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Abstract

In this paper we consider Anonymous Sequential Games with Aggregate Un-
certainty. We prove existence of equilibrium when there is a general state space
representing aggregate uncertainty. When the economy is stationary and the

underlying process governing aggregate uncertainty Markov, we provide Markov
representations of the equilibria.



1 Introduction

In this paper we provide a set of results on the existence of equilibrium in a class of dynamic
games: anonymous sequential games. This class of multistage games features a-continuum of
agents and is characterized by the “anonymity” property that an agent’s payoff in any period
depends on what other agents do only through the aggregate distributions over agent types
and their actions. Economic problems in which agents are “small”, for example competitive
economies, are modelled quite naturally as anonymous games. The anonymous sequential
game framework with aggregate uncertainty is quite general and presents an attractive al-
ternative to representative agent macroeconomic models. The framework permits one to
address economic problems where individual stochastic heterogeneity is important, as is its

interaction with aggregate stochastic variables.

Heterogeneity helps explain both the individual allocation of resources, as well as the
evolution of aggregate economic variables. Agents who differ in their abilities, endowments
or preferences may make different employment decisions, hold different portfolios or purchase
different goods; firms which differ in their costs may make different investment or R&D de-
- cisions. For each agent, the dynamic evolution of such characteristics is invariably stochastic

in nature: how successful was a firm’s R&D investment? what was the return on an as-
set? what was the worker-firm match quality? what was a firm’s cost shock?, etc. In some
cases, questions of this sort can be addressed in a model which has no aggregate uncertainty
(see, for instance, Jovanovic (1982), Hopenhayn (1990), Jovanovic and MacDonald (1988)).
However, for many economic problems it is too restrictive to impose the requirement that
the aggregate distribution of agent types evolve nonstochastically. For instance, modeling
of business cycles demands consideration of aggregate demand shocks which affect all firms
directly. Government policy choices, such as the rate of money growth, which are random ..
from the perspective of individual agents are aggregate in nature. Technology shocks re-
flecting global innovations such as computers, are aggregate in nature, as are the so-called
“oil” shocks. In such cases the stochastic evolution of the economy-wide aggregates is an
important determinant of agent decisions and hence of economic behavior. The anonymous
sequential game framework with aggregate uncertainty allows one to model such phenom-
ena. For instance, Bergin and Bernhardt (1990) employ this framework to examine entry,
“exit, investment and R&D decisions of firms whose costs evolve stochastically and who face,
aggregate business cycle demand shocks.

Anonymous sequential games are formally defined in Jovanovic and Rosenthal (1988)
for the case where there is no aggregate uncertainty, and an existence theorem is given
there. Here we extend Jovanovic and Rosenthal (1988) and Bergin and Bernhardt (1991)
to allow for aggregate uncertainty with general state spaces. We also provide two results
on the existence of Markovian equilibria when the model is stationary and the underlying

stochastic process governing the economy is Markov.



To understand the nature of the results, it is necessary first to develop the notions of
“aggregate uncertainty” and “no aggregate uncertainty” within the context of our formula-
tion. If the set of agent types in our economy is A and the action space A (common to all
agents), then the aggregate distribution over agent types and actions is some distribution
TonY = A x A! The anonymity assumption says that the behaviour of other agents af-
fects agent o’s utility (only) through 7. Such a joint distribution 7 is called a distributional
" strategy.? Agents’ characteristics (e.g. technology quality) can evolve stochastically over
time, so that a particular & € A (the characteristics space) is not identified with “the same”
player over time. At time ¢, if agent a € A takes action a € A, and the distributional strategy
is ¢, then he obtains utility u,(a,a, ;). Given o, 7, and a, the player then draws a new
characteristic ¢4 (reflecting idiosyncratic risk) from a distribution3 Pe,..(%; 7, a,a), which
determines his type in ¢+ 1. In turn, in period ¢ + 1, the player obtains a new characteristic,
drawn from a distribution Pg, +2(95 Tt41, €41, a), when action a is taken, the period t + 1
distributional strategy is 7441, and so on. Thus, idiosyncratic risk arises because a player’s
payoff depends on the random evolution of his characteristic in A space.

“No aggregate uncertainty” is formulated in this model as the non-stochastic evolution of
a sequence of joint distributions, {u;}, on the characteristics space A. Given the aggregate
distribution, 7, on Ax A, the “no aggregate uncertainty” hypothesis means that next period’s
distribution over characteristics space is given by

Her1(e) = /P&“(o; ¢, @, a)Ty(da X da).

Even though each agent faces individual uncertainty through Pe, ., this uncertainty at
the individual level “washes out” in the aggregate so that Me41 is non-stochastic. This “wash-
~ ing out” of individual risk is intimately related to the fact that the model has a continuum
of agents. A detailed discussion on this matter is given:in Feldman and Gilles (1985). The.
hypothesis of no aggregate uncertainty has proved very useful in proving existence of equi-
librium and for the analysis and economic characterization of these models. Jovanovic and
Rosenthal (1988), and Bergin and Bernhardt (1991) provide further details and discussion
of these issues.

To illustrate the potential difficulties in deriving economic restrictions were the aggregate
distribution conditionally stochastic, consider a situation where a indexes a firm’s technology .
and where £, isfirm a’s technology next period. One might anticipate that, from an economic
perspective, agent a is better off “drawing” a good technology (a high value of Ea) However,
with a stochastic aggregate distribution and the unavoidable correlation of draws across the

1We identify an agent with his type in the sense that we will refer to both agent type o and agent «o
interchangeably - e.g. firm « has technology type a.

2The properties and use of such strategies are discussed further in MasColell (1984), Jovanovic and
Rosenthal (1988) and the references cited there.

3A “e” will sometimes be used as an argument of a measure to denote an arbitrary measurable set in
the relevant space. Given two measures, 4 and ¢ on some sigma field B, the expression pu(e) = () means
k(B) = ¢(B), VB € B. Given a metric space X, By is the associated sigma field.



a’s, conditional on a high value of £,, the distribution of technologies may be more likely to
be concentrated on good technologies. Thus, in a competitive situation, given that £, is high
- (more efficient), other firms are more likely to be more efficient and the “gain” to &, of being
more efficient may be offset by the fact that the competition is stiffer. Thus the expected
result - that the expected payoff given greater efficiency is higher - may be reversed. Bergin
and Bernhardt (1991) also discuss technical problems which arise.

The structure underlying the development of our model of aggregate and no aggregate
uncertainty is the following. Underlying the transition function P¢(e; 7, a,a) (and ignoring
time subscripts for now) is a probability space (N, By, p). The process governing the evo-
lution of individual characteristics is £(7, @,a,7): if n € N is drawn, agent o takes action
a, and the current joint distribution on actions and agent characteristics is 7, then agent
o’s characteristic next period is £(7, @, a,7). The transition function is determined by this

process according to:
P¢(B;,a,a) = p({n| é(n,,a,7) € B}),VB € B,.
For any given 7 and 7, the aggregate distribution next period is given by

#"(B) = 7({(a,a) | £(n, @, a,7) € B}),VB € By.

In general, u"(e) is a random measure. Letting M(A) denote the set of probability measures
on A and Baya) denote the Borel field on M(A), the distribution of u7 is given by:

Yu(@) =p({n | 1" € @}),Q € B

Similarly, the joint distribution on M(A) x A is given by:
" "/)(Q) = P({W | (,u"’, f(ﬂ,a,a, T)) € Q})7 Q € BM(A) ®A.

The hypothesis of “no aggregate uncertainty” is the hypothesis that the distribution of this
random measure, 1, is degenerate: Iu* € M(A), u" = p*, p a.e. 1. Aggregate uncertainty
may be defined (by default) as the case where u" has a nondegenerate distribution (Yu).

Bergin and Bernhardt (1991) develop a useful decomposition of uncertainty into aggregate
and idiosyncratic components. Aggregate uncertainty is introduced by -having a random
variable 6 € O represent an aggregate “shock” to both payoffs and the transition function
governing individual risk. Idiosyncratic uncertainty is represented by a second stochastic
component. In the present notation, such a procedure is equivalent to writing 7 = (w,0) €
(2, 0), where 0 represents aggregate uncertainty and w embodies “idiosyncratic risk”. In
this formulation, the underlying probability space has the form (2% 0,Bq ®Bo,o®v) =
(N,Bn,p) and £(n,0,a,7) = &((w,0),a,a,7). Thus, if the “aggregate shock” is 6, the
aggregate distribution 7, and agent a takes action a, then agent a’s characteristic next
period is drawn from the distribution P¢(e; 7,0, a,a). As before, the aggregate distribution

is a random variable, but if we impose the “no aggregate uncertainty” hypothesis conditional



on #, then next period’s aggregate distribution is non-stochastic, conditional on §. The

aggregate distribution is defined (for a given (w, 6)) as:

H(w)(B) = 7({(a,a) | {((w,0), @, a,7) € B}),VB € By.

No aggregate uncertainty conditional on 6 is the requirement that, given 8, Jp*, such that
K(w,6) = B*, ¢ a.e. w. At the same time, individual agents face individual uncertainty

through w because the distribution over agent a’s characteristics is given by:
P¢(B;1,0,0,a) = o({w | {((w, 0), @, a,7) € BY).

No aggregate uncertainty conditional on 6, implies that the aggregate distribution next
period, pu*, can be computed according to:

u*(B) = / P¢(B;1,0,a,a)r(da X da),VB € B,.
Y

In this formulation the aggregate shock @ enters as an argument of the transition function,
affecting each agent and represents the aggregate uncertainty facing every agent. Agents’
actions can be conditioned on the aggregate shock, so that the aggregate shock can also
affect the transition to future states indirectly through current agents’ actions. ‘Finally, 6
can enter payoffs directly. For instance, § may be an aggregate demand shock or an aggregate
inflation shock which affects all firms (directly through their profits and indirectly through
their actions and the future evolution of their costs). Motivation behind this formulation
of aggregate uncertainty is discussed at some length in Bergin and Bernhardt (1991), where
an existence theorem is given in the case where the state space of aggregate uncertainty is

- countable (i.e., © is countable). -

Here, we first extend this formulation of aggregate uncertainty to a general setting, pro-
viding an equilibrium existence theorem in a model with an abstract state space representing
aggregate uncertainty. The extension to a more general state spaces for aggregate uncertainty
is important because uncountable state spaces arise in a natural way in many applications.
For instance, an aggregate demand shock @ facing firms may be drawn from some continuous
distribution. The proof of existence of equilibrium in the general case is of independent inter-
est because the approach used in the countable case does not carry over. The mathematical
arguments developed to prove existence with the countable state space do not extend to
more general state spaces because the construction involves selecting each finite history of
aggregate shocks and developing “pointwise” arguments there. The extension is achieved at
a slight cost in that we require each agent’s action set be a fixed set A over all times and
histories. In the countable case the possibility that a particular agent’s actions could depend

on the history of aggregate shocks or any other relevant variable was allowed.

Finally, we assume that the model is stationary and provide two results on the existence

of Markov equilibria. The Markov representations provide an alternative way of viewing



equilibria, and the additional structure facilitates the study of equilibria, simplifying the
interpretation and analysis of equilibrium behaviour. The results here are closely related to
some of the literature in stochastic games..In a stochastic game, a state space S is specified. _
There are a finite number of players, with action space A;i(s), for playeri;4=1,...,n, which
is typically state dependent. Let A(s) = x%_,4;(s). If at time ¢ in state s agents choose
an action vector a € A(s), then the payoff to agent ¢ is u;(s,a). Following the choice of
a € A(s), a new state is drawn from some distribution p(d3 | s,a). At time ¢, when agents
select actions from A(s;), where s, is the state at time ¢, they observe the history of states as
well as the current state, (sq, s2,...,3;), and the history of actions (a1,a2,...,as-1), where
ar € A(s,). Payoffs are discounted over time at the rate § , so that the present value of i’s
payoff at time ¢ is (1 — 6)6*~1u;(s¢, a¢), where s; € S and a; € A(s¢). Thus, a strategy for
i, 0; = (041,042, ..,05t,...), is a collection of functions with Oit(S1,...,8¢,81,...,a4-1) €
Ai(st). A strategy, oy, is called Markov if for all ¢, Oit(S1y+ 44588, 01,...,ae-1) = oL(se),
for all (s1,...,8¢,a1,...,a;—1). If, in addition, the functions o} and o}, agree, Vi, 7, then
the strategy is called a stationary Markov strategy. In this model, a proof of existence of
equilibrium is very difficult (when the state space § is not finite). Such a proof is given
in Mertens and Parthasarathy (1988), who also discuss some of the difficulties involved in
obtaining Markov equilibrium strategies. Duffie, Geanakopolos, MasColell and MacLennan
(1989) also discuss stochastic games as an application of a general result on existence of
equilibrium. They prove existence of a stationary ergodic Markov equilibrium on an enlarged
state space which includes payoffs. This circumvents some of the difficulties involved in

obtaining Markov results on the § state space.

The first result we give on Markov equilibria assumes that the stochastic process gov-
- erning the 6 process is-Markov. The “natural state space” here is M(A) x ©, where an
element of this space, (i, ) represents the aggregate distribution on agents’ characteristics
(#) and the aggregate uncertainty parameter §. As the game proceeds, a random vec-
tor (1,61, pa,0,,...,u,0:) evolves. The distribution of 0t4+1 depends only on 6; (by the
Markov property), and the value of y;4; depends only on (k¢,0:) and the current strategies
of agents. In this result we enlarge the state space, M(A) x O, to include payoffs and pro-
vide a Markov characterization of equilibrium strategies. This approach is analogous to that
in Duffie, Geanakopolos, MasColell and MacLennan (1989) (henceforth DGMM) who also
include payoffs in the state space: the “state” at time ¢ includes the present value of future
payoffs (i.e. the term “Markov” is with respect to the enlarged state space). In a sense, this
representation has a natural interpretation as a type of rational expectations equilibrium.
It is worth stressing that we show that every equilibrium payoff in the game arises as the
payoff to an equilibrium of this form. In this result, the transition functions are assumed
to satisfy a form of weak* continuity whereas DGMM assume a stronger form of continuity
(that the transition functions converge on Borel sets). In addition, we require no assump-
tions concerning absolute continuity of the transitions functions either relative to each other

or relative to any fixed measure.



The enlarged state space can make it difficult to “pin down” behavior. In order to pro-
vide a Markov result on the “natural” state space we drop the conditional no aggregate
uncertainty hypothesis and return to a general model of aggregate uncertainty.as a random -
measure 4. In this model, where aggregate shocks are not explicitly formulated, the “nat-
ural” state space is M(A). Given an underlying stationary Markov stochastic environment
we demonstrate that a Markovian equilibrium exists on the standard (i.e. not enlarged)
state space. This result requires stronger, but still standard, continuity assumptions on the
transition functions which are similar to those in DGMM. We now turn to a description of
the game and presentation of the results. Proofs and notation are given in the appendix.

2 The Model

The set of agents is denoted A with representative element a, where A is assumed to be a
compact metric space. A is the “characteristics” space. Similarly, the set of actions available
to any agent a is a compact metric space A. Let Y = A x A. An aggregate distribution (on
agents’ characteristics) is a measure p on A. Given a metric space X, the set of probability
measures on X is denoted M(X), the set of continuous functions.on X is written C(X), and
the family of Borel sets of X is given by Bx. The t-fold product of the set X is denoted
X' = x}_,X and the Borel field on X* is denoted B . We assume that the initial measure
of agents is 1 ( u(A) = 1, where u is the initial measure on A) and consider a model with an
infinite number of periods.

The state space representing aggregate uncertainty each period is a metric space O, with
6 € ©. In the infinite period model the state space is O = X 2,0, with representative
element 6 = (y,0s,...0;,...). Denote the vector (61,0,...,0;) by 6 € ©f = xt_, 0. 6t is _
the history of aggregate shocks up to the end of time ¢. Fix an exogenously given distribution
v on ©%. Denote its marginal distribution on ©* by v, its conditional distribution on @
given the first ¢ elements of > by v(e | 6*), and the conditional distribution on Ot given
6%,s < t, by vy(e | 6°).

The set of measurable functions from ©f to M(A x A) is given by F(Ot, M(A x A)).
A period distributional strategy at time ¢, 7, is a measurable function from the space of
aggregate shock histories ©f to M(A x A), so that 1, € F(Of, M(A x A)). A distribu-
tional strategy for the infinite period model is a vector 7 = (T15725. .+, Tt,...) of the period
distributional strategies.

Now introduce a process £;, with corresponding transition function Pe,,. (o, 7,0 y)
which, conditional on (1) the aggregate shock history 6t € @, (2) the time ¢ distribu-
tional strategy 7y = 7¢(e,;8%) € M(A x A), and (3) y = (e, a), gives the distribution of
agent a’s “type”, €41, in period ¢ + 1. At time ¢, if 7, is the period distributional strategy
onY = A x A, and @ is the aggregate shock history then, ignoring for the moment that 7,



is related to 8%, the aggregate distribution at time ¢ + 1 is given by

Pt+1(°) = LP£.+1(°, Tt 5t, y)"_'t(dy)'

This connects the distribution on characteristics intertemporally: ‘the-distributions.7;.and .
' Tt—1 are not independent. The marginal distribution of 7; on A is a distribution on character-
istics which must agree with the distribution implied by the transition process: the measure
of agents in a given set in A at time ¢ must equal the measure of agents entering that set

from the previous period. We return to this issue if consistency below.

Utility at time ¢ is a function from A x A x M(A x A) x Ot to R. If an agent of type
o takes action a given distributional strategy ¢ and aggregate shock history 6 then the
agent’s payoff is us(«, a, 7, 6%). Utility at 6! is dependent on the aggregate distribution over
A x A, conditional on 6*. Throughout, we take u; to be continuous on A X A. In addition,
we assume that

SUD(t,0,a,7,0') €(Z4 xAx M(Ax A)x01) | Ut(@,a,T¢,0%) |[< K' < 00,
so that without loss of generality we may take
0 S ut(a, a,Ti, ot) S K< OO,V(t, Q,a, Ty, ot)

The discount rate at time % is §; (with §; = 1 and sups>26; = § < 1), so that the present
value of time ¢ payoffs is (II{_, 6,)u; (In the discussion of the stationary model we set §; =
(1-6)6t-1).

The sequence of events at time ¢ is the following. First the period ¢ aggregate shock, 6, is
~ realized. Then agent a, observing 7 and the history of aggregate shocks (including the current
shock), 6%, picks an action a € A, and receives utility ug(a, a,14(e,0;68),8,). The agent’s -
characteristics for period ¢+1, £;41, are then realized. The function 7; gives a measure M(AX
A) from which the transition distribution on A is determined: P, wi(o,Te(e,0;60%),8%, 9).
Given a continuous function f on A (f € C(A)), S F(E)Peey1(dE, (o, 0;6%),8%, y) is denoted
by Pe,,,(f, 7e(o, 0; gt)’ 6, y).

Given a normed space (X, || ||), let L; (0%, X, ;) represent the set of measurable functions
from © to X with norm [g, || £(6*) — g(6¢) || v(d6t). For f,g € C(Y), let || f—g ||=
supy | f(y) — 9(y) |- I f,g € L1(0%,C(Y),1), then f(y,6*) and 9(y,6%) are functions on
Y for each 0%, and || f - g [|= supy | f(y,6") - 9(3,8%) | (or || f - g [ly (%) to make the
dependence on " explicit). The L,(0%,C(Y), vt) norm topology is determined by the metric
Jou II £ = g lly ve(a8?).

Define a topology on F (0%, M(A X A)) according to the following convergence criterion:
Say that 7® — 7, if and only if for all f € C(Y) and g € L;(8%, R, v;),

[ 1)s(@7 s 6pugant) [ 1190 0o,

4Thanks are due to J-F. Mertens for suggesting this topology.




This is the coarsest topology on F(@%, M(A x A)) for which [ f(y)g(8t)r:(dy; 6t)vs(d6?) is
continuous in 7;. With this topology, F(0*, M(A x A)) is compact (Mertens (1986)).

~ We dssume that the transition distribution Py, (f, (e, ;8¢),8¢,y) is continuous in Y
for each f € C(A). In addition, the following continuity conditions relative to 7 are imposed.
For fixed f, and 7 € F(@!, M(A x A)), both Pg,,, and u; may be viewed as continu-
ous real valued functions on Y for each #* and hence as elements of L1(0%,C(Y), ;). To
simplify notation, write P¢q1(f, 74, 6%, ) for Pe,,.(f,7e(o,0;6%),8%, y) and us(a, a, 7, 6;) for
ui(a, a,7e(e, 9;6),0;), where 7; is understood to be an element of F(0f, M(A x A)). We
assume that P, ., (f,7,6%,y) and us(e, a,7s,0,) are norm continuous in T4

[9: supy | P€t+1(f7 T 6, y) — P€:+1(f’ Tty ét’ y) | Vt(dot) =M

and

n
T =Ty

/@ Supy , ut(y’ Ttnvgt) - Ut(y,Tt, gt) I Vt(dot) — 0.

3 Equilibrium

The first result attaches a value function to each collection of (o, a,T,60%). This value function,
Vi(e, a, 7,6%) gives the payoff to agent « at time ¢, given that o takes action a, the aggregate
shock history is #* and the distributional strategy 7. The proof of the existence of a value
function does not require that the time ¢ utility function, u., be continuous in the aggregate
shock 6;.

Theorem 1 For each t, there ezist value functions Vi(e, a, T, 6%) and Wy(a, 7, 6%), which are
continuous in (a,a) and a respectively, norm continuous in T and satisfy Wy(a,T,60%) =

maz,Vi(a,a,T,6%).

In the proof we first consider a truncated n-period version of the game and families of
value functions V*(e,a,7,6%),_; and W3 (e,r, 6%);,, where, for example, Wi (a,T,0%) is
the expected payoff in the truncated game (from period t on) to player a given history 6¢
and 7, when a plays optimally from period ¢ to the end of the n period game. We show that
for each ¢, these functions are continuous in (o, @) and a respectively, and norm continuous
in 7. We then demonstrate that these functions converge uniformly as n — 0o, so that the

limiting value functions also have these properties.

We now formulate the appropriate consistency conditions on the distributional strategy
sequences 7 = {73} (in terms of the distribution over characteristics). Clearly, if T is an
equilibrium distributional strategy, then the measure of agents in existence at the begin-
ning of period ¢, as given by the period ¢ distributional strategy 7, must coincide with
the measure mapped from period ¢ — 1: in any equilibrium, a strategy must be consis-
tent with itself, in this sense. Note that given a distributional strategy 7, and aggregate



shock history 6%, the distribution over characteristics at time ¢, “implied” by 7 is given by
Jy Pe,(B, Te—1,0'1, y)1e_1(dy; 8*~1), for all Borel sets B € By. Any distribution on A x A
whose marginal distribution agrees with this distribution is consistent with 7 at time ¢, and
there are a continuum of such distributions. Thus, given 7,t and 6% -there are a continuum of .
distributions 7;(e, ¢;6%) on A X A, such that the marginal of 7;(e, e; 6%) on A agrees with that
implied by 7. The collection of such distributions (as t and 6* vary) is the set of distributions
consistent with 7.

The intemporal consistency conditions are formally defined:

Definition 1 Let ¥ = {#}R2, and 7 = {r,}2,, with 1i(s,A) = pi(e). Say that 7 is

consistent with T if:

/e #1(f, 43 0)9(6)(d6) = /9 11 (£)g(8)a(d6), V5 € C(A),g € L1(O, R, 1),

/ 7a(f, A; 6%)g(6%)vo(d6?) = / / Pe,(f, 71,0, y)r1(dy; 6")g(6%)va (d6?),
02 o2 Jy
Vf € C(A)7g € LI(QZ’R’ VZ))
and for period t,
L 7 a509a0ma0) = [ [ Py reos, 01, e 0o 0wl a),
ot ot Jy
VfeC(A),g € Li(O,R,1).

These conditions imply that 7(f,4;6) = Jy Pe,(fy7e-1,6001,y)1e_1(dy; 6t~1), almost ev- .
erywhere 6 (relative to 1;). Recall, if u € M(A) and f is a measurable function on A, u(f)
denotes [ fdu. Thus, the condition imposed is that the distribution over characteristics
space A, determined by the distributional strategy 7 at time ¢, Te(e, A; 6%), is conmsistent,
given the distributional strategy , with the characteristics distribution implied by the char-
acteristics transition function, P¢,(e,7;—1,6*~1,y), and the distribution over previous state

variables determined by 7, 74— (e, e; 6¢-1).

Denote the collection of strategies which are consistent with 7 by C(7). A strategy con-
sistent with itself is then a fixed point of C. Norm continuity of P¢, (f, 7s—1, 01, 7) (viewing
Pe,(f,7¢-1,6"",y) as an element of L;(0*~1,C(Y),v;-), for fixed f) ensures that these
equalities are continuous in 7 sequences. This implies that C is an upperhemicontinous cor-

respondence and so has a fixed point. Formally, define a collection of consistency mappings:

Ci(r) = {n | /@ #1(f, 43 8)g(0)v (d6) = /e 11(Hg(B)i(d9),Vf € C(A), g € L1(O, R, m)},

and fort > 2,

Ct(T) = {:’:t I f@t ?t(f, A; ot)g(ot)'/t(dot)



= fet fY Pft (.f, Tt-1, 0t—1 H y)Tt—l(dy; et_l)g(ot)yt(dot)a Vf € C(A)ag € Ll(et, R7 Vt)}-
Then the following result holds.

Theorem 2 The correspondence C(1) = x{2,Cy(1) is non-empty, upper-hemicontinuous

and convez-valued.

We now consider those distributional strategy sequences in which almost all agents are max-
imizing for almost all aggregate shock histories, ¢. Consider the time t valuation function
Vi(e,a,7,6%). This gives the payoff to agent a if the distributional strategy is given by T,
the aggregate shock history to time ¢ is * and « chooses a. Given T, C:(7) gives the set of
period ¢ distributional strategies whose marginal distributions on characteristics space agrees
with the distribution over characteristics space implied by 7 and the transistion functions.
For a strategy to be an equilibrium, we require that it be consistent (with itself) and that
at every time period, at almost all histories ( shocks), almost all agents are optimizing,.
If, for the moment, we fix a “representative” ¢, then = and the transition functions imply
some distribution, say A;(e;6%) on A. With agents selecting actions optimally, the payoff
to a is maz,Vi(a,a,,0%) = Wy(a,,0"). Let h(a,6"), be an optimal choice for a (at 6%),
with h a measurable function on A x @f. Then h and ); determine a joint distribution
7t on A X A, for each ': f;(e,e;6%). By construction, if #; € Cy(7), for almost all 6¢,
Jy Vi(a, a,7,0%)7(dy; 6%) < [, Vi(a,a,T,6%)7(dy; 6%). On the other hand, if 7 € C¢(7) and
for all 7 € C(7), [y Vi(e,a,7,0%)F(dy;6%) < [, Vi(a,a,T,0%)7(dy; 6%), for almost all 6%,
then at almost all 6%, almost all agents are optimizing. If 7, and ; coincide in this definition,

“for each ¢ and 6?, then under the distributional strategy , every period almost all agents

- are optimizing at almost all aggregate shocks. In this case as 7 is consistent with itself, it is

an equilibrium. Formally,

Definition 2 Let 7 be a distributional strategy consistent with itself. Then T is an equilib-
rium if for each t,

SUP2eC, () /G)' /Y Vi(a, a,7,0%)7(dy; 6%)v:(d6*) < /e' /Y Vi(a, a,7,6%) 1 (dy; 6%)v,(d6?).
Define a best response mapping, B(7):
B(r) = {# € C(7) | Vt,supq._ec'(r) Joi [y Vi(a, a, 7,047 (dy; 64)v,(d6*)
< Joi [y Vi(a, a,7,60t)7(dy; 6t)v:(d6*)},

so a fixed point of B is an equilibrium. By construction, if 7 in B(7), then for all t, for almost
all 6*, almost all agents are maximizing at state 6¢. The next theorem shows that B satisfies
the conditions of the Glicksberg Fan Theorem. That is, B is convex-valued, non-empty and
upper-hemicontinuous.
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Theorem 3 The correspondence B satisfies the conditions of the Glicksberg Fan theorem

and hence has a fized point, which is an equilibrium of the game.

4 Markov Equilibria

We now show that when the model is stationary and the § process Markov, there exists a
Markov equilibrium. More precisely, we show constructively that for every equilibrium, there
is an (expected payoff) equivalent Markov equilibrium. This result uses the conditional no
aggregate uncertainty formulation involving the 6 process. The Markov equilibrium is on
an enlarged state space which includes payoffs. This is similar to DGMM who also use an
enlarged state space which includes payoffs. However, we impose relatively weak assump-
tions on the transition function of the process. We conclude this section by dropping the
conditional no aggregate uncertainty hypothesis and returning to a general model of aggre-
gate uncertainty as a random measure u". In that environment we provide a result on the
existence of Markov equilibrium where the state space is just the aggregate distribution over
characteristics. This illustrates an alternative approach to modelling aggregate uncertainty,
and does not require that expectations enter the state space.

For the model with conditional no aggregate uncertainty we first impose the following

stationarity assumptions (with a slight abuse of notation):

1. w(a,a,7,6") = u(e,a,7,0;): utility is time independent and depends only on the
current value of 6.

2. Pg,(0,7¢-1,0"",y) = Pe(o,7t—1,0:—1,9): the transition function is Markov.

3. v(e | 6%) = v(e | 6;): the aggregate shock process is Markov.
In addition, we assume that

1. u(a,a, T, 0;) is continuous in all variables.
2. P¢ is weak* continuous on M(A X A) x O xY.
3. v(e | 6;) is weak* continuous on O.

4. O is a compact metric space.

These additional assumptions imply that the value functions V;(«, a, 7, 6%) and Wi(a,T,6%)
(given in theorem 1) are continuous in 2. We now introduce a state space, S, and define
equilibrium Markov strategies relative to this state space.

Given an initial distribution p over the characteristics space and an initial aggregate

shock 6, we denote the associated set of equilibrium distributional strategies as:

11



E(u,0) = {T € My | T is an equilibrium of the game with initial characteristics distribution
p and initial aggregate shock 6}, where Moo = X2 F (0%, M(A x A)) and F(0°, M(A x
A)) = M(A x A)). Define the state space S: -

S = {(p,v,0) € M(A) xC(A) x © | 3r € E(,6) and v(a) = Wi(e,,0),Ya € A}.

Thus, (,v,0) € S, means that given initial conditions (u,0) there is an equilibrium strategy
7, such that the expected payoff to agent « in this equilibrium is v(a). In addition, define a
correspondence ¢ : S — M, according to:

(,0([1,’(),0) = {T € Mo | TE E(ﬂ,0)7v(a) = Wl(a’Tv 0),Va € A}

The correspondence ¢ associates to any point (k,v,0) € S an equilibrium strategy 7 (in
the game with initial characteristics distribution x and initial aggregate shock 6), with the
property that the payoff to a is v(a). Under the additional assumption of continuity in 0, the

correspondence ¢ is an upper-hemicontinuous correspondence. Define a Markov equilibrium:

Definition 8 An equilibrium distributional strategy 7 is a Markov Equilibrium if for almost
all 6,6 such that

() p(o | 8°71) = (o | 6¥71), (i5) Wi(e, 7,0%) = Wu(a, 7,8 ) and (i5i) 6, = 6y,
the strategy T satisfies 7(e,0 | 6) = T(e,0 | 6%').

Thus, an equilibrium distributional strategy is a Markov equilibrium if the behavior at two
different histories is the “same”, when the distributions on characteristics, the expected

payoffs to all agents, and the aggregate shocks agree.

Theorem 4 Given an equilibrium T of the game with initial characteristics distribution n
and initial state 0, there is a Markov equilibrium, 7, such that the first period payoff to each
agent is unchanged: the ezpected payoff to o is the same under © as T.

That is, every equilibrium payoffin the game arises as the payoff to some Markov equilibrium.
For the proof we take a pointwise measurable selection, 7*, ™(1,v,0) € ¢(u,v,0), for
all (p,v,0) € S which we use to construct the Markov equilibrium 7. Future payoffs are
supported by reapplying the first component of 7*(, v, 6), 73(u, v, 6), in succeding periods
2,3,..., thus introducing Markov stationarity.

For the final result, we return to a basic formulation of aggregate uncertainty. In the
model with an aggregate uncertainty parameter (0) identified explicitly, aggregate uncer-
tainty is modelled with the aggregate distribution conditionally nonstochastic, given the
current aggregate shock. Typically, however, “Markov - type” results require a degree of
continuity in the transition process governing the state variable (in the sense of absolute

continuity relative to a fixed measure or relative to the transition measure at all states,

12



say). Conditional no aggregate uncertainty runs counter to this type of assumption. Revert-
ing from the conditional no aggregate uncertainty assumption to the general specification
permitting aggregate uncertainty allows us to address the issue of Markov structure with. -

~ standard (although strong) assumptions on the transition process.

We return to the process £(7, @, a, T) governing the evolution of individual characteristics,
modified slightly to include the distribution on characteristics, u: £(7, @, a, 7, 1). In this case,
for a given (7,7, 1), next period’s aggregate distribution is given by

/“'ﬂ(B) = T({(aaa) I E(naa’a, Ta/") € B}),VB € Bj.

The corresponding distributions on the space of measures over characteristics are:

Yu(@) =p({n | 1" € Q}),Q € Bp),

and
¢(Q) = P({ﬂ | (/""’7 6(17’ a,a, T)) € Q})’ Q € BM(A) ® A.

Since 6 is no longer separate from 7, it no longer enters the utility function explicitly: utility
is given by a (time independent) function, u(a,a,,u). The transition function now is a
distribution on M(A) x A, where P (o, e, a,a,7, 1) gives a distribution over M(A) x A,
given (a,a,7,p). A time t distributional strategy is a function from M(A) to M(A x A). For
a fixed measure 1) on M(A), the natural topology on the space of these functions is given by
the following criterion of convergence: 7% — 7 if Vf € C(Y),g € I (M(A), M(A x A), ),

[, Fwrt @ matsan [ s nouan.
We make the following assumptions. There is a fixed measure 3 on M(A) such that

1. u is continuous in (@,a) and norm continuous in 7 (relative to v):

Ty —T¢

13
/ supy | u(y, 7, ) — u(y, 7, ) | $(dg) T 0.
M(A)

2. P m¢ is continuous in (e, a) and norm continuous in 7 (relative to %) on measurable

functions, f, on M(A) x A:

TS =Ty

k
/M(A) Supy I PME(f’ Y, Tks ﬁ') - PMf(f’ Y, T7ﬁ) I ¢(dﬁ) — 0.

3. The p component of the transition functions is dominated by 1 uniformly, 35 < oo
such that for any (y, 7, i), 3f measurable, f : M(A) - R, 0 < f < b, such that

PMf(X’A, Y, 7, ﬂ) = A f(#)¢(d#)
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In this model, the state space for the Markov formulation is M(A). An equilibrium is
Markov if the current distributional strategy 7 depends only on the current state, p¢. The
intertemporal consistency conditions on the distributions have the form: V£ € C(M(A)),Vg €. -
Ll (M (A)7 Ra 1/’)

' / Ter1(fo A5 m)g(pw)y(dp) = / Pme(fo As v, e, n)g(p)(dp), Yy € Y, 2 > 1,
M(A)

and,

/ #1(f, A5 p)g(p)p(dp) = / 1(£)g(p)b(du).
M(A) »

In this case, say that 7 is consistent with 7.

The proof proceeds along the lines of theorems 1 through 3. This again entails estab-
lishing the existence of valuation functions {Vi(e,a,7,u)}s>1 and {Wi(a,T, K)}e>1, where
T = (r1,72,..+,), Tt : M(A) - M(A X A). As before we do so by looking at a trun-
cated n-period version of the game, establishing the existence of {V*(a,a,7,u)}:>1 and
{W¢(a, 7, 1)}e>1, and then take limits to obtain {Vi(e,a, 7, 1)} e>1 and {Wy(a, 7, p)}e>1.
Note that even if the function Wi(a, 7, 1) were continuous in p (for fixed 7), since 7, (for
" example) is an endogenously determined function of y, 7 will depend on /1 as a measur-
~able function which is generally not continuous. When the dependence of T on u is taken
into account, Wy(a,,u) depends measurably but not continuously on p.  As a result,
the convergence of expressions such as i) M(A)XA Wi(&, 1, )P pme(dis x dé;y, 7%, u)p(dp) to
i) M(A) XA Wi(&, T, B)P pme(dji X dé; y, 7, p)1p(dp) depends on the assumption of norm continu-
ity on measurable functions. Assumption 3 of uniform boundedness of the Radon-Nikodym
derivative is made for similar reasons. In this framework, the appropriate definition of equi-
librium is:

Definition 4 A strategy T is a Markov equilibrium if T is consistent with itself and for each
2

/ Vi, a, 7, pw)re(dy; m)(dps) > / Vila, a, 7w dy; w)p(du),
Y Y

for all ¥ consistent with T.

We then argue that the consistency and best response mappings satisfy the conditions of the
Glicksberg Fan Theorem so that an equilibrium exists.

Theorem 5 There exists a Markov equilibrium.
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5 Appendix

It is useful to prove first the following lemmas which are used in the proof of theorem 1.
below.

Lemma 1 Let X, Y and Z be compact metric spaces. Let m(z,y, z) be continuous in
(2,9,2) € X XY X Z, and P(0;9,2) : Y X Z — M(X) be continuous in (y, z), so that
(Yk»2k) — (y,2) implies that the sequence of measures P(e; yx, 2x) converges (weak*) to
P(e;y,2). Finally, let Q(o;2) : Z — M(Y) be (weak*) continuous in z. Then z, — z
implies that

/Y/Xw(z,y,zk)P(da:;y,zk)Q(dy;zk)—>/Y/X7r(z,y,z)P(dz;y,z)Q(dy;z).

Proof: Let y(y,2) = [y 7(z,y,2)P(dz;y,2) and note that (y, z) is continuous. To see
this, let w = (y, z) and consider a sequence wy — w. Then

| v(wi) = v(w) | = | [ 7(z, wi)P(dz; we) - [ (2, w)P(dz;w) | <
| [ 7(z, we)P(dz; we) — [ 7(z, w)P(dz;wi) | + | [ 7(z, w)P(dz; wi) [ 7(z, w)P(dz;w) | .

Since | [ 7(z, wk)P(dz; wi) — [ (e, w)P(dz;wi) | < [ | 7(z, wi) — [ 7(z,w) | P(dz;wy)
and 7 is uniformly continuous on X x W (X x W is a compact metric space), then given
€ > 0, 3k such that k > & implies that | (2, wg) — 7(z,w) |< ¢, for all z. Thus,

| /W(m,wk)P(dz;wk) - /W(z,w)P(dm;wk) |— 0.

Since 7 is continuous on (z,w) and P(e;w;) converges weakly to P(e;w),

|/W(z,w)P(dz;wk)—/r(z,w)P(dz;w) |- 0.

Thus, v is continuous on W =Y x Z. Since W is a compact metric space, 4 is uniformly

continuous on W.

Now, [y [x 7(2,, 2c)P(dz; y, 2. )Q(dy; zx) = [y 1(¥, 2c)Q(dy; zx), so that using the uni-
form continuity of ¥ and weak* convergence of Q(e; 2x) to Q(e; 2), the same argument as

above gives

/Y (9, 2)Qdy; 22) — /Y (9, 2)Q(dy; ) = /Y /X 7(2,9,2)P(dz; 3, 2)Q(dy; 2),

which completes the proof.
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For the next lemma, we need the following notation. Let (2, D, 1) be a given probability
space and M(Y) the set of measures on ¥ = A x A. Let F(2, M(Y)) denote the set
- of measurable functions from 2 to M(Y). A sequence of measures, {r¥}.in F (2, M(Y))
converges to a measure 7 if and only if

| sortanaena) ~ [ [ sraesn@) v e cw),o e 1@, 0.
QJY QJY

Lemma 2 Letr:Y X M(Y) X @ — R (so that given (y,T,w), r has the value r(y, 7(w),w)
or r(y,T,w) for brevity) be continuous on Y and norm continuous with respect to T: as
™ = 7, [osupy | r(y, 7%, w) — r(y,T,w) | p(dw) = 0. Then s(a,T,w) = mazqr(e,a,T,w) is
continuous in a and norm continuous in 7: 7% — T implies [, supy | s(a, TF,w) — s(a, T,w) |
p(dw) — 0.

Proof : Continuity of s in « is clear. To consider norm continuity of s in T,let 7% — 7.
Since r is norm continuous, given € > 0, 3k, such that k > k implies

/n supy | (e, 0, 7%,w) — r(a, a,7,0) | p(dw) < e.

Let
Q(Be) = {w| | r(a,a,7%,w) - r(a,a,T,w) |> Be}.
Then

€ 2 fn SUpy I r(a, a, Tk)"") - T(a, a, T)“’) I “(dw)
> Jau(sg WPy | (2, 0,78, 0) — (e, 6, 7,w) | p(dw) > Beu(k(Be)).

Thus, 1 > Bu(Q%k(Be)), and setting § = 1/+/€ gives \/€ > u(Q(+/€)). Let a¥(a,w) maximize
r(e,a,7%,w) and (e, w) maximize r(e, a,,w). On k(€)Y

r(a, a*(a,w), 7F,w) > (e, a(e,w), 7%,w) > (o, a(a,w),T,w) — /e

The first inequality follows since a¥(a,w) is a maximizer of r(a,a,7¥,w) and the second
inequality follows since w € Qk(+/€)°. Similarly,

r(a, d¥(a,w), ¥, w) < r(a, a(e,w), 7,w) + Ve < (e, a(a,w),7,w) + /e

The first inequality follows since w € Qk(1/€)¢ and the second follows since a(a,w) is a
maximizer of 7(a,a,7,w). Consequently, Va,| s(a, 7%,w) — s(a, T,w) |< Ve, w € Qi(V/6)e.
Thus,

supq | s(a, 7%,w) - s(a,7,w) |< Ve,w € Wi(Ve).

Therefore,
fn | supq I s(a’ Tk,w) - s(a,r,w) I :u’(dw) =
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fn,,(@ SUP I s(a’ Tk’w) - s(a, T’w) I Il'(dw) + fﬂk(@c SUPa ' s(a5 Tk,w) - s(a’ T?“’) I /‘l'(dw)

The latter expression is bounded above by 2K u(Qk(v/€)) + v/eu(Qu(v/6)°) < 2K /e + /e =
2K + 1]y/e.

O

Proof of Theorem 1: We now use these results to demonstrate that there exist value
functions Vy(a,a,t,6%) and Wi(e,7,6t) which are continuous in (a,a) and a respectively,
and norm continuous in 7. First consider an n-period truncation of the game. Trivially in
period n, V(a, a,7,0") = up(a, a, s, 0,,), which, by assumption, is continuous in (a,a) and
norm continuous, as is Wi(a, 7,0") = mazqun(a, a, s, 0,), by lemma 2. Now define

Vavi(a,a, 7,07 1) = 4y g (e, a, Tn—1,0n-1)+
bn Jo Ja WR (&, 7,6™) P, (d€, Tam1, 6771, @, a)rn(dO" | 67 1),

Vati(a,a,7,6""1) satisfies: (1) V;»_,(a,a,7,6") is continuous in (a,a) and (2)if % — T,
- then [gsupaa | Viiy(a,a,7%,071) — V.  (a,a,7,0"1) | v,y(d6™~1) — 0. Continuity in
(e, a) follows from lemma 1, treating (7,_1,0""1) as parameters of u,_; and P, , respec-
tively. To simplify notation we now write P} for P} (d¢,7k_,,0"1,a,a), and so forth.
Norm continuity in 7 can be seen by separating current and future components of expected
payoffs, so that, using abbreviated notation,

/esup(a,a) | Vii(a,a, 7k, 6m71) — Vaci(a,a,7,0"1) | v, (d6™1)
becomes
Jon-1 3uP(aa) | UE_3 = Uno1 + 64 [ [, WFPE v, (d6™ | 67-1)—
8n Jo Ja WaPe,vn(d6™ | 671) | vp_y (d6"1)
< Jon-1 SUP(aa) | uk_y — un_1 | v(d6™~1)+

On fen—l SUP(a,a) | f@ fA W,?"P’gnun(dﬂ" | 67—1) — fe fA WrPe va(do™ | 6771) |
u,._l(dﬁ"‘l).

The first term on the right hand side converges to 0 as 7 — 7, because u,_; is norm

continuous. For the second term consider

/ D) | / / WIkPE 4, (d8™ | 67-1) = / / WP, vn(dO™ | 0%1Y | vo_y (d871)
On-1 OJA 0 JA
<[ [ oubaa [ wreer - [ WrPe, | va(d” | 07y (a7
on-1J0O A A
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=/ SUP(a,a) I/W,',‘kP"n —/ WiPe, | va(dO™).
on A A

The last expression is no greater than:
Jon sup(aa) | A WRFPE, — [, WP | va(db™)+
Jon sup(asa) | [ WRPE, — [y WP, | va(d6™).

The first term is bounded above by [q, supa | [, Wik — W2 | v,,(d6™), which converges to
0, from norm continuity of W;. The second term is converges to 0, by norm continuity of
P§ (d€,Tn-1,0""1,0,a) in 7. WP_,(e,T,071) is defined from Ve (a,a,7,6m1) and, as

before, is continuous in @. Norm continuity of W2_,(a, 7,8""1) in 7 follows from lemma 2.

Proceed inductively in this way to define V;*(e, a,7,6') and W (a,,60t) for 1 < t < n.
The discussion above defines the recursion for fixed n and shows that for any ¢, 1 < ¢ < n,
that both Vi*(a,q,7,6%) ( = Vi (,_y(@,a,7,0"~("=9) ) and W*(a,,6*) are continuous
functions of (@, a) and a respectively, and that both are norm continuous in 7. To conclude
we show that the following limits exist for each j and are continuous functions of (a,a) and

a respectively:

limn 0oV, a,7,09) = Vj(a,a,7,6%) and limp W} (a,T,07) = Wj(a,T,6%).
Taking n > 7, observe that each of the functions Vi (a,a,7,07) and W 7(a,T,0%) is increasing
in n, and that

0 < Vi**(e,a,7,67) = V] (a,a,7,6%) < Y (xpEr-18;,)K < [6"77+1 /(1 - §)]K,

r=1

0 < Wt (a,m,09) - Wi (a,,09) < Y (xpt5~18,4)K < [6"9+1 /(1 - §)]K.
r=1

Therefore V#*(a, a, 7,67) and W?(a,,07) are Cauchy sequences in 7. Since Vi (a,a,T,09)
and W#(a, T, 67) are continuous in (o, a) and a respectively and are both norm continuous in
7, the limits Vy(e, a, 7,6%) = lim,V;*(e, a, 7,60%) and Wy(a, 1,6%) = lim, W3 (a, 7, 6%) inherit
these properties also.

a
Proof of Theorem 2: To show upper-hemicontinuity of C(7) let #" = (77, ..., 71,...) and

™ = (..., 7, ...) where 77, 7' € F(O!, M(A x A)) with 7 € C(17), 7} — 7, T > 7,

and

L7400y = [ [ P 078, e s 070 (0.
ot ot JY
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Then,

/ ""'t(f,A;gt)g(ot)Vt(dot)=/ /Pff(faTt—1,9t_l,y)7‘t—1(d?/;at—l)g(ot)'/t(dot)- :
ot ot Jy

To see this, note directly from the topology on 7 that
/ T (f, A;6°)g(6")we(df") — / (£, A; 0)g(6%)ve(d6").
ot et

Now consider the right hand side. Abbreviate P (f, 79 ,,6t1,y) by Pg(ﬁt'l,y) and
Pft (.f7 Ti—1, 0t—1, ?/) by P& (ot_l ’ y). Then

[, [ Ree syt 0t gdn— [ [ Pe @, yyma(ays 0o
otJy etJy

< 1 [ pae a0 gn - [ [ Bo 0, (a0 gdu
ot JY ot JY

+ | / /Y Pe, (61, y) 1 (dy; 6°")gdv, — /6 /Y Pe, (671, y)me—1(dy; 6* " )gdu, | .
ot t

" The first term on the right of the inequality is less than or equal to .

L L VPR 0 - P00, 0) ly iy (s 0 g

= [ IPE@0) - Pe 8, 0) I, g,

and the norm continuity condition on P¢, implies that this goes to zero. The second term
converges to zero from the topology on 7. Convexity follows since the restrictions are lin-
ear. It remains to show that non-emptyness is also satisfied. To see this, given pq(e),
‘the initial measure on A, and given the measure 1, on O, let h be a measurable func-
tion from A X © to A. Define a measure ¢ on A x A X © according to the property that
P(X X Z) = iy @ i(b™(X) N Z) for any measurable sets X and Z in 4 and A X © re-
spectively. (Interpret ¢ as the unique extension from such measurable rectangles). Let
71(e,9;01) = (e, ¢;0;), where (e, o;6;) is the conditional distribution of ponAXxA,given
6. Note that (4 X Z) = pu1 ® »1(Z) so that #1(e, 4;61) = p3 ® v1(;6;) = p1(e). For
¢t 2 2, a similar discussion applies. View [, P¢,(f, 7e—1,60"1, y)7e_1(dy; 6*~1) as a condi-
tional distribution on A given 6*~1. Let Q be the joint distribution on A x © determined by
Sy Pe,(f,7e-1,081, y)1e_1(dy; 6*~1) and v,. As before, let h be a measurable function from
A x ©* to A. Define a measure on A X A X ©¢, ¢, determined on rectangles X x Z, where X
and Z are measurable subsets of 4 and A x ©* respectively, by ¢(X x Z) = Q(h~1(X)n Z).
Let 7y(e,;8%) = (o, ;06%). Lastly, note that 7(e, 4;6) = (e, A; 0') = Q(h71(A) N o;6%)
= Q(e; 9t) = fy Pei(o, 71,001, y)1e—1(dy; 0t_1)-

O

Proof of Theorem 3: To see that B is convex-valued, observe that C is convex-valued
and the additional constraints on 7 in the definition of B are defined by linear inequalities,
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so that B is convex-valued. Note that B is non-empty since for any ¢, C;(7) is closed and
non-empty and [g, [}, Vi(e, a,7,0%)r:(dy; 6*)v¢(d6?) is continuous in 7.

Recall that Wi(e, 7,6") = maz,Vi(a,a,7,0") and that the set of distributions in C(7)
are required to have the same marginal distribution on A: if 7, 7; € Cy(7), then 7;(e, 4; %) =
7¢(e, A; 6%), vy almost everywhere 6%. Let this distribution on A be denoted A;(e;6t). Then
7 € B(7) if and only if,

/ /Vt(a,a,r,ﬂt)ﬂ(dy; Gt)ut(dﬂt)z/ /Wt(a,T,Gt)/\t(da;ot)ut(dO‘).
et Jy et Ja

We use this result below to prove upper-hemicontinuity of B(e). To see this, consider the
correspondence

¥(e, 0%) = {a | maz,Vi(a,q,T,0%) < Vi(e,a,7,0%)} = {a | Wi(a, T, 6') < Vi(a, a,T,6%)}.

Denote the graph of 1 by G, and observe that G, € Ba x B4 x Bf (¢ has a measurable
graph) since

Gy = {(e,a,0") | a € P(e, 6%)} = {(a, a,6) | Wi(e, T, 6}) < Vi(e,a,T, 6%)}.

Denote by A® v; the measure on A X ©! determined by A and v;. Viewing v as a correspon-
dence from (A x ©%,B4 X B!, A ® 1), there is a measurable selection h : A x @ — A, with
h(e,6%) € ¢(a,6*) almost everywhere A ® v; since Gy, € By x B4 x Bt (using the measur-
able selection theorem). Thus Vy(a, h(a, 6%), 7,6%) = Wi(a, 7, 6%), almost everywhere A ® v;.
Now, define a distribution on A X A x @f by (W X Z) = A ® vy(h~1(W) N Z),YW € By
- and Z € By x Bt. Observe that ¢(4 X Z) = (A ® v;)(Z) so that v, almost everywhere 6¢,
©(A, 0;6%) =A(e; 6%). Define 7} : 77 (o, 0;6%) = (e, 0;0%). Then 77 € Cy(7) and, |

/e, /,, Vi(a,a,7,6%)7; (dy; 6")ve(df")
L, [ it 0, 0 na) > [ [ W7, 0 )

However, since Wy(a, 7,0%) > Vi(a, a,7,60%),Y(c,a) € A x A, we have

/ /Vt(a,a,r,at)rt*(dy;0‘)Vt(d0‘)=/ /Wt(a,T,0t))\t(da;9t)ut(d9t).
ot Jy et JA

It remains to show that B(7) is upper-hemicontinuous. Let 7® — 7 and suppose that
7" € B(r"), with ¥ — 7. It is necessary to show that 7 € B(r). Recall W;(a, 7, 6*) is norm
continuous:
/9 supy | Wy(a, ", 60) — Wy(a, 7,6%) | v(d6*) — 0.
‘

Let A7'(e;60%) be the distribution on A determined by Cq(r"), so that if #* € C(™), then
7 (e, A;0%) = AP(e;6%), v, almost everywhere. Norm continuity of Wi(a, 7,6%) implies that

/ / | Wa(e, 7, 8°) — Wi(a, T, 8°) | AP(des; 6)(d8") — 0.
0t JA
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Hence,
|, [ e, oxi a0t — [ [ Wil r, 605 s oywa) 1 0.
ot JA Ot JA

Now in the topology given on measures, let A; be the limit of A} and note that # € C(7),
so 7¢(4, ¢;6%) = Ay(e; 6*), v; almost everywhere. Observe also that Wy(a, 7, 8%) is continuous
in a (since Wi(a, 7,60%) = maz,Vi(a,a,r,0%) and Vi(a,a,T,6") is continuous in (a,a), then
Wi(a,T,6%) is continuous in a (for each 6)). Thus

/ / Wi(a, 7,0 A (da; 6%)v(d6?) — / / Wi(a, 7, 6%)A:(do; 6°)v(d6?).
et Ja e Ja '
Now recall that since 7* € B(r"),
/ / Vi(a,a, 7,607} (da x da; 8*)v(d6?) = / / Wi(a, ", 6*) A7 (de; 6%)v(d6?).
ot Ja et Ja
Since " — 7 as 7™ — 7, using the norm continuity of V;(e, a, 7", 6*) we find that
/ /Vt(a,a, ™, 0°)7(da x da; 6%)v(d6?) —»/ /Vt(a,a, 7, 0% 7 (da X da; 6%)v(d6?).
o+ Ja et Ja
Therefore,
/ / Vi(a, a,7,0%)7(da x da; 6%)v(d6t) = / / Wi(a, T,0%)A(da; 6°)v(d6?).
et Ja et Ja

Thus, # € B(7), so that B is upper-hemicontinuous. Therefore B is convex-valued, non-
empty and upper-hemicontinuous and so has a fixed point.

o

Proof of Theorem 4: The following discussion describes the construction of the Markov
equilibrium. In view of the following facts:

1. E is upper-hemicontinuous,
2. W} is norm continuous in 7, and continuous in (e, 6),

3. M, is metrizable and compact,

it follows that ¢ is an upper-hemicontinuous correspondence into a complete separable space.
Hence there is a pointwise measurable selection, 7*, 7*(u, v, 0) € ¢(u,v,6), for all (i, v, 6) €
S. We use 7* to construct the Markov equilibrium 7. Consider the first component of

(1, v,0), 4 (p,v,0). This is a measure on A x A which is optimal in the sense that at
(#yv,0):

1 (1,v,0){(e,a) | Vi(e,a,7*,0) > Wi(a,7*,60)} = 1.
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To implement the strategy in period one, knowledge of (u,v, ) is required. Now given
0, let

pa(e | 6) = /Y Pe(o, 75,6, )r3(dy).

The measure p;(e | 6) is the second period distribution on characteristics. Given a
realization of the aggregate shock in the second period, say ', the expected payoff to agent
a over the remainder of the game is: W(a,7*,(0,0')) (= v |(s,6) (). Considering 7* and
(6,6') fixed, W(a,7*,(0,6')) is an element of C(A)), which we can write as v;(a). Now
observe that 7* induces an equilibrium from period 2 on, for all “histories” except possibly

a set of v measure 0. Thus, except for a set 6'’s of v measure 0,
(u2(e | 6), Wa(a,a,7*,(6,60")), 6') € S.

Denote this “state” by (uz,v;,6'). Viewed as a subgame, the expected payoff to agent a is
vz(a). Note that this payoff is generated at this subgame by 7*: 75 (e, | (6,6') ). However,
note that exactly the same payoff is obtained on this subgame if (75, 75,...) is replaced by
7*(u2,v2,0"). For this reason, 77 remains optimal and the strategy obtained in this way is .
an equilibrium. Denote this strategy by 7*(2) € My (given the initial 8) as

7'*(2) = (Tf(/"”’o)ﬁ T*[ﬂ‘2(‘ | 9)’ W2(a’T*7(01 0’))’ 0’]9’69)'

Thus, 7*(2) is composed of 7{ (1, v, 0) in the first period, and then 7* is “restarted” in period
2: at the subgame reached by history 6', the “state” is s; = (uz(e | 8), Wa(a,7*,(6,6")), 6")
and this state is sustained by the strategy 7*(sz), at that subgame.

The important point about this construction is that 7 is being applied at period two.-
and this is the way in which Markov stationarity is introduced. Note that 7*(2) induces
an equilibrium on almost all histories, 6, and gives the same continuation payoffs from the
second period at each history as did 7*. This ensures that 7* is optimal at almost all 6 in
period one. Thus, the strategy 7*(2) is also an equilibrium which gives the same first period
payoff (v) as 7*. First period “strategies”, 77(u,v,0) are unchanged while second period
strategies under 7*(2) generate the same expected payoff there as did 7*. The result of this
construction is that the Markov property holds for the first and second period.

Now, replace the equilibrium strategy 7* by the equilibrium strategy 7*(2). This alters
the evolution of the characteristics distribution and the valuation functions. In particular,

p3(e|]6,6') = fy Pe(o, 73(2)[p2(e | 6), Wa(a,73(2), (8, 6)),0'16',y)x
T2*(2)[/J'2(. | 9)7 W2(a,T*1 (0’ 0,)7 0’](dy)-

Similarly, there is a valuation function for period 3, W3(e, 7*(2),6,0',8). Here again, for a
fixed history, (6,6',8), Wa(a,7*(2),96, 6", 8) € C(A). Now, define 7*(3)
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77(3) = (71(2), 73(2), 7" [(ws(e | 8,8"), Wa(a, 7%, (6, 6", 8)), 6 ](6,0)c02)-

As with 7%(2), 7*(3) is an equilibrium. Proceed in this way to define iteratively a sequence
of equilibria 7*(n) from 7*(n — 1) and observe that the sequence {7*(n)},, converges, say
to 7. Under 7 and the Markov distribution on ©, the state variable s = (y,v,6) evolves
stochastically as a Markov chain. Schematically,

s1= (16,0 16,8) = (1 10,0 |(0,61),0") = 83—

-~ 90
(1 lo,6r,v I(o,a',é)’o) =383 — (p |(9,9',§)’” I(o,o',é,et))’ 6°).

or alternatively,
o ]
s1= (1,0 |6,0) — (1 10,0 |(0,61), ") = 52 = (', ", 6") —
z PP 6° . N
(/" IO’,v, Iéa 0) = ( s Uy 0) =33 ? (/"’ |0°’v |9°’00)-

The evolution of the states may be described as follows. With 7, given s;, the distribu-
tional strategy at time 1 is 7{*(s;). (Note that the first components of 7* and 7 are related:
(8, v,0) = 71(1,,0),Y(p,v,0). At t = 2, the distributional strategy is 77 (s2), and at time
t, 71(s¢). The influence of the 6 sequence on strategies is only through the s variables, since
given 7, s; depends on 6 = (6,,0,,---6;). The behaviour of 7 throughout the remainder of
~ the game (from period ¢ on) depends only on #* through s;, so we can write the value function
Wi(a,,0%) as Wi(a,,0;,5:(61~1)). Note also that, since the environment is stationary, if
s1(8'1) = 5,(6*1), then (1§, 51(6'~1)) and (77, 5:(6:~1)) induce the same distribution over
the state space in subsequent periods so that Wy(a, 7,0, s:(6*~1)) = Wy(a, 7,0, s;(6'1)).
Consequently, we may write W (e, 7,0, s,(6t~! )) to denote the time ¢ value function (with-
out the time subscript).

A play of the game in this formulation may be described as follows. Fix an initial state
s = (p,v,0). At time t = 1 the distributional strategy 7{(s) is played. Depending on
the realization of the second period aggregate uncertainty variable, 6’ a new state s, =
(& lo;v |(6,6),0") is reached. The first component of s, = (& lo,v |(,6),8") is equal to
p2(e | 0) = [, Pe(o,f,0,y)73(dy) and the second component is equal to Wa(a,7,0,s,) =
W(a,0,7,s;). For fixed s, and given 7, W(a, a,0,7,s;) € L1(0,C(A),v1) and for fixed 4,
p2(e | ) € M(A). This completes the description of the Markov equilibrium.

O

Proof of Theorem 5: The proof follows essentially the same plan as the proof of theorem

3. This requires showing first that the consistency mapping is an upper- hemicontinuous
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correspondence and that there exist value functions for this case, analogous to those given in
theorem 1. To define the value functions, follow theorem 1 and consider a game truncated to
~ n periods. Given 7 = {r;}{2,, define V*(a, a, 7;t) =u(@, a, T, ). Continuity in (@, a) and
norm continuity in 7 of V}}(a, a, 7, 1) follow directly since u(a, a, 7, u) has these properties..
Let Wi(a,1,p) = maz V¥ (e, a,7,p), Wi (a, T, ) is continuous in o and norm continuous

in 7 by lemma 2. Next, define
Va1 (a, a,T, ,u) = u(a1 Ay Tpn-1, /‘) +4 W:(&’ T, ﬁ)P(d(&1 p’) l a,a,Tp-1, ll')-
AxXM(A)

To see that V' ;(a,a, T, ) is continuous in (@, a) and norm continuous in 7, observe that
J supy | Vita(y, 7 1) = Vs (v, 7, 1) | 9(dis)
< [supy | w(a,a,7k_q, 1) — u(e,a, Tuo1, 1) | H(dp)+
6 supa | [ Wa(&, ™%, D)P(d(G i) | @ya,7h_y, 1)-
JW3 (@, P(d(& i) | @, a, o1, 1) | Y(dp).

The first term on the right goes to 0, by norm continuity of u. The second term is bounded

from above by
] supy | [ W&, 7%, i)P(d(&, i) | &, a,7f_y, p)—

JWe(a, , P (d(& &) | e, a,78_y, 1) | P(dp)
+ [ supy | [ Wi (&, 7, B)P(d(G, i) | @, a,TF_y, p)-

JWr (&, 7, B)P(d(& i) | &, a, o1, ) | Y(dp).

The second of these terms converges to 0, since P(d(&, i) | @, a, Tn_1, 1) is norm continuous
on measurable functions. The first of these two terms is bounded from above by

fs'"'py fsup& I W,?(&,Tk, ﬁ') - IW3(67T’ i‘) I P(d(&, /7') | y’Tr’f—l,/J')"/J(dﬂ)
< [ Jasupa | WiE(G, 7%, ) — [W3(&, 7, 1) | byb(du)(dii).

The latter term converges to 0, hence V;* ,(e,a,7,u) is norm continuous in 7. Finally,
continuity of V., (o, a,7,p) in y = (e, a) follows directly from continuity of u(a, a, Tp_1, M)
in y and since P(d(&, i) | y, 7%_,, 1) is assumed continuous in y on measurable functions.

Let Wp_; (o, 7, p) = maz,V;* {(a,a,7,p), and proceed inductively to define sequences of

functions, {V{*(a,a,T,u)}; and {Wy(a,T,p)}s, As in the proof of theorem 1, the limits
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lim, V*(e, a, 7, ) and lim, W}*(e, a, 7, ) exist and are norm continuous in 7 and continuous

in (a,a) and « respectively.

- Next, observe that the intertemporal consistency conditions satisfy upper-hemicontinuity.
To see thislet 7 — 7 and let 7" be a consistent sequence in the range of the correspondence
with #* — 7. Thus, considering period ¢, Yf € C(M(A)),Vg € L (M(A), R, %)

/ Forr(Fr s )g(w)(dp) = / P pie(fy s 9, 7o )9 (1) $(dp), Vy € Y
M(A)

Jaqay Tor1(f, A5 w)g(m)p(dps) converges to [y 5y Ter1(f, A; )9 () (dps), in view of the topol-

ogy on 7. Comparing [ Pae(f, Ay, 7, n)g()¥(dp) and [ P ace(f, A; y, e, u)g(1)1(dp), the
difference (in absolute value) converges to 0, by norm continuity of P Me-

Finally, we construct the best response mapping in exactly the same way as was done in
theorem 3. A consistent strategy 7 is a best response (with consistent marginal A on M(A):

F(o, At p) = Ae(o 2 ), ¥ ace. p),
/M(A) /Y Vi(a, a, 7, p)7o(dy; p)e(dp) = /M(A) /A Wile, 7, p)Ae(do; p)(dp).

The reasoning given in the proof of theorem 3, establishes existence here also.
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6

Table of Notation

A: Agents’ characteristics space (a € A).

A: Action space of each agent (a € A).

Y:Y=AXxA.

u: Aggregate distribution on agents’ characteristics.

M(X): Space of probability measures on X.

C(X): Space of of continuous functions on X.

Bx: Family of Borel sets of X.

©: State space of aggregate uncertainty (8 € ©).

0%°: 0 = x2,0 aggregate uncertainty for the infinite game.
0°: 6. = (61,0, --0;,---) € O®,

0*: ¢ = (61,0,,---6;).

L1(0%,C(A x A),v:): Normed space of measurable functions from ©* to C(A x A).
F(©*, M(A x A)): Space of measurable functions from @* to M(A x 4). . =
Xt Xt=xt_,X.

B%: Borel field on X*.

v: Distribution on ©.

vs: Marginal distribution of v on ©F.

v(e | 6*): Conditional distribution on ©% given 6.

v(e | 8°): Conditional distribution on ©* given 6* (where s < t).
7¢: “Period t” distributional strategy.

7: Distributional strategy for all periods 7 = (11,72, ++,T¢, - - ).
&:: Transition process for agents’ types.

Pe¢,,. (o, 7, 0%, y): Transition function associated with &;.

ug: Utility function.

Vi(a, a,7,6*): Value function for each collection (e, a, , 6?).
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o Wy(a,T,0%): Value function given optimal action a.

o C(7): Consistency correspondence. Distributions consistent with 7 and characteristics
transition functions, Pg,.

o B(7): Best response correspondence (which also satisfy consistency).

E(p): Set of equilibrium distributional strategies.

o My: x2,F(0, M(A x A)).

S: Expanded state space for Markov construction.

¢ v(a,a,f): Value function for Markov construction.

P(e,7f,0;,y): Invariant charateristics transition function for Markov game.
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