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Abstract

We will study a multi-sector discrete-time optimal growth model
with a neoclassical non-joint technology and show the Neighborhood
Turnpike; any optimal path will be trapped in the neighborhood of an
associated optimal steady state and its neighborhood can be chosen
as small as possible by taking the discount factor close enough to one
and the full Turnpike; any optimal path converges to an associated
optimal steady state path when discount factors are close enough to
one. These two Turnpike properties will provide the firm theoretical
background for an application of a neoclassical optimal growth model
with heterogeneous capital goods to economic analyses.

*The author is indebted to the Department of Economics of Queen’s University for
providing a wonderful atmosphere for me as a visiting scholor during writing the paper.



1 Introduction

In my previous paper[19] and [20], two turnpike properties are proved for
a very general neoclassical optimal growth model where the capital goods
are consumable and the social utility function depends on these particular
consumables as well as on a pure-consumption good. The turnpike results
obtained there, however, depend crucially on assumptions unlinked to capi-
tal intensities and other familiar parameters. Here we will consider a simpler
model than that studied in [19] and [20]. The objective function is a dis-
counted sum of a sequence of a pure-consumption good. This type of the
model is studied originally in [18] and [23] for a two-sector continuous-time
optimal growth model and in [1] and [6] for a multi-sector continuous-time
case.

In this paper we demonstrate the two types of the Turnpike properties:
the Neighborhood Turnpike and the full Turnpike. A Neighborhood Turnpike
involves any optimal path being trapped in the neighborhood of an associated
optimal steady state. The neighborhood can be chosen as small as possible
by choosing the discount factor small as close to one. A full Turnpike involves
any optimal path converging to an associated optimal steady state path when
the discount factor is sufficiently close to one. With our above objective
function, the discounted sum of sequence of pure-consumption good, we will
prove the two Turnpike properties, which we did in [19] and [20], here with
concrete assumptions based on a model structure. In fact, we will prove the
Turnpike properties under the two generarized capital intensity conditions,
which are intensively studied in [8]: The first one is a counterpart to the
condition in a two-sector model and involves the consumption good sector
using a more capital-intensive technology than the other sector. The second
one is a counterpart to the condition in a two-sector case and involves the
capital goods production sector using a more capital-intensive technology. In
[19] and [20], the first condition was assumed. Our analysis makes essential
use of the von Neumann Facet (VNF henceforth): an n-dimensional plane
embraces a optimal steady state on today’s and tomorrow’s capital stock
space. Long used a similar idea to show the global asymptotic stability
in a two-sector continuous-time neoclassical optimal growth model in [10].
However, note that since his line segment is called the ”Rybczynski line” and
is defined on the output space, but not on today’s and tomorrow’s capital
stock space, it is not the VNF. In contrast with [19] and [20], where any path



on the von Neumann facet is explosive, we will show that under the second
generalized capital intensity condition any path on the von Neumann facet
converges to a corresponding optimal steady state path. This means that
the n-dimensional von Neumann facet is actually an n-dimensional stable
manifold. So if we can prove the Neighborhood Turnpike, then we can infer
that an optimal path must jump to the von Neumann facet and converge to
the corresponding optimal steady state. This means that the full Turnpike
holds.

Section 2 presents the model and some basic properties of an optimal
steady state (OSS henceforth). In Section 3, we study the VNF and review
some relevant results obtained in [20]. We will show two types of the Turnpike
properties in Section 4. Section 5 concludes.

2 The Model and Assumptions

Our model is an exact discrete-time version of the one studied by [6]:

max imize »  p~'co(t)
t=0

subject k(0) =k

(t) + Kilt) — 6ki(t) — (L4 g)Rilt +1) = 0 (1)
colt) = F(kao(®) kao(8), -~ Bno(t), Eo(t), (2
Ult) = F(kss(®) Bal0), - = Ku), 00), ©
ge,-(t) _1, @)
S ki) = ki(t), ®)
where i=1,2,...,n, t=0,1,2,.f? and the notation is as follows:



g = rate of population growth given as 0 < g <1,
r = subjective rate of discount, r > g,

p =(1+g)/(1+r),

co(t) € Ry = per capita consumption goods consumed at t,
y:(t) € Ry = t** period ™ per capita capital good output,
ki(t) € Ry = t* period i" per capita capital stock,

k:(0) € Ry = initial periodp i*" per capita capital stock,

= per capita production function of

the % sector which is strictly quasi concave,

hom ogeneous of degree one and

continuously dif ferentiable on the interior of R},

ki;(t) =t per capita capital good used in the j* sector
in the t™ period,
0; = depreciation rate of the i™ capital good,

given as 0 < §; < 1.

Due to [2], Egs.(2)-(5) are summarized as the social transformation func-
tion co(t) = T'(y(t),k(t)) where T is continuously differentiable on the inte-

rior B2, y(t) = (12(t), 10(2), - 4a(t)) and k(&) = (ku(t), ka(t), -, ka (1))
If x and z stand for initial and terminal capital stock vectors respectively,
then the reduced form utility function V(x,z) and the feasible set D can be

defined as follows:

V(z,2) =T[(1+g)z— I— A)x,x]

and

D ={(x,z) € R} x R} : T[(1+g)z— (I—- A)x,x] >0}
where x=(z1(t),z2(t), -, Zn(t)), z=(k1(t + 1), ka(t + 1), - - kn(t + 1)), A

is a diagonal matrix

01 0
A= .-
0 01
and I is an n-dimensional unit matrix.

Thus the above optimization problem can be summarized as the following
standard reduced form problem, which is familiar in Turnpike Theory:



max imize iptV(k(t), k(t+1))

=0
subject to (k(t),k(t + 1)) € D and k(0) = k.

Also note that any optimal path must satisfy the following Euler equa-
tions, indicating an intertemporal efficiency:

pV.(k(t —1),k(t)) + Va(k(t),k(t+1)) = O for all t > 0 (6)

where the partial derivative vectors mean that V,(k(t), k(t+1)) = [0V (k(t), k(t+
1))/0k(t)], V.(k(t — 1),k(t)) = [0V (k(t — 1), k(t))/0k(t)] and © means an
n dimensional zero vector. So if k is an interior OSS with a given p then it

must satisfy
pV.(k k) + Vi (k k) = ©. (7)

Let us denote wy and w = (wy,ws, - - -, Wy,) as the wage rate and other fac-
tor price vectors respectively. Then following [6], the following assumptions
are made:

Assumption 1. For all positive factor vectors (w® w), the non-negative in-
put coefficient matrix

aixz -+ Qin
a =
an1 *°° Qnn
is indecomposable and the row vector (ago,ao1,: - ,a0n) is positive,

where Qi3 = kzj/y,, and ag; — E,/yz (’L = 0,1,- e, n j = 1,2,- . ,n).

Assumption 2. The technology is viable (see [6] or [5] for the definition of
the viability).

Assumption 3. The exogenous rate of labor force growth g > 0 satisfies
inequality g < 1/A*, where A* is the dominant characteristic root of
the matrix a*(I — Aa*)~! where



* * *
— o G " Op
a = . .

* * *
Qpg Qpy """ Qpy

and @* is uniquely chosen along an OSS with r=g (or equivalently
p = 1) . Henceforth, we use the symbol * to clarify that vectors and
matrices are evaluated at k*.

Under these assumptions we can prove:

Lemma 1. When r=g, there exists a unique OSS k* (>> ©)! with the cor-
responding positive price vector p* and positive factor price vector
(wg, w*).

Proof. See Theoreml of [6].0

Assumption 4. For all positive price vectors (wg, w*), the input coefficient
matrix A* has an inverse matrix B* whose sign pattern is such that
a diagonal element is negative (b} < 0) and an off-diagonal element is
positive (bj; > 0, @ # j), where

* * *
Qgo Qo1 """ Qop
a¥ a¥ B * *
A*= 10 11 In — aoo ao_
: : : ap a'
* * *
Apo QApy1 """ Gpy

and

* *)—1 80 b?i
B = (A ) = b b* )
Note that when n=1, this assumption is equivalent to the condition that
the consumption goods sector is more capital intensive than the capital goods
sector. See [8] for a detailed argument and [9] found a necessary and sufficient

capital intensity condition for establishing this assumption for n > 2.
The following property can be proved:

ILet x and y be n-dimensional vectors. Then x >y if z; > y; for all i, x > y if z;
> y; for all i and at least one j, z; > y; and x >y if z; > y; for all i.
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Lemma 2. Under Assumption 4, [b*—(gI + A)] has a quasi-dominant main

diagonal that is negative for rows?.

Proof. See Theorem 2 of [6].0
From the Euler equations Eq.7, its Jacobian J(k, p) is

J(k, p) = Vm.(k, k) + Vg, (k,k) + pVy, (k, k) + pV_, (k, k)
which at k* is

J(k,1) = Vo (K", k") + Vo (k' k*) + Vi (k' k) + Voo (K, k)

wherein all matrices are evaluated at k*3. We will show the following impor-
tant lemma, which is corresponding to Lemma 2.5 of [20].

Lemma 3. There exists a positive scalar 7 such that for r € [g,7], the OSS
k" is unique and is a continuous vector function of 7, namely k" = k(r).

Proof. If detJ(k",1) # 0 then from the Implicit Function Theorem, the
result follows. To show this we will use the following

fact derived in [1]:

T, = [0T/8y| = —p, T2 = [0T/0k] =w

where p is an output price vector. Then differentiating again will yield the
following second-order partial derivative matrices:

T11 = [—Bp/ay], T12 = [—3p/3k], T21 = [8W/6Y] and T22 = [Bp/ak]

Also note that if the matrices are evaluated at k*, then

2Suppose A is an n X n matrix and its diagonal elements are negative (positive). Let
there exist a positive vector h such that h; | a; |> Z;;l,#i hj | aiy |, i = 1,2,---,n.
Then A is said to have a quasi-dominant main diagonal that is negative (positive) for
rows. See [12] and [15].

3We use the following notational convention for the partial derivative matrices:Vygy =
[02V(x,2)/8x%), Vay = [02V(x,2)/8%82z) and V,, = [0°V(x,2z)/dz’]. Note that each
matrix is an n X n matrix.



[0p/0w] = b’
and due to the symmetry of the Hessian matrix of co(t) = T'(y(t), k(?)),

[0p/0k] = —[8w/dy]"
where the suffix T means a transpose of a matrix. Utilizing this, all the
partial derivative matrices at k* can be expressed in terms of the matrix b*
and T as follows:

T11 = b*Tg‘zb* =b*T22b*, T12 = —b*T22, and T21 = —T22b*.

Eliminating the first term of Eq.(2.22) of [20] and substituting du/8co =
1, Y, = (g1 + A) and Y, = I into the equation, the Jacobian can be ex-
pressed as follows:

. Ty T I+A
Ik, =lI+AT( o2 2 )T

= (gI+ A)T,(gI+ A) + T (gI+ A) + (g1 + A)T15(91 + A) + T2

Finally we have arrived at the following : if the matrix b* is nonsingular,

J(k*,1) = —[b* — (g1 + A)](b*) "' T2
The nonsingularity of b* comes from the following observation: From
[15], it follows that b* = [a* — (1/agy)a%ag.] *. Furthermore, by [7] detA* =
ajodet[a* — (1/a8y)akas.]. Combining both results and from Assumption 4 the
result follows. Since the matrix [b* — (¢gI + A)] has a quasi-dominant main
diagonal that is negative it must be nonsingular. Tj, is also non-singular
due to the argument of [1] (see pp68-69). Thus the proof is completed.O]

3 The Stable von Neumann Facet

Now we will introduce the von Neumann Facet (VNF), which takes important
roles in stability arguments of neo-classical growth models as studied in [19]
and [20] and has been intensively studied by L. McKenzie (see especially
[13]). The VNF can be defined in the reduced form growth model as follows:
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Definition 1. The von Neumann Facet F(k", k") of the OSS k" is defined

as:

F(k", k") = {(x,2) € D: V(x,2z)+pp'z—p'x = V(k", k') +pp'K’ -p’k’},

where k™ is an OSS and p” is a supporting price of k" when the subjective
discount rate r is given and the price of the consumption good is normalized
to one.

From the definition above, the VNF is the projection of a flat of the
function V that is supported by the price vector (—p”, pp”, 1) onto the (x, z)
space. In [19] and [20], we considered the case of the objective function where
n capital goods as well as a pure-consumption good were also consumable.
Here, the capital goods are not consumable but the discounted sum of the
sequence of the pure-consumption good is directly valued. Applying the same
argument as that of [20] (pp14-15), the following equation can be derived by
rewriting the definition of the VNF:

co+py—wx=c¢+py —wk'.
This implies that on the VNF, the same technology matrix as the correspond-
ing OSS is chosen. This follows from the argument used in [20]. Note that in

this case, the same consumption level as c¢f need not be assigned. Therefore
the VNF may be represented by the following form:

F(k", k") = {(k(t),k(t + 1)) € D : there exists co(t) > 0 and y(t) > 0 such that
i) 1 = wjagy + wraly, ii) p" = wgag. + w'a’,

i) 1 = afych(t) +ah.y(t), iv) k(t) = alyco(t) + a"y(t) and

v) k(t+1)=1/1+g)ly(®) + T - A)k()]}-

i) and ii) are cost-minimization conditions. From these conditions, it follows
that co(t) > 0 and y(t) > O for all t. iii) and iv) are market clearing condi-
tions for labor and capital goods, respectively. v) are capital accumulation
equations.

Now let us consider the VNF, F(k* k*); the von Neumann Facet when
r=g (or equivalently p = 1). Applying the same representation, from iii) and
iv),



y(t) = b*k(t) + bl

Combining this equation with the accumulation equation v) yields

k(t+1) = (1/(1+9))(b" + I - A)k(t) — ((1/(1 + 9))b%.
Defining n(t) = k(t) — k* yields,

n(t+1) = ((1/(1+9)) (b +1— A)n(?). (8)

This difference equation shows the motion on the VNF. So by studying this
linear dynamical system, we can show the stability of F(k* k*).

Some important properties of F(k*, k*) concerned with a neoclassical op-
timal growth model have been studied in [19] and [20]. Adopting the same
proofs, we can prove the following properties:

Lemma 4. dim F(k", k") = n.
Proof. See Lemma 3.2 of [20].0

When the pure-consumption good is directly evaluated in the reduced
form utility function as the cases of [19] and [20], the same consumption
level as cf need be assigned. So the dimension of the VNF will loose one
degree of freedom from the whole commodity dimension n+1. Furthermore
due to the labor constraint, an extra one degree of freedom will be lost and
the dimension of the VNF becomes n-1. On the other hand, in our model cg
itself is a reduced form utility function and the same consumption level as
ch need not be assigned. So the VNF will loose only one degree of freedom
from n+1due to the labor constraint and turn out to be n. Also note that
the n-dimensional VNF clearly implies that the reduced form utility function
V is never strictly concave, but just concave.

Lemma 5. There exists 7 > 0 such that the VNF is a lower semi-continuous
correspondence of r € (g,7).

Proof. See Lemma 3.3 of [20].0

Finally following [13] we define the stability of the VNF as follows:
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Definition 2. The VNF is stable if there are no cyclic paths on it.

The stability of the VNF takes very important roles in proving the Turn-
pike properties as we will see soon. Under our capital intensity assumption,
we actually show that any paths on the VNF F(k*, k*) will converge to the
corresponding OSS k*. To prove this we need the following lemma:

Lemma 6. Let us consider the following difference equation system with the
equilibrium z, =0,

x(t +1) = (C + Dx(2),

where x(t) € R™ and C is an n X n matrix. If C has a quasi-dominant
main diagonal that is negative for rows, C + I is a contraction for
x(t) # 0 with the maximum norm || - || and the equation system is
globally asymptotically stable and the Liapunov function is V(x)=
|Ix||, where || - || is defined as ||x|| = max;c; | z; | and ¢; is a given set
of positive numbers.

Proof. See pp.27-29 of [16].0

Note that if C has a quasi-dominant main diagonal that is positive for
rows, C+1 has eigenvalues with their absolute values greater than one. This
comes from the fact that if C has a quasi-dominant main diagonal that is
positive for rows, then its eigenvalues have a positive real part. So the system
is explosive; any path will diverges from the equilibrium.

Now we will show the stability of F(k*, k*).

Lemma 7. The VNF F(k* k*) is stable.

Proof. Since b* + I—- A = [b* — (gI+ A)] + (1 + g)I, it follows that
(1/(14+g)(®* + I-A) = (1/(1 + g))[b* — (g1 + A)] + L. Defining
C=(1/(1 +g))[b* — (91 + A)], Eq.(8) can be rewritten as:

n(t+1) = (C+ D).

On the other hand, by Lemma 2 , [b* — (gI + A)] has a quasi-dominant
main diagonal that is negative for rows. Thus applying Lemma 6, the result
follows.O
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4 Turnpike Properties

Since the lower semi-continuity and the stability of the VNF F(k*,k*) have
been proved, Mckenzie’s Neighborhood Turnpike Theorem can be applicable
as shown in [19] and [20], and finally we obtain the following theorem:

Theorem 1. For any >0, there exists a 7>0 such that for r€ [g,7] and the
corresponding £(p), any optimal path {ki}* with a sufficient initial
capital stock k(0)* eventually lies in the e—neighborhood of K. Fur-
thermore, as p — 00, £(p) — 0.

Proof. See the argument of Section 4 of [20].0

The Neighborhood Turnpike means that any optimal path must be trapped
in a neighborhood of the corresponding OSS and the neighborhood can be
taken as small as possible by making p close enough to one. If we can show
the local stability; there exists a stable manifold that will stretch out over
the today’s capital stock space ( or equivalently along the k(t)-plane), then
combining between the Neighborhood Turnpike and the local stability im-
plies that any optimal path must jump on the stable manifold, otherwise
optimality will be violated due to the arguments by [11] and [17]. Note that
in our case, the VNF itself is the n-dimensional stable manifold, because the
dimension of the VNF is n and it stretched out over the k(t)-plane. Further-
more, any path on the VNF will converge to the corresponding OSS. Thus
the local stability is automatically satisfied. Therefore we have established
the following full Turnpike property:

Theorem 2. There is anT > 0 such that any optimal path K" (t) with a suf-
ficient initial capital stock k(0) of the multi-sector neoclassical optimal
growth model given by (1) through (5) must converge asymptotically to
any 08S K7, i.e., lim_o K"(t) = K" whenr € [g,T).

It is important to note that the stability of the VNF takes a very impor-
tant role in establishing not only the Neighborhood Turnpike but also the full

44 capital stock x is called sufficient if there is a finite sequence (k(0),k(1),---k(T))
where x=k(0), (k(t),k(t+1))€ D and k(T) is expansible. k(T) is expansible if there is
k(T+1) such that k(T+1)>k(T) and (k(T)k(T+1))€ D. Note that the sufficiency will
be assured by assuming ”Inada-type” condition on the production functions.

12



Turnpike. Furthermore note that the capital intensity condition; Assumption
4 is an important assumption to establish these Turnpike properties. Then
it is a natural question to ask whether we can establish the similar Turnpike
properties under the opposite capital intensity condition to Assumption 4
assumed above. The answer to it is affirmative as we will show next.

Let assume the following opposite assumption to Assumption 4:

Assumption 4’. For all positive price vectors (wg, w*), the input coeflicient
matrix A* has an inverse matrix B* whose sign pattern is such that
a diagonal element is negative (b}; > 0) and an off-diagonal element is
positive (bj; <0, i # j).

Note that when n=1, this implies that the capital good production sec-
tor is capital intensive than that of the pure-consumption good production
sector. Under this assumption we can show the following lemma similar to
Lemma 2.

Lemma 2’. Under Assumption 4, [b*—(gI+A)] has a quasi-dominant main
diagonal that is positive for rows.

Proof. Since the OSS k* belongs to F(k* k*), it must satisfy Eq.(8). Then
it follows

[b* — (g1 + A)k* +bo=0.
Due to the fact that by < 0 from Assumption 4’, we finally have

[b* — (g1 + A)k* = —bg > 0.

This clearly implies that [b*—(gI+A)]k* has a quasi-dominant main diagonal
that is positive for rows.O

Due to the fact that a quasi-dominant main diagonal matrix is non-
singular, we can show that the Jacobian J(k*,1) is nonsingular. So we can
establish Lemma 3. Furthermore Lemma 2’ implies that any path on the
VNF F(k* k*) is explosive as we will show in the next lemma.

Lemma 8. Under Assumption 4’, any path on the VNF is explosive;it di-
verges from the corresponding OSS k*.

13



Proof. Defining C= (1/(1+g))[b* — (91 + A)] and from Remark 2, C+I
has eigenvalues with their absolute values greater than one. This mens
that any path on the VNF is explosive.O

Lemma 8 implies that the VNF is stable; no cyclic path on the VNF
and the same Neighborhood Turnpike as Theorem 1 can be established.
Moreover, under Assumption 4’, since the VNF is an n-dimensional unstable
manifold, we can not directly prove the local stability as the case studied
before. Since an optimal path satisfies the Euler equations Eq.(6), a lin-
ear approximation of the Euler equation around (k*, k*) yields the following
linear difference equation, provided that detV,,(k* k*) = det V;, # 0,

a(t+1) = —(V5,) " (Vie + V5)a(t) — (V5,) ' Via(t — 1) 9)

where z(t) = k(t) — k* and all the matrices are evaluated at k*. Furthermore
the characteristic equation of Eq.(10) is the following:

| VI X+ (Vi + Vi) A+ Vi, |=0. (10)

To show the full Turnpike property, we need to utilize the following well-
known lemma in [?]:

Lemma 9. Provided that detV?, # 0, if the characteristic equation Eq.(11)
has ) as a root of the equation then it also has1/\ as its root.

The following lemma will establish the condition of Lemma 9 in our case.

Lemma 10. det V}, # 0.

Proof. As we have done in Lemma 3, eliminating the first term of Eq.(2.16)
of [20], substituting Ou/8cy =1, Y, = —(I—A) and Y, = (1 + g)I
into the equation yields

vi= - a3 ) (Cpr)

Substituting the result on the partial derivative matrices obtained in
p-6 into the equation gives

14



V;, =—(1+g)(IX-A)b"+I- A) Y Tyb™.

Note that Ty is non-singular as we discussed before. Since [b*+ (I — A)] has
a quasi-dominant main diagonal that is positive for rows, [b* + (I — A)7Y
should have also a quasi-dominant main diagonal that is positive for rows due
to the fact that (I — A)™" > (I — A). This implies that [b* + (I - A)7 s

. . .
non-singular and thus V}, is non-singular.O]

Remark. Applying the similar argument as above, we can show that

Vi, =[(1+9)1,0) ( %1 %z ) ( (1 4(;)9)1 )

or

V2, = [(1+ 9Ty [(1 + 9)L" = [(1 + g)IIb"Tob™ [(1+ )"

Since T, is negative definite, V}, is also negative definite.

From the fact that the VNF is n-dimensional unstable manifold it follows
that along the VNF there are n eigenvalues whose absolute values are greater
one. Applying Lemma 10, there are n corresponding eigenvalues whose abso-
lute values are less than one. This means that there exists an n dimensional
stable manifold near the OSS. Furthermore that V3, is also negative definite
guarantees that the stable manifold will stretch out over the k(t)-plane due
to the argument in Lemma 5.1 of [20]. Thus we have proved the following
theorem:

Theorem 3. Under Assumption 4’, the Neighborhood Turnpike and the full
Turnpike hold.

5 Concluding Remarks

We have proved the Turnpike properties under the two types of the general-
ized capital intensity condition. The sharp contrast to [20] is that we need not

15



make any direct assumptions in the sense that all the assumptions are based
on the model structure, whereas in [20] we need some assumptions, espe-
cially Assumptions 6 and 8 concerned with the reduced form utility function
V. And actually the assumptions made here are familiar in Optimal Growth
Theory and can be found in the textbook, say [5].

Note that the Turnpike properties proved here have no contradiction to
the recent arguments on cycles and chaos. Here only the control parameter
is a subjective discount rate r and the other parameters are fixed. So if we
would make other parameters than r change, an optimal path might take a
cyclic or even a chaotic behavior. For example in[22], I have shown that for
a two-sector version of our model studied in this paper, there is a certain
combination among a depreciation rate, a subjective discount rate and a
technology parameter, under which an optimal path converges to a cyclic
path of period two (see also [4]). Therefore in a more general case studied in
this paper anything could happen to a behavior of an optimal path including
cycles and chaos.
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Abstract

We will study a multi-sector discrete-time optimal growth model
with a neoclassical non-joint technology and show the Neighborhood
Turnpike; any optimal path will be trapped in the neighborhood of an
associated optimal steady state and its neighborhood can be chosen
as small as possible by taking the discount factor close enough to one
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1 Introduction

In my previous paper[19] and [20], two turnpike properties are proved for
a very general neoclassical optimal growth model where the capital goods
are consumable and the social utility function depends on these particular
consumables as well as on a pure-consumption good. The turnpike results
obtained there, however, depend crucially on assumptions unlinked to capi-
tal intensities and other familiar parameters. Here we will consider a simpler
model than that studied in [19] and [20]. The objective function is a dis-
counted sum of a sequence of a pure-consumption good. This type of the
model is studied originally in [18] and [23] for a two-sector continuous-time
optimal growth model and in [1] and [6] for a multi-sector continuous-time
case.

In this paper we demonstrate the two types of the Turnpike properties:
the Neighborhood Turnpike and the full Turnpike. A Neighborhood Turnpike
involves any optimal path being trapped in the neighborhood of an associated
optimal steady state. The neighborhood can be chosen as small as possible
by choosing the discount factor small as close to one. A full Turnpike involves
any optimal path converging to an associated optimal steady state path when
the discount factor is sufficiently close to one. With our above objective
function, the discounted sum of sequence of pure-consumption good, we will
prove the two Turnpike properties, which we did in [19] and [20], here with
concrete assumptions based on a model structure. In fact, we will prove the
Turnpike properties under the two generarized capital intensity conditions,
which are intensively studied in [8]: The first one is a counterpart to the
condition in a two-sector model and involves the consumption good sector
using a more capital-intensive technology than the other sector. The second
one is a counterpart to the condition in a two-sector case and involves the
capital goods production sector using a more capital-intensive technology. In
[19] and [20], the first condition was assumed. Our analysis makes essential
use of the von Neumann Facet (VNF henceforth): an n-dimensional plane
embraces a optimal steady state on today’s and tomorrow’s capital stock
space. Long used a similar idea to show the global asymptotic stability
in a two-sector continuous-time neoclassical optimal growth model in [10].
However, note that since his line segment is called the ”Rybczynski line” and
is defined on the output space, but not on today’s and tomorrow’s capital
stock space, it is not the VNF. In contrast with [19] and [20], where any path
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on the von Neumann facet is explosive, we will show that under the second
generalized capital intensity condition any path on the von Neumann facet
converges to a corresponding optimal steady state path. This means that
the n-dimensional von Neumann facet is actually an n-dimensional stable
manifold. So if we can prove the Neighborhood Turnpike, then we can infer
that an optimal path must jump to the von Neumann facet and converge to
the corresponding optimal steady state. This means that the full Turnpike
holds.

Section 2 presents the model and some basic properties of an optimal
steady state (OSS henceforth). In Section 3, we study the VNF and review
some relevant results obtained in [20]. We will show two types of the Turnpike
properties in Section 4. Section 5 concludes.

2 The Model and Assumptions

Our model is an exact discrete-time version of the one studied by [6]:

(o o]
max imize »_ p~'co(t)
t=0

subject k(0) =k

lt) + klt) — Sks(t) — (1+ ki(t +1) = 0 (1)
colt) = £2ksol®), kaa(t), - = Kno(t), (), (2
lt) = F(kss(t), kas(t), - kns(0), (0, 9
goe,-(t) —1, (4)
S ii(t) = ki(e), )
where i=1,2,... 1, t=0,1,2,j.=.? and the notation is as follows:



g = rate of population growth given as 0 < g <1,

r = subjective rate of discount, r > g,

p =(1+g)/(1+r7),

co(t) € Ry = per capita consumption goods consumed at t,
vi(t) € Ry =t period i™ per capita capital good output,
ki(t) € R, =t period i per capita capital stock,

k:(0) € R4 = initial periodp i per capita capital stock,

= per capita production function of

the j® sector which is strictly quasi concave,

hom ogeneous of degree one and

continuously dif ferentiable on the interior of R™+L,

fi:RY"'— Ry

ki; (%) = i per capita capital good used in the j** sector
in the t™ period,
d; = depreciation rate of the i™ capital good,

given as 0 < §; < 1.

Due to [2], Egs.(2)-(5) are summarized as the social transformation func-
tion co(t) = T(y(t),k(t)) where T is continuously differentiable on the inte-
rior B2, y(8) = (4(1),32(t), - n(t)) and k(&) = (ku(e), Ka(t), -, kn(t))-
If x and z stand for initial and terminal capital stock vectors respectively,
then the reduced form utility function V' (x,z) and the feasible set D can be
defined as follows:

Viz,z) =T[(1+g)z— (I—-A)x,x]

and

D={(x,2) €R? xR} : T[1+g)z— I1—-A)x,x| >0}

where X=(.’L‘1(t),$2(t), c ,.’En(t)), Z=(k1(t + 1), kg(t + 1), <o ,kn(t -+ 1)), A
is a diagonal matrix

61 0
A= ..
0 &
and I is an n-dimensional unit matrix.

Thus the above optimization problem can be summarized as the following
standard reduced form problem, which is familiar in Turnpike Theory:



max imize i_o;ptV(k(t), k(t+1))

subject to (k(t),k(t + 1)) € D and k(0) =k.

Also note that any optimal path must satisfy the following Euler equa-
tions, indicating an intertemporal efficiency:

pV,(k(t—1),k(t)) + Vo (k(t),k(t+1)) =O forallt > 0 (6)

where the partial derivative vectors mean that V,(k(t),k(t+1)) = [0V (k(¢), k(t+
1))/0k(t)], V.(k(t — 1),k(t)) = [0V (k(t — 1),k(t))/Ik(t)] and © means an

n dimensional zero vector. So if k is an interior OSS with a given p then it
must satisfy

pV,(k, k) + V,(k k) = ©. (7)

Let us denote wg and w = (wy, ws, - - - , Wy, ) as the wage rate and other fac-
tor price vectors respectively. Then following [6], the following assumptions
are made: '

Assumption 1. For all positive factor vectors (w®, w), the non-negative in-
put coefficient matrix

aix; - Qin
a =
an1 - Qnn
is indecomposable and the row vector (ago,@o;,-"-,00n) 1S positive,

where a;; = ki;/y; and ag;i = 4;/y; (1 =0,1,---,n:3=1,2,---,n).

Assumption 2. The technology is viable (see [6] or [5] for the definition of
the viability).

Assumption 3. The exogenous rate of labor force growth g > 0 satisfies
inequality g < 1/\*, where \* is the dominant characteristic root of
the matrix a*(I — Aa*)~! where



0 o --- 0
* *
Ao Q37 " Qp

5*

* *
Aro Qp1 """ Qpp

and @* is uniquely chosen along an OSS with r=g (or equivalently
p = 1) . Henceforth, we use the symbol * to clarify that vectors and
matrices are evaluated at k*.

Under these assumptions we can prove:

Lemma 1. When r=g, there exists a unique OSS k* (>> ©)! with the cor-
responding positive price vector p* and positive factor price vector
(wg, w*).

Proof. See Theorem1l of [6].0

Assumption 4. For all positive price vectors (w§, w*), the input coefficient
matrix A* has an inverse matrix B* whose sign pattern is such that

a diagonal element is negative (b}, < 0) and an off-diagonal element 1s
positive (b}; > 0, % # j), where

* * *

Qgp Qgp "~ Qop

a* a* e af * *
: : : apg a*
* * *

Ano Qpn1 " Opgp

and

by, bg
* __ *\—1 __ 00 0-
o= %),
Note that when n=1, this assumption is equivalent to the condition that
the consumption goods sector is more capital intensive than the capital goods
sector. See [8] for a detailed argument and [9] found a necessary and sufficient
capital intensity condition for establishing this assumption for n > 2.

The following property can be proved:

1let x and y be n-dimensional vectors. Then x > y if z; > y; for alli, x >y if z;
> y; for all i and at least one j, z; > y; and x >y if x; > y; for all i.
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Lemma 2. Under Assumption 4, [b*—(gI + A)] has a quasi-dominant main

diagonal that is negative for rows®.

Proof. See Theorem 2 of [6].0
From the Euler equations Eq.7, its Jacobian J(k, p) is

J(k> p) = Vg (k; k) + Vg, (k, k) + pvmz (k7 k) + szz (k7 k)
which at k* is

J(k,1) = Voo (K", K*) + Vg (k*, K*) + Voo (k*, K*) + V. (K", k7)

wherein all matrices are evaluated at k*3. We will show the following impor-
tant lemma, which is corresponding to Lemma 2.5 of [20].

Lemma 3. There exists a positive scalar T such that for r € [g,7], the OSS
k" is unique and is a continuous vector function of r, namely k" = k(r) .

Proof. If detJ(k",1) # O then from the Implicit Function Theorem, the
result follows. To show this we will use the following

fact derived in [1]:

T, = [0T/8y] = —p, T2 =[0T/0k] =w

where p is an output price vector. Then differentiating again will yield the
following second-order partial derivative matrices:

T11 = [—8p/8y], T12 = [—8p/3k], T21 = [Bw/ay] and T22 = [Bp/Bk]

Also note that if the matrices are evaluated at k*, then

2Suppose A is an n X n matrix and its diagonal elements are negative (positive). Let
there exist a positive vector h such that h; | a;; |> Z;‘:l’j 2 | aij |, i =1,2,---,n
Then A is said to have a quasi-dominant main diagonal that is negative (positive) for
rows. See [12] and [15].

3We use the following notational convention for the partial derivative matrices:Vyz =
[02V (x,2)/0x%], Vo = [0?V(x,2)/0x02] and V,, = [0°V(x,2)/d2z°]. Note that each
matrix is an n X n matrix.



[0p/0w] = b’
and due to the symmetry of the Hessian matrix of co(t) = T(y(t), k(?)),

0p/0k] = —[0w/8y]"
where the suffix T means a transpose of a matrix. Utilizing this, all the
partial derivative matrices at k* can be expressed in terms of the matrix b*
and T as follows:

T11 = b*T’22b* =b*T22b*, T12 = —b*T22, and T21 = —ngb*.

Eliminating the first term of Eq.(2.22) of [20] and substituting du/dco =
1, Y, = (gI+ A) and Y, = I into the equation, the Jacobian can be ex-

pressed as follows:

. Ty T I+A
J(k,1)=[g1+A,I](T; T;) ot

= (g1 + A)T (g1 + A) + Tar(gI + A) + (91 + A)T1, (g1 + A) + T2

Finally we have arrived at the following : if the matrix b* is nonsingular,

3(k,1) = —[b* — (g1 + A)](b*) Tz
The nonsingularity of b* comes from the following observation: From
[15], it follows that b* = [a* — (1/ ato)a’yas] . Furthermore, by [7] detA* =
aidet[a* — (1/afg)a%as.]. Combining both results and from Assumption 4 the
result follows. Since the matrix [b* — (gI + A)] has a quasi-dominant main
diagonal that is negative it must be nonsingular. T, is also non-singular
due to the argument of [1] (see pp68-69). Thus the proof is completed.t

3 The Stable von Neumann Facet

Now we will introduce the von Neumann Facet (VNF), which takes important
roles in stability arguments of neo-classical growth models as studied in [19]
and [20] and has been intensively studied by L. McKenzie (see especially
[13]). The VNF can be defined in the reduced form growth model as follows:
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Definition 1. The von Neumann Facet F(k™, k") of the OSS k" is defined

as:

F(k,k") = {(x,2) € D : V(x,2)+pp"z—p'x = V (K", k") +pp'k" — Pk},

where k™ is an OSS and p” is a supporting price of k" when the subjective
discount rate 7 is given and the price of the consumption good is normalized

to one.
From the definition above, the VNF is the projection of a flat of the

function V that is supported by the price vector (—p”, pp”, 1) onto the (x,z)
space. In [19] and [20], we considered the case of the objective function where
n capital goods as well as a pure-consumption good were also consumable.
Here, the capital goods are not consumable but the discounted sum of the
sequence of the pure-consumption good is directly valued. Applying the same
argument as that of [20] (pp14-15), the following equation can be derived by
rewriting the definition of the VNF:

co+Py—wx=cg+py —wk.
This implies that on the VNF, the same technology matrix as the correspond-
ing OSS is chosen. This follows from the argument used in [20]. Note that in

this case, the same consumption level as cj need not be assigned. Therefore
the VNF may be represented by the following form:

F(k", k") = {(k(t),k(t + 1)) € D : there exists co(t) > 0 and y(t) > 0 such that
1) 1 = wiaf, + wraly, i) p" = wgag. + w'a’,

iii) 1 = afoch(t) +af.y(t), iv) k(t) = alyco(t) +a"y(t) and

v) k(t+1) =1/(1+9)ly(®) + T - A)k()]}-

i) and ii) are cost-minimization conditions. From these conditions, it follows
that co(t) > 0 and y(t) > O for all t. iii) and iv) are market clearing condi-
tions for labor and capital goods, respectively. v) are capital accumulation

equations.
Now let us consider the VNF, F(k* k*); the von Neumann Facet when
r=g (or equivalently p = 1). Applying the same representation, from iii) and

iv),



y(t) = b'k(t) + bl

Combining this equation with the accumulation equation v) yields

k(t +1) = (1/(1 +9))(d* + I - A)k(t) — ((1/(1 + 9))bl.
Defining 1(t) = k(t) — k* yields,

n(t+1) = ((1/(1+9))(" +I—-A)n(?). (8)

This difference equation shows the motion on the VNF. So by studying this
linear dynamical system, we can show the stability of F(k*, k*).

Some important properties of F(k* , k*) concerned with a neoclassical op-
timal growth model have been studied in [19] and [20]. Adopting the same
proofs, we can prove the following properties:

Lemma 4. dim F(k", k") = n.
Proof. See Lemma 3.2 of [20].0

When the pure-consumption good is directly evaluated in the reduced
form utility function as the cases of [19] and [20], the same consumption
level as c} need be assigned. So the dimension of the VNF will loose one
degree of freedom from the whole commodity dimension n+1. Furthermore
due to the labor constraint, an extra one degree of freedom will be lost and
the dimension of the VNF becomes n-1. On the other hand, in our model cg
itself is a reduced form utility function and the same consumption level as
c; need not be assigned. So the VNF will loose only one degree of freedom
from n+1due to the labor constraint and turn out to be n. Also note that
the n-dimensional VNF clearly implies that the reduced form utility function

V is never strictly concave, but just concave.

Lemma 5. There exists ¥ > 0 such that the VNF is a lower semi-continuous
correspondence of r € (g,T).

Proof. See Lemma 3.3 of [20].0

Finally following [13] we define the stability of the VNF as follows:
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Definition 2. The VNF is stable if there are no cyclic paths on it.

The stability of the VNF takes very important roles in proving the Turn-
pike properties as we will see soon. Under our capital intensity assumption,
we actually show that any paths on the VNF F(k* k*) will converge to the
corresponding OSS k*. To prove this we need the following lemma:

Lemma 6. Let us consider the following difference equation system with the
equilibrium z, = 0,

x(t+1) = (C+ Ix(t),

where x(t) € R™ and C is an n X n matrix. If C has a quasi-dominant
main diagonal that is negative for rows, C + I is a contraction for
x(t) # 0 with the maximum norm | - | and the equation system is
globally asymptotically stable and the Liapunov function is V(x)=
|x||, where || - || is defined as ||x| = max;c; | z; | and ¢; is a given set
of positive numbers.

Proof. See pp.27-29 of [16].0

Note that if C has a quasi-dominant main diagonal that is positive for
rows, C+1 has eigenvalues with their absolute values greater than one. This
comes from the fact that if C has a quasi-dominant main diagonal that is
positive for rows, then its eigenvalues have a positive real part. So the system
is explosive; any path will diverges from the equilibrium.

Now we will show the stability of F(k*, k*).

Lemma 7. The VNF F(k* k*) is stable.

Proof. Since b* + I— A = [b* — (gI+ A)] + (1 + g)I, it follows that
(1/(1+g))(b* + I—-A) = (1/(1 + g))[b* — (91 + A)] + 1. Defining
C=(1/(1+g))[b*— (91 + A)], Eq.(8) can be rewritten as:

nt+1) = (C+In(t).

On the other hand, by Lemma 2 , [b* — (gI + A)] has a quasi-dominant
main diagonal that is negative for rows. Thus applying Lemma 6, the result

follows.O
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4 Turnpike Properties

Since the lower semi-continuity and the stability of the VNF F(k*, k*) have
been proved, Mckenzie’s Neighborhood Turnpike Theorem can be applicable
as shown in [19] and [20], and finally we obtain the following theorem:

Theorem 1. For any e>0, there ezists a 7> 0 such that for r€ [g,7] and the
corresponding £(p), any optimal path {ki}* with a sufficient initial
capital stock k(0)* eventually lies in the e—neighborhood of K. Fur-
thermore, as p — o0, £(p) — 0.

Proof. See the argument of Section 4 of [20].0

The Neighborhood Turnpike means that any optimal path must be trapped
in a neighborhood of the corresponding OSS and the neighborhood can be
taken as small as possible by making p close enough to one. If we can show
the local stability; there exists a stable manifold that will stretch out over
the today’s capital stock space ( or equivalently along the k(t)-plane), then
combining between the Neighborhood Turnpike and the local stability im-
plies that any optimal path must jump on the stable manifold, otherwise
optimality will be violated due to the arguments by [11] and [17]. Note that
in our case, the VNF itself is the n-dimensional stable manifold, because the
dimension of the VNF is n and it stretched out over the k(t)-plane. Further-
more, any path on the VNF will converge to the corresponding OSS. Thus
the local stability is automatically satisfied. Therefore we have established

the following full Turnpike property:

Theorem 2. There is anT > 0 such that any optimal path kK" (t) with a suf-
ficient initial capital stock k(0) of the multi-sector neoclassical optimal
growth model given by (1) through (5) must converge asymptotically to
any 0SS k', i.e., lim_o, K"(t) = K" when r € [g,T].

It is important to note that the stability of the VNF takes a very impor-
tant role in establishing not only the Neighborhood Turnpike but also the full

4 A capital stock x is called sufficient if there is a finite sequence (k(0),k(1), --k(T))
where x=k(0), (k(t)k(t+1))e D and k(T) is ezpansible. k(T) is ezpansible if there is
k(T+1) such that k(T+1)>k(T) and (k(T),k(T+1))€ D. Note that the sufficiency will
be assured by assuming ”Inada-type” condition on the production functions.
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Turnpike. Furthermore note that the capital intensity condition; Assumption
4 is an important assumption to establish these Turnpike properties. Then
it is a natural question to ask whether we can establish the similar Turnpike
properties under the opposite capital intensity condition to Assumption 4
assumed above. The answer to it is affirmative as we will show next.

Let assume the following opposite assumption to Assumption 4:

Assumption 4’. For all positive price vectors (wg, w*), the input coefficient
matrix A* has an inverse matrix B* whose sign pattern is such that
a diagonal element is negative (b, > 0) and an off-diagonal element is
positive (b]; <0, 4 # j).

Note that when n=1, this implies that the capital good production sec-
tor is capital intensive than that of the pure-consumption good production
sector. Under this assumption we can show the following lemma similar to

Lemma 2.

Lemma 2’. Under Assumption 4, [b*—(gI+A)] has a quasi-dominant main
diagonal that is positive for rows.

Proof. Since the OSS k* belongs to F(k* k*), it must satisfy Eq.(8). Then
it follows

[b* — (¢I+ A)Jk* +bo=0.
Due to the fact that by < 0 from Assumption 4’, we finally have

[b* — (¢gI+ A)]k* = —b, > 0.

This clearly implies that [b*—(gI+A)]k* has a quasi-dominant main diagonal
that is positive for rows.O
Due to the fact that a quasi-dominant main diagonal matrix is non-

singular, we can show that the Jacobian J(k",1) is nonsingular. So we can
establish Lemma 3. Furthermore Lemma 2’ implies that any path on the
VNF F(k* k*) is explosive as we will show in the next lemma.

Lemma 8. Under Assumption 4’, any path on the VNF is explosive;it di-
verges from the corresponding OSS k*.

13



Proof. Defining C= (1/(1+g))[b* — (¢I + A)] and from Remark 2, C+I
has eigenvalues with their absolute values greater than one. This mens
that any path on the VNF is explosive.l

Lemma 8 implies that the VNF is stable; no cyclic path on the VNF
and the same Neighborhood Turnpike as Theorem 1 can be established.
Moreover, under Assumption 4’, since the VNF is an n-dimensional unstable
manifold, we can not directly prove the local stability as the case studied
before. Since an optimal path satisfies the Euler equations Eq.(6), a lin-
ear approximation of the Euler equation around (k*, k*) yields the following
linear difference equation, provided that detV,,(k* k*) = det V3, # 0,

z2(t+1) = —(V3,) (Vae + Vi)2(t) — (V2,) " Vi2(t — 1) 9)

where z(t) = k(t) — k* and all the matrices are evaluated at k*. Furthermore
the characteristic equation of Eq.(10) is the following:

| VI + (Vi + V)X + V], |=0. (10)

I

To show the full Turnpike property, we need to utilize the following well-
known lemma in [?]:

Lemma 9. Provided that detV?, # 0, if the characteristic equation Eq.(11)
has )\ as a root of the equation then it also has1l/\ as its root.

The following lemma will establish the condition of Lemma 9 in our case.

Lemma 10. det V}, # 0.

Proof. As we have done in Lemma 3, eliminating the first term of Eq.(2.16)
of [20], substituting Su/dco =1, Yo = —(I—A) and Y, = (1 + g)I
into the equation yields

vi=ra-an( g ) (48

Substituting the result on the partial derivative matrices obtained in
p.6 into the equation gives
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Vi =—(1+9)I—-A)b*+ (I - A) " Tyb™.

Note that T, is non-singular as we discussed before. Since [b*+ (I — A)] has
a quasi-dominant main diagonal that is positive for rows, [b* + (I — A)~ g
should have also a quam-don:unant main diagonal that is positive for rows due

to the fact that (I — A)™' > (I — A). This implies that [b* + (I — A)™'] is
non-singular and thus V}, is non-singular.O

Remark. Applying the similar argument as above, we can show that

Vi =[(1+9)L,0] ( %i %z ) < (1 Jc:)g)l )

or

Vi, = [1+ 9Ty, [1 + )" = [(1 + )b Tob™ [(1+ 91"

Since T, is negative definite, V}, is also negative definite.

From the fact that the VNF is n-dimensional unstable manifold it follows
that along the VNF there are n eigenvalues whose absolute values are greater
one. Applying Lemma 10, there are n corresponding eigenvalues whose abso-
lute values are less than one. This means that there exists an n dimensional
stable manifold near the OSS. Furthermore that V3, is also negative definite
guarantees that the stable manifold will stretch out over the k(t)-plane due
to the argument in Lemma 5.1 of [20]. Thus we have proved the following
theorem:

Theorem 3. Under Assumption 4’, the Neighborhood Turnpike and the full
Turnpike hold.

5 Concluding Remarks

We have proved the Turnpike properties under the two types of the general-
ized capital intensity condition. The sharp contrast to [20] is that we need not
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make any direct assumptions in the sense that all the assumptions are based
on the model structure, whereas in [20] we need some assumptions, espe-
cially Assumptions 6 and 8 concerned with the reduced form utility function
V. And actually the assumptions made here are familiar in Optimal Growth
Theory and can be found in the textbook, say [5].

Note that the Turnpike properties proved here have no contradiction to
the recent arguments on cycles and chaos. Here only the control parameter
is a subjective discount rate r and the other parameters are fixed. So if we
would make other parameters than r change, an optimal path might take a
cyclic or even a chaotic behavior. For example in[22], I have shown that for
a two-sector version of our model studied in this paper, there is a certain
combination among a depreciation rate, a subjective discount rate and a
technology parameter, under which an optimal path converges to a cyclic
path of period two (see also [4]). Therefore in a more general case studied in
this paper anything could happen to a behavior of an optimal path including
cycles and chaos.
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