the text, the leading-order term of this equal to that of (11) with e∗3 = 0.
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Table 1. Regressors

Obs x1 x3 x4 x5 x6

1 0.616572 0.511730 0.210851 -0.651571 0.509960

2 10.000000 5.179612 4.749082 6.441719 1.212823

3 -0.600679 0.255896 -0.150372 -0.530344 0.318283

4 -0.613076 0.705476 0.447747 -1.599614 -0.601335

5 -1.972106 -0.673980 -1.513501 0.533987 0.654767

6 0.409741 0.922026 1.162060 -1.328799 1.607007

7 -0.676614 0.515275 -0.241203 -1.424305 -0.360405

8 0.400136 0.459530 0.166282 0.040292 -0.018642

9 1.106144 2.509302 0.899661 -0.188744 1.031873

10 0.671560 0.454057 -0.584329 1.451838 0.665312

Note: For k = 1, the only regressor is x1, for k = 2 there is also the constant, for k = 3
there are the constant, x1, and x3, and so forth.

Table 2. Influence of the design on the Edgeworth expansion

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

Heteroskedastic errors

C 3.15 3.14 2.87 2.86 -1.81 -1.57

D 9.97 9.91 8.92 8.78 5.27 4.08

E0 0.00 0.98 6.67 6.98 1.71 1.02

E1 9.29 9.27 8.31 8.17 3.94 2.90

Homoskedastic errors

C 2.82 2.28 -1.13 -0.20 0.44 0.51

D 8.67 7.02 3.69 1.78 2.29 2.54

E0 0.00 0.00 0.00 0.00 0.00 0.00

E1 8.67 7.02 3.69 1.78 2.29 2.54

Note: E0 is
∑

i
EiFi for the case of constrained residuals; E1 is for unconstrained resid-

uals.
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Figure 1. ERPs of asymptotic and bootstrap tests
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Figure 2. Base case with different designs
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Figure 3. Symmetric and skewed errors, F1 and F2
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Figure 4. Homoskedastic errors
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Figure 5. ERPs for n = 100
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Figure 7a. The contributions of order n−1/2 and n−1 to the ERP
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Figure 7b. Error in Edgeworth ERP, F1, F2, skewed errors
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Figure 8. HC3 compared with HC0 and HC2
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Figure 9. Relative importance of leverage and heteroskedasticity

– 33 –




