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Abstract

Distribution-free techniques of statistical inference are developed for the
cumulative coefficients of variation of an income distribution, thus allow-
ing one to test for inequality dominance when Lorenz curves cross. The
full covariance structure of the cumulative sample means and variances is
worked out. As an illustration, the procedures are applied to the 1984 and
1990 earnings distributions of male paid workers in the United States, and
it is found that the 1990 distribution was significantly less unequal than
the 1984 distribution.
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1. Introduction

There has been considerable recent interest, in the United States and else-
where, in the distribution of income, and changes induced in this distribu-
tion by the marked changes that have been observed in the labor market
and family structure. (Blackburn and Bloom (1993), Bound and Johnson
(1992), Karoly (1992), Levy and Murnane (1992), and Murphy and Welch
(1992).) While techniques of analysis have varied widely across studies,
there has been a growing use of various disaggregated dominance criteria,
such as first- and second-order stochastic dominance, and Lorenz domi-
nance, in order to rank income or earnings distributions. These criteria
are based on very general principles, and by using them one avoids the
temptation to draw conclusions that may be sensitive to the choice of a
particular summary measure of inequality. (Bishop, Formby, and Smith
(1991), Bishop, Formby, and Thistle (1992), Beach and Slotsve (1994),
Lambert (1989), Howes (1993), and Richardson (1994).)

Parallel to the development of the economic welfare theory underlying
the use of dominance criteria has been the development and application of
the statistical theory needed to perform statistical inference in the context
of the use of these criteria. As a result, researchers can make inferences
on the basis of sets of sample data as to whether, according to some cho-
sen criterion, the distribution from which one of the samples was drawn
dominates another in a statistically significant manner. (Anderson (1994),
Beach and Davidson (1983), Beach, Chow, Formby, and Slotsve (1994),
Bishop, Formby, and Smith (1991), Bishop, Formby, and Thistle (1992),
Howes (1994), and Xu (1994).)

One of the most frequently used dominance criteria for judging dif-
ferences in inequality between income distributions is Lorenz dominance.
This criterion is met if the Lorenz curve for one distribution dominates that
for another (Atkinson (1970)). In this case, that is, if the Lorenz curve
for a distribution f lies everywhere above that for another distribution g,
then any aggregate inequality measure I, such as the Gini coefficient, that
satisfies symmetry, mean independence, population homogeneity, and the
Dalton-Pigou principle of transfers, will rank the income inequality of the
distribution f lower than that of g: I(f) < I(g) (Jenkins (1991)). Thus, if
one distribution Lorenz dominates another, all aggregate inequality mea-
sures satisfying the above properties will agree in their ranking of the two
distributions.

What, if anything, can be inferred if the Lorenz curves of two distri-
butions cross, as they often do in empirical studies? Shorrocks and Foster
(1987) show that, if the above conditions are strengthened by including a
property that they call transfer sensitivity, then there exists a dominance
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criterion which, if met, ensures that all inequality measures satisfying the
strengthened conditions will agree in their rankings, provided that the two
Lorenz curves have only a single crossing. Davies and Hoy (1994) general-
ize the Shorrocks-Foster result to provide for any number n of crossings of
two Lorenz curves. They show that, for two distributions f and ¢, with, in
general, different means, the following statements are equivalent:

a) I(f) < I(g) for all inequality measures satisfying the conditions of
Shorrocks and Foster (they refer to the Shorrocks-Foster “transfer sen-
sitivity” as “aversion to downside inequality”); and

b) For all crossovers i = 1,2,...,n+ 1, CV;(f) < CV;(g), where CV;(-)
denotes the cumulative coefficient of variation for incomes up to the
it crossover point.

The (n + 1)** crossover point is at (1,1), where all Lorenz curves “cross”.
Thus a necessary condition for transfer sensitivity dominance is that the
more unequal distribution have higher unconditional variance.

In order to implement the test of Davies and Hoy on sample data,
it is necessary to know the sampling distribution of any set of cumulative
coefficients of variation for an income distribution. In this paper, we provide
the statistical basis for testing for inequality dominance when Lorenz curves
cross, by establishing the (asymptotic) sampling distribution of a vector of
cumulative coefficients of variation for a distribution, under quite general
conditions. The results are distribution-free in the sense that they do not
require knowledge of the underlying population distribution from which the
sample income data are drawn.

In the next section, the joint asymptotic variance-covariance structure
is obtained for the cumulative means and variances of samples drawn from
a given population, from which the distribution of the cumulative coeffi-
cients of variation can easily be calculated. In Section 3, these results are
applied to samples of earnings of paid white U.S. males in 1984 and 1990.
Although the earnings distribution shifted very little from one year to the
other, it is still possible to show that, by the criterion of transfer sensitivity
dominance, the 1990 distribution was significantly less unequal than the
1984 one. Section 4 concludes.

2. Asymptotic Distribution of the Conditional Coeflicients
of Variation

Let Y denote the random variable income for individuals or families, and

let the population c.d.f of Y be F(y), which is assumed to be at least once
continuously differentiable. All incomes are assumed to be positive, and the
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mean and variance of Y, u and o2, are assumed to exist and be finite. We
also assume that the third and fourth moments of Y exist and are finite.

Corresponding to any p, 0 < p < 1, one defines the p—quantile ¢, of
the distribution F' by the relation F({,) = p. In order that £, be well
defined for all p, we assume that F' is strictly monotonic, as well as being
differentiable. One may then define its inverse function, G say, with the
properties

F(G(p)) = p for 0 < p<1;
G(F(y)) Y for positive income level y; and
& = G(p) for any quantile.

Now select a set of K proportions, p;, 1 = 1,...,K, with 0 < p; <
... < pk. For deciles, for example, one would choose K = 10 and p; = 0.1,
p2 = 0.2, ..., p1o = 1.0. Then, corresponding to this set of proportions,
we have a set of K population income quantiles, {p, < &p, < ...&p, a set
of K cumulative means, v;, defined by the equation

]

1 G(p:)
=B |Y<&)= ;/0 y dF(y),

and a set of K cumulative variances, \?, defined by

2 2 2 1 [C) 2
¢i5’\i+7z’EE(Y Istp.')=;/ y* dF(y),
0

)

It often turns out to be convenient to work with the set of cumulative
uncentered second moments, ¢;.

Let a random sample of size N be taken from the population and let
the observations be ordered by size from the smallest (¥{;)) to the largest

(Y(n)). Then the sample quantile, fp, is defined as the r*® order statistic,
Y(;), where r = [Np| denotes the greatest integer not greater than Np.

Since F' is strictly monotonic, ép has the property of strong or almost sure
consistency: limpo €, = & with probability 1; see Rao (1965), pg 355.
The sample estimates of the cumulative means are given by

o1y :
715;]_21 Y(j)7 1=12,...,K, (1)

where r; = [Np;], and the sample estimates of the cumulative uncentered
second moments are given by

. 1 & .
¢=‘E;ZY(%>’ i=12,... K. (2)

J=1
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Similarly, corresponding to the third and fourth moments we define

G(p:) s
p,-x,-E/ y° dF(y), and
0

G(p:) .
Pithi E/ y* dF(y),
0

where the sample estimates of the cumulative uncentered third and fourth
moments are given by

<>
1l

1 &
;ZY&), i=1,2....,K, and
lj—l

. 1 & )
'(ﬁ,'E:Z Y, i=1,2,.. K
'j--l

The objective of this paper is to perform (asymptotic) statistical in-

ference with the vector of sample conditional coefficients of variation,
gT=|M A Ax]
o A Y&

However, since A? = ¢; — 4?2, this vector can be written as

Ml-af Vb — 33 \/éx—??{],
) SLLI

07

Thus it is necessary to establish the joint distribution of the 4; and .
The first theorem is the following;:

Theorem 1: Suppose that the 2K —random vector
A= [91T§ 92T] =[p% ... Pxix | Pb1 ... PKOK]

where the 4;,¢ = 1,..., K, are the conditional sample means defined
in (1), the proportions p; are such that 0 < p;y < p2 < ... <pg_1 <
prk = 1, and the 43,-, i1 =1,...,K, are the conditional uncentered
second moments defined in (2). Then, under the conditions that the
first four moments of the population are finite, and that the c.d.f. F'
is strictly monotonic and continuously differentiable, 6 is asymptot-
ically normal, in that N'/2(f —6) has a limiting 2K —variate normal
distribution with mean zero and covariance matrix 2, where

‘Qll ‘QIZ:I
2 = 3
[921 s (3)
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and where the (2, j) elements of the four submatrices are, for ¢ < j:

(201)ij =pi[di — v + 1 —p))(G(pi) — 1) (Glps) —15)  (4)
+ (G(pi) — %) (v — 1))

(£12)ij = pi[xi — vidi + (1 — p;)(G(pi) — 7:) (G*(p;) — ;) (5)
+ (G(pi) — %) (85 — ¢)]

(£221)ij = pi[xi — vidi + (1 — p;)(G*(p:) — 8:) (G(p;) — 75)

+ (G*(pi) — ¢i) (v; — 7i)] (6)
(222)i5 = pi[i — 87 + (1 — p;)(G*(pi) — i) (G*(pi) — 45)
+(G*(pi) — ¢:) (5 — ¢3)] (7)

The elements of the off-diagonal blocks for which ¢ > j can be
derived from the fact that the entire {2 matrix is symmetric. In
fact, for z > j:

(12)ij = (R21);i  and  (221)ij = ($r2)ji-

Proof: See Appendix.

For the asymptotic distribution of the Lorenz curve ordinates and the
conditional coefficients of variation, we have

= | 1M PKYK . $1— ¢k — 'ﬁ(] )
A g6 o Y&
We now use a standard result in Rao (1965) (pg 231) on limiting distribu-

tions of differentiable functions of random variables. If N/2(d — ) (where
6 = [6; i 62]) has a multivariate normal limiting distribution with mean zero
and covariance matrix {2 specified by (3), then the limiting distribution of
N/2(¢ — &) is also multivariate normal with mean zero and covariance
matrix Vi = J2J7, where

7= [5]= o %]
00; Ja1 Ja2 ]’



The submatrices are given by

i . pP1n 7
1/p : ——
/ "
7, = 2 _ : .
1 06, 1/ _PK-17K-1 ’
7 oz
0 ... 0 0o |
0d,
Ji2 = 36, [0];
- _¢1 -
2
; 08, P1A17;
SRz —oK ,
L PKAKYY |
[ 1
o od, B 2p1Aim .
22 — 692 - .. 1 )
| 2Dk AKYK

where px = 1 and 7x = p. It is worth noting that +; is a function of the
conditional first moments alone, and that ¢; is a function of the conditional
second moments alone. Thus

oXi(¢

0N} (4i) _ i) _
Tﬁ-i— =1 and —a—%— = 0.

As a result Jy; is a zero matrix.

From the above results, we obtain that

Vi \%3
Ve = 11 12 8
L [VL21 VLzz] ’ ( )

with

Vi, = Jufindil;

Vi, = Juflindar + J11912722';

Vi = Ja11J1t" + J22 0221 J11';

Vi = Ja 1ot + Jaa 001 Jo’ + Jo1 12 Ja7 + Jaz 0222723

This provides the second result of the paper, which we state as Theorem 2.
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Theorem 2: TUnder the conditions of Theorem 1, the vector @ is
asymptotically normal, in the sense that N 1/ 2(@ — @) has a limit-
ing 2K —variate normal distribution with mean zero and covariance
matrix Vi, specified in (8).

Asymptotic standard errors for the sample conditional coefficients of
variation are given by

N\ 2
(‘fl'zT"’)") for:=1,..., K.

Several things about these results are worthy of note. They are all
distribution-free, in the sense that estimation of Vi, does not require know-
ledge of the underlying distribution from which the data were drawn. It
depends solely on the proportions p;, the unconditional mean and variance
‘u and o2, the income quantiles §,, the conditional means and variances 7;
and ¢?, and the uncentered third and fourth moments x; and ;. These can
all be estimated consistently from the sample without prior specification of
the population distribution underlying the sample data. It is straightfor-
ward to write a computer program — see Beach and Slotsve (1994) — that
integrates these calculations and provides the results needed for performing
first-order, second-order, and Lorenz dominance tests.

3. Illustrative Example: U.S. Men’s Earnings, 1984 and 1990

We now illustrate the calculations of the previous section with distribution
data on the earnings of male paid workers in the United States for 1984
and 1990. The data come from the 1985 and 1991 CPS micro data files on
individual male income recipients aged 16-62 with nonzero earnings. Self-
employed workers were excluded. There are 34,896 observations in 1984
and 34, 562 observations in 1990. Reported earnings figures that had been
flagged or “hot-decked” by the Census Bureau were replaced by predictions
from a conventional earnings regression (estimated from the non-allocated
observations) as suggested by Lillard, Smith, and Welch (1986). The one or
two percent of the earnings figures in the samples that had been top-coded
were also replaced by the conditional mean earnings figures from a Pareto
curve fitted over the top vigintile of earnings recipients. (Full details of
these procedures and accompanying SAS programs can be obtained from
the authors.) All earnings figures are expressed in real terms (using the CPI
for urban consumers, with the base of 100 corresponding to the average for
1982-84).

Estimates of Lorenz curve ordinates and conditional coefficients of vari-
ation are reported in Table 1. The curves for the two years are sufficiently
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similar that, if plotted in the usual manner, they would appear to coincide
over most of their length. In Figure 1 accordingly, we plot the difference
between the two Lorenz curves as a function of the usual Lorenz curve
abscissa, p.

Difference
A

.012f
.010F
.008F
.006
004
002

Figure 1

Difference between the Lorenz Curves, 1984 minus 1990

It can be seen that, between 1984 and 1990, Lorenz curve decile ordi-
nates rose significantly in deciles 1 and 2: the t—statistics for the hypotheses
that the decile ordinates do not differ are 3.31 and 2.89, with corresponding
(asymptotic normal) P—values of 0.001 and 0.002 for two-tailed tests, or
0.0005 and 0.001 for one-tailed tests. On the other hand, the ordinates
fell in deciles 5-9, with two-tailed P—values ranging from 0.02 to 0 (for
a t—statistic of 6.06). The crossover seen in the Figure thus seems to be
statistically significant.

Bishop, Formby, and Thistle (1992) suggested a union-intersection test
of the hypothesis that one set of Lorenz curve decile ordinates dominates
another. This test, based on the work of Beach and Richmond (1985), ex-
amines the set of ¢—statistics for the hypotheses that the individual decile
ordinates do not differ. Assuming that one may reject the joint hypo-
thesis that the full set of decile ordinates are the same, Bishop, Formby,
and Thistle propose that one accept the hypothesis that one set of ordi-
nates dominates the other, against the alternative of non-comparability, if
at least one of the t—statistics has the appropriate sign and is significant,
and none of the t—statistics (if any) that has the wrong sign is significant.
Significance is determined asymptotically by the critical values of the Stu-
dentized Maximum Modulus (SMM) distribution with 9 (for deciles) and

- 8-



Table 1
Male Paid Workers in the United States, 1984-1990

Lorenz Curve Ordinates Coefficient of Variation

Decile 1984 1990 1984-90 1984 1990 1984-90

1 0.0062  0.0072 -0.0010 0.9553  0.9290  0.0263
0.0002  0.0002  0.0003 0.0161 0.0164  0.0229

2 0.0348  0.0368 -0.0020 0.7315 0.6994  0.0321
0.0005 0.0005  0.0007 0.0075  0.0076  0.0106

3 0.0826  0.0842 -0.0015 0.6518  0.6222  0.0295
0.0007  0.0007  0.0010 0.0054 0.0052 0.0075

4 0.1477  0.1474  0.0003 0.6129  0.5857  0.0272
0,0009 0.0009 0.0013 0.0043 0.0042 0.0060

5 0.2295  0.2260  0.0035 0.5916  0.5665  0.0252
0.0011  0.0012  0.0015 0.0037  0.0036  0.0051

6 0.3282  0.3215  0.0067 0.5796  0.5603  0.0193
0.0012 0.0012  0.0017 0.0032  0.0031  0.0045

7 0.4452  0.4360  0.0092 0.5759  0.5633  0.0125
0.0013  0.0012  0.0018 0.0029  0.0028  0.0045

8 0.5831  0.5723  0.0108 0.5793  0.5734  0.0060
0.0013  0.0013  0.0018 0.0027  0.0026  0.0037

9 0.7486  0.7407  0.0079 0.5946  0.6002 -0.0056
' 0.0012 0.0011  0.0016 0.0025 0.0025 0.0036

10 1.0000  1.0000  0.0000 0.7259  0.7405 -0.0146

0.0000  0.0000  0.0000 0.0040  0.0037  0.0055

Note: Figures reported below the point estimates are (asymptotic)
standard errors.

an infinite number of degrees of freedom. The critical value for a 5% test is
2.80, and for a 1% test 3.29. For the two sets of ordinates that we consider
here, for 1984 and 1990, one may reject the hypothesis of dominance in
favor of non-comparability at both the 1% and the 5% level.

Between 1984 and 1990 the conditional coefficients of variation sig-
nificantly decreased in deciles 2-7, with t—statistics for the individual
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differences varying between 3.02 and 4.93, the corresponding two-tailed
P—values being 0.0025 and 0.000001. For decile 10, however, the coeffi-
cient of variation increased, with a t—statistic of 2.67 for the difference.
Using the union-intersection test once more, we observe that each of the
t—statistics for deciles 1-8 is of the same sign, and, for deciles 3-6, ex-
ceeds the 1% critical value of 3.29. For deciles 9 and 10, the t—statistics
are not of the same sign as for deciles 1-8, but neither exceeds the critical
value of 3.29 (or the 5% value of 2.80 for that matter). Thus, on the basis
of transfer sensitivity, one can conclude that the earnings distribution for
1984 inequality dominates the earnings distribution for 1990: there was
more inequality in 1984 than in 1990.

4. Conclusion

This paper has extended the techniques of statistical inference to the cu-
mulative coefficients of variation of an income distribution. It thus provides
the statistical basis for testing inequality dominance when Lorenz curves
cross. We give the full (asymptotic) variance-covariance structure of the
cumulative sample means and variances (jointly), and hence also of the
Lorenz curve ordinates and the conditional coefficients of variation. The
results are distribution-free and easy to compute.

The procedures are applied to the 1984 and 1990 earnings distribu-
tions of male paid workers in the United States. While inequality in the
two distributions cannot be compared on the sole basis of Lorenz curve
ordinates, since the curves for the two years cross, we found that, on the
basis of transfer sensitivity, the 1990 earnings distribution was significantly
less unequal than the 1984 distribution.
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Appendix

In order to prove Theorem 1, we will demonstrate a more general result. Let
a random variable Y be characterized by a strictly increasing continuously
differentiable cumulative distribution function F', with inverse function G.
Then let v, denote the expectation of some function h of Y, conditional on
Y being in the low p—quantile of its distribution:

G(p)
P = /0 h(y) dF(y). 9)

If there is a set of independent drawings Y;, : = 1,..., N from the distri-
bution F, then we may estimate v, by 4,, defined as follows:

G(p) .
Pio= [ h)dF(w) (10)

where the empirical distribution function F is defined as
N
Fly)=N"1) I y(Y).
=0
Here the indicator function satisfies

1 ifY ;
Tog) = {3 BV €0

0 otherwise.

Clearly F(y) is the fraction of the drawings Y; which are smaller than y.
G is the function that gives estimated quantiles:

G(p) = Y(ns))s (11)

where Y(;) denotes the i*®  order statistic, and [Np| denotes the largest

integer not greater than Np. G and F are inverse functions in the sense
that

FE@) = BB, and G(FG) =max{¥i | Vi <u). (12)

With these definitions the estimator (10) becomes

[Np]
P =N"1) h(Y), (13)
=1

a very easy expression to calculate from ordered sample data.
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The disadvantage of both (10) and (13) for determining the asymp-
totic properties of p¥, is that not only are the summands or the integrand
random, but also the largest value of y or Y(;) included in the integral or
sum respectively. Further, order statistics are correlated, and so laws of
large numbers and central limit theorems based on series of i.i.d. variables
are not applicable.

Fortunately, a simple trick allows us to overcome both these problems.
Consider (10) with a nonrandom upper limit:

G(p) R
/0 h(y) dF (). (19)

In order to make (12) take on a simple form, suppose that Np = [Np], so
that p = r/N for some positive integer r. In contrast to (13), (14) can be
written in terms of i.i.d. variables, as follows:

N
N—l Z h(Y;) I[O,G(p)](Yi), (15)

=0

where the indicator function ensures that only terms for which ¥; < G(p)
are counted in the sum. Whereas in (13) there are always exactly r terms,
the number of nonzero terms in (15) is random. By the law of large num-
bers, (15) tends almost surely to

G(p)
Py = B(h(Y) T sy (Y)) = / h(y) dF(y) (16)

Asymptotic normality of (15) can be proved similarly by use of the central
limit theorem.

Next consider the difference between (10) and (14), which is

G(p) .
[ ) db) (17)

G(p)
The estimated quantiles G(p) are root—n consistent — see Wilks (1962),
p. 273. Thus the estimation error G(p)—G(p) is O(N~1/2). So too therefore
is expression (17), since it is the integral of a finite function over an interval

of length O(N~1/2). Further, for y € [G(p), G(p)],

h(y) = h(G(p)) + O(N~1/2),
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under weak smoothness conditions on h. Thus (17), which is itself
O(N~1/2), can be approximated, with an error of order only O(N™1), by
the following expression:

G(p) . A .
/| _ WG() dF) = HE@)(FEr) - FG(k)
= —h(G(p))(F(G(p)) —p) (by (12))

G(p)
= Ph(G(p)) - h(G(p)) / di(y).

Adding this last expression to (14) yields the following expression for (10),
valid with error of at most O(N~1):

G(p) R
PAp = ph(G(p)) + / (h(y) — h(G(p))) dF(y)
N
= ph(G(p)) + N7' 3 (h(Y:) = h(G(p)) Tp,cen(¥i)-  (18)

Clearly, to order N1,

E(pyp) = ph(G(p)) + E((h(y) — A(G(P))) Tjo,c(py(¥))
= ph(G(p)) + pvp — Ph(G(p)) = PY»,

where the second equality follows from (16) and the fact that
E(Io,cn(v)) = Pr(y < G(p)) = p.

Thus p¥, is an asymptotically unbiased estimator of PYp-

The next task is to compute the covariance structure of estimators
like p¥,. By analogy with (9) and (10), let

G(p) . G(p) .
piy= [ k) dPG) and pé, = | ke, a9

for some function k with the same properties as h. Then, asymptotically,
the covariance of py, and p'é, is, from (18),

N (E(((h@) = W(G()) To,am®)) (k) = K(GE)) Tio,cor(®)) )

—E((h(y) — h(G(p))) To,6(m (%)) E((k(y) — k(G(p"))) I[O,G(p’)](y)))' (20)
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Now

E((h(y) — R(G(p))) Tjo,cm(¥)) = P(7» — R(G(p))) (21)
by the definition of v,, and, similarly,
E((k(y) — k(G(®")) Tio,cem () = P'(6 — k(G(P))). (22)

Suppose without loss of generality that p < p'. Then

E(((h(y) = h(G(P))) Ip,am(¥) ((k(y) — k(G (")) I[o,c(pr)](y)))

= E(h(y) k(v) To,om(®)) — P1k(G()
—péph(G(p)) + PR(G(p))k(G(p")) (23)
For ease of notation, let
pép = PE(h(y) k(y) | y < G(p)) = E(h(y) k(v) Ip,c(»)(¥))

G(p)
- / h(y) k(y) dF(y).

Then substituting (21), (22), and (23) into (20) gives N times the covariance
of pjp and p'éy as

p{4s — 1k(G(2) - 8, h(G(p)) + h(G(p)) K(G(r))
=P (1 — H(G@)) (6 — K(G()) }.

This can be rearranged to yield a somewhat more convenient expression:

p{ds =18, + (1 = P)(R(G(P)) — ) (K(G(P) — 6)
+ (H(G() =) (6 — ) }. (24)
The equations (4), (5), (6), and (7) of Theorem 1 are readily seen to be
special cases of (24), with h(y) = y and k(y) = y2.

Everything in (24) can be estimated consistently in a distribution-free
manner: 7, 6,,, and 6, by Yps 6,,, and 6 » respectively ((10) and (19)); G(p)
and G(p') by G(p) and G(p'), that is, the sample p and p’ quantiles ((11));
and ¢, by 43,,, with

[Np]

) G(p) A
ph= [ ) k) dE) = N7H Y (Yo k(Yoo

- 14 -
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