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Abstract

This paper presents a standard two-sector optimal growth model
with general neoclassical production functions: strictly quasi-concave,
twice continuously differentiable homogeneous of degree one functions.
The following two results will be established when the discount factor
is sufficiently close to 1: a) under either capital intensity condition
defined at an optimal steady state (OSS), a dynamical system displays
simple dynamics: any optimal path converges either to OSS or to a
cycle of period two. b) given the capital intensity condition such that
the consumption sector is more capital intensive, and the discount
factor is sufficiently close to one, then under some combination of

*I would like to thank Lionel McKenzie, Keisuke Ohsumi, Shin-ichi Takekuma and
Akira Yamazaki and seminar participants at Hitotsubashi University, Keio University,
McGill University and the University of Rochester for their valuable comments. Of course
any remaining errors are mine.



parameters of technologies, a depreciation rate and a discount factor,
any optimal path converges to a cycle of period two. In a subsidiary
argument, it will also be established that if the discount factor is
sufficiently close to one and some other conditions of parameter values
hold for such a discount factor, the Turnpike Property holds.

1 Introduction

McKenzie[12] and [13] and Scheinkman [15] have proved that any optimal
path converges asymptotically to a corresponding unique optimal steady
state path (OSS) when a representative consumer does not discount the fu-
ture heavily, in other words, the discount factor is sufficiently close to 1.
This property is often referred to as the Turnpike Property. Furthermore, in
Takahashi [17], [18] and [19] the Turnpike property is also established for a
general neoclassical optimal growth model with many capital goods. On the
other hand, Benhabib and Nishimura [1] have demonstrated that by applying
the Hopf Bifurcation in a continuous-time optimal growth model, there exist
optimal growth paths consisting of persistent cycles. After demonstrating
this, Benhabib and Nishimura [2] gave sufficient conditions for the existence
of optimal cycles of period two for a discrete-time optimal growth model.
Furthermore, Boldrin and Montrucchio [6] and Deneckere and Pelikan [8]
have demonstrated that an optimal path could show any behavior including
chaotic and oscillating behaviors, especially when the discount factor is very
small. The results obtained by the latter groups may give the impression
that there exists an upper bound on the set of discount factors that produce
oscillating or chaotic behaviors. Indeed, the recent work by Soger [16] demon-
strated that there exists the upper bound of the discount factor especially
with respect to the emergence of chaotic behaviors of optimal paths.

Other recent studies, however, have yielded different and somewhat con-
tradictory results. Boldrin and Deneckere [7] set up a discrete-time two-sector
optimal growth model where the consumption good is produced by the Cobb-
Douglas technology, while the capital good is produced by the Leontief-type
technology; their study demonstrated that at every level of discounting, op-
timal cycles of two can be found. They exploit the fact that factor intensity
reversal is taking place. For a continuous-time case, Benhabib and Rustichini
[3] have shown similar results by generalizing the method used in Benhabib
and Nishimura [1] for constructing examples of persistent cycles. It seems



that we still cannot have full confidence that persistent cycles can gener-
ally occur at any rate of a discount factor, even at the rate sufficiently close
to 1. In particular, the results of Boldrin and Deneckere [7] crucially de-
pend on their model setting where the capital production sector uses the
Leontief-type technology, which is a somewhat different model setting from a
standard neo- classical optimal growth model where twice continuously dif-
ferentiable, strictly quasi- concave, and homogeneous degree one production
functions are usually assumed for all sectors. Nishimura and Yano [14] have
constructed the two-sector model with Cobb-Douglas production functions
i.e. no factor intensity reversal, and have demonstrated that for any discount
value of the discount factor of future utility, cyclical optimal paths of period
two appear. An optimal boundary path is fully used in their paper. Despite
these results, it is still an open question whether optimal-interior two cycles
can be found at every level of discounting, especially at a sufficiently small
degree of discounting, when the standard neoclassical optimal growth model
is considered.

To tackle this problem, a standard two-sector optimal growth model with
general neoclassical production functions is presented in this paper. It may
be characterized as a two-sector discrete-time version of the model used by
Burmeister and Graham [5]. We will study the model under two types of
capital intensity conditions. The first one is that the consumption sector is
more capital intensive. The second one is that the capital good production
sector is more capital intensive. In a two sector model, both conditions can
be unambiguously defined. With the aid of this model, it will be shown that
when the discount factor is sufficiently close to 1, a) under either of the cap-
ital intensity conditions defined at OSS, a dynamical system displays simple
dynamics; any optimal path converges either to OSS or to a cycle of period
two and b) given the first capital intensity condition, we can find some com-
bination of values of parameters such as a technology, a depreciation rate
and a discount factor so that any optimal path converges to a cycle of period
two. In a subsidiary argument of this case, it will also be demonstrated that
under some combinations of parameter values, the Turnpike Property holds.
To establish these results, we fully use the Lyapunov Stability Theorem (the
Neighborhood Turnpike Theorem) proved by McKenzie [13] and applied to a
neoclassical optimal growth model with many capital goods studied by Taka-
hashi [17], [18] and [19]. It also takes into consideration the result obtained
by Benhabib and Nishimura [2]. The von Neumann Facet defined and exten-
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sively studied by McKenzie[12] and [13] plays a crucial role in the application
of both results to the model.

The organization of the paper is as follows: In Section 2, the model and
key assumptions are presented. Section 3 is assigned to the explanation of
the von Neumann Facet and provided the Lyapunov Stability. The main
results are stated in Section 4 and some remarks are in the final section.

2 The Model and Assumptions

Our model is an exact discrete-time two-sector version of the one studied
by Burmeister and Graham [5] except that the rate of population is fixed at
Zero:

Mazimize iﬂ Pyo(t) (1)
subject to

k(0) =k (2)
Yo(t) = f°(ko(t), bo(t)) (3)
n(t) = f1(ka(t), &2(2)) (4)
; Lt)=1 (5)
; ki(t) = k(t) (6)
y(t) + k(t) — 6k(t) — k(t+1) =0 (7)

where t=0,1,- - -, and the notation is as follows:



subjective rate of discount and r >0,

\3
Il

p = 1/(1+7)

yo(t) € Ry = per-capita consumption good consumed at t,

n(t) € Ry = t% period per-capita capital output,

k(0) € R, = initial per-capita capital stock,

fi:R?> - R, = per-capita production function of the j™ sector that is
strictly quasi-concave, homogeneous of degree one
and twice continuously differentiable on the interior
of R?,

k;(t) = per-capita cpital good used in the j* sector
in the t* period,

) = depreciation rate of the capital good

and given as 0<6<1.

Let us posit that the good j(j = 0,1) cannot be produced unless k; > 0
or £; > 0 for j = 0,1. Then due to [1], the equations (3) through (6) are
transformed into the social production function yo(t) = T(y(t), k(t)) where
T is concave and twice continuously differentiable on the interior of R% with
Tyy = 0?T/0k? < O(see footnote 7 of [2]). If x and z stand for an initial and
terminal capital stock respectively, the reduced form utility function V'(z, 2)
and the feasible set D can be defined as follows:

V(z,2) =T[z— (1 - 6)z, z]

and

D = {(z,2)eR} x R} : T[z — (1 — 6)z,z] > 0}.

Then, the above problem can be summarized as the following standard
reduced-form problem:

Mazx T200'V (k(t), k(t + 1))

1Let us denote the solution path of the above problem as {k(t)}§°. It must
satisfy the following Fuler equation:

Va(k(t),k(t +1)) + pVa(k(t +1),k(t +2)) =0,
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where V; = 0V/0k(t) and V, = 8V/0k(t + 1). Using the Euler equation, an
optimal steady state path denoted by OSS from now on is defined below:

Definition 1 k” > 0 is an optimal steady state (OSS) if
Va(k?, k°) + pVa(k?, kP) = 0.

Let us denote wo and w as the wage rate and the gross rental rate. Follow-
ing Burmeister and Graham[5], some assumptions are then made in reference
to a two-sector version:

Assumption 1. For all positive factor price vectors (wo, w),a11 = k1/y1 >
0,a00 = Zo/yo > 0 and ag; = El/yl > 0 hold.

Furthermore, from Benhabib and Nishimura [1](see pp.438 — 441), a;; is
a continuous function of (k, o, y1).
See Burmeister and Graham[5] or Burmeister and Dobell [4]for the defi-

nition of the viability.

Assumption 2. The matrix a’(I — Aa®)™! is the dominant characteristic
root A\* where

0 0 0 O
=P — —_
a—la,l,o a€1]andA_l0 5]

and a° is uniquely chosen along a steady state path where p is given. The
super fix p is usedto express the fact that vectors and matrices depend on
it.

Under these assumptions, we can prove:

Lemma 1 There exists a unique optimal steady state path kP(>0) and a
corresponding unique positive price vector p? and positive factor price vector
(wp, w?).

The problem presented by the reduced form has been extensively stud-
ied by Scheinkman [15] and McKenzie [12] and [13]. The Turnpike Property
has been shown to demonstrat that any optimal path asymptotically con-
verges to OSS, especially when the discount factor p is sufficiently close to
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1. One crucial point is that under constant returns to scale assumption on
production functions, the reduced form social production function V is not
strictly concave but just concave. In other words, the function V has a flat
segment in which OSS is contained. This flat segment is often referred to as
the von Neumann Facet. As discussed by Mckenzie [12] and [13], in this case
the proof of the Turnpike Property will turn out to be more complicated.
Indeed, as we will show later, there exists a one dimensional von Neumann
Facet.
The Facet is formally defined in the reduced form model as follows:

Definition 2 The von Neumann Facet F(k? k) of the optimal steady state
k? is defined as:

F(k?, k") = {(z,2)eD : V(z,2) + ppz — p’m = V(K*, k) +pp’z — pz},

where p” is a supporting price of k* when the discount rate p is given and
the price of the consumption good is normalized as 1.

As depicted in Figure 1, the von Neumann Facet is a projection onto the
(x,z) space of the line segment of the function V, which contains OSS and
is supported by the price vector (—p”, pp”,1). Some useful properties of the
Facet in a multi-sector optimal growth model with many capital goods have
been studied in Takahashi [17], [18], [19] and [20]. Reader is suggesteded to
refer to the detailed formal arguments presented there, especially Takahashi
[20]. Here, a more intuitive explanatory strategy focusing on diagrams will
be pursued.

Since the Facet is supported by the price vector, due to the factor price
equalization theorem, the unique production technology will be chosen at
any point of the Facet. Let us denote this chosen technology matrix as:

p p
Qoo ap1
AP =

P P
Q1o ai

For this matrix we make the following capital intensity assumption such that,
at OSS, the consumption sector is more capital intensive:

Assumption 4. af;/af; < aiy/afy with p = 1.
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It is straightforward that there exists a p’ > 0 such that Assumption
4 holds for any pe[p’,1). As is often used in International Trade Theory,
Figure 2 can be drawn on the output plane (y1(t),yo(t)), where the capital
good constraint and the labor constraint are depicted. Note that (v),y) is
the output pair corresponding to the optimal steady state k” and is supported
by the price vector (p,1). Also note that the diagram is drawn based on
Assumption 4 where the consumption good production sector is more capital
intensive than the capital good production sector.

At Points A and B, production specialization takes place. Suppose k
(t)(< 1/abp) is given. The capital constraint will then shift upward and the
new equilibrium point E which is supported by the price vector (p”,1) will be
given as the intersection of the two constraints. At E, the new output pair
(y1(t), yo(t)) is obtained. Using the accumulation equation (2), the capital
stocks of the next period k(t+1) corresponding to k (t) will be calculated.
Then the point (k (t),k(t+1)) obtained in this way can be plotted on the
(x,z) space, i.e., the initial and terminal capital stock space. Changing k (t)
and repeating this process for all the intersections of two constraints, the line
segment AB in the (x,z) plane depicted as Figure 2, yields and corresponds
to the labor constraint line AB of the output space. Line AB of (x,z) plane
excluding the two end points A and B is the von Neumann Facet. The other
case is also drawn as line A’B’.

From this argument, if there are n capital goods, the dimension of the
Facet is n and will be redefined in the one capital good case as:

F(k?,k?) = {(k(t),k(t + 1)eD: there exists yo(t) > 0 and y(t) > 0 such
that

(2) 1 = whahy + wlaly

(i) ¢* = whap +wlafy,

(#1) 1= agoyo(t) + agun(?),
(iv) k() = afoyo(t) + af1za(t),

(v)  k(E+1)=[n()+ 1 -8k},

where the price of the consumption good is normalized as one. (i) and (ii) are
cost- minimization conditions. (iii) and (iv) are feasible conditions for labor
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and capital goods, respectively. (v) is a capital accumulation equation.
From (iii) and (iv) of the definitions of the Facet,

1 (t) = Vk(t) + bl (8)
where b? and b, are the elements of the following inverse matrix of A”:

=% 8]

bo b

Also from the accumulation equation (v) and (7),

k(t+1) = [b* + (1 — 6)]k(t) + bho. 9)
Defining 7(t) = k(t) — k” yields

n(t+1) = [[t* + (1 - 6)ln(?)- (10)
In the next section the above difference equation is scrutinized.

One important result initially proved by McKenzie[12] and [13] for a re-
duced form model is Lyapunov Stability, often referred to as the ”Neighbor-
hood Turnpike Theorem”. Takahashi [17], [19] and [20] has demonstrated
that the same property will hold for a multi-sector neoclassical growth model
with many capital goods. In the case of a neo-classical trade model the simi-
lar property was proved by Yano [21]. The Neighborhood Turnpike Theorem
will be presented as Lemma 2 for later use and depicted in Figure 3:

Lemma 2 Provided that there is no cyclic path on the von Neumann Facet
F(kP,kP) with p = 1, then for any € > 0, there exists a p' > 0 such that for
any pelp’,1) and a corresponding €(p), any optimal path kP(t) is eventually
attracted in the e-neighborhood of kP. Furthermore, as p — 1,€(p) — 0.

Proof. Adopting the proof of Theorem 1 of Takahashi [20], the result
follows.!O

1In Takahashi[17] and [18], a general objective function £§°p*u(yo(t), c(t))) where c(t)
is the vector of the consumable capital goods, is assumed and Lyapunov Stability is proved
by showing the following three sufficient conditions obtained by McKenzie[13]: 1) there
exists p' > 0 such that the facet F(k”,k”) is a lower semi-continuous correspondence of
pelp’,1). 2) if (p,q) are support prices of some point (x,z) of F(k?,kP) with p = 1, then
p=gq=p’.3) F(k?,k?) with p = 1 has no cyclic path.

11
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3 Optimal Cyclic Paths

It follows from Theorem 1 that if the von Neumann Facet has no cyclic
path, then we can restrict our argument to an e-neighborhood of OSS.
In other words, we can restrict our argument to the local analysis. The
following important qualitative result on the optimal path trapped in the
e-neighborhood can be proved by adopting Theorem 3 of Benhabib and
Nishimura[2]. Note that the important condition to establish the theo-
rem is that Va3 < 0 in N,( see Theorem 2 of Benhabib and Nishimura[2]).
Since Vi = Ti1(k?,k?) = (b°)*Tsa(k?, k") < O(see P.299 in Benhabib and
Nishimura[2]), taking p close enough to 1 satisfies the condition.

Lemma 3 Suppose {k?(t)}° is the optimal path attracted in the e-neighborhood
N.. Then if Vi # 0 is over all points of N, an optimal path will either con-
verge to an OSS or to a cyclic of period two.

Proof. Replacing the region D with N, and applying Theorem 3 of the
argument provided by Benhabib and Nishimura (2], the result follows.O

According to the term coined by Denekere and Pelikan [8], we may say
that the dynamical system displays ”simple dynamics”.

Since an optimal path satisfies the Euler equation, a linear approxima-
tion of the Euler equation around OSS gives the following linear difference
equation, if V{5 # 0:

21 =—(Vh) (Vi + p~ V)2 — (Vi) 'Vihze1 (11)

where z; = k(t) — k?,V§, = 0*V(k*,k?) /022 Vi = 0?V (k?,kP)/0x0z, and
Vg, = 82V (kP k°) /022

The next lemma was proved by Levhari and Liviatan [9] and will provide
some important information concerning the local motion of the optimal path
in conjunction with the von Neumann Facet:

Lemma 4 If )\ is a root of the characteristic equation related to Eq.(10),
then 1/pA is also a root.

Proof. see Theorem 4 of Levhari and Liviatan [9].0
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To establish the above, the condition that V¥, # 0 plays an important
role. Therefore we will demonstrate below when this condition holds.

Recall that Assumption 4 implies 5 < 0. Furthermore, from the ar-
gument in Benhabib and Nishimura [2] (see P.299), the following relation
holds:

Vi = —(b°)*(0w/0k)[p" + (1 = 6)].

Since Ty, = dw/0k < 0 by the concavity of T, we have Vf; = 0 if b¥ =
—(1 — 8). With this in mind, consider the next four cases.

Case 1: —(1—6)—1/p>b°

It follows from Eq.(9) that any path on the Facet is explosive. Thus
there is no cyclic path on the Facet (see the line AB in Figure 4). Due to
Lemma 2, the Liapunov stability theorem holds. This also implies that in the
e-neighborhood N, the characteristic equation related to Eq.(10) must have
A < —1 as one of two eigenvalues. On the other hand, if p is close enough
to unity due to Lemma 2, the other eigenvalue 1/pA must satisfy —1 <
1/pX < 0. Then the linear manifold spanned by the eigen vectoassociated
with 1/p) becomes a stable linear subspace and implies the existence of a
stable manifold. Due to Lemma 16 of Scheinkman [15] (see also the sufficiency
argument by Mangasarian[10]), any path on the stable manifold is optimal.

This local property is often referred to as the local stability of an optimal
path?. By Lemma 2, taking p close enough to unity, we can make the e-
neighborhood as small as possible. Then any optimal path must ” jump on”
the stable linear manifold and converge to an OSS.

Case 2: —1— (1-68) <bP <—(1-0)

21 have only proved here that OSS is saddle-point stable. Note that this, however,
is not enough to prove the local stability of an optimal path. If the stable manifold
does not stretch out in both directions on the k(t)-axis, the trapped optimal path cannot
”jump on” this stable manifold. This point was first mentioned in McKenzie [11] and later
argued in detail by Scheinkman [15] for an optimal growth model. Adopting Scheinkman’s
argument, Takahashi [17] and [19] have proved that if Vi, is negative definite, the saddle-
point stability implies local stability. In our case, the condition V4, < 0 holds as we
discussed before.

14
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From Eq.(9), any path on the Facet converges to OSS (see the line A’B’
in Figure 4). This implies that the Facet itself is a stable manifold and
there is no cyclic path. So the local stability and the Lyapunov Stability
hold simultaneously. Thus by choosing p close enough to unity, the Turnpike
Property is established; any optimal path must converge to an OSS.

Case 3: —(1-6) <" <0

Since it follows that 0 < b+ (1 —6) < (1—6) < 1, the Facet is something
like a line A”B” depicted in Figure 4 and any path on the Facet is stable.
So the one of two eigenvalue is less than one. From Lemma 4, the other
eigenvalue is also less than one. So the local stability holds.

Note that in order to establish the first two results above, we never used
Lemma 4. Let us summarize these two cases as a formal theorem:

Theorem 1. There exists a p” > 0 such that for pe[p”,1), any optimal
path k°(t) converges to OSS if the conditions of Cases 1 through 3 are
satisfied for such a p.

Case 4: —(1—-6)—1/p<b <—-1—(1-9)

In this case the Facet is something like A”’B”’ in Figure 4. From Eq.(9)
again, any path on the Facet is explosive. This means that the Facet itself
is an unstable manifold. Due to Lemma 4,1/pA is also the eigenvalue and is
less than -1. So there exists an unstable manifold. Combining both of the
above results implies that any path in an e-neighborhood is explosive and
never converges to OSS. I will apply Lemma 3 and show that an optimal
path will eventually converge to a cyclic path of period two. The following
theorem is a formal presentation.

Theorem 2. There exists a 5 > 0 such that for pe[p, 1), any optimal path
k*(t) converges to a cyclic path of period two if the condition of Case
4 holds for such a p.

proof. Let us take a p” > 0 such that for pe[p”,1), there exists an e-
neighborhood so that Lemma 2 is established. Now define the e-
neighborhood N,(k?) of (k”, k) as follows:

16



Ne(k*) = {(z,2) :|| (z,2) — (K", k°) [| < €}

Suppose that Vis(z,2) < 0 for all (z,z)eN(k?) does not hold for some
pelp”,1). Since V{5 < 0, we can find the following o' > 0:

o = limsup{a > 0: Vi2(z,2) < 0 for all (z,2)eNa(k")}

where the lim-sup is taken over all k” for pe[p”,1).

Suppose € < . Then there is an €-neighborhood where for 0 < €
< €, the dynamics in N.(k?) can be described by Eq.(10). If p satisfies Case
4, from the argument of Case 4 any path in Nu (k) is explosive and never
converges to OSS. Since Vj2(z,z) < 0 holds for all (z,2)eN(k”), Lemma 3
holds. This implies that an optimal path should converge to a cyclic path of
period two.

If € > o, taking p closer to 1 we can find an €’ > 0 where €’ < o’ and
Lemma 2 holds. Thus, applying the same logic, the theorem will be proved.
This completes the proof.O

Benhabib and Nishimura [2] have reached similar conclusions under the
much stronger condition that V35 # 0 over all interior points of the production
possibility set D. This condition is unnecessary here. It is worth mentioning
that when p is taken closer to 1, the interval of Case 4 shrinks and disappears
at p = 1. This means that at p = 1, there are no optimal cycles and the
Turnpike Property always emerges.

Case 5: ¥ =—(1—-6)—1/por ¥ =—-1— (1 —6)

It is clear that there is a cyclic path on the Facet for both cases and
Lemma 1 does not hold. We do not know, therefore, whether the cyclic path
is optimal or not.

Finally, let us consider the case in which the following opposit capital
intensity condition to Assumption 4 is assumed.

Assumption 5. afy/af, > aly/abe

This assumption implies b* > 0. From the normalization of b?, it follows
that b + (1 — 8) > 1/p > 1. Therefore any path on the Facet is explosive

17



(see line A”’B”’ in Figure 4). Applying the same argument as in Case 1,
we have local stability. Then taking p close to 1, the Turnpike Property is
obtained and there is no chance of cyclic optimal paths. This result may be
summarized as the theorem:

Theorem 3. Under Assumption 5, there exists p' > 0 such that for pe[p’, 1),
any optimal path k?(t) converges to the OSS k”.

This can also be proved by applying the theorem demonstrated by Ben-
habib and Nishimura[2] (see Theorem2), namely if Vi, # 0 for all (z, 2)eN,,

then the solution paths are monotonic.

4 Concluding Remarks

One important unanswered question involves whether or not the results
obtained above can be generalized into a multi-sector neoclassical optimal
growth model. Under a generalized capital intensity condition such that the
consumption sector is more capital-intensive, the results of Cases 1 through 3
have been extended to a multi-sector case by Takahashi [17], [19] and [20]. Es-
pecially, note that under the opposite generalized capital intensity condition:
the capital good production sector uses more capital intensive technology,
the Turnpike Property also has been established in a multi-sector case. It is
not yet known, however, whether or not the result given in Case 4 could also
be obtained in a multi-sector model.

A final note of caution: although these results suggest that there may
be an upper bound of the discount factor, say, p’ for emerging complicated
dynamics, this never excludes the possibility of constructing a numerical
example where the complicated dynamics could emerge at, say, p = 0.99.
Since our conclusions are analytical rather than numerical, we cannot respond
with numerical precision to the question of how close to 1 the lower bound
P’ should be.
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