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Abstract

This paper examines stochastic dominance relations among discrete random variables
defined on a common integer domain. While these restrictions are minimal, they lead both
to new theoretical results and to simpler proofs of existing ones. The new results, obtained
for dominance criteria of any degree, generalize an SSD result of Rothschild - Stiglitz to
describe how for any dominance criterion a dominated variable is equal in distribution to
a dominated variable plus perturbation terms. If the variables are comparable under FSD
the perturbations are downward shift terms, while under SSD (7SD) all but two (three) of
the perturbations are zero mean disturbance terms (noise). Under SSD the remaining
perturbations are shift terms and under 7SD noise and shift terms. However, under either
88D or TSD these remaining terms are identically zero if the variables to be compared have
equal means. The paper also finds new proofs of well known results relating dominance
criteria to preferences.

This working paper is intended for limited circulation and should not be cited without
‘permission of the authors. An earlier version was presented to the 1992 TIMS-ORSA
National Meetings, Orlando.



Dominance Relations Among Standardized Variables
Frank Milne and Edwin H. Neave
1. Introduction and review of literature

The partial orderings induced by stochastic dominance have numerous uses: following
Merton [1973], dominance arguments are commonly used in financial and economic theory
to show that certain securities or portfolio values are incompatible with equilibrium.
Dominance tests have also found management application, especially in portfolio selection.
Bawa et. al. [1979] offer an early survey; recent studies include Falk-Levy [1989] and
Ritchken-Kuo [1989].

Despite the extensive applications literature, there are few theoretical papers of
direct relevance to the present work. Hadar-Russell [1969], Hanoch-Levy [1969], and
Whitmore [1970] all relate classes of utility functions to particular dominance criteria.
Rothschild-Stiglitz [1970, 1971] (hereafter RS) study SSD relations between pairs of
comparable, equal mean variables, showing that the dominated variable is equal in
distribution to the dominating variable perturbed by noise.!

This paper compares discrete random variables defined on a common domain, a
minimally restrictive condition. Yet, the approach is fruitful: the paper finds new results for
dominance criteria of any degree. In particular, it obtains new results for FSD and TSD and
extends the RS results for SSD. In addition it provides new, easy proofs of known theorems
relating dominance comparisons and preferences.

The paper shows that if two variables defined on the same domain are comparable
under a given dominance criterion, the dominated variable is equal in distribution to the
dominating variable plus perturbation terms. Under FSD, all perturbations are downward
shift terms. Under SSD (TSD) all but two (three) are noise terms. The remaining
perturbation terms can be combined into a shift term (SSD) or a noise and shift term (7:SD).
If the variables have equal means, there are no remaining perturbations under either SSD
or TSD. The paper also shows that the perturbation terms for each dominance criterion
relate naturally: to each other when different criteria are compared, and to preferences
when a given criterion is selected.

The paper is organized as follows. Section 2 develops a convention for representing
variables and uses it to prove two new lemmas which, when elaborated, lead to all the
paper’s results. Section 3 uses the lemmas to obtain FSD results, Section 4 obtains SSD and
Section 5 TSD results. Section 6 concludes. An Appendix interprets standard dominance
theorems using the paper’s conventions.

1Also, Ross [1978] discusses relations between dominance and the separation conditions
of financial theory.



2. Theoretical Approach

This section defines the paper’s notational conventions and develops an approach
which unifies the paper’s subsequent results. Later sections apply the approach and develop
new proofs of existing results.

2.1 Representing variables

To standardize random variables while restricting their form only minimally, consider
an approach due to Feller [1957]. For given values of n and k, define a family of random
variables as all possible configurations of n indistinguishable balls placed in k + 1 cells.
Each distinct ball - cell configuration represents a random variable, and the proportion of
balls in a given cell indicates the probability with which the outcome (represented by the
cell label) obtains. It is convenient to refer any such set of variables as an (n, k) - family.>

Let the outcomes represented by the cells be the integers 0, ..., k, and index the cells
using the same values. Then if X is a member of an (n, k) - family, its density function g,
is given by

8G) =n/n=x; 2.1)
where n; = 0 is the number of balls placed in the j’th cell,
JE{O0 1.k} =1,

and’
Thus, x; = 0 is the probability of realizing outcome j. It is convenient to describe density

functions* using probability vectors:

x= (Xo,X,...,%) .

’Taking the cell ordering into account, an (n, k) - family has (n + k)! / n!k! members,
where ! indicates a factorial. Continuous densities can be approximated to any desired
degree of fineness by increasing n, k, or both. If the underlying densities are defined on an
interval of fixed length, proportionately increasing the values of 7 and k increases the
fineness of the densities’ definition. Moreover, particular classes of densities (e.g.,unimodal
densities) can be represented as subsets of the (n, k) - families.

3The n; are sometimes called occupancy numbers; cf. Feller [1957].

‘If x; = 0 for some j € 'Jk, the outcome is assumed not to occur.



The vector x satisfies e’x = I, where e is a (k + 1) - dimensional vector of ones.
2.2 Dominance Relations

For the rest of this paper, suppose all random variables are members of the same
(n, k) - family.® It is then possible to use two linear operators to analyze dominance
relations of any order. The first operator forms higher order cumulative summations of
probability vectors (densities); the second, differencing operator is the first’s inverse. The
first order operators -are denoted S and S7. S is a (k+1) x (k+1) matrix composed of ones
on and below the main diagonal, and of zeroes above. It is easy to check that, given the
form of S, §7 exists. The higher order operators are (S)" = ™ and (5" )" = S§™ , where this
paper considers the cases m = 2, 3. To illustrate, if ¥ = 3,

1000 1000 1000
S=1100’S2=2100;S3=3100 2.2)
1110 3210 6 310
1111 4 3 21 10 6 3 1
and
1000 1000 1000
S_1=—11oo_s_2=-2loo;s_3=-3loo @.3)
0-11 0]’ 1-2 10 3-310
0 0-11 01-21 -1 3-3 1

In keeping with earlier notation, the rows of ™ and S™ are indexed from O to k.

S and S’ are used for several purposes. First, if x is the probability vector of a
random variable X, Sx is its vector of first order cumulative sums (corresponding to a
distribution function), and S™x its vector of m’th cumulative sums. Second and conversely,
if S"x = x™, then §™x™ = x. As will be shown, this implies that the m’th order differencing
operator §™ relates the m’th order dominance criterion to the underlying densities. Third,
§™ will be applied to utilities to characterize the preferences underlying different dominance
criteria.

To see how S standardizes relations between different orders of dominance, let

’The standardized domain is not restrictive: any positive linear transformation can be
- applied to the domain without affecting the dominance relations between pairs of variables.



Gy™(:) = S™. (2.4)
Then A stochastically dominates B in the m’th degree iff
G™G) < G™();j € Iy _ 2.5)

m € {1, 2,3}, and® if m = 3, E(A) = E(B) (cf. Hadar-Russell [1969], Hanoch-Levy [1969],
Whitmore [1970]).

For present purposes, it is more convenient to write that A stochastically dominates
B in the m’th degree iff

S"b-a) = a™ = 0; (2.6)

where a and b are the probability vectors for 4 and B, > is a vector inequality, and’ if
m = 3,E(A) = E(B). To stress an underlying duality in the present treatment of densities
and preferences, represent any von Neumann Morgenstern utility function U by the vector
of values u = (uy, ..., w)’, where u; = U(j). Thus for any X, E{ UX) } = u'x.

It is now possible to state: i) relations between the density functions of any pair
comparable in the m’th degree,’ and ii) conditions on preferences for a pair to be
comparable in the m’th degree.

Lemma 1. (Densities) Suppose 4 and B are members of the same (n, k) - family. Then 4
stochastically dominates B in the m’th degree; m = 1, 2, ..., 3 iff

b=a+ 5"a™, 2.7

and, if m = 3, E(A) = E(B).
Proof: Condition (2.7) follows immediately from (2.6) and the existence of S™. |
Lemma 1 reveals new aspects of dominance relations. As shown below, it is possible

to write $™a™ as a sum of vectors, each representing a particular type of shift or noise term
depending on the order of dominance being examined. Since S™a™ also relates the density

SFor reasons to be developed below, we do not require the means to be equal when
m =2,

"Note that A = B unless at least one component of « differs from zero.

*Lemma 1 also describes relations between pairs of variables that are not comparable,
but we do not use this information below.
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functions of a dominating and a dominated variable, it is then possible to show that if 4
dominates B (in any degree), B is equal in distribution to 4 plus a number of perturbation
terms. As a result, (2.7) generalizes an SSD result of Rothschild - Stiglitz [1970] (RS) to
dominance criteria of any degree. Additionally, (2.7) leads to simpler proofs of the RS
results than those originally obtained.

The second lemma uses the difference operators $™ to define classes of preferences.
Let

U™ ={U|us<0j=1..m})m=123 (2.8)

Condition (2.8) both defines the class of preferences to which a given dominance relation
applies, and (more importantly) relates that preference class to the dominance criterion. As
will later be shown, these relations are useful for understanding dominance criteria
intuitively. When m = 1 (2.8) defines the class of monotone increasing utilities. In this case
Lemma 1 establishes an equivalence between FSD on the one hand and downward shifts
of probability associated with S’ on the other. Moreoever, Lemma 2 shows through S that
differences in expected utility depend on the sign of the utilities’ first differences, thus
establishing a relationship that is a dual to the downward shifts of probabilities.

Similarly when m = 2, (2.8) defines the set of increasing concave utilities.” Lemma
1 establishes an equivalence between SSD on the one hand, and perturbations that are all
(except for one shift term) zero mean spread variables associated with S on the other.
Then lemma 2 shows through S§7 that differences in expected utility depend on the sign of
the utilities’ second differences, again establishing a dual relation. Finally for m = 3, lemma
1 establishes an equivalence between 7SD and a third order perturbation term'® associated
with §7, and the dual relation through S~ relates the sign of the utilities’ third differences
to differences in expected utility."

Lemma 2. (Preferences): Suppose A and B are members of the same (7, k) - family and that
A stochastically - dominates B in the m’th degree. Suppose moreover that, if m = 3,
E(A) = E(B). Then A is preferred to B iff u'a > u'b for all u € U™,

*We require both monotonicity and concavity for studying second degree dominance
because, unlike Rothschild-Stiglitz [1970,1971],we do not require equality of the variables’
means. When the means are equal, monotonicity is unnecessary.

°As will be seen, however, for most purposes it is convenient to reinterpret the third
order perturbation as sums of first and second order perturbations.

"'Similar arguments can be made for m > 3, but in the interests of brevity we do not
develop them here.
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Proof (Sufficiency): Suppose 4 dominates B in the m’th degree and consider the expected
utility difference -u’(b - a). Then from (2.7)

u'b - a) = -u'(S"a™) = -(u'S™a™, 2.9)

and o™ > 0 by dominance. But since the first k - (m - 1) components of u'S™ can be
chosen arbitrarily' it follows that u'a = u'b only if -u's™ > 0; i.e.,only if u € U™,

- (Necessity): The converse uses the argument of Hadar-Russell [1969]. Suppose A4 does not
dominate B, in which case at least one component of o™ is negative. But then, since the
first K - (m - 1) components of " can still be chosen arbitrarily, it is possible to find some
u” € U™ such that -( ")'S™ Ja™ < 0;i.e.,a utility for which B is preferred to A. As shown
in detail in Theorems A1 through A3, the approach is to define a utility function whose m’th
order differences are zero except at one point where the inequality defining dominance is
reversed. For such a choice, the expected utility of B exceeds that for A, creating the desired
contradiction.” |

The importance of Lemma 2 rests on applying the differencing operators S™ to u
rather than to o. This change in emphasis leads to easy proofs of well known results for
FSD, SSD, and TSD, as indicated by the necessity proof of Lemma 2 and as discussed
further below.

3. First degree dominance
By (2.6), A dominates B by FSD if and only if
Sb-a) =a” =a >0 3.1
where a and b are the probability vectors for 4 and B respectively. By (2.7),
b-a =S (3.2)

and S”« takes the particular form

S'IOI = (ao » ~Qp + IRy %) + O1 > =0l 1 + ak)’. (3.3)

2S™ takes the m’th differences of k + I integers, which leaves k + I - m terms to be
chosen arbitrarily. For example the first differences of a ,a,,and a; are a,-a; ,4a;-a,.

BThis argument is standard in the literature. For convenience, it is developed at greater
length, for FSD, SSD and TSD respectively, in Appendix Theorems Al, A2, and A3.

“Note that A = B unless at least one component of « differs from zero.



In the rest of this section it will be helpful to write

Sta =6, + ...+ 4,
where

g ao 0 0
-, + 0 -a, 0 0 |
0
stea| O a0 |4 R . (3.4)
0 0 0
Q1 0
RCTRRL 0 "0 %k

Denoting the rows of S by §, , it follows from S;b = S,a = I that o, = 0. Hence in (3.4) the
extreme right-hand vector 6, = 0.

Conditions (3.2) to (3.4) will next be used to show that (since « = 0), the dominated
variable B is equal in distribution to the dominating variable 4 perturbed by a set of
downward shift terms. The downward shift terms are found by observing from the right hand
side of (3.4) that S” assigns a given value @;,j € Ji, ,only to the outcomes 4 =j + I and
A =].

The last observation means that conditions (3.2) to (3.4) can be related to a theorem
of Rothschild-Stiglitz [1970]. The RS findings, applying to SSD, can be expressed as

B=A+A, (3.5)

where = means equality in distribution; cf. Ingersoll [1987, pp. 71-72, p. 120]. To find
similar relations for FSD, find some j € J, for which o; > 0. From (3.2) and (3.4), it is

evident that §; transfers probability from outcome j + I to outcome j. Interpreting the
transfer of probability in terms of the conditional random variable A|@A =j + 1), we
have®:

BEven if o; < 0 for some i € J, , so there is no first degree dominance, it is possible to
define similar shift variables, which in this case represent a transfer of probability toward
the next higher outcome. The fact that the only permissible shifts of probability are in a
downward direction if variables are to be ranked for all monotone increasing utilities forms
the basis of dominance proofs through contradiction; cf. Lemma 2 and Appendix Theorem
Al.



-1; with prob «;/ a,,
Al = j+1)z i (3.6)
0; with prob (am—a i)l a1
Division by g;,, converts the joint probabilities a; and a;,, - & to conditional probabilities. '

Next denote the conditional random variables in (3.6) by 4, j € J,, and let A be
equal in distribution to the combined effect of the A; . Then

Theorem 1: A dominates B by FSD if and only if:

B=A4+A,
where
E(Al4) <0 € T,
Proof: Given the above information, necessity and sufficiency are both immediate. |

Table 1 gives an example of the FSD perturbations, for brevity omitting 0, and 9,
which in this case are both identically zero.

“If a;,; - @ < 0, the conditional probability can be defined using Gy + ooy -0y /
@;,; + o;,; . The numerator of this latter quantity is non-negative because the probability
- vector b is constrained to have non-negative components.



Table 1. Example of Perturbations for FSD

Outcomes a 5, 0, b
0 0 0 0 0
1 0 2/7 0 2/7
2 3/7 -2/7 1/7 2/7
3 4/7 0 -1/7 3/7

The columns headed 6, and §, indicate the redistribution of (unconditional) probability
attributable to o; and «,. In this case, o = (1/7)(0, 2, 1, 0)'. Moreover,

-1; with prob 2/3

AlA =2) =
0; with prob 1/3
and
-1; with prob 1/4
AlA =3) =

0; with prob 3/4.

The principal Theorem of FSD can now be proved using Lemma 2. Consider the
class of monotone non-decreasing utilities U? = M.

Theorem 2: A dominates B by FSD iff u'a > u'b for any U € M.
Proof (Sufficiency): Suppose A dominates B by FSD, so that o = 0,j € J..But
-u'b -a) = -u's'a,
and by definition of S’
UST =y - up Uy - Uy Uy - U )

Now since the first k components of -u'S”? can be chosen arbitrarily, u'(b - @) = 0 only if
u € M.

(Necessity): The converse can be established as a special case of the methods used in
Lemma 2; cf. Appendix Theorem Al. |
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While Hadar-Russell [1969] show that E(4) > E(B) is necessary for A to dominate
B by FSD, it is not sufficient for members of the same (n, k) - family. For if E(4) = E(B),
then

E(A) -EB) = (0,1,...,K)"-(b -a) =
3.7
“k+1D[ by + ...+ b)-(@, +...+a)] +(0,1,....k)' (b -a) =
=e'a =0. _ -
But the last equality in (3.7) cannot hold unless either o; < O for some j € J,or o; = O for
all j € J,. The first case is ruled out by FSD, and the second is possible only if the variables
are identical. In the case of strict dominance, E(4) > E(B) isa necessary condition because
E(A|A =j) <O for at least one value of j € J,.
4. Second Degree Dominance
By (2.6), 4 stochastically dominates B by SSD if and only if
S’ -a) =a? =B = 0. 4.1

Since 8 = Sa, B, = B,; + a, , and since Section 3 showed «, = 0, it follows immediately
from (4.1) that 8, = B,,. However, the relation is actually more specific:

Lemma 3: Be = Bw: = [E(A) - E(B)]. 4.2)
Proof: The properties of S developed in Section 2 imply
B = 8%x = (k, k-1, ..., 1,00 =
kex) - (0,1, ..., k-1, k) =
k - E(X). - 4.3)
Hence |
S’ -a) = [k - EB)] - [k - E(4)] = [E(4) - EB)],

and moreoever
B.=ex+ B, =

[1 +k-EB) -[1+k-E@A)] =[EA) - EB)]. u

We wish next to apply (2.7) with a view to interpreting the relations between A4 and
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B. Rewrite (4.1) as
G -a) =SB, (4.4)
where S8 takes the particular form
S%8 = (By,-280+B;,Bs-2B; + Bz, .eer Biz- 2B, + B )’ 4.5)
For the rest of this section, it is helpful to write - 5%

S% =6 + ...+ §,
where

BO Bo 0 0 0
-2B, + B, -2B, 0 0 0

s2p | PP B | B"' N N (4.6)
0 0 k-2 0
2By, Be-1 0
Be2-2Bc*By 0 Be-2 2By, Pr

Suppose B; > 0 for some j € J,,. From (4.6), it is evident that B; transfers probability from
outcome j + I equally to outcomes j and j + 2. Interpreting this transfer of probability
along the lines of Section 3,

-1; with prob B;/ a,
Al4=j+1) = ) ©; with prob (@, - 2B) [ a,,. @.7
1; with prob B;/ a,,
That is, (4.7) defines the (conditional) probability density of the random variable
AlA = j + I which, for any B; > 0, effectively shifts probability from outcome’” 4 =j +
equally to A =jand to 4 =j + 2. Finally, if E(4) = E(B), 8,, = 8, = 0, and the two right

hand vectors in (4.6) are both identically zero. If instead E(4) > E(B), then B,; = B, > 0,
and summing &, and &, shows that probability is transferred from outcome k to outcome

"As in n.14,if a;,, - 28, < 0, the conditional probability can be specficied using a;,; +
: Bj+1 - zﬁj . )
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k - 1 by a shift variable (as with FSD).
The Rothschild-Stiglitz [1970] results can now be generalized in the:
Theorem 3: A dominates B in the second degree if and only if |
B =A4 + A,

where A is equal in distribution to the combined effects of (A|4 =j + 1) = A, the latter
are noise terms such that :

E(A]-IlA =j) = 0,.j'1 E Jk-l »
and A, is a shift term such that
EA|A =k) < 0.

Proof: Both necessity and sufficiency follow immediately from the examination of the
conditional random variables. |

The Rothschild-Stiglitz [1970] result itself can then be stated as the:

Corollary: If A and B are members of an (n, k) - family and if E(4) = E(B), then 4
dominates B by SSD if and only if B = A + A, where

EA,|A =j)=0jE {1, ... k.
Proof: If E(A) = E(B) then
B = Bis = [E(4) - EB)] =0
by (4.4). Then b;)th necessity and sufficiency are immediate as before. |
With arbitrarily described random variables, the RS necessity proof of the foregoing
corollary is considered complex; cf. Huang and Litzenberger [1988]. The structure imposed

by restricting the variables to an (n, k) - family simplifies the demonstration. Table 2 gives
an example of the perturbations, as before omitting identically zero variables.
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Table 2. Example of Perturbations for SSD

Outcomes a 0, b

0 1/7 0 1/7
1 2/7 1/7 3/7
2 4/7 =217 2/7
3 0 1/7 1/7

The column headed §, indicates how &, corresponds to the redistribution of (unconditional)
probability associated with §8,. In this case, 8 = (1/7)(0, 1, 0, 0)', and

-1; with prob 1/4
AlA =2) = 0; with prob 1/2
1; with prob 1/4.

The next Theorem is a direct consequence of Lemma 2. Consider the class of non-
decreasing concave utilities U? = V. Then

Theorem 4: A dominates B by SSD iff u'a = u'b for any U € V.
Proof (Sufficiency): Suppose A dominates B, in which case 8, = 0,j € J,. But
u'b -a) = -u'(S6) =-(u's?g,
and
WS? = (uy - 2uy + Uy, Uy - 2uy F Uy, o, Uy - DUy, U

Now the first k£ - 1 components of -u'S? can be chosen arbitrarily, and 8 = 0 by SSD. Hence
-u'b-a) =20onlyif U € V.

(Necessity): The converse is established as a special case of Lemma 2; cf. Appendix
Theorem A2. ’ [ |

Corollary: If E(4) = E(B), the utilities need only be concave; the monotonicity restriction
can be dropped.’®

Hadar-Russell [1969] show that E(4) = E(B) is necessary for A to dominate B by

18Cf. the discussion in Huang and Litzenberger [1988, Chapter 2].
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SSD. For members of an (n, k) - family, E(A) < E(B); i.e., the logical contradiction of
E(A) = E(B), implies 8, < 0 by (4.2). But since second degree dominance is then not

possible, the necessity of E(A) = E(B) follows.
S. Third Degree Dominance
By (2.6), A stochastically dominates B in the third degree if and only if:
Sb-a)=a” =920
and"
[E(4) -EB)] = 0
cf. (2.5). Since (cf. (2.3))
Ver = YVez ¥ Bt Y = Yer + B,
and since Section 4 established that 8, = 8, ,
Yez = 2% + v = 0.
In this case
b -a) =S
takes the specific form
b-a) =
(Yo -3Y0 Y1 3703Vt 72 > Yot 3V 3723 5 o oos Yas F 3V 3V V)
As before, it is useful to take

S =8, +...+ 6,
where now

(.1)

(5.2)

(5.3)

(5.4)

(5.5)

PWhitmore [1970] shows E(4) = E(B) is necessary if 4 is to dominate B by TSD. This

- result is interpreted below.
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Yo Yo 0 0 0
3% *+ ¥y -3%, 0 0 0
3y,-3 3 0
S3p = Yo=3Y1+Y2 o | Yo vl 3y |+ o | (5.6
0 Yo k-2
32 3Y)-1 0
Yi-s ~3Ve2*3Ye~ Yy 0 Y2 Y1 Y

The relations between densities, which can be studied in exactly the same way as for FSD

and SSD, are mean zero terms for 0, 1, ..., k-3. More particularly, since
1 1 0 0
S el Y e P , (5.7)
3 1 1 1
-1 0 0 -1
the probability redistribution effects of v, , ..., v,; can each be viewed as the sum of a noise

term and two shift terms whose combined = effect is that of a (mean preserving) noise
reducing term. Finally, returning to (5.6) the effects of v,,, v,,, and v, together represent
a noise and a shift term with a non-positive conditional mean. (If E(4) = E(B) then v, = v,
1 = Y2 = 0, as shown below.) These observations lead to

Theorem 5: A dominates B by 7:SD if and only if

B =A+A,
where A is eilual in distribution to the combined effects of the conditional variables defined
by the right hand side of (5.6). The first k - 2 variables can be interpreted as combinations
of a noise and two shift terms using (5.7) and the methods of Sections 3 and 4. The

remaining three variables combine to form a noise and a shift term, the latter with a non-
positive conditional mean.

Proof: Both necessity and sufficiency are established as before. n
Corollary: If E(4) = E(B) then B, = 8, = 0, which in turn implies that
Ye2 = Y1 = Yo

and A, = 0.
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Proof: By the paper’s conventions,
(k+1)e'b -a) = (k+1, ..., k+1)'(b - a) = 0. (5.8)
Moreover, E(A) = E(B) implies
01,..,k'b-a) =0. (5.9
Subtracting (5.9) from (5.8) gives
k+1,k, ....,1)'0 -a) =0 = - v,

the last equality following from definition of v, and +,,. But by equal means and 8, = 8,,,
V¢ = i1 It therefore follows that vy, = v,; = v, = 0. |

Table 3 gives examples of the TSD perturbations, with the now customary omission
of identically zero variables.

Table 3. Example of Perturbations for 7SD

Outcomes a d; 0, b

0 0 0 0 0
1 1/7 1/7 0 2/7
2 2/7 -3/7 1/7 0
3 1/7 3/7 -3/7 1/7
4 1/7 -1/7 3/7 3/7
5 2/7 0 -1/7 1/7

The columns headed ¢, and §, indicate how <, and 'yz' correspond to a redistribution of
(unconditional) - probability. In this case, y = (1/7)(0, 1, 1,0, 0, 0)'. The conditional
distributions can be written using (5.6) and the methods of previous sections.

The next Theorem is a direct consequence of Lemma 2. Consider U® = R, the class
of non decreasing concave utilities whose third difference is non-negative; i.e.,

Us - Uy, + 33U, - 2 0, (5.9)

J € Jis Condition (5.7) is the discrete analogue of a necessary condition for decreasing
absolute risk aversion; cf. Whitmore [1970]. Then

Theorem 6: A dominates B by 7SD iffu'a = u'b for any U € R.

Proof (Sufficiency): Suppose A dominates B, in which case v3; = 0,j € J,. But
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-u'b -a) = -u's’y,
and
-u'S? = -(uy - 3u; + 3u, - ug, u; - 3u, + 3u; - u, v Ugg = 3 Uy,

Now the first k - 2 components of -u'S’ can be chosen arbitrarily, and y > 0 by TSD.
Hence -u'(b -a) = Oonly if U € R.

(Necessity): The converse is established as a special case of Lemma 2; cf. Appendix
Theorem A3. u

To show why E(A) = E(B) is necessary for TSD, consider the restricted case where
E(X) =j;j € J. Analogous to condition (4a) in Whitmore [1970] it can be verified that

Sx = [h(EX), k) + F(X)/2], (5.9)
where
hEX), k) = (k +2-EX))! / (k - EX))!2!
and o’(X) is the variance of X. But then
S’ - a) = [R(E(B), k) - h(E(A),. k] + (1/2)[*B) - o*(4)],

and it is clear that $°,(b - @) = 0 cannot generally hold unless E(4) = E(B); cf. Whitmore
[1970, eqns (4a) and (5a)].

6. Conclusions

For any two comparable members of a given (n, k) - family, this paper shows that
ranking by a dominance criterion is equivalent to perturbing the dominating variable, with
the type of perturbation depending on the criterion employed. For FSD, the perturbation
terms’ coefficients are given by I and -1, for SSD by the binomial expansion of (I - 1)%  and
for TSD by (1 - 1)°. For FSD, the perturbations have non - positive means. For SSD, the
first k - 1 perturbations are noise terms, and the k’th perturbation is zero if E(A4) = E(B).
For TSD, the first k - 2 perturbations are symmetric noise terms, and the remaining
perturbations are zero if E(4) = E(B). Finally, the results generalize immediately to orders
of dominance greater than three.
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Appendix. Interpretation of Proofs in the Literature

This Appendix gives, using the paper’s notation, the standard proofs in the literature
for relations between a dominance criterion and preferences. The text of the paper offers
shorter proofs.

Theorem Al: A dominates B by FSD iffu’'a = u'b for any U € M.

Proof (Sufficiency): By the paper’s conventions, A dominates B is equivalent to o; = 0,
J € J,. But then

u'a-ub=-u'b-a) = -u''a) =
-(Ugay + Uyl - ag) + oot U glony - ) - oy,) =
= '(ulsl)a = '( (llo - ul)al + ...+ (uk_l = uk)ak ) 2 0
by monotonicity of U.
Proof (Necessity): The argument uses the same method of contradiction as in Hadar-Russell
[1969]. Suppose A does not dominate B by FSD. Then o; < O for some j € J,. Next, choose
U" € M such that
' =0i=01,...,j,and
w =1i=j+1,..,k
But then
W)b-W)a =u'(S"a) =-o >0,
the desired contradiction. a
Theorem A2: A dominates B by SSD iff u'a = u'b for any U € V.
Proof (Sufficiency): By the preceding theorem, A dominates B is equivalent to using the
perturbations in Table 2. Consider first the cases j € Ji, and recall §; = 0 by SSD. If
B; = 0, it has no effect and can be ignored. If 8; > 0, probability is moved from an outcome
Jj of A and distributed equally between the outcomes j - I and j + I of B. Such
transformations cannot increase a concave utility.
Now consider the remaining case, j = k-1. If B,; = B, > 0, the net effect is to reduce aq,

and increase a,;. This transformation cannot increase expected utility, since any U € V is
non-decreasing.



21
Hence both cases imply u'a = u'b.

Proof (Necessity): The converse again uses the Hadar Russell [1969] method of
contradiction. Suppose A does not dominate B by SSD. Then B; < O for some j € J,.
Choose U" € V such that

Wy, -u;=1i=0,1,...,j,and
Wy -u', =00i=j+1,..., k1.
But then
Wip - 2ujy + Uy =-1

while all other perturbations create utility differences of zero. The desired contradiction
follows immediately. |

Theorem A3: A dominates B by TSD iff u'a = u'b for any U € R.

Proof (Sufficiency): Let U € R. By the preceding theorem, A dominates B is equivalent to
using the perturbations in Table 3 with y; = 0,j € J,. First, consider any j € J, , for which
v; > 0. The associated perturbation is one for which

i) probability is moved from an outcome J of A and distributed equally between the
outcomes j - I and j + I of B; and

ii) the same amount of probability as in i) is moved equally from the outcomes j and j + 2
of A to the outcome j + I of B.

The first such perturbation reduces any concave utility; the second increases it. But, the
increase is less than the decrease by decreasing marginal utility. The combination means
u'a = u'b.

Finally, consider j = k - 2. If -y, , > 0, probability is

i) shifted from outcome k of A to outcome % - I of B; and

ii) shifted according to the condition v, - 2v,; + 7, = 0

Both i) and ii) imply decreases in utility, and in this case also u'a = u'b.

Proof (Necessity): The converse again uses the Hadar Russell [1969] method of
contradiction. Suppose A does not dominate B by 7SD, and choose U* € R such that its
~ second differences satisfy:
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) u.,' - 2u.‘-+1 + u‘i+2 = '1,'1. = 0, 2, ..-,j,

and
Wi-2Uy YUy = 0i=j+1,..., k2.

By hypothesis, v; < 0 for some j € J,.
First, consider the cases j € J, ;. Then )
| W, =3y + 30, -un =10 =j;
Wi -3y + 30, - Uy = Oi #ji € Ty
from which it follows that v; < 0 increases the utility of B relative to A.

Finally, consider j =k - 2. If v, , < 0 utility increases result from a positive shift term
and a reduction of dispersion.

The desired contradiction follows in either case. |



