A Service of

ECOMNZTOR pr

Make Your Publications Visible.

Leibniz-Informationszentrum
Wirtschaft

Leibniz Information Centre
for Economics

Bernhardt, Dan; Hughson, Eric

Working Paper

Intraday Trade in Dealership Markets

Queen's Economics Department Working Paper, No. 841

Provided in Cooperation with:

Queen’s University, Department of Economics (QED)

Suggested Citation: Bernhardt, Dan; Hughson, Eric (1991) : Intraday Trade in Dealership Markets,
Queen's Economics Department Working Paper, No. 841, Queen's University, Department of

Economics, Kingston (Ontario)

This Version is available at:
https://hdl.handle.net/10419/189165

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor durfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dirfen die Dokumente nicht fiir 6ffentliche oder kommerzielle
Zwecke vervielféltigen, 6ffentlich ausstellen, 6ffentlich zugénglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfiigung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewahrten Nutzungsrechte.

WWW.ECONSTOR.EU

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

Mitglied der

Leibniz-Gemeinschaft ;


https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/189165
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

ED

Queen’s Economics Department Working Paper No. 841

Intraday Trade in Dealership Markets

Dan Bernhardt Eric Hughson

Department of Economics
Queen’s University
94 University Avenue
Kingston, Ontario, Canada
K7L 3N6

11-1991



Intraday Trade in Dealership Markets

by
Dan Bernhardt'and Eric Hughson?®

November 1991

Discussion Paper # 841

'Department of Economics
Queen’s University
Kingston, Ontario

Canada K7L 3N6

2Department of Economics
California Institute of Technology
Pasadena, California 91125 U.S.A.

The authors wish to thank Peter Bossaerts, 2vi Eckstein, Richard Green,
Steve Heston, David Marshall, Robert Miller, Chester Spatt, Jonathan Thomas,
and John Piazza, a former specialist on the American Stock Exchange, for
valuable guidance and discussions in the formulation of this problem.



Intraday Trade in Dealership Markets

by
Dan Bernhardt'and Eric Hughson?

November 1991
Discussion Paper # 841

'Department of Economics
Queen’s University
Kingston, Ontario

Canada K7L 3N6

2Department of Economics
California Institute of Technology
Pasadena, California 91125 U.S.A.

The authors wish to thank Peter Bossaerts, 2vi Eckstein, Richard Green,
Steve Heston, David Marshall, Robert Miller, Chester Spatt, Jonathan Thomas,
and John Piazza, a former specialist on the American Stock Exchange, for
valuable guidance and discussions in the formulation of this problem.



Abstract

We develop and test a structural asymmetric information transaction model to
characterize the price impact of information on the NYSE. Unlike previous
literature, we allow for mixed entry strategies on the part of informed
traders and obtain an equilibrium where trades are temporally separated. In
addition, when it is costly to transact, informed agents will not trade small
quantities. Estimation of the structural parameters is performed using a
maximum likelihood procedure. The price impact of information and the average
informational innovation are found to be positive and significant. However,
when the overidentifying restrictions are tested, the model is rejected with

probability one.



Introduction

This paper develops and tests an asymmetric information market transaction model to explain the
price and volume moments that characterize intraday transaction-by-transaction trade on the NYSE.
All trades are completed individually.! We allow for the possibility of mixed entry strategies by the
potentially informed speculators and solve for the equilibrium. The resulting pricing function for
intraday trades is the same as that obtained when a single (competitive) specialist pools simultaneous
trades (if they exist) and meets the net order flow. Since markets are thin in the intraday period, the
(adverse selection component of the) pricing function is invariant to fluctuations in arrival rates of
traders (the depth of the market), in contrast to previous literature (Admati and Pfleiderer, etc.).
Consequently, the theory is consistent with the U-shaped volume pattern found in previous empirical
research (e.g. Wood, Mclnish and Ord [1985]). Because spreads can also arise due to transaction
costs, we consider the possibility that the specialist or dealer incurs both fixed and variable costs

when completing transactions.

In contrast to Kyle [1985], Admati and Pfleiderer [1988] or Foster and Viswanathan [1988a],
characterization of the equilibrium yields explicit implications for transaction-by-transaction
behavior as a function of the model’s structural parameters during the trading day. We then use the
Fitch database which contains transaction-by-transaction NYSE price and volume data to test the
model. In contrast to the previous literature, rather than concetrate on the reduced form, we estimate
the structural parameters of the model. We exploit the nonlinear restrictions provided by the model to
estimate not only the probability that a particular trade is consummated at the bid or ask,2 but also the
probability that the specialist faces an informed trader, the amount and quality of inside information,

and the cost of information acquisition.

Mixed entry strategies on the part of the potentially informed imply that price changes and traded
quantities are conditionally but not unconditionally normally distributed. Thus, unlike Foster and
Viswanathan [1989] or Hasbrouk [1989], neither ordinary nor generalized least squares are efficient
estimation procedures even when bid-ask indicators are observable. The mixed unconditional
distribution for volume helps identify the probability a particular trader is informed. That is,
informed orders may be larger or smaller than uninformed orders. We therefore maximize the joint

likelihood function for price and volume.

1We allow for the possibility that simultaneous trades are completed independently by different dealers.

2As in Glosten and Harris [1989].



The empirical results indicate that the adverse selection component to the bid-ask spread is
generally positive and significant. While this adverse selection component is economically
unimportant for small orders, for a 10,000 share order the tariff can exceed $2000. The adverse
selection component varies throughout the day, and it does not necessarily follow a U-shaped curve.
Variations appear to be caused not so much by intradaily fluctuations in the amount of inside
information, as by fluctuations in the quality of information available to potential insiders. The noise
in the signal available to insiders is much larger in the middle of the day than it is near either open or
close. This may explain why the cost of information is lower in the middle of the day. In addition,
insiders are found to trade far greater quantities than uninformed traders, up to 20 times larger. In
light of this, it is perhaps surprising that we fail to reject the linear pricing rule against a quadratic

altemative.

When transaction costs are integrated into the model, identification of some structural parameters
becomes infeasible. However, both a per share transaction cost and a quantity cutoff below which
adverse selection will not occur can be estimated. Unlike the linear pricing rule estimated by Glosten
and Harris [1989], the resulting equilibrium pricing function is kinked. For our sample, the
magnitude of estimated cutoff cannot be explained merely by a per-share transaction cost. We

strongly reject the linear pricing rule in favor of the kinked rule.

In an important recent paper, Admati and Pfleiderer [1988] investigate some of the ramifications of
informational asymmetries in a dealership market. Their fundamental contributions are to endogenize
both information acquisition by the potentially informed and strategic behavior by discretionary
liquidity traders who can choose when to time their trades. Their principal finding is that when their
equilibrium exists, in order to minimize the cost to transacting, all discretionary liquidity traders

concentrate their trades in the same period which, in tum, leads many of the informed to follow suit.

Unfortunately, in models such as those of Admati and Pfleiderer, Kyle [1985], or Foster and
Viswanathan [1988a], which restrict potentially informed agents to pure strategies, an equilibrium
with insider trading only exists when informed traders transact each period. Consequently, the
market must always be sufficiently thick that each period the (necessarily) multiple transactions of

informed and uninformed traders can be pooled together to obtain one net transaction price. Terry

\



[1986], shows that during the day there are often long intervals when no transaction occurs>, and that
consecutive trades are generally sufficiently separated temporally. Bronfman [1990] notes that trades
are accepted independently, even when volume is very heavy - e.g. 5000 trades per day:* intraday

transactions are almost never pooled on the NYSE.

Bemhardt and Hughson [1990] extend Admati and Pfleiderer [1988] by demonstrating the
existence of mixed strategy equilibria in an environment where multiple orders in a single period are
pooled (if they exist). Equilibrium exists even when the market is too thin to support pure entry

strategy equilibria.?

On the NYSE the specialist holds a formal auction in which bids are crossed and the specialist
meets the net transaction only at the open, and perhaps at closeS. Indeed, Stoll and Whaley [1990]
assert that due to the different trading process, the specialist may have more monopoly power,
particularly at the open. The paper presented here consequently examines only intraday trading -
trade between open and close’. We assume that the specialist’s price schedule is updated a’fter each
trade. Equivalently, one can assume that market orders within a period are processed independently
by the specialist and various brokers who use the same price schedule, one which is set and honored

throughout the period.®

During each intraday trading period, in equilibrium, potentially informed traders randomize their

decisions to acquire information and trade. The specialist and brokers then incorporate the new

3He finds that the average time between trades for stocks on the Dow 30 and for all NYSE stocks are 2.7 and 15.2
minutes respectively on December 31, 1989. Further, since these averages are (total trading minutes)/(total number of
firms), the weight to the heavily traded stocks is proportionally greater. Terry also provides an equally weighted average for
the Dow 30 - an average of 4.3 minutes between trades.

4USX volume on 23 October 1989.

SWhenever the market is sufficiently thick, discretionary liquidity traders concentrate their trade only at open and close.
They do so because, as in Admati and Pfleiderer [1988], concentration lowers the degree of adverse selection in the
specialist’s pricing function, and hence the costs of trading. Unlike Admati and Pfleiderer [1988] the timing of the informed
trades in pinned down by the arrival process of the potentially informed and the equilibrium refinement that no coalition of
potentially informed can be made better off by switching their trading time (e.g. to noon). In equilibrium, the potentially
informed, who learn of their need to trade after the open, simply trade at the close. Those who learn of their need to trade
before the open choose between trading in the midst of the mass of pent-up overnight demand, (i.e. at the open) and trading
at the close. Consequently, under weak regularity conditions, both trading volume and price variance are higher at open and
close.

SConversations with specialists suggest that they have an informal auction at close.

TThis is precisely the period in which the equilibria described by Foster and Viswanathan [1988a] and Admati and
Pfleiderer [1988] do not exist.

8This assumption is similar to that made in Admati and Pfleiderer [1989].



information and can choose to set new bid-ask spreads after each separated intraday transaction.
Market makers expect to eam zero profits on a trade by trade basis. Unlike Kyle [1985], etc., where
orders are pooled to determine the price, we view each trader as arriving at the trading floor, asking

for price quotes, and then deciding whether to trade.

Intraday fluctuations in the amount and quality of information lead to corresponding fluctuations in
the specialist’s pricing function. However, the specialist’s resulting linear pricing function is
invariant to intraday variations in arrival rates; varying concentrations of liquidity traders do not
affect the cost of trading. In equilibrium, a potentially informed agent who adopts a randomized
strategy must be indifferent about whether or not to acquire information: he must expect zero profits
net of information costs. To effect this outcome, the sampling probabilities of the informed must be
perfectly correlated with the arrival rate of liquidity traders. In contrast, at open and close (as in
Admati and Pfleiderer [1988]) the market is thick enough that potential insiders compete, and

variations in liquidity trade directly affect the specialist’s equilibrium pricing function.

Because each transaction is met individually, we can consider the possibility that the market
makers incur both a fixed fee and a per-share cost to completing each individual transaction.® We
distinguish this transaction cost component from the informational asymmetry components of the
equilibrium bid-ask spread. The fixed transaction cost leads the adverse selection component to
vanish for small trading quantities. A cutoff quantity such that no informed agents trade a smaller
quantity is found by equating the informed agent’s trading costs with his expected profits from
trading the critical quantity. Insiders do not trade smaller quantities because the transaction costs
exceed the expected profits derived from their information. For larger transactions, an adverse
selection component to the specialist’s pricing function exists, but is smaller than it would be in the
absence of these costs. The greater the fraction of the expected trading costs (information acquisition
and fixed transacting costs) incurred by the informed which are transaction costs, the flatter is the
specialist’s pricing function, the greater the transaction volume level below which informed agents do
not transact, and the less likely an agent is to seek inside information. The transaction costs also
induce negative serial correlation in the price series. The transaction cost rationale I':or the absence of

an adverse selection component for small transactions differs from that of Easley and O’Hara [1987]

’If there are transaction costs, a pooling model is inappropriate because buyers and sellers may be charged different
prices. In addition, the number of trades affects transaction costs. Two purchases of 100 shares is not equivalent to one
purchase of 200 shares due to the additional fixed fee.



where an adverse selection component may not exist due to the interaction of a discrete stochastic

process and the discrete quantities in which agents are constrained to trade.

In an extension of the model, we consider the case where innovations to the asset’s value need not
occur every period: Potential insiders may seek inside information but be unable to find it. The
probability of an informational innovation in a period with trade is therefore greater. Ceteris paribus,
the thicker the market, the greater the probability the specialist faces an informed trader, and the
greater the price variance per unit time.

2. The Model.

Consider a market run by a risk neutral specialist and or floor traders. During a day of T periods
the market is open from period T, until period T, 1 < Ty < T. A new day starts immediately after the
previous day’s close. We are interested in characterizing trade in the intraday trading periods Ty+1 to
T-1: At open and close, different market clearing mechanisms which involve pooling of transactions
operate, so that an assumption that simultaneous transactions are handled independently is
inappropriate. Admati and Pfleiderer [1988] consider a model with discretionary uninformed
liquidity traders who trade a fixed quantity but can select which period in which to trade. Under weak
regularity conditions (see Bernhardt and Hughson [1990]), discretionary uninformed traders transact
only at open and close. Since in this paper here, we are not concemed with trade at these dates,
discretionary traders are excluded, and there are two types of risk neutral traders: uninformed
liquidity traders who trade a fixed (stochastic) quantity in a fixed period, and potentially informed

traders who can pay a cost to acquire inside information.

As in Admati and Pfleiderer [1988], agents trade claims to a risk free asset with single period gross

return r and a single risky asset whose value in period 7 is given by:

T
F =r'Fo+Y r'5H,,
=1

where §,, the informational innovation is a normal independently distributed random variable with
zero mean and variance v,, and H, is an indicator function which is equal to one if there is an
innovation in period t and is equal to zero otherwise. While H, is not used in the subsequent
empirical work, it might prove important particularly when there are long periods when there is no

infqrmational event. In that scenario, trades would cluster around informational events, since the



informed would only trade then.1? The probability of an innovation in any given period is given by Y.
F, is the liquidation value of the asset at the end of the previous trading day, and includes
(discounted) any future deterministic component of the firm. Frp is the liquidation value after the
current trading day’s close. Both F; and F can be interpreted as common perceptions of the value of
the risky asset at those moments. Since the impact of the risk free rate on the intraday evolution of
price moments is shown to be small in Benhardt and Hughson [1990],1! we set r = 1 to reduce the

notational burden.

On the NYSE, the actual receipt of securities is invariant to the intraday timing of trades. At each
moment in a day agents trade claims to the risky asset whose value is given by its worth at close. The

value in period 7 of these claims is given by

T
Ve=E[Vrl=Fy+ ) 8H,
=1

In period t, F, ; is assumed to be common knowledge, so that uncertainty about the risky asset’s time t
value only concerns whether there was an innovation in period t, and if so, its value, 8. Thus, as in

Admati and Pleiderer [1988], information is only good for one period.

Liquidity traders must trade as soon as they learn of their need. Each period there is a (very) large
number of potential liquidity traders, M, each of whom may need to trade in period t with probability
Ny/M. The parameter 1, is a measure of (perhaps time varying) market depth - when 1, is small, there
is little background trading noise in which an informed agent can hide, so little trade of any kind
occurs. Liquidity trader k’s arrival is not observed by other agents, nor can he distinguish himself as
an uninformed trader. He has inelastic demand, z, , which is the realization of an independently and

identically distributed normal random variable with zero mean and variance G.

Each period t there are N (very large) potentially informed traders. The potentially informed take
the specialist’s pricing function for that period as given and select a probability m;, of acquiring inside
information. Potentially informed trader i can pay a cost ¢ to attempt to find inside information about

an innovation in t. If an innovation occurs in t, he receives a private signal about its value, 3, + €,

)

10This might explain why the time between trades is not an important predictor of price variance in Glosten and Harris
[1989].

This follows because the entire risk-free return is eamed overnight.



where €, is an independently and identically distributed normal random variable with zero mean and
variance ¢. Since, in period t+1, 6, becomes common knowledge, this information is valuable to
trader i only in period t. If there is no innovation, the investment is wasted - and the indicator

function is H, = 0.
Agent i selects a demand, x;,(5, + €;,), to maximize expected profits:
MAX, E [x,[F,~ Pix1 18, + €]

conditional on his signal &, + €, about the increment §, to the firm’s worth. The probability a
potentially informed agent chooses to become informed, n’i"l, then maximizes his expected profits

within that period taking into account his subsequent profit-maximizing demand if informed:
MAX, E| T {MAX, (E[Hp[F, ~ p{)] | 8p+€,H) - c]ll.

‘The market is made by a specialist and many floor traders. In accord with practice on the NYSE, we
assume that orders received by the market makers during the intraday trading period are handled
independently:12 during the trading day on the NYSE, the price schedule is updated after nearly every
trade. This contrasts with the practice at open and close on the NYSE where larger pooling auctions
are held (and contrasts with Admati and Pfleiderer [1988], Kyle [1985], or Foster and Viswanathan
[1988]), where the specialist sets his price conditional on the net order flow. We consequently focus

our attention on the intraday trading periods, Ty+1 to T-1.

In the intraday trading periods, market makers are essentially indistinguishable.!3 A market maker
selects his pricing function taking into account the subsequent strategic response of the potentially
informed traders. Each period, he first selects a linear pricing function which details for each possible

transaction level, the price at which the market maker is willing to transact. Agents then look at the

12We think of each period lasting only a couple of minutes, so that multiple orders in the same period are unlikely. In the
unlik‘ely event of multiple orders, the market makers do not condition their pricing schedule on the number of traders in the
market.

13The specialist may have access to more information (his book of limit orders) than other floor brokers, but he only
handles a small fraction of the trades. Since in this model, limit orders are necessarily placed by the uninformed, we will not
distinguish among market makers.



price schedule and decide whether to become informed and/or trade. Risk neutrality!4 and
competition together imply that the identity of the agent who takes the opposite side of each order is

irrelevant.

Market makers are not privy to any private information about the risky asset. Further a market
maker does not know the identity of the agent with whom he transacts (informed or uninformed).
Therefore, the common price schedule offered by the dealers is such that they eam zero expected

profits:
Ey 5 [OF,—p;(@)]1=0 forallt,

where ; is x; if the trader is informed and z, otherwise.
3. Equilibrium.

An equilibrium is a pricing function p;(®,); a set of sampling probabilities {r}} i = 1,..., N, T}, €
[0,1]; an associated set of demands for the risky asset by the potentially informed agents
{x3(8, + &)); for all t such that given p; (®,),

1. If agent i is informed, he selects his demand, x}"[(st + &), t0 maximize expected profits:

MAXx,.,E [x;,[Fy _P:( ] | 8, + &)

2. The probability a potentially informed agent chooses to become informed, 1ti*t',
maximizes expected profits given his subsequent behavior if informed,

MAX; E [ my[MAX, [E[Hx,[F, = pa;)] 1 +e;.H ) — c]ll.
3. The informed traders eam zero expected profits in equilibrium.
E [ 7, [MAX, [ETHpx,[F, = pp] | 8p+€;H 1~ c]] = 0.

4. The market maker accepting the order earns zero expected profits

14The risk neutrality assumption renders this model inappropriate for estimating an inventory cost component to the
spread.

For securities where the specialist handles only a small fraction of trades in a stock, inventory cost models may be
difficult to estimate. Since a market maker is relatively free to pick and choose which transactions to take, it is
straightforward for him to keep a balanced portfolio. In equilibrium, the market maker who takes a transaction is likely to
be the one who benefits most from the resulting rebalancing - and hence offers the most attractive price. One might even
expect the inventory cost component to the bid-ask spread to be negative on occasion. For securities where the specialist

completes most trades, an inventory cost model might be estimable, although our competitivity assumption would be
violated.



E[@][F,—p;(®)]] =0 forall t.

Given each agent’s time t information set and the optimal strategies of all other agents, each agent
maximizes his expected profits, and the dealer eams zero expected profits each period.
3.1 The period problem.

The approach to solving the static one period problem is similar to that used in Kyle [1984], or
Admati and Pfleiderer [1988]. For any given expected population of traders, we postulate a linear
equilibrium pricing rule, p, = F,_; + A0, for the risky asset which yields the broker zero expected
profits conditional on the order he meets. Given these pricing rules, we then determine the
equilibrium sampling and trading probabilities for the traders, and the equilibrium linear demands of
the potentially informed, x;, = B;[d, + €] if they have inside information. We suppress the time

subscripts because of the static nature of the single period problem.
An agent who has paid a cost ¢ to become informed then solves:
MAXX‘_ E[x;[5 — Aw]| 6 + €]. 1N

Since intraday transactions are accepted independently, the informed agent knows that volume, @,
consists only of his own demand, x;, and substitutes for ® in (1). Differentiating with respect to x;

and applying the projection theorem?!3 yields:

v(6+¢) 5
S Rere o @
where
v
b= o+ ®

Since w is the probability a trader attempts to acquire information and 7y is the probability of an

informational event, let 6 = % be the probability from the broker’s perspective that a given trader

15The projection theorem can be used because & and € are normally distributed.

-
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is informed.!6 The zero expected profit condition for the broker requires that the broker equate

expected losses to the informed to the expected gains from trading with the uninformed:

OF [ B[S + ;1[5 — AB[S + €11 ] = [1 - B]E(zA2). @)

Taking the unconditional expectation of both sides and solving for A yields:

opv

A= )
02 (v+ )+ (1-0)c

Substituting for B and solving for A yields:

B

= . (6)
2V(v + ¢)(1 - 6)c

This implies that:

V(1 - 06)o
VO(v + ¢)

M

The expected number of informed can be found by equating the expected profits of the informed with
the acquisition cost, c. The market makers’ zero profit condition implies that his expected losses to

the informed, 6c/y, must equal his expected profits from the noise traders, (1 - 6)Ac:

(1-0)Ao = e—;, or nAoc=nc,

when we substitute for © and 1. Substituting for A and solving yields:

Proposition 1: The probability the broker trades with an informed agent in period t € (T, T),

given there is a transaction is given by:

Yov?

= . (8
’ yzcv2 +4c(v + o) ®)

\
16A consequence of mixed strategies is that order size not a normal random variable. Hence expected price change given
order size is not linear in the order size, and the market makers do not expect zero profits on a trade by trade basis. The
specialist will make money on some trades, and lose on others. Large (small) trades subsidize small (large) ones whenever
the variance of uninformed (informed) trade exceeds that of informed (uninformed trade).
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The linear coefficients of the broker’s pricing function and an informed agent’s demand function are

given by

2

™, FE ©)
Observe that when sampling is virtually costless, the conditional probability the broker faces an
informed trader approaches one. As sampling costs become arbitrarily large, or the probability of an
event becomes arbitrarily small, the probability of meeting an informed trader goes to zero. If an
informational event is certain, A, B, and 6 are equivalent to those obtained in Bemhardt and Hughson
[1990] when there is but a single potential insider and the market is not thick enough to support his

certain entry.

The expected number of potential traders that become informed is given by:

__yv’n (10)
402(v + ¢)

The equilibrium pricing function is invariant to the number of potential intermediaries when
intraperiod trades are accepted individually. Indeed, the pricing function is the same for intraday
periods whether the intraperiod market orders are pooled by the specialist or met independently by a
variety of brokers. One consequently feels more comfortable about the ability of the "pooling"
models (e.g. Kyle [1985], Admati and Pfleiderer [1988]) to capture pricing behavior on the NYSE

even though they may not capture the actual trade process well.

There are multiple equilibria in the following sense: Only the expected number of informed agents
is identified by the broker’s zero profit conditions. Because of the linearity of the price schedule and
its invariance to the actual number of arrivals within a period, the broker’s expected profits are
unaffected by how expected entry is divided among the potentially informed. Variation in the
number of potentially informed who sample with positive probability does not affect the specialist’s
pricing function. For reasons given in Bermnhardt and Hughson [1990], we concentrate on the
equilibrium where there is a single potentially informed trader so that © becomes the probability of

informed trade.

The pricing function, A in (9) is independent of the aggregate variance of liquidity trade, but is not

independent of variations in the quantity or quality of private information. This result differs

1
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markedly from that in Admati and Pfleiderer, where their equilibrium A, is decreasing in 6,. Notice
- that rt is linear in 6. The market maker’s profits from the informed are also linear in 6. Thus the two
effects exactly offset each other. This invariance occurs in markets which are too thin for Admati and
Pfleiderer’s equilibrium to exist.!” However, if either the quantity of private information as reflected
by the variance in the innovations, v,, or the quality of information, (¢t)'1, changes, the broker’s
pricing function will fluctuate during the day.
3.2. Transaction Costs and Brokerage Fees

Suppose agents now face an additional tariff to execute their trades, c;lol + c,, where ¢ is a
per-share transaction cost paid to the market maker and c, is a deadweight cost incurred if the trade is
executed. We consider this alternative specification to bring the model into rough conformity with
the data. If c, is positive, the transaction price series will exhibit the negative serial correlation that is
observed on the NYSE. One can think of ¢, as the (unmodelled) opportunity cost of the potentially
informed agent’s time. Thus, ¢, is incorporated directly in the transaction price recorded on the Fitch
tapes, while c,, the deadweight cost, is not.!8 Hence, C, is essentially half the bid-ask spread (see e.g.
Roll [1984]).

In addition to determining whether to obtain information, the potentially informed must also
determine whether it is optimal to trade given the signal obtained. The ex-ante expected fixed costs to
entry faced by a potentially informed trader (which include c, the cost of information acquisition)

become:
cF=c+ 2c5[1 -D(5 + £)'l,

where ©(6 + s)* is the cumulative distribution function for a normal random variable with zero mean
and variance v + ¢, and 2[1 - ®(S +£)*] is the probability an informed trader receives a signal
sufficiently ’large’ that he expects profits from trade which exceed the transactions costs. This then is
the probability that he actually trades given that he is informed. The broker’s conjectured pricing

function is:

I

17The result is due to the thinness of the markets, not to the mixed entry strategies of the informed.

18This specification is chosen in part for tractability. It also builds on Glosten and Harris [1989] who do not find a fixed
transaction cost to be significantly different from zero.
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P,=F,_;+\o,+c; ifo,2 o@+¢),
P,=F,  +c, if0 < 0, < o3 +6)",
P,=F,_;—c if-0@+¢€)" < 0, <0,

P,=F,_;-Ao,—c, ifw,<-o+¢),

where o8 + €)* = @ is the critical trading quantity and |(8 + €)"| is the associated maximum signal
below which no adverse selection problem exists. For small trading quantities, the profits an
informed agent expects from his information are exceeded by his transaction (and/or brokerage) fees.
For signals which would lead to such trades, it is not profitable for the informed to exploit his limited

private information.

The broker expects zero profits net of transaction costs for any trade. For small trades, no adverse
selection problem emerges since the informed do not trade such small quantities. Glosten and Harris
[1989] attempt to distinguish econometricaliy the transaction cost components but their formulation
does not recognize that when informatioh is costly to obtain, the adverse selection problem vanishes
for small transaction quantities. This may lead them to underestimate the size of the adverse selection
component to the pricing function. Here, although closed-form solutions for A cannot be obtained,
we can characterize it explicitly and solve numerically for the appropriate parameters. Glosten [1987]
speculates that "Since statistical properties of transaction prices are typically a function of bbth the
spread and the composition of the spread, there is no obvious candidate for a simple spread-
estimation procedure based on the moments of transactions returns...Furthermore, the results suggest
than any attempt to estimate the spread from transaction prices should estimate two components.”
We agree with his sentiment that it is important to capture the two components, and find that here, the

solution takes an estimable form.

A solution to the more general problem is not more difficult, but to ease notation, we restrict

attention to the case where y= 1. Let I, = 1*sgn[w,]. Dropping the time subscripts for convenience:

Lemma 2: The demand function for an informed agent is:

. x(8+e) = MAX { [%%—cll]-zl_x,o }

ifd+€e>0and
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_ v(d + €) 1
x(B+€) = MIN { [G75 o]0 }

ifd+e<0.
Proof: See appendix 2.

To solve the equilibrium problem we break it down into three steps:
1. Solve for the critical signal (8 + €)* below which no informed traders will trade.

2.>From the zero profit condition for the broker, we solve for the broker’s pricing
function, A, for an arbitrary entry probability, .

3. >From the condition that the ex-ante expected profits of an informed agent must be nc”,
we solve for the entry probability, «.

Recall that B = m Substituting B, expected profits from trading equal:

ETNl=E [(B(5+a)—-c2171)(8—ll(ﬁ(8+s)—%)—cll) ](8+e)].

In order to find the informed agent’s expected profits conditional on his signal, we must find E(5? |
d+¢€)and E(de ! d + €).

Lemma 2a:

v2(6+&:)2+ vo ,E(58|5+€)=v¢(8+£)2— Vo

E@®*|8+¢)= '
@71o+e) w+0)2 (+9) v+¢2 +9)

Proof: See appendix 2. []

Given these relations, and given his signal, the expected profits of an informed trader to trading can

be rewritten as:

V(S +6)2 clv(d+¢) c?

TAp+0? 2AV+O) T

Substituting { for m yields:



15

Bv(d + ) 2

Betv +6)
20+ 0) '

E= 2v

-c /B +¢) +

This value must be greater than zero for non-zero trading quantities. Note that even absent fixed
costs, there remains a critical value below which informed traders will not transact,
o8] _ ci(v+6)

|(8+8) I=EB—)\'—'T.

When c, is added, to determine the critical signal ©®+ s)" below which an informed agent does not
trade, we must first find the signal at which the expected profits from transacting equal c,, his
deadweight trading cost. This yields (5 + €)**, where there is a discrete jump in the specialist’s
pricing function (see figure 2). But (8 + €)"* cannot be the critical value. If it were, an informed
agent could profit by trading the quantity o*" minus some very small quantity, face no adverse
selection tariff, and make positive profits. To find ", we must determine the slope of the specialist’s
pricing function and find where it crdsses the horizontal line, p, = f; + ¢;, where ¢, reflects the
specialist’s per-share cost of doing business. This intersection determines 0. A consequence is that
between ©** and ®*, no equilibrium pricing function exists where both the specialist and informed
traders eamn zero expected profits. If the pricing function is flat between ®" and ©** the informed
trader profits, and if the function is linear (with slope A) then the market maker profits. We diéregard

this problem in the later empirical sections.

Equating EII with c, yields the following quadratic equation:

%‘ﬁ“h £)" +w—cz=0
Ifc, =0,
15+ 8)™1 = 2_(%;?32_) l”_
Otherwise:
. I(5 + €)1 = Cll(\; +¢) N 2(v+ f)ﬁ |
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Equation (4) no longer details the zero ‘expected profit condition for the broker because the
conditional probability the broker faces an informed trader is altered - an informed agent trades only
if the absolute value of his signal exceeds (8 + €)**. For smaller signals it is not profitable for an
informed agent to transact. Conditional on the volume exceeding ®"*, the broker recognizes that he
may be trading with an informed trader. The broker’s zero expected profit condition then requires
that expected profits net of transaction costs from trading with uninformed liquidity traders equal his

losses from trading with the informed:
“r ET1 | £5®)f(e)dedS = An [ dz, 11
x| g | B ] 550V n| . (11)

where fg(d),f (e), and f,(z) are the normal probability density functions for 9, &, and z respectively.

Solving implicitly for A, we obtain:

1 o poo
A= [nn—4 ot ¢)2J.J_8+(M),_[v2(5+e)2—2c11(v+¢)(5+s)+c%(v+¢)21f5(5)fe(e)ded5 / (12)
1/2

The right hand side of the equation is continuously decreasing in A, approaching infinity as A goes
to zero and zero as A approaches infinity.19 Hence for a given =, there is a unique solution for A.

Observe that only the ratio % enters so that once again A is invariant to fluctuations in 7, although
now, A is a complicated function of o, the variance of uninformed trade.
To solve for the equilibrium entry probability for the informed, &, we equate expected profits from

sampling to the equilibrium expected sampling costs. Equivalently, the expected revenues from being

informed are equated to the expected costs of becoming informed (including the possibility of

trading):
o L 2Gee)— ) .
4(v +¢)2J-J-5+ (&E),,m[v (5+¢) ZCII(V+¢)(5+8)+(,‘:1"(V+¢) VA(®)f(€)dedd (13)
=" (AM(m)).

19As A approaches zero, insider profits become infinite, since the risk neutral insiders will trade very large amounts.
Conversely, when A becomes large, insider trading vanishes, as do expected profits.
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Here we write A explicitly as a function of x. Observe that both sides of the equation are continuous
and that the left hand side is monotone decreasing approaching infinity as & goes to zero and zero as T
approaches 1. The right hand side is monotone decreasing, approaching ¢ + ¢, as 7 goes to zero, and
approaching ¢ as ® approaches 1. Hence a solution exists, and one can show that the equilibrium

sampling probability is unique.

One can integrate and explicitly write equations (12) and (13) as functions of normal distributions.
For instance, if §, € and z are each standard normal random variables, and ¢, is set to zero, these

equations are shown in appendix 3 to reduce to

N 2c,Mpi €722 + 1 - @2V,
4(c + 2c,(1 = ®2Vc M)

(8 +€)"™ =V8c,h

2M(1 — D(c/2)) + Ve JAApi e<24%)
¢ + 2¢5(1 = D2Vc,)))

’

31a

where we write "pi" to distinguish the number from the sampling probability. Note that A can be
solved for directly (numerically) and then resubstituted to obtain (5 + €)**, and 7/n. In figures 3 - 6,
the relationship between transaction costs and the endogenous variables are illustrated. Observe how
quickly the probability that a potentially informed agent actually seeks to acquire inside information
falls as transaction costs rise. For example, if ¢ =.5, and brokerage and transaction fees, c,, are even
one tenth the cost of information acquisition, ¢, the probability of acquiring inside information falls
by 15%, if total expected costs are held constant. For ¢ = 1, the reduction is even greater - 20%. In
response to the decreased likelihood of trading with an insider, the broker pares the adverse selection
component, A, of his pricing function by 8%. That is, small transaction costs can have significant
effects on the broker’s pricing function. Note also how the minimum trade size such that an informed
trader is willing to trade increases with brokerage fees. To induce him to transact as these fees
increase, the informed trader requires an ever more promising signal that he possesses significant
private information. Consequently, there are more signals for which the informed trader will walk
awa;y from the broker’s desk. As brokerage fees rise, the probability an informed agent trades falls

accordingly.
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It is possible to further characterize the equilibrium solution when ¢, = 0. Define the locus of
combinations of ¢ and c, which yield the same equilibrium expected cost, chcf=c+2[1-00+
e)*]cz. Then, writing the equilibrium A as a-function of the fraction of costs which are due to
information acquisition, c¢/c*, A(c/c*) must be increasing in its argument, c/c*. For suppose, for
instance, that it were constant. Then for any given signal the informed would demand the same
quantity for all ¢, conditional on actually trading. But then the informed agent’s (positive) expected
profits in those trading states are the same for different sampling costs, c. However, the greater is ¢
then the lower is c,, so the more signals at which the informed profitably trade. Since expected costs
are equal to c¢* in each scenario, it must be that net expected profits are greater the larger the fraction ¢
represents of expected costs. But net expected profits must be zero independent of the composition of
costs, a contradiction. Consequently, as the costs of becoming informed consume a smaller
proportion of c*, the adverse selection component of the bid-ask spread falls, and the trade volume
below which no adverse selection component to the bid-ask spread exists rises. A corollary is that the
equilibrium probability that an informed samples must fall as ¢ comprises a smaller fraction of c’,in
order for the broker to eamn zero expected profits. These observations are illustrated in figures 7 and 8
where the relationship between c/c* and the endogenous variables are detailed for expected total

trading costs for the informed of ¢* = .5.

Observe too that at least some liquidity traders benefit from larger transaction costs - they may
actually be helped by a tax on transactions. If transaction costs increase marginally, that increase may
be sufficient that it ceases to be in the interest of informed traders to trade the same quantity as some
liquidity trader. The liquidity trader incurs a marginal increase in costs due to the transaction cost,
but receives a lump sum benefit because the adverse selection component to price no longer exists.
Similarly, because A falls as transaction costs rise, discretionary traders who trade sufficiently large
quantities also benefit. In contrast, liquidity traders who trade very small quantities lose as
transaction costs increase because the degree of adverse selection the broker faces for such
transaction volumes is similarly small. See figure 9. Ex ante, however, liquidity traders do not gain

from an increase in transaction costs.

If ¢, > 0, there is negative serial correlation in the price series which provides additional
information about the sign of ;. The entire trading history is now relevant because the fixed
transaction costs imply prices no longer follow a martingale. The estimate of ¢, here (and in Glosten

and Harris [1989]) provides a lower bound on the cost of trading since the total trading cost
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presumably includes brokerage fees. A more relevant statistic may be an estimate of o, the smallest
trade insiders are willing to make. This value is unaffected by the division of transaction costs into
observed (price) and unobserved (brokerage fee) components. From o', the estimate of brokerage
fees can then be unraveled.

4. Testable implications.

In the absence of transaction costs, not only can A, the slope of the specialist’s pricing function, be
estimated, but we can obtain predictions about the nature of the relationships between volume,
adverse selection and transaction costs. This is because the theory provides non-linear restrictions
which identify the structural parameters, v, the variance of information, ¢, the noise in the signal, c,
the cost of information, and o, the variance of uninformed trade. These structural parameters in turn
provide information about other quantities of interest: the probability the specialist faces an informed

trader, and the average quantities traded by both informed and uninformed agents.

Equation (9) implies that A,, does not vary with intraday variations in trading volume (due to
variations in non-discretionary liquidity trade). Estimation intervals must then not include opening
and closing transactions, because the specialist’s pricing function is generally different then. By
estimating the pricing function over different intervals throughout the day, on different days of the
week, or after different events, one can test whether there is more inside information at different
times. We estimate the pricing function, A, over different intraday intervals using transaction price
differences, accounting for the unobservability of both the bid/ask indicators and the identity 6f the

traders (informed or uninformed).

We then test to see if A, is positive (i.e. if there exists an adverse selection problem). Assuming
information acquisition costs do not change, evidence that A, varies over the day is evidence of
changing quantities of private information, v,, or of private signals, ¢,. Rises in v, and falls in ¢, both
worsen the degree of adverse selection and lead to a larger A,. Estimation of v, and ¢, allows us to
distinguish between these two explanations. We then test the linear pricing rule of the market maker
against a quadratic alternative. Finally, we test the nonlinear overidentifying restrictions which

identify the structural parameters in the model.20

When transaction costs are integrated into the model, identification of some structural parameters

t

20There are six reduced form parameters, four structural parameters, and two nonlinear restrictions which map the
reduced form parameters to the structural parameters. The alternative simply does not impose the restrictions.

~
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becomes infeasible. In addition, A is no longer independent of & (see section 3). However, we can
still estimate the probability a particular trader is informed as well as the average quantities traded by
informed and uninformed traders. In addition, both a per-share transaction cost, ¢, and a quantity
cutoff, ®** below which there is no adverse selection are estimated. Unlike the linear pricing rule
estimated by Glosten and Harris [1989], the rqsulting pricing function is kinked. We therefore test
the linear pricing rule against the kinked alternative.
5. Estimation.

5.0. The data.

The Francis Emory Fitch transaction database is used to test the model. The data are all
transactions for all stocks on the NYSE between January 2, 1980 and January 6, 1981. We remove
securities which experience stock splits or receive distributions other than normal cash dividends.
Regular dividends are paid overnight, and their effects are felt only at open. For the remaining
stocks, we examine the entire price series, forming price differences between adjacent trades. Since
prices on open and close may be determined by call auctions or de facto call auctions, the first trade
of the day, the last trade of the day, and all other trades processed at these times are eliminated. All
price differences which contain these trades are also removed. The same sort of criterion removes
trades around trading halts, trades which appear out of order on the tape, trades which are marked
with a correction code or certain condition codes, trades at negative prices (known errors), and trades
with price changes of more than 20%. For frequently traded securities, we restrict attention to the
first 5000 remaining price differences. Finally, when comparing parameters across different time
periods, we eliminate price changes which cross hourly boundaries.

5.1. Estimation procedure.
We assume that all trades are processed sequentially as they appear on the tape, and an

informational innovation occurs each period - y= 1.
Estimation without transaction costs when the sign of ® is unobservable.

Let there be n transactions and let prices, volumes, and indicator functions be indexed by time, not
by transaction. Estimation is accomplished by taking price differences from successive trades.

Suppose adjacent transactions occur at times s-t and s. Recall:
. ps=Fg 1+ A0 Psy=Fgpq+A 0

st st

We can rewrite p as:
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s~1
ps=Fg , 1+ 2 3 + A0,
=51

Then,

-1
Ap =Ps—Ps4= [ s—t s-t(os—t] + Z 8‘: + l’swr (14)

T=s~{+1

[6
the trade ats-t. Y °.} &, is the balance of the information released between the two trades. Thus [14]

=s—f T

5.t - M0 ] is the projection error due to the information released about §; , immediately following

can be writen as:

= A0, + €. , 15)

Although quantities traded by both informed and uninformed traders are normal random variables
with zero mean and variances B?(v + ¢) and o, and 8 is itself normally distributed, e  and o are
mixtures of normal distributions (see e.g. Amemiya [1985] p 120). Were o, observable, ordinary
least squares would provide consistent but inefficient parameter estimates.?! Assuming that price
increases (decreases) indicate buy (sell) orders clearly biases the results upward. The correct

procedure for estimating A when the sign of ® is unobservable is given in appendix 5.

In Table 4 we compare the correct procedure with estimates of A obtained using OLS, assuming
that price increases (decreases) indicate buy (sell) orders, and lack of price movement indicates that

the sign of the bid-ask indicator is the same as that of the previous transaction.22

21The inefficiency is due to the unobservability of the identities of the traders (informed or uninformed).

22While the sign of @, is not included by Fitch, the new ISSM data tapes provides bid-ask quotes in addition to trading
prices. To the extent that the fact that a trade at the bid indicates a sell, and a trade at the ask indicates a buy, the problem of
identifying which trades are buy orders and which are sell orders is eased. Any residual uncertainty will, however,
necessitate the use of mixtures of distributions as in Glosten and Harris [1989], or this paper here. In addition, even when it
is known when agents are buying or selling, in the context of our model, it is still not possible to use OLS or GLS to
estimate. Table 4 shows how using OLS biases estimates of A upward. However, it would be no longer necessary to
integrate conditional likelihoods for Ap over the unconditional marginal distribution for I, the sign of ®.

Foster and Viswanathan [1988b] estimate A for a different model, where entry and trade by agents is deterministic, which
implies that both @ and € are normally distributed. They estimate this model using Hasbrouk’s [1989] procedure on the
ISSM data tapes. If the transaction price is closer to the ask (bid), the transaction is a buy (sell). Transactions which are
equidistant from the bid and ask are omitted. This still overestimates A. Suppose that there is perfect correlation between
the bids and asks and the quotes. Even then, omission of trades midway between the bid and ask reduces the slope
coefficient A. For example, if Ap = A@ + & A = ZwAp/Zw?. Omitting those trades reduces the denominator without
affecting the numerator. At the same time, the procedure may reduce much of the noise associated with the unobservability
of buys and sells.
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Mixtures of distributions are due not only to the unobservability of the sign of ® but also because
informed and uninformed agents (who trade quantities drawn from different normal distributions)
cannot be distinguished from each other. These additional mixtures identify the structural parameters
of the model. Our estimation procedure, which maximizes the unconditional likelihood of jointly
observing the sequence of price changes {Ap}={App -8 p,}, and the volume sequence {lol} =
{loyl, .. , lo )} is given in appendix 4. '

5.2. Results.

5.2.1. Estimation of A when the sign of @ is unobservable.

We first estimate the slope of the specialist’s pricing function, A ($/share/1000 shares) when the
sign of ® is not observable (see appendix 5). Since, in this section we are mainly interested in
comparing these A with the A obtained using the OLS procedure detailed in 5.1, we momentarily
ignore our theory and restrict var(e;) to be a constant. Note, however, that our theory implies that
var(e;) is ceteris paribus linear in the time between trades. We justify this simplifying assumption
because, when we allowed var(e;) to be linear in the time between transactions, (i.e. var(e); = kg + ki,
where t is the time between trades), estimates of k; were found to be insignificantly different from
zero in most cases. In addition, the economic impact of including time between trades on var(e;) was
small. Finally, estimating k, sometimes caused serious problems with convergence of the

minimization algorithm.

Var(e;) is also a function of the identity of the trader (informed or uninformed) at both time s and
time s - t. This more complicated relationship identifies the structural parameters of the model.

Those results are presented in section 5.2.2.

Parameter estimates obtained for nine securities are presented in Table 1. SYM is the stock symbol
on the Fitch tape. The next column is the total number of trades for the year 1980. The following
column is the number of trades included for estimation. A is the estimate of the slope of the
specialist’s pricing function in dollar price change per 1000 share trade, taking into account the
unobservability of the sign of ®. Therefore, if the price rises, the pr(® > 01 Ap > Q) will not be one.
It will, however, be increasing in the magnitude of the price movement. Except for ABC, there

appears to be a significantly positive adverse selection component to the bid-ask spread.23 A appears

\

23When A approaches zero, the algorithm GQOPT ceases to converge - there are no longer four independent first order
conditions at the limit. :
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to decrease with trading volume. Although the model places no restrictions on the relationship.
between firm size and adverse selection, this result would be consistent with Foster and
Viswanathan’s [1988b] observation that less private information is available about large, frequently

traded, securities.

Var(e) is the estimate of the variance of public information release between trades. Recall that
surprisingly, the variance of price changes does not appear to be affected by the time between
trades.2 One explanation for this may be that an informational innovation does not occur every
period. When v, the probability of an innovation, is small, trades tend to clump around informational

events because insiders trade only then.

When the sample is divided into six trading hours, (see Table 2), we reject the hypothesis that A and
var(e) are constant across the trading day (X2(10) = 24.13),2 even after we omit transactions (e.g.
opening and closing trades) which fail our editing criteria. Theory also predicts that the adverse
selection component is smaller at open and close if there is discretionary liquidity trade.
Unfortunately, the speciélist pools orders on open and close, and we do not have a formal procedure
for extracting net order flow from price and volume data. However, we informally test the hypothesis
that the adverse selection component is smaller on open and close by estimating the model during the
first and last 15 minutes of the day assuming no pooling and including opening and closing trades and
find that A is higher there than at any other time. A is high during hours 1, 2, and 6, but it is also high
during hour 4. The lack of systematic correlation between A and price variance is even more
pronounced for AAA. Here, we cannot reject the null hypothesis that A is constant across the day
X2(10) = 5.75).

5.2.2. Structural parameter estimation.

Here we estimate the structural parameters for the model in the absence of transaction costs. The
likelihood function, which takes into account the unobservability of the sign of ® and the unobserved
identities of the traders (informed or uninformed) is derived in appendix 4. Due to the shape of the
likelihood function, gradient methods of estimation did not converge. Consequently, the maxima

were found using a grid search. Standard errors are found numerically as well.

\
24Hausman, Lo, and MacKinlay [1991] find that when they account for discreteness, the time between trades is indeed a
determinant of the variance of public information release. Their finding is consistent with the model presented here.

2In the restricted model, we estimate two parameters, A, and var(e), rather than 12.
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Estimates are provided for Alcoa Aluminum in Table 5. The structural parameters are all found to
be statistically significant. It is comforting to find that the estimates of the slope parameter, A, are

- similar in magnitude to those in Table 4.

Previous literature attributes changes in A to changes in the "amount” of information about the
stock. Our estimation procedure distinguishes between the "amount” of information and its "quality".
We find that v, the variance of inside information, is nearly constant throughout the day. In Table 5,
we see small changes in v accompanied by large changes in A (see hours 2 and 3). However, ¢, the
noise in the signal is much higher in the middle of the day. Thus, changes in A appear to be almost

completely determined by changes in ¢.

Over the day, the average informational innovation (informed traders are not concerned about the
sign) is slightly greater than an eighth, $.1353, and the signal to noise ratio is about .5. Not
surprisingly, insiders trade much larger quantities than uninformed traders, averaging 7002 and 458
shares respectively. See figure 10 for the distribution of traded quantities for the 5000 Alcoa orders.
Only about 300 trades exceed 7000 shares. The large majority of orders are less than 1000 shares.
While the estimated probability a given trader is informed is .43%, it is close to zero for small orders,
(.03% for hundred share orders, .3% for 1000 share orders), rises precipitously between 1000 and
2000 shares (see figure 11), and is about 100% for trades above 3000 shares. The small fraction of
informed traders is implausible. Examination of the specialist’s zero profit condition (equation (4))
shows that the expected profits of the informed on a 10000 share order are extremely high - almost
$100,000, almost $10 per share. When the nonlinear restrictions are relaxed (see Table 6), the
probability of an informed trader rises to over 9%, and the expected profits of the informed drop to a

more reasonable $4200.

For Alcoa (AA), a 1000 share purchase (approximately $60,000) results in a tariff of $4.19 due to
adverse selection. While this seems small, the tariff rises to $419 for a 10,000 share trade. This latter
number is perhaps more relevant, since insiders trade 7002 shares on average. Indeed, for some

securities, the adverse selection tariff rises to $2000 (see Table 7).

In Table 6, the model is tested against two alternatives. First, the two nonlinear restrictions implied
by the model are relaxed: we just estimate the reduced form parameters of the model. This exercise

is, in some sense, equivalent to that in Glosten and Harris, who estimate an econometric specification

rather than a structural model. When the mapping from the reduced form to the structural parameters
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is removed, some structural parameters are now unidentifiable, but the fit improves dramatically. We
strongly reject the nonlinear restrictions imposed by the model (X*(2) = 612). Symptoms of the bad
fit include the low probability of informed trade and the unreasonably large profits of the insiders
when they trade large quantities. While the slope of the pricing function and the quantities traded by
market participants are unaltered, the probably of informed trade increases to over 9%. Second, the
model is tested against a nonlinear rule. The immediate concemn is whether the specialist is also
inferring whether large trades are due to informed agents. Since the linearity is a consequence of
normal distributions, there is in general little reason to expect that the pricing function is linear. As a
simple diagnostic, we test the model against a quadratic pricing rule. Define d as a quadratic term in
the pricing function. Surprisingly, we are unable to reject linearity, since d is neither economically
nor statistically significant. We conjecture that d may be negative only because transaction costs are
excluded from the model here. If the price increases by C whenever shares are bought, regardless of
the size of the order, a first order quad_ratic approximation without transaction costs would appear to

be concave.

In Table 7, parameter estimates are given for other securities. Note that for the smaller stocks (not
ABC), both informed and uninformed agents tend to trade smaller quantities, and A appears to be
greater. Note also that A,p is quite low, the adverse selection tariff is $1.90 for a thousand share

order. This is consistent with the (lack of an) estimate for A, in Table 1.
5.2.3. The Effect of Transaction Costs.

When transaction costs are included, structural parameter estimation becomes infeasible. The
structure of the model looks like the unrestricted alternative from Table 6 with the addition of
transaction costs. When investors face a fixed cost to execute their trades, below a critical value (8 +
€)", there is no adverse selection problem. Figure 3 shows that ignoring the consequences of ¢, biases
estimates of A downward. The additional per-share cost, ¢;, paid to the specialist, introduces serial
correlation, so the past transaction history is relevant. The likelihood function becomes complicated,
because it is now necessary to integrate over all possible transaction paths to foﬁn the likelihood
function. The procedure is similar to that used to integrate over all possible series of
informed/uninformed indicators. See appendix 6 for details. Because the overnight non-trading
peri‘od is long, and there are presumably many informational innovations, we assume the probability
that the opening trade is a buy is 1/2. This significantly reduces the relevant number of potential
transaction paths because the likelihood of Ap; depends only on trades which take place in the same

’
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day. Estimation of the critical level of trade @" below which no adverse selection problem exists
involves including ® as an explanatory variable above the critical level, and omitting it otherwise
[Judge 1985 pp 803-806].

Unfortunately, we were unable to obtain con\}ergence for the full structural model when the
minimum cutoff for transaction sizes of informed traders is included. Instead we estimate A, the
critical cutoff, and the variances of both informed and uninformed trade. Results for Alcoa
Aluminum (AA) are given in Table 8. They indicate that the introduction of transaction costs to the
econometric modele reduces A to .0025. Transaction costs are estimated to be about $.032 per share
and the critical cutoff is estimated to be 1300 shares (X2(1) = 248.32 (> .99)), which means that
informed traders do not place orders for Alcoa of less than about $65,000. As one might have
expected, the estimated average trade sizes of both the informed and uninformed are unaffected by
the introduction of transaction costs. The reason that this estimate does not change is that even
without transaction costs, the estimated probability that an individual trading a quantity less than
1400 shares is informed is close to nil.

6. Extensions and Comments.
6.1. Probabilistic informational innovations and estimation when simultaneous transactions

are accepted independently.

Here, price differences are not formed between two essentially simultaneous trades. If for example,
trades A and B have the same time stamp, and trade C occurred two minutes prior, the price

differences created are p, - pc and pg - pc.

In addition, we relax the restriction that v, the probability of an informational event, equals one.
Thus, informational events do not necessarily occur each period. Informed agents will not trade in
the absence of an informational event. Thus j, the number of trades is a given interval, contains
information about the probability of an informational event. We first find the probability of an event
conditional on j, and then use this probability to calculate the variance of price changes. While we do
not estimate this version of the model, it can potentially explain why the time between trades does not
significantly affect the variance of price changes. Below, the time subscripts are suppressed to ease

notation.

)

Proposition 3: Given j trades in a period:
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(1 -y ,
(1-P + @+n)ye™

pr(no event | j trades) =

and:

(r+nYye™

pr(event| j trades) = . —.
(1= + (m+nYye™

Proof: See appendix 3. []

Now Ap can be written as:

s-1
Ap s= [ss-tH s—t~ }"s—tms—l] + z 6TH <t lsms’ (16)

T=s—1+1

where H_ is an indicator which equals one if there is an informational innovation in period T and zero

otherwise. The above equation can still be written as:

Ap = A0 + e a7

S

The unconditional distribution of e, is now complicated by the need to mix over the marginal
distribution for 1 conditional on the number of trades which occur in each period. Fortunately, this
allows one to estimate the probability of an informational innovation given j trades, and test the
restriction that the probability of an informational innovation is increasing in the number of trades. In
addition, we obtain the restrictions (not tested) that as j; - j;_, increases, so does the variance of price

changes, and as j_, increases, the variance of e declines.
6.2. Event Studies.

The methodology outlined in sections 5.1 and 5.2 can be used to examine whether increased price
variance around major events such as earnings, dividend, and merger announcements can be

explained by an increase in the amount of inside information near the announcement dates.

6.3. Cross-sectional tests.

Informational events may affect more than a single security. The analysis presented in this paper

can be extended to the case where there is contemporaneous correlation in informational innovations



28

across securities, i.e. to where the informational innovations contain both a common market-wide
component and a security-specific idiosyncratic component. However, there is the additional
problem of non-synchronous trading across securities. There will be only some overlap of price
change intervals for different securities. Fortunately, the model implies the correlation between the
regression errors of two securities is linear in the time overlap, and it is not difficult to apply a
modified "seemingly unrelated" regressions technique to estimate the model. Given the amount of
cross-sectional correlation in security returns, it is not unreasonable to expect an efficiency gain from

this approach. Details are given in Bemhardt and Hughson [1990b].
6.3. Discreteness in Prices and Time Between Trades.

Harris [1986], and Glosten and Harris [1989] recognize that transaction prices come from a discrete
price grid with increments of an eighth which is about three times the estimated per-share adverse
selection component for a 1000 share order for Alcoa. They assume that the "true value" is a
continuous variable and that agents round the price to the nearest eighth. They note that rounding is
fundamentally ad-hoc. Unfolrtunately, it is reasonable to believe that the magnitude of the error
introduced by discreteness may be large relative to information effects. Our results suggest that not
only does discreteness play an important role in determining the price series, but it may also play an
important role in determining the strategies of the potentially informed agents, and hence, the
specialist. These issues are examined in Bemhardt and Hughson [1991a}, [1991b].

7. Conclusion.

We have created a model of insider trading on the NYSE which is consistent with many of the
stylized facts found in the empirical literature. Equilibrium exists in our environment during the
trading day. An important result is that the adverse selection component to the bid-ask spread need
not be related to the quantities traded by uninformed traders. Since transactions are processed
independently, we can incorporate transaction cost components into the model. Then the adverse
selection component to the specialist’s pricing function vanishes for small transaction sizes, and the
price series is negatively serially correlated. The theory imposes testable restrictions on transaction-
by-transaction data. These econometric tests are performed using maximum likelihood estimation
which takes into account the unobservability of the side of the trade taken by the broker. The theory
provides additional non-linear restrictions which allow identification of the structural parameters in
the ‘economy: the variance of information, the noise in the signal, the cost of information, and the

variance of uninformed trade. While the linear pricing function is not rejected when tested against a
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quadratic alternative, the non-linear restrictions which identify the structural parameters are tested and

decisively rejected.

When fixed and variable transaction costs are introduced, estimation of the structural parameters is
infeasible. However, a transaction cost component and a critical value below which no adverse
selection exists emerges can be estimated. The critical cutoff is found to be large - insiders do not
trade small quantities. We strongly reject the linear pricing rule when it is tested against the kinked

alternative.

We note that the magnitude of the error introduced by discreteness may be large relative to
information effects. Our results suggest that not only does discreteness play an important role in
determining the price series, but it may also play an important role in determining the strategies of the

potentially informed agents, and hence, the specialist.

Finally, we note that the price impact of information of a single trade appears to be small
economically. This méy be in part due to the structure of the NYSE itself, in particular, the existence
of limit orders and price continuity requirements for the specialist. This may céuse the price impact
of information to be spread over several trades. It is also plausible that in the presence of a linear
pricing rule, and long-lived information, informed agents will attempt to disguise their actions by
adopting dynamic trading strategies where they split their orders over time. This may also minimize

the price impact of information of a single trade, and suggests a direction for future research.
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Appendix 1. Tables.
TABLE 1
PARAMETER ESTIMATES FOR 13 SECURITIES**
SYMBOL FIRM A var(e) Ko 19}
TOTAL TRADES trend components
TRADES INCLUDED
AA Alcoa Aluminum
13002 5000 .00420 01790 .00131 -.00038
(.00074) (.00046) (.00219) (.00032)
AAA American Savings and Loan of Florida
2153 847 .05113 02122 .00089 -.00061
(.01303) (.00100) (.00651) (.00041)
AAE Amerace Corp.
1903 709 .03138 02232 .00790 -.00011
(.00987) (.00097) (.00769) (.00055)
ABC American Broadcasting Co.
10434 5000 0*
ABF Airborne Flight Corp.
2323 945 01117 02471 .00397 -.00038
(.00224) (.00157) (.00670) (.00045)
ABT Abbot Corp.
10057 5000 .00580 01521 .00379 -.00037
(.00090) (.00033) (.00230) (.00026)
ABY Albany International
3289 1788 .01498 02838 .00103 .00062
(.00838) (.00085) (.00494) (.00039)
ABZ Arkansas Best Corp.
1438 365 .03190 .00962 -.00176 .00051
(.00840) (.00066) (.00763) (.00041)
ACA Arcata Corp.
3150 1519 .00259 02092 .00959 -.00056
(.00205) (.00074) (.00050) (.00033)

26 27 28

26+ Estimation procedure did not converge - all parameters are not separately identified when A is in the neighborhood of
zero.
\

27%* These preliminary results are derived assuming that the errors have constant variance. That is, it is not affected by
identity of the trader (informed or uninformed).

28Standard errors are given in parentheses directly below the point estimates.
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TABLE 2
HOURLY PARAMETER ESTIMATES FOR ALCOA ALUMINUM (AA)

AND AMERICAN SAVINGS AND LOAN OF FLORIDA (AAA)

TRADES

1068
1035
703
575
750
857

203
249
112
84

114

85

A

.00502
(.00199)
00661
(.00238)
00264
(.00060)
00474
(.00194)
00367
(.00104)
00447
(.00218)

05678
(.01193)
02617
(.03658)
08025
(.03130)
-.00735
(.27496)
.00000
(.00466)
07251
(02552

var(e)

01834
(.00084)
01690
(.00092)
01687
(.00116)
01485
(.00098)
01874
(.00095)
02048
(.00164)

02299
(.00204)
02399
(.00192)
01841
(.00274)
01797
(.00278)
02229
(.00231)
01957
(.00327)

Ho M
trend components
.00168 -.00033

(.00219) (.00006)

.00781 -.00057
(.00675) (.00327)

29AA is Alcoa Aluminum, AAA is American Savings and Loan of Florida

30Standard errors are given in parentheses directly below the point estimates.
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TABLE 3
ESTIMATES OF PRICE AND VOLUME
SYM HR VAR(price) E[w?]* E[lo!] SAMPLE
per 1000 thousands  SIZE

AA ALL 0.01813 12.692 1.266 5000
1 0.01862 10.569 1.354 1068
2 0.01724 8.281 1.182 1035
3 0.01698 17.461 1211 703
4 0.01485 15.585 1.373 575
5 0.01899 18.228 1.319 750
6 0.02050 9.888 1.185 857

AAA ALL 0.02245 0.443 0.399 847
1 0.02503 0.650 0.483 203
2 0.02277 0.446 0.362 249
3 0.01996 0.323 0.363 112
4 0.01734 0.285 0.364 84
5 0.02246 0.297 0.396 114
6 0.02207 0.451 0.392 85

* Note that E(vol squared) is a measure of var(w), because the theory implies E(w) = 0.
TABLE 4
OLS PARAMETER ESTIMATES FOR 13 SECURITIES
All estimates were highly significant

SYM A var(e) A var(e)
(OLS) (OLS) table 1 table 1
AA .009 .017 .004 .018
AAA 113 .017 .051 .021
AAE .098 .018 .031 .022
ABC .005 .010 * *
ABF .017 .023 011 .025
ABT .013 .014 .006 .015
ABY .037 .026 015 .028
ABZ .065 .007 .032 .010
ACA .010 .020 .002 .021

31

31* Estimation procedure did not converge - all parameters are not separately identified when A is in the neighborhood of
zero. See appendix 4 for details.
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TABLE 5
HOURLY PARAMETER ESTIMATES FOR ALCOA ALUMINUM (AA)

HOUR  ALL 1 2 3 4 5 6
TRADES 5000 1068 1035 703 575 750 857
STRUCTURAL PARAMETERS

\ variance of inside information

.01829 .01888 .01736 01704  .01536 01921 .02096

(.00037) (.00084) (.00077) (.00091) (.00924) (.00101) (.00103)
¢ noise in the signal

08212 07315 11480 .15360 .05075 07211 .05401

(.02404) (.04194) (.08388) (.16174) (.03239) (.04988) (.04988)
c variance of uninformed trade

20940 22395 20938 .20777 .14253 .18319 23239

(.00334) (.00759) (.00888) (.00765) (.00691) (.00769) (.00904)
c cost of information $

20.213 18.933 13.826 17.293  21.709 27.199 24.231

(2.553) (4.614) (4.532) (8.406) (5.784) (7.927) (5.747)

SHALLOW PARAMETERS

A slope of specialist’s pricing function

00412  .00512 .00412  .00246 .00411  .003714 .00604

Adverse selection tariff for a 1,000 share order, $Aw?.

4.12 5.12 4.12 2.46 4.11 3.71 6.04

Adverse selection tariff for a 10,000 share order, $A®?2.

412.00 512.00 412.00 246.00 411.00 371.00 604.00
6 ex-ante probability a trader is informed

00425  .00602  .00621 .00295 .00269  .00250 .00584

ol average size of an uninformed trade (shares)
458 473 458 456 378 428 485
average size of an informed trade (shares)
7002 6083 5790 8384 7267 8558 6332
v1/2 average size of price shock $
1353 1374 1318 .1305 1240 .1386 .1448
o172 average amount of noise $
2866 2705 .3388 3919 2253 .2685 2324

32,33

1

32Standard errors are given in parentheses directly below the point estimates.

33Test of whether hourly parameter estimates significantly differ from each other: (X3(20)): 152.002 (> 995)

’
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TABLE 6
TEST OF NONLINEAR RESTRICTIONS IMPLIED BY THE MODEL
TEST OF LINEARITY OF PRICING FUNCTION
FOR ALCOA ALUM%I;TL%\% g* = UNIDENTIFIED)

THE UNRESTRICTED NONLINEAR
MODEL ALTERNATIVE RULE
STRUCTURAL PARAMETERS
A\ variance of inside information
.01829 * .01836
(.00037) * (.00038)
¢ noise in the signal
.08212 * .069500
(.02404) * (.01472)
o variance of uninformed trade
.20940 .20843 20948
(.00334) (.00448) (.00334)
c cost of information $
20.213 * 21.728
(2.553) * (1.972)
SHALLOW PARAMETERS
A slope of specialist’s pricing function
00412 .00419 .00444
* (.00070) *
Adverse selection tariff for a 1,000 share order, $Aw?2.
4.12 4.19 444
Adverse selection tariff for a 10,000 share order, $Aw?2.
412.00 419.00 444.00
d quadratic pricing function term
* * -.0000140
* * (.0000141)
0 ex-ante probability a trader is informed
.00425 .09048 .00426
* (.00767) *
cl/2 average size of an uninformed trade (shares)
458 457 458
average size of an informed trade (shares)
7002 8049 6995
* (369.395) *
v172 average size of price shock $
.1353 * 1355

\
34%: The nonlinear restrictions identify some, but not all structural parameters.
35Standard errors are given in parentheses directly below the point estimate s.

36Test against unrestricted alternative: X2(2) = 612.059! (>.999).



average amount of noise $
2866 *

35

2627
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TABLE 7
PARAMETER ESTIMATES FOR OTHER NYSE SECURITIES

SYMBOL AAA AAE ABC ABF ABT
TRADES 1380 1187 2000 945 2000
STRUCTURAL PARAMETERS
v variance of inside information
.02392 .02380 .01150 02571 .01563
(.00092) (.00092) (.00037) (.00118) (.00048)
¢ noise in the signal
.05379 81912 .05457 04121 .16636
(.02044) (.57903) (.01604) (.02035) (.14401)
c variance of uninformed trade
.0566 .0606 4332 1394 2323
(.02056) (.00230) (.01881) (.01259) (.00584)
c cost of information $
9.114 2.025 26.343 33.824 11.171
(1.3236) (.70085) (3.4378) (6.0060) (4.5367)
SHALLOW PARAMETERS
A slope of specialist’s pricing function
.0202 .0083 .0019 0073 0031
Adverse selection tariff for a 1,000 share order, $Am?2.
20.20 8.30 1.90 7.30 3.10
Adverse selection tariff for a 10,000 share order, $Aw?2.
2020.00 830.00 190.00 730.00 310.00
0 ex-ante probability a trader is informed
.01239 .02424 .00311 .00300 .00630
ol average size of an uninformed trade (shares)
238 246 658 373 482
average size of an informed trade (shares)
2124 1561 11775 6807 6052
vi2 average size of price shock $
1547 .1543 1073 .1603 1250
o172 average amount of noise $
2319 9051 2336 2030 4046

37

37Standard errors are given in parentheses directly below the point estimates.

~
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TABLE 8
TRANSACTION COST PARAMETER ESTIMATION
FOR ALCOA ALUMINUM (* = UNIDENTIFIED)

NOTC PER SHARE PER SHARETC +
TC CRITICAL CUTOFF
PARAMETERS
sigma variance of uninformed trade
2084 2085 2085
(.00448) (.00449)
cl variable transaction cost
* .03210 03210
* (.00347)
critical cutoff shares
* * 1400
A slope of specialist’s pricing function
.00419 .00250 .00250
(.00070) (.00069)
0 ex-ante probability a trader is informed
.09048 .09050 .09050
(.00767) (.00767)
cl/2 average size of an uninformed trade (shares)
457 457 457
average size of an informed trade (shares)
8049 8062 8049
(369.395) (369.399)
38 39 40

38%: The nonlinear restrictions identify some, but not all structural parameters.
38tandard errors are given in parentheses directly below the point estimates.

40We are unable to test formally whether the cutoff point is statistically different from zero, since we are unable to obtain
convergence. Instead we estimate A, 2g(s), ¢, and the cutoff, fixing the other parameters. Then, we perform a likelihood

ratio test to see if the cutoff is significantly different from zero. The resulting chi-square value is:X%(1) = 248.32 (> .99).

’
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Appendix 2. Integration of transaction costs

Proof to lemma 2:
An agent who has paid a cost ¢ to become informed now solves:
MAXx‘_E[xl(S —Aw - ;) - c,l.
Differentiating with respect to x; and applying the projection theorem yields:

v(8+e) 1
v ]ﬁ

However an informed agent will not choose to sell (buy) if he receives a signal greater (less) than

zero. []
Proof to lemma 2a:

Recall that & can be written as:

O=EQB1d+¢g)+E&.

Applying the projection theorem,

= ;:—¢(8 +€) +E. - (18)

To calculate the variance of & given & + ¢, first compute the variances of both sides of (18). This

yields:
2
v
T +var(§).
Since E(8 | 8 + €) is not random, var(§) = var(8l8+e) Thus, var(€) = —. To obtain E((8 + €)% 15 +

€) just recall that var(d | 8+€) = E(52 | 8+¢) - (E(5 | §+€))2.

Then to obtain E(8¢ | § + €), observe that E((8 + €)% 1 8 + €) = E(8% | § + €) + E(28¢ 1 8 + €) + E(e2 |
5+¢€)=(8+¢)2 Solving for E(e2 | § + €) as above and then solving for E(25¢ | & + €) yields the
result. []

Simplifying assumptions used to produce figures 2-9.
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Under the assumptions that 3, €, and z are standard normal random variables,
(8 +¢€)" =V8c,A,

so that (14) reduces to:

J.Jm (382 + 2€ — £2)f;8f.£dedd = 8A[c + 2c,(1 — DVc, )]

Substituting w = & + €, and switching the order of integration, the left hand side becomes:
—IEJ‘ - J' " [4wd — w2e TR -8Rty
21 Vge xd

= lﬁj - dwew’lt h Se=EwI2 15 gy — lJ. - w2ew’l 4J. - e~ (w2 45 dw.
2n\gex — 2n) g x

—o0

Substituting x = V28 — w/V2, we obtain:

J‘ J. w(x + "2 2 dxdw — I wze‘wz/4dw.
e d— T m 2\/_
Noting that:

r xe*Rx =0,

this reduces to

J- T L ewag,
Ve 2V

Integrating by parts, letting u=w and dv=we'“’2/4, and solving, the left hand side equals:

[=

Solving implicitly for A yields the result. The same integration techniques are adopted to solve the

8coh
2 ] -2Cz>~+2(1 - ®2VeA)).

genéral problem with arbitrary variances, v, ¢ and c.
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Appendix 3. Proof to proposition 3.

Proof to Proposition 3:

Given the respective arrival rates of the informed and uninformed, n/N, and /M, we have

pr(j trades by uninformed) = Mlir_r)‘“ [ (I;l) (11&1_4 )j ( ' u ) ]

Note first that:

lim [ ]
P R
and
M-
lim (1-1 =
M 5w M) .

a Poisson distribution. Therefore,

: . ‘n/ e M
pr(j trades by uninformed) = —

Similarly,

. . e
pr(j samples by informed) = 7

and the resulting probability of j trades by the uninformed is given by:

pr(j trades by informed) =

e
T

Now,
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pr(event N no sample N no trade)

pr(event | no trade) =
pr(event N no sample N no trade) + pr(no event N no trade)

_ Ye e
Ye e M + (l-y)e‘“'

S A
Y™ + (1)

Note that pr(event | j trades) = 1 - pr(no event | j trades) and:

. _ pr(no event | j liquidity trades)
pr(no event | j trades) = () trades)

-1

_(1=ynien ( (1-yve™ y" mle ™y e ™ )

J! J! g i)
which reduces to:

(a-yv
iy '
o (N
(1-PW +ve "go,(i)nmf‘

pr(no event | j trades) =

Define 8 = ——so 1 — 8 = —_. Substituting, we obtain:
T+ n+7

pr(noevent | j trades) = a- Y)T}; ' ,
(1-pn + @+ n)ye ™y (Jl) 0i(1-0y-i
=0
_ (1 -yv .
(I-PW+ m+n)ye™
Therefore,
(m+ Yye™

pr(event | j trades) =

(1= + (n+nYye™
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Appendix 4.
Derivation of the unconditional joint density of Ap; and |0 in the absence of transaction

costs.

Under weak regularity conditions (Amemiya [1985]), maximum likelihood maximizers {B]} are
consistent efficient estimators of {B,} for mixtures of normal distributions. Let L(B) = L({Ap,lol,B})
be unconditional likelihood function for the price series for Ap and lwl. The error, e is conditionally
normally distributed with mean zero and variance ;s where j = 1 if the specialist faced an informed
trader at time s - t (probability 8) and j = 2 if the specialist faced an uninformed trader then
(probability 1 - 8). Let I, the bid-ask indicator, equal one if a trader is buying and minus one if he is
selling. Finally, @ is conditionally normally distributed with mean zero and variance G,,, where w =
3 if the specialist faces an informed agent at time s (probability 0) and w = 4 if that agent is
uninformed (probability 1 - 0).

Given our assumptions, the conditional density of Ap, given past prices, bid-ask indicator, I,

variance indicators, j and w, is given by:

~(Ap~Na I )?
e 26, - (19)

chj

f{Bp.B11j,e)=

Integrating over the unconditional marginal distribution for the bid-ask indicator 1541 yields:

1 e —BpMe)?
20; 26, - 20)

€ +o——e
\/2ncj d 2 wl21toj !

1
ftpB1j#) =5

Glosten and Harris [1989] would write this as the unconditional density for Ap, in the absence of

4lIn this model, buying and selling is equally likely. However, this procedure can accommodate more complicated forms
for this distribution, for example, serial correlation. Serial correlation might arise due to portfolio insurance strategies.

’
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transaction costs.#2 Here we must still integrate over the unconditional marginal density for j. In
general, the probability a particular agent is informed is a function of the trade size. Define 0’ as the

pr(informed | logl). Using Bayes’ rule yields:

-1

—? —@? -a?
8 = ( 6\/64e‘20—3) ( 0Vo,e75; + (1—9)\/0'3ef4) ) (21)
Now:

-BpNo)’ | —Ap M)’

1 1 :
f.(Ap.Blw,e)=9 [- —— e+ R T ] + (22)
) —(Ap ’—Mm‘l)"’ 11 —(Ap s+J\.Io)_'l)2

€ 20

.ty —=¢
2o, V2ro,

20,

1-9,.) [%

Using only information contained in the price series, the unconditional likelihood function can be

written as:
n
L(B) =[] /(p! ).
s=1
However, the volume series provides additional information. Integrating over the unconditional

marginal distribution for w, we find the unconditional density for wj:

(@le) 0, - (1-6) -« 23)
g (wle) = €75, + €2q,-
’ V2710, ? V21o, *

Unfortunately, it is not appropriate to write some hg = f.g and then write the unconditional likelihood

function as H:=1 h(Ap,lol | ). The reason is that lagged @’s determine S; and current ®’s determine

the distribution for 6. The unconditional likelihood function L has a recursive structure.

42However, they estimate a model with transaction costs. In addition, their model places no structure on the probability
the specialist faces an informed trader. Instead, they assume that traded quantities are normally distributed. Therefore, their
unconditional likelihood function is an equally weighted average over 2% unobserved bid-ask paths (I;,...,I) of the
conditional densities detailed above. That is:

2" n
L@pB)= Y T [74pB 112)
1% =1

This can be computed recursively, as detailed in Glosten and Harris [1989].
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Define f;" as the conditional joint density of Ap, and @, where the first superscript indicates
whether the trader at time s-t was informed and the second superscript indicates whether the trader at

time s is informed. Let * =1 if a trader is informed and u otherwise. Thus:

0, —(Ap,~Ma ) 0, -0? 0, ~(Ap,+Mo ) 0 -2

fl=———e 25, ——¢%, +————¢ 36 75,
’ 2\2ro, 1 V2ro, ? 2\2ro, 1 V210, ?
. (l_e’sht) -(Ap:—umsl)z e’s —Cl)‘z (l—e's_,) _(Aps+”m.r])2 e's —msz
t=——" 75 €20, + € 25, ——¢€2g,,
2\2no, ’ 2ro, ° 2¥2no, > 2oy
o O JOPROVOG) 0 Oy eholady ol
= o €20 < o} €25,
’ 2\2no, ' V210, ) 2\2ro, l V2no, *
!y —(Ap Mo (1-g ) -0 ) ~(Bp o)1 ) —02
‘_ (1-0_) ~4p~Mo)(1-6 s)eF . (1-8' ) “prlal(q-g7) -

2\/21t—62 € 20, _2-\/_1{?;- A Tmz—e 20, —\/2?—‘56
Now define fi = fil + f% and f? = i + fi. Also, letL; = fi + f¥. Now:
Ly=Af+H)+f (f+f).
In general:
L =f.1;—t (fii +f§u )+ fo (fs‘i +154),
where:
fi = fife +f
and,

fs = foafs +fa f

Indexing by transaction number rather than by transaction time yields:
Ly =fo (Fi+ 5 + iy (FE+13),

where L, = L(Ap, lwl | ¢). If there is a break in the transaction price series for any reason, e.g. the end
of the day, we restart the iterative process. That is, 8’ is reset to 8. Thus, the log of the likelihood
function becomes the sum of the log likelihoods over the regions where the iteration occurs. Were

there M breaks, the log of the likelihood, LL, would be represented by:
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M
LL=Y loglL, ]
m=1 m

This assumption makes the most sense ovemight, where there is a long interval without trade:
Information release continues overnight. When a break occurs in the middle of the day, we prefer to
throw away information rather than pollute the time series by introducing observations which may be

generated by a different forcing process.

In general, the likelihood function depends on the parameters A, 0}, O,, G3, G4, and 6. However,
these are functions of structural parameters, v ¢, ¢, o, and k, a scaling constant which is needed
because time periods are not necessarily scaled in minutes. In the estimation, we finesse this issue by

assuming that there is a single innovation between trades.

Recall:

v2 2c. ov?

= — == 0=—n—
4c(v +¢) P v ov2 +4c2(v + ¢)

In addition, 6, = E[(8 - Aw)? | informed trader] and &, = E[(8 - A®)? | uninformed trader]. By

substituting for A and recalling that 6 = B%(v + ¢) and 6, = G, we obtain:

G, = kvt— 32
1= 4(v + )
O, =kvt— vo
2 16¢2(v + 0)2

Appendix 5. Derivation of the likelihood function used to generate table 1.

This likelihood function is used to generate the results in table 1. Variable transaction costs are not
considered (c; = 0). Also, e has constant variance. As a result, this likelihood function need not be
derived recursively. Recall that J, = 1 only if @ exceeds @". As a diagnostic, we subtract g + Lt to
check for deterministic components to price changes. Therefore, -2log[1({p})] - (constant) can be

written as:

n (Ap—Mol iy, 1y? (Ap+Mol -ug-1, 0?2
—2logL = 2 { log(var(e,)) — 210g[ e Zvar(e) y Zvar(e)
1=1

Define the expression in square brackets as T1.+ T2, where T1 is the first exponential, and T2 the
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second. Further, let T1 = e’EV/2var(e) and T2 = ¢’E2/2var(e)  Taking the derivatives with respect to

var(e), 1o, Ky, and A, we obtain:

n 20l =2l

t

- { - = 24
; ST +T2)var(e)\E1le E2xT2) =0, 24)
I SN .
= = X T T LT+ 2T =0 25)

n =20, =& -1
=y [l -
Sovar(e) S (T1 + T2)(var(e))?

(E12T1 + Ez2x12)] =0. (26)

All 4 parameters are theoretically identified, except when A approaches zero. Then, T1 approaches
T2, and (24) collapses to zero, leaving the first derivative matrix short of full rank.
Appendix 6

Here, we introduce both fixed and per-share transaction costs to the model.
Recall that J; = 1 if o> 0" LetK,=1ifl;=1land I ,=-1,K;=-1if[;=-landI_ =1,and K =

0 otherwise. That is, there is no bid-ask "bounce" if I, and I have the same sign.

We begin by writing the conditional density for Ap:
@
(Ap Aol J ‘-chKs)z

€ Zoj ’

[ =fBp.BIII pj®) =

21'c0j
where e = b if I = 1 and s otherwise. Glosten and Harris [1989] have J, = 1, and do not distinguish
between informed and uninformed traders. They need only weight the 2™ possible bid-ask paths to

construct the likelihood function for Ap.

Here, estimation is complicated by the dependence of ¢ on past realizations of volume, w(s-t), due
to the unobserved identity (informed or uninformed) of the trader in both at time t and at time t-1.
Thus, we also weight over all possible sequences of identities. We write the likelihood function in
pieces in order to highlight its recursive construction. Define

(28)

frose __Pr(sees) —02 ~(Ap, Mol J -2c K P
voee

20.€ 20. s
\ 875, 10, !

o-j,n—lcj.n

where the four arguments in the superscript of £,°°* are: {{i,u},_;,(i,u},,{b.s},_1.{b.s},}. Thatis,

the first argument is i if an informed agent traded in period n-1 and u otherwise; the second argument
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is i if an informed agent traded in period n and u otherwise; the third argument is b if an agent bought
period n - 1 and s otherwise; and the fourth argument is b if an agent bought period n and s otherwise.
pr(eees) is the probability of a particular state occurring. Note that when ® is below the critical
cutoff, the probability of an informed trader must be zero. The recursive structure is similar to that

given in appendix 4, but there are now more terms:
Ln = fnb—l [ﬁ:bb +ﬁ:bs +f:,ubb +ﬁ1ubs] +fns_l[ﬁ:sb +ﬁlus +ﬁ|qu +ﬁluss] +

fnb— ] [f:bb + f:bs + ﬂlubb + f’tlubs] + fnb— 1 [f,‘lub + f:tss + funusb + ﬂluss]

where:

f = R BPP + FLR + 2y fa% + ) 7
F= R 50 + B + Fo B+ f £
F2 = Fa B+ RLATaP + Sy FaP o+ fiSy fa

F = FARY + BARS + 21 F + FEy fa.
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Figqure 11: probability of Informed Trade as a Function of Trade Size for Alcoa Aluminum
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