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Abstract

The issue of the non-invariance of the Wald test under nonlinear reparametrisations of
the restrictions under test is studied from a differential geometric viewpoint. Quanti-
ties that can be defined in purely geometrical terms are by construction invariant under
reparametrisation, and various attempts are made to construct a Wald test out of such
invariant quantities only. Despite the existence of a wide variety of possibilities, no com-
putationally convenient invariant test statistic emerges from the analysis, since all the
statistics considered need calculations equivalent in difficulty to the estimation of the re-
stricted model, contrary to the spirit of the Wald test. On the other hand a variant of
a C(a) test is discussed which, while not completely invariant under reparametrisation,
is very nearly so, at least in the context of the model discussed by Gregory and Veall
(1985), for which the conventional Wald test is particularly badly behaved. This test is
easily computed from estimates of the unrestricted model only, and Monte Carlo evidence
supports the conclusion that it yields as reliable inference as any other classical test even
in very small samples.

Key words and phrases: Wald test, C'(a) test, nonlinear restrictions, invariance under
reparametrisation, differential geometry, geodesics.



1. Introduction.

Notions of curvature in a statistical context, with associated ideas from differential
geometry, were introduced in a seminal paper of Efron (1975). Subsequently, Amari, in a
series of papers, and then in a monograph (1985), developed these ideas very considerably.
His work was inspired by earlier very abstract work by Chentsov (1972), in which had
been established the existence of a family of connections on what are now called statistical
manifolds. These manifolds corresponded to statistical models in the exponential family.

Davidson and MacKinnon (1987) introduced infinite-dimensional statistical manifolds,
with a Hilbert manifold structure, in a manner similar to some early sketches of such
manifolds by Dawid (1975, 1977) in two much neglected papers. The infinite-dimensional
structure avoided the need to limit attention to models in the exponential family, and
strongly supported an interpretation of statistical manifolds as being made up of data-
generating processes, or DGP’s, and of statistical or econometric models as being sets of
DGP’s, of either finite or infinite dimension.

A recent survey of the finite-dimensional work is provided by Barndorff-Nielsen, Cox,
and Reid (1986), and a paper by Kass (1981) is useful for a rather different approach, more
mathematically rather than statistically oriented.

More recently still, in some as yet largely unpublished work, Critchley, Marriott, and
Salmon (1990) have tried to use the ideas of differential geometry in order to understand
the reasons for the non-invariance of the Wald test under reparametrisation of the restric-
tions under test, and to propose new versions of the Wald test that are parametrisation-
independent and that may be hoped to provide reasonably reliable inference in finite sam-
ples. The motivation for their study was the work of Gregory and Veall (1985) showing
that the non-invariance of the Wald test could lead to devastatingly different inferences in
certain quite simple examples. Despite high-powered follow-ups of this work by Lafontaine
and White (1986) and Phillips and Park (1988), there remain a number of issues, both
conceptual and practical, that remain to be resolved before any version of the Wald test
can be reliably used in practice other than in linear regression models (including linear
simultaneous equations models).

In this paper, I try to resolve some of these issues, in an infinite-dimensional context.
Since the classical hypothesis tests, including the Wald test, are all asymptotically equiva-
lent under local alternatives or local DGP’s, the analysis is necessarily non-local. By this
I mean that it is not possible to linearise everything, and treat all test statistics as though
they were defined simply in the tangent space at the DGP supposed to have generated the
data. I do not mean, however, that the DGP is “distant” from the model being tested.
The issue is one of the curvature of the manifold (something that cannot be captured by
an analysis restricted to a linear tangent space), in the vicinity of a given DGP.

In the next section, there is a rapid review of the essential concepts of differential
geometry that will be used in an essential way in the paper. Then, in section 3, the
invariance question will be studied from a geometrical standpoint. It will be shown that
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a useful way to look at invariance properties is to consider as invariant such quantities
as can be defined purely geometrically, without regard to any particular parametrisation
chosen to characterise a model. Section 4 contains a number of suggestions for a Wald test
based purely on geometric quantities, and therefore invariant under reparametrisations by
construction. In one sense, the answers are not very satisfactory: the advantage of the
Wald test is that it requires estimation only under the unrestricted model, but no invariant
test exists that does not also require, at least implicitly, estimation of the model with the
restrictions imposed. Invariant test statistics can indeed be defined that respect the Wald
principle of being based on estimates of the unrestricted model, but their implementation
requires computations tantamount to the estimation of the restricted model. But it seems
plausible, according to the analysis presented in Section 4, that there should exist tests that,
although not strictly invariant, are easy to compute once the unrestricted model has been
estimated and are not so much affected by arbitrary choices as is the conventional Wald
test. In Section 5, examples are discussed that make the general issues clear. The Gregory-
Veall example is covered as one case of the models considered. The results of a small Monte
Carlo experiment suggest that the almost invariant, easy-to-compute, tests proposed in the
preceding section do indeed have desirable properties and can be recommended to use in
practice. Finally, Section 6 sets forth some conclusions suggested by the analysis of the

paper.

2. Some Background on Differential Geometry.

A manifold is a set endowed with a topological structure that makes it look like a linear
space locally. Most statistical manifolds studied up till now have been finite-dimensional,
so that they were locally like Euclidean space. The statistical manifold of Dawid (1975,
1977) and Davidson and MacKinnon (1987) is infinite dimensional, and it looks locally like
Hilbert space, which is the most natural generalisation of Euclidean space to an infinite
number of dimensions. A manifold is said to be modelled on Euclidean space or Hilbert
space if it is locally isomorphic to one of these. Both Euclidean space and Hilbert space
support the operation of differentiation, and so one may speak of a smooth manifold if the
differentiable properties of these spaces, which can always be used locally, are inherited by
the manifold globally. These differentiable properties may be inherited only to some extent,
and so one may deal with C* manifolds, on which “smooth” functions may be continuously
differentiated k times, all the way to C'™ manifolds. For simplicity, we will work with a
C° structure: functions or other objects defined on the manifold will be smooth if and
only if they can be differentiated infinitely often.

The elements of the Hilbert manifold we shall consider are vectors of random variables,
characterised by their joint density, which is assumed to exist with respect to some carrier
measure defined on the space (usually just R) in which the components of the random
vector are realised. The random vectors are thought of as the observations of a sample,
and so a sample of size n corresponds to a random vector of n components, and to a joint
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density of n scalar random variables. A joint density can be written as follows as a function

of n variables:
L(yn) = L(yla ceey yn),

where a superscript index denotes a sample, with n elements, and a subscript index refers
to one of those elements. Normalisation implies that

/dy"L(y") =1

A Hilbert space structure is generated, not by functions, like L above, that are integrable,
but rather by square-integrable functions. This observation leads us to consider functions
whose squares are density functions:

l$(y™)I> = L(y™). (2.1)

In this process we have lost the unigueness of our representation of joint densities
of n variables, since % is defined only up to a sign (or, more generally, a complex factor
located on the unit circle of the complex plane).? It turns out that this does not give rise
to any untoward consequences in the subsequent development of the theory. Thus, since
functions ¢ defined as in ((2.1)) are square integrable to unity, we are interested in the
unit sphere of the Hilbert space of square-integrable functions of n real variables, LZ(R™).
We shall denote this unit sphere as S(R™).

It is easy to see that the unit sphere of a Hilbert space is a Hilbert manifold, but a
curved Hilbert manifold — just as the unit sphere in 3-space is a curved two-dimensional
manifold. One way to see this is to imagine the tangent space at any point on a sphere
(of arbitrary dimension), and note that, although this space is locally isomorphic to the
surface of the sphere to which it is tangent, it does not coincide with it, even locally, and,
globally, it is quite different: see Figure 1.

The idea mentioned above of a tangent space is of cardinal importance in the analysis
of manifolds. A tangent space can be fruitfully thought of as providing a local linear
approrimation to the manifold, while abstracting from all global properties, such as the
topological difference between a linear space and the surface of a sphere. Formally, a
tangent space at a point m on a manifold M is defined as the set of tangents to curves
passing through that point. Such a curve can be defined as a mapping ¢ : |-1,1[ — M such
that ¢(0) = m. Since on smooth manifolds differentiation is permitted, we can characterise
the tangent to the curve c as the derivative ¢/(0) of ¢ evaluated at 0. Then, by a procedure
of abstraction familiar to mathematicians, a tangent at m is identified with an equivalence
class of curves through m, all with the same derivative at m.® See Figure 2.

2 In quantum mechanics, a similar state of affairs is found. I have found no useful analogies between
the physical uncertainty of Heisenberg’s uncertainty principle and the statistical uncertainty that
arises from the use of random variables, and so I can give no useful interpretation to such a complex
factor. The fact that an identical mathematical structure appears naturally in two very different
contexts is nonetheless thought-provoking.

3 The best exposition of the general theory of differentiable manifolds that I know of is Lang (1972).
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Inverse image in tangent space
of (part of) the great circles

North pol
Tangent space at north pole orth pofe //

Image of (part of) the

Great circles through north pole tangent space on the sphere

Figure 1

The tangent space to a sphere

The set of all tangents to M at m is the tangent space at m, denoted by TM,,,. This
space can be seen to be locally isomorphic to the manifold in the neighbourhood of the
point of tangency, m, and so also, therefore, to the space, Euclidean or Hilbert, on which
the manifold is modelled. The tangent space thus naturally inherits a Euclidean or Hilbert
space, (i.e., linear) structure.

Multilinear functions defined on the set of all tangent spaces to a manifold are called
forms. On the tangent space TM,,, at each m € M, an n-form maps from an n-fold product
of TM,,, with itself into the real line R. Of particular interest is the metric 2-form, by
means of which the scalar, or inner, product of Euclidean or Hilbert space is defined. If
this form is denoted as £2 : TM,, ® TM,, — R, then for any two tangents t;,t; € TM,,,
the scalar product (¢1,t2) of ¢; and ¢ is defined as £2(¢;,%2). In order to be a valid
inner product, {2 must be positive definite, in the sense that, for all nonzero ¢t € TM,,,
2(t,t) > 0. Norms of tangents are defined as usual: ||t||? = (¢,%), and it is this use of 2
that gives it the name metric.

We now consider the statistical interpretation of curves and tangents to the Hilbert
sphere S(R™). Since elements of S(R") are constructed as joint densities of n random
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Curvesci, it =1...4, throughm

Tangent c’(0) to all the curves at m

)W / c(0) = m

Figure 2

Tangents to curves on a manifold

variables, we shall, as in Davidson and MacKinnon (1987), interpret them as DGP’s. A
curve ¢ in S(R™) is therefore a one-parameter family of DGP’s. If by a model we mean a
set of DGP’s, then ¢ can be thought of as simply related to the loglikelihood function for
the model defined as the image of ¢: the loglikelihood for any value € of the argument of ¢
is in fact 2log c(€), since c(e) itself is the square root of the density associated by ¢ to the
parameter €. The point ¢(0) of S(R") is then some DGP contained in the one-parameter
model. The tangent to ¢ at ¢(0) can be represented as the derivative of the curve at e = 0.
It is therefore related to the derivative of the loglikelihood function at € = 0, that is, the
score vector for the model. If we denote the loglikehood as £(¢€), we have

¢(0) = %c(e)h:o - %C(O)%Z(e)lgo. 2.2)

Why is it necessary to define the tangent to ¢ as ¢'(0) rather than as £/(0), which is a
much more familiar construct? The answer is that the Hilbert space structure necessarily
had to be defined in terms of square-root densities — loglikelihoods are not necessarily
square integrable — and so, if we wish to make any use of the Hilbert manifold structure, we
must, to begin with at least, work with square root densities, which are square integrable.
Nevertheless, the statistical interpretation of a tangent is that of a score vector: it is simply
that the Hilbert space operations are more naturally defined on the square root density,

i.e., exp (34(€)).

Consider next the Hilbert space operation of inner product acting on two tangents ¢;
and t2 at a DGP m. Since each DGP c(e) in a curve can be represented by a square-root
density, there is for each curve ¢ a function ¥ : R® ® |—1,1[ — R such that ¢(y",¢) is
the square-root density associated with e evaluated at y™. Let ; and 1, be the functions
associated with the curves defining the tangents ¢; and ¢, respectively. If we use €; and e;
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for the parameters of the two curves, then by the usual definition of an inner product in
L2(R™), we have

(b1 t2) = %jwa —0)%% 24", 2 = )y (2.3)

Using the relation between square-root densities and log densities and their derivatives,
((2.2)), and denoting by ¢;, ¢ = 1,2, the loglikelihood functions of the two one-parameter
models, ((2.3)) becomes

6£1 0£2

1 [ 9160 m, 052 6, 0526 0™ (2.4
Now both %;(0) and t,(0) are the square root of the density associated with the DGP
m, and so the product t;(0)12(0) is just that density. Consequently 4 times ((2.4)) is the

ezpectation, calculated under DGP m, of

6£ 1 0¢,

e, V05, (V75 0);
that is, the covariance under m of the two zero-mean (under m) random variables

(04;/0¢€i)(y™,0), i = 1,2.

This is the interpretation of the Hilbert space inner product we were seeking. A
tangent at a DGP m € M is a random variable of the form 81 /0e (a random variable since
it is function of the random sample y™), that is related to another random variable, of the
form 0¢/0e, that has mean zero under m, because it is just a score vector. Conversely
it can be shown that any random variable (a function of y™) with mean zero under m
corresponds to a tangent in TM,,,. The inner product of any two tangents in TM,, is, up
to a factor of four, the covariance of the zero-mean random variables associated with the
tangents.

There is of course no reason for which the Hilbert manifold structure could not have
been defined directly on DGP’s represented by their log densities rather than their square-
root densities, with the (slightly) nonstandard definition of the inner product. But this
procedure would give rise to a manifold with a different differentiable structure from that
on S(R™). The manifolds themselves, considered simply as point sets, are different, since
S(R™) can be mapped many to one into the set of densities defined on R"™, which are
however in one-one correspondence with the log-densities defined on R™. A more important
difference is that, in the case of S(R"), the metric 2-form, defined as the usual Hilbert
space inner product, is by construction a smooth (differentiable infinitely often) form,
whereas the metric defined by the covariance operation on zero-mean random variables is
not smooth. This point is obvious as soon as one notes that there are zero-mean random
variables, for which the first moment necessarily exists, that have no second moment.
The metric evaluated at such random variables blows up, and thus cannot be smooth.
It is not hard to see that any representation of DGP’s other than wvia their square-root
densities, or a C'* transform of their square-root densities, will suffer from this problem,
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so that, in this sense, the square-root representation is the unique representation for which
the covariance inner product is a smooth form. We shall see that the metric 2-form
defined by covariance is natural in yet another way on statistical manifolds, namely as the
appropriate infinite-dimensional generalisation of the information matrix, and so there are
good reasons for retaining the somewhat unintuitive, but mathematically natural, square-
root representation, despite the fact that DGP’s are not represented uniquely in it.

Whenever a manifold is curved, there is no obvious way of relating the tangent space
to the manifold at one point, m; say, to that at another point m;. A flat manifold (i.e.,
an open subset of a linear space, finite- or infinite-dimensional) can be thought of as being
contained in the tangent space to it at any point. The tangent spaces are thus all just the
same linear space with the origin translated to different points of the manifold, which is
just a subset of the one linear space. But for a curved manifold, like S(R™), no such simple
procedure is possible. It is nonetheless necessary for many purposes to be able to relate
tangent spaces at different points of a manifold. In order for this to be possible, additional
structure is needed. The appropriate structure is called a connection, or more formally, an
affine connection, on the manifold.

It is not necessary for this paper to give a formal definition of an affine connection. (See
Barndorff-Nielsen, Cox, and Reid (1986) for a more detailed discussion of the concept in
the statistical context.) What a connection does is to permit the procedure called parallel
translation of tangents from one tangent space to another. Thus to each tangent in TM,, ,,
say, there corresponds by means of the connection a tangent in TM,,,, where m; and m
are distinct points of the manifold. The parallel translation is accomplished by solving
a set of differential equations, which cause a tangent to be smoothly transported in any
desired direction to tangent spaces at neighbouring points on the manifold. A direction of
particular interest is that defined by the tangent that is to be transported itself. Once a
tangent is chosen, then, it can be followed as it “follows its nose” through different points
of the manifold, thereby generating a curve. Such a curve, obtained by choosing a starting
direction and following that direction and its successive parallel translations, is called a
geodesic. The best known examples of geodesics are straight lines in linear spaces, and
great circles on the surfaces of spheres.

As remarked in the introduction, at least for finite-dimensional manifolds of DGP’s
contained in the exponential family, there is a one-parameter family of connections, all of
which seem to be natural on these manifolds. In this paper, we shall make use of all of
them, and a simple way will be presented that demonstrates the sense in which they are
natural.

There is one connection that is more natural than the others, namely the so-called
metric connection. It can be shown that on Riemannian manifolds, that is, smooth mani-
folds on which a positive definite metric 2-form is defined, there exists a unique connection
compatible with the metric. By “compatible”, it is meant here that the geodesics gener-
ated by the connection should have the property that the length of a geodesic between any
two points on it should be stationary with respect to perturbations of the curve passing
through the two points. Usually this means simply that the shortest distance between two
points on a curved manifold is the length of a geodesic in the metric connection.
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It is probably not surprising that the metric connection on statistical manifolds turns
out to the “natural” connection for the square-root manifold S(R"). Denote by P*(R™)
the statistical manifold defined by means of the fractional power é of the density, where é
is not in general equal to one-half. Of course P(R") is not a Hilbert manifold for § # 3
For the limiting case of § = 0, the manifold will be defined by the log of the density. The
manifolds P®(R™) have natural connections, as we shall see later, but they are different
from the metric connection. In fact varying the fractional power to which a density is raised
generates representations for which the natural connections are precisely the members of
the one-parameter family of connections alluded to above.

To conclude this preliminary section, we give the definition of the length of a curve
on a manifold. This is necessary if we wish to verify whether any given connection is the
metric connection. Consider a curve ¢ : [0,1] — M. A tangent can be defined for each
e € [0, 1], call it '(€), although these tangents belong to different spaces. Each tangent has
a norm, however, that we can denote ||c'(€)||, which is a positive real number. The length
of the curve c is then, by definition:

1
/0 le'(e)llde. (2.5)

It is important to note that the length of a curve is a property of that curve as a point
set in the manifold, that is, it is independent of the particular parametrisation used to
generate the curve. If f denotes a monotone transformation mapping the interval [1,0]
to the interval [f(0), f(1)], the curve é = c o f~! which maps [f(0), f(1)] to the same
image in M as does ¢, can be seen, by simple calculation, to have the same length as ¢. A
parametrisation of any curve considered as a point set which has the property that ¢'(e) is
constant for all € in its range of definition defines what is called an arc-length parameter
for the curve. Such parametrisations will be of use to us later.

3. Parametrisation Invariance as a Geometrical Property.

In the previous section, a loglikelihood function was always a random variable, a
function of y®. It was a member of a statistical manifold, S(R™) for preference. If the
random variable y™ is realised as a draw from some DGP m, then we have observed a
random sample generated by m. To avoid possible confusion, the realised sample will be
denoted as Y™. This sample now defines a function on the statistical manifold S(R™),
and in fact on the whole class of statistical manifolds P®(R™), by evaluation. Denote the
function by Y : P(R™) — R. Then, if £ is the log density associated to the DGP m, Y is
defined by

Y(m) =£Y"). (3.1)

By a slight abuse of notation, we use one symbol Y for the mappings from any of the mani-
folds P’(R™). Observe that in general Y is not bounded on any P’(R™). The mapping(s) Y
exists independently of any econometric model. But if we now choose to define a model M
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as a subset of S(R™) of finite dimension k, and further to parametrise the model by means
of a one-to-one parametrisation A that maps a parameter space @ C R* to M, such that
for all @ € O, there is one and only one m(f) € M, then the mappingly =Y oA:0 - R
is precisely the loglikelihood function for this parametrised model.

In this section, we try to leave the last step of the above analysis out to the extent
that we can. That is, we consider models as subsets of S(R") without any particular
parametrisation. In this way, we will readily see what aspects of what we are now about to
study, namely hypothesis testing, are parametrisation-independent, and what are not. The
term intrinsic is often used to describe quantities or procedures that can be defined on a
manifold in a way that is independent of any particular representation or parametrisation
of the manifold.

For simplicity, we remain in the classical scheme of hypothesis testing. We begin
from a maintained or alternative hypothesis, or model, denoted as M; € S(R™). The null
hypothesis, or model, is a subset of M;, denoted as M. It is of strictly lower dimension
than M. In the classical approach, only DGP’s in M are ever considered, although this
restriction is entirely unnecessary — see Davidson and MacKinnon (1987).

Maximum likelihood estimation of either of the models My or M; can be defined in a
parameter-free way, as follows. The mapping Y restricted to a model M;, 7z = 0, 1 maps from
that (finite-dimensional) model to R. Let us denote the restricted mappings by ¥;,z =0, 1.
The DGP m; which maximises the value of Y; over M; will be defined as the mazimum
likelihood estimate for model 7 and for the realised sample Y™. Thus we consider estimation
as a procedure for estimating a DGP rather than a vector of parameters. In the maximum
likelihood context, this clearly does no violence to our usual intuition, and we have clearly
found a parameter-free way of treating the matter. The maximised loglikelihood is now
defined straightforwardly as Y (72;) for model ¢, using the mapping Y defined in ((3.1)).

We may proceed directly to define the Likelihood Ratio (LR) test of My against Mj.
For the sample Y™ the value of the test statistic is

LR =2(Y (1) — Y (1)) .

The above definition is parametrisation independent, but it clearly coincides with conven-
tional definitions of the test statistic based on parametrised models.

The Lagrange Multiplier (LM) test statistic can also be defined in an intrinsic fashion,
with a little more work. Associated to any smooth real-valued function f defined on a
manifold M there is a 1-form denoted by df and called the ezterior derivative of f. At
any point m € M, the form df is defined by specifying its value for any tangent at m,
t € TM;,. The definition is made in terms of a curve ¢ through m such that its tangent
at m is t, as follows:

d®) = 2 £ (e(e)) lemor (32)

It can be shown that the 1-form is well defined by ((3.2)), that is, the definition is inde-
pendent of the choice of the curve ¢ provided its tangent at m is . Manifolds modelled
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on Euclidean or Hilbert space have the property that any 1-form, that is, a set of linear
functions defined on all of the tangent spaces to the manifold, is in one-one correspondence
with a field of tangents defined on the manifold. By this is meant that, just as the form
defines a linear function on each tangent space, the field of tangents defines a particular
element of each tangent space. This property is expressed by saying that Euclidean and
Hilbert spaces are self-dual. It means for present purposes that the action of the 1-form df
at m on a tangent ¢ at m is given by the operation of taking the inner product of ¢ with
the tangent, V,, f say, that corresponds to df at m:

df () = (Vm/f,1).

As the notation suggests, we call V,, f the gradient of the function f at m.

We will need the gradient of the mapping Y in order to construct the LM test. However
it turns out to be impossible to define this gradient on the entire statistical manifold S(R™),
because not only is ¥ not in general bounded on S(R"), it is not smooth either: it is not
even continuous.? This is not a difficulty if we consider instead the restricted mappings
Y;. These, being defined on finite-dimensional manifolds, are smooth under very general
assumptions about the models M;,: =0, 1.

The LM test statistic is defined as follows:
LM = (Vi Y1, Vi Y1). (3.3)

That is, the statistic is the squared norm of the gradient of the evaluation mapping Y
restricted to the alternative model, evaluated at the maximum likelihood estimate of the
null model. This definition is probably rather unfamiliar! On the other hand, it is simple
and also intrinsic. To see that it is equivalent to conventional definitions, it is perhaps
easiest to have recourse to the methods of Davidson and MacKinnon (1987).

There is no simple means of defining what could be recognised as a Wald test statistic
in an intrinsic manner. If we are prepared to accept a particular representation of the
restrictions that specify My as a subset of M, then we can at least write down what we
may call the Wald test associated with that representation of the restrictions in an intrinsic
fashion, and thereby see more clearly why the test statistic depends on the representation
chosen. Let R : M; — R” be a smooth mapping with the property that R(m) = 0Vm € My,
but R(m) #0 Vm € My, m ¢ M. Clearly My can be defined as

M = {m € My |R(m) =0 € R"}. (3:4)

The Wald test statistic associated with the representation R of the restrictions is then
constructed as follows. Define an r X r matrix V with typical element

Vij = (Vﬁh Ri, Vi, Rj)7

4 No evaluation mapping is smooth on an L? Hilbert space of functions. To see this, observe that one
can find two functions which are arbitrarily close in L2 norm and which have fixed different values
at some chosen point.
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where R;, R; are respectively the itt and 7** component functions of R. Then the statistic
is

W = R'(7,)V 1 R(rn). (3.5)
The definition ((3.5)) is indeed intrinsic, but it is particular to the representation R. Other
representations of the restrictions may be obtained by considering any mapping @ : R"™ —
R that maps the origin and only the origin to the origin.® Then R' = Qo R: M; — R"
provides an equally valid way of characterising the null model: indeed, ((3.4)) is true
with R replaced by R'. If we denote by J the Jacobian of the mapping Q evaluated at
R(,) € R", the matrix V will be replaced by

V' =JjvJjn.

If, but only if, Q is a linear mapping, so that J is a constant matrix such that for any
z € R", Q(z) = Jz, will W be the same for both R and R'.

The definition ((3.5)) and the above reasoning show clearly that the Wald statistic is
unaffected by the parametrisation of either of the models M; or My, but that it is affected
by the “parametrisation” of the restrictions, that is, the choice of R. There seems to be no
obvious way of escaping the dependence on the parametrisation of the restrictions as long
as we stick with the conventional idea of the Wald test as a test of whether the restrictions
are significantly violated at the unrestricted maximum likelihood estimate.

There exists a fourth classical test statistic, not nearly so well known as the trinity
of LR, LM, and Wald, but asymptotically equivalent to them under DGP’s close to the
null hypothesis. It is the so-called C(a) test of Neyman. The original reference is Neyman
(1959), and the test has been reconsidered by Smith(1987), Dagenais and Dufour (1989),
and Davidson and MacKinnon (1991). Like the LM and Wald tests, the C(a) test is con-
structed about a particular DGP, but unlike the better-known tests, which are constructed
around either the unrestricted or the restricted MLE, the C(a) test can be computed at
any DGP in M. For data generated by DGP’s close to the DGP used to compute the test,
the statistic is asymptotically equivalent to the other classical tests. The DGP used for the
C(a) test will typically be the result of a consistent but inefficient estimation procedure
applied to the null hypothesis. If this DGP is denoted by 7o, the test statistic can be
expressed intrinsically as follows:

C(@) = (Vine Y1, Vino Y1) — (Viag Yo, Vi Yo) - (3.6)

It is readily seen that the LM test is in fact a special case of the C(a) test, since, at the

restricted MLE, we have
Vino Yo =0

by the first-order conditions for a restricted maximum of the loglikelihood function. Con-
sequently ((3.6)) reduces to ((3.3)) when 7o = .

5 And still other representations exist, which respect only the set on which R(m) = 0. But we need
not consider these.
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In the next section we shall consider a variety of test statistics which, although not
Wald tests stricto sensu, are based on the Wald principle, in the sense that they are calcu-
lated in terms of the unrestricted MLE. Among these will be some tests that are actually
C(a) tests. However the DGP at which they are computed is based on the unrestricted
MLE. Although most of the procedures considered turn out to be unsatisfactory, either
because they are not invariant to reparametrisations of the alternative model or of the
restrictions, or else are invariant but not simple to compute, there is one C(a)-style pro-
cedure which, though not invariant, is much less badly behaved in that regard than other
non-invariant procedures, and is easily computed.

4. Suggestions for an Invariant Wald Test.

The classical hypothesis tests use a variety of ways of measuring how far the unre-
stricted MLE, 174, is from the null model M. The LR test does so directly in terms of
the difference of the maximised loglikelihood functions; the LM test does so indirectly by
testing the gradient of the loglikelihood function at the restricted MLE 72¢; and the Wald
test does so at the unrestricted MLE 72, in terms of a highly arbitrary metric defined in
terms of some representation R of the restrictions that define the null model M.

The differential-geometric approach sketched in section 2 suggests naturally a variety
of ways of measuring statistical distance on statistical manifolds. These ways fall into
two broad categories — local and global. The LR test yields a global measure, since for
different realised samples Y the unrestricted and restricted MLE’s may be anywhere on
the manifolds M; and M. The LM test uses a local measure, since it is defined exclusively
in terms of quantities defined at the restricted MLE hg; similarly the C(a) test uses a
local measure at the DGP 7 belonging to M. The definition ((3.5)) of the Wald test is
also a local one: everything that appears in the definition is evaluated at the unrestricted
MLE ;.

In the search for an invariant Wald-style test, we shall consider both local and global
possibilities. It will turn out that there is no obvious test that is both local and invariant.
The reason, roughly speaking is this: the evaluation mapping Y; gives its global maximum
over M; at the MLE ;. Consequently its gradient V,,,,Y; is zero, just as V,,,Yj is zero at
the restricted MLE. There is therefore no material from which to construct a test statistic
available from the gradient of Y; at m;. The value Y(m;) is used in the LR test, and
the Hessian, essentially the gradient of the gradient of Y, may be used for the purposes of
estimating the information matrix, but there is no first-derivative information available.
In order to create some, the usual Wald procedure makes use of the restrictions under test,
but then the problem arises that the way in which the restrictions are formulated affects
the test statistic. If a natural way of formulating restrictions existed, then a Wald test
based on this formulation would be free of the arbitrariness that afflicts the Wald test in
general, but no such natural formulation has been found.

For this reason, global possibilities are worth considering. The LR test exemplifies
such possibilities, but it requires knowledge of the restricted estimate 7y as well as of
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my. Can other global (and invariant) procedures be defined in terms solely of m,? If
not, what is the minimum of extra information needed to construct a test? Do tests so
constructed have reasonable properties in finite samples? It appears that the answers to
these questions are negative or discouraging: by definition a global procedure cannot be
defined in terms of a single point; the extra information needed for a test is more or less
that provided by estimating the restricted model; and there is no reason to believe that
finite-sample properties will be any better for newly invented tests than for existing ones

like LR.

The dilemma is then that simplicity of test construction requires a local procedure,
but local procedures necessarily involve an unwelcome degree of arbitrariness. Global
procedures, at least if they are defined intrinsically, are not arbitrary, but need at least
as much effort to compute as the LR test. By considering various suggestions that have
been made in order to find an invariant Wald test, we shall see the force of this dilemma,
but it will also turn out that in some circumstances approximations exist that make the
computation of reasonably well-behaved tests possible.

Critchley, Marriott, and Salmon (1990) (CMS) propose what they call a geodesic
version of the Wald test. Their idea is to treat M as a statistical manifold, just as we
have done here, and to trace out, within M;, a geodesic from ; to My. That is, they
seek a curve, in M, starting from r2; and ending somewhere on M, of minimum length,
as measured by the arc length formula ((2.5)). The geodesic test statistic is then the
square of the minimised arc length, and it will have, asymptotically, a central chi-squared
distribution with r degrees of freedom under the null hypothesis.

There are various problems and ambiguities associated with this procedure, quite apart
from the sometimes nearly insuperable computational difficulties of finding and measuring
the length of the geodesic. First, why should the geodesic be restricted to lie in M; rather
than simply being calculated in S(R"), the big manifold in which M is embedded? Even
if there were no other considerations, it would be vastly simpler to locate and measure the
unrestricted geodesic in S(R™) than the restricted one in M. Further, the unrestricted
geodesic would necessarily be no longer than the restricted one. If geodesics do indeed
measure something that can usefully be thought of as statistical distance, then use of a
geodesic artificially restricted to pass through M will presumably overstate the distance
from M3 to Mp, the more so the more curved is M;. Figure 3 illustrates this point.
Preliminary Monte Carlo work by CMS suggests that this is indeed the case: their test
rejects true nulls much too often if asymptotic nominal critical values are used.

Another question arises from the existence of a whole one-parameter family of natural
connections on S(R™). It is natural to ask which one should be used in order to determine
the geodesic curve from 73 to My. CMS use the metric connection, arguing that it is more
natural than the others. Again, use of any other connection will necessarily lead to a longer
geodesic than that given by the metric connection, which, by construction, minimises the
arc length of the geodesic.

Even if one can find reasons to prefer one connection over another, why should the
geodesic used for calculating the test statistic be the one that minimises arc length? The
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geodesic through M

geodesics in My unconstrained geodesic

Figure 3

Constrained and unconstrained geodesics

point of this question is that, if a null model is false, then the maximum likelihood estimate
of that model converges for large sample sizes to what we may call, by analogy with the
terminology used in connection with quasi-maximum likelihood estimation (see White
(1980)), the pseudo-true DGP. This pseudo-true DGP, call it mq, is defined as the DGP
in My which minimises the Kullback-Leibler information criterion (KLIC) for distance
from the true DGP to My. The KLIC is an asymmetric distance measure, so that it is
necessary to specify the direction in which it is used: here one starts from the true DGP
and measures from it to the DGP mg contained in the null model. Its asymmetry ensures
that the KLIC is not equivalent to any distance measure of the sort we have considered
here. No connection can ever lead to geodesics through two given points that look different
in one direction and the other. But there is a strong intuitive case for using a geodesic,
in whatever connection, that links the unrestricted MLE ; to the point mg of My that
minimises the KLIC from 7; to My rather than any other measure of distance. In fact,
as will be clear in the next section, in some cases mq is just the restricted MLE 1.

The KLIC is asymmetric, but it is intrinsic. In fact, if two DGP’s m; and my in S(R™)
are characterised by log densities £; and #3, then the KLIC from m; to mg is

Em, (&1 — £3). (4.1)
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The notation means that the expectation is calculated using the probability density asso-
ciated with DGP m;, namely exp(41). In the other direction, from m; to m;, the KLIC
is

Em, (6 — £1).

The usual interpretation of the KLIC, and the reason for which its messy asymmetric
character is tolerated, is that it measures the power that statistical tests have, used on
samples that were actually generated by the source DGP m;, to discriminate between m;
and mq. Since m; and my are in general of differing degrees of “noisiness”, there is no
reason to suppose that this discriminatory power will be same for data generated by each
of them.

If it is possible to choose a DGP in Mj in a non-arbitrary way, and somehow measure
the distance to it from 74, then it is again possible to consider a local test. The reason
is that a direction is involved, namely that from m; to the chosen DGP in M, and a
direction can be expressed as a tangent at 7y, that is, in a local fashion. Some such local
tests will be examined later.

It should be emphasised that everything suggested up to now is asymptotically equiv-
alent to everything else. All of the natural connections on S(R"™) are locally the same, and
all the geodesics that they generate linking m; to M have the same length asymptotically
under DGP’s that drift at a rate proportional to n~% towards a DGP contained in M.
Thus what is at stake in all this discussion, besides ease of computation, is the finite-sample
properties of the proposed test statistics. After all, the conventional Wald statistic, ((3.5)),
18 asymptotically independent of the representation R of the restrictions used to compute
the test. But rather than plunge directly into Monte Carlo investigations or stochastic
expansions designed to elucidate finite-sample behaviour, it is prudent to eliminate from
consideration tests that are clearly dominated by existing tests. It will appear that not
much is left after this elimination process.

It may be useful to present at this point a catalogue of suggestions for invariant test
statistics, and discuss how they may be computed. For none of them will it be necessary to
represent the restrictions explicitly. The requirement imposed by CMS that their geodesic
pass through M seems arbitrary and potentially dangerous for the size of the test. None
of the following suggestions uses it. First, for global tests, it is necessary to select a DGP
in My with a view to computing the distance between it and the MLE ;. This may be
the restricted MLE, 19, or the DGP mg that minimises the KLIC from 1 to M (these
two may be the same), or some other DGP obtained, perhaps, by a consistent estimation
procedure other than maximum likelihood, as for a C(a) test, or, more geometrically, the
DGP that minimises the arc length of the geodesic from m; to My in one or other of the
natural connections. Once this DGP, call it 1, has been selected, a geodesic is drawn
from m; to g, defined once more by use of one of the natural connections, although even
if one was used to select y it need not be the same one here. Then the arc-length of this
geodesic is computed, and its square serves as the test statistic. Local tests can be defined

6 The concept of a drifting DGP is defined in Davidson and MacKinnon (1987), in which it is called
by the less satisfactory name of local DGP. The concept is very useful in analyses of test power.
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if it is possible to determine a direction at M. This could be for instance the tangent to
a geodesic, constructed as for a global test, at the beginning point of the geodesic, that is,
m1. The test statistic in this case would be the squared norm of the tangent.

It is now time to make explicit how to find geodesic curves from one DGP m; € S(R")
to another, my, for the different natural connections defined on S(R™). It turns out that
such curves can be written down simply, by means of convex combinations, for different
ways of representing the elements of S(R™). In the natural representation, namely that
which uses the square-root density, we consider the set of convex combinations of the
square-root density, 11, say, associated with DGP m; and 1, associated with ms. We
obtain

¥a = (1= A)thr + Ao (4.2)

Of course ) is not a square-root density for A # 1,2, since it does not satisfy the normal-
isation condition for a density. This is easily rectified: we simply renormalise, as follows:

_ ¥
ST 9

Here

loall = (1 = A)2 + A% +2A(1 — X) cos ¢

where cos¢d = (¥1,v2) is the cosine of the angle ¢ between the two DGP’s. We claim
(without proof) that the curve ¢()) given by ((4.3)) is the geodesic in the metric connection
joining m; and my. In order to compute its length, we must construct the tangent to c(})
for each ) € [0,1]. This tangent is represented simply by the derivative of ¢()\), which is

oy = (1 - - — cos
0 = (T =l + 20 -2 —cosdihl)  4d)

Next one calculates the norm of the above expression as a function of A, and integrates
the result from 0 to 1, according to formula ((2.5)). The calculation is tedious, but the
answer is simple: it is just @, the angle between the two DGP’s. This is of course in accord
with the usual distance between two points on the surface of any sphere of unit radius,
measured as the length of the arc of the great circle through the two points.

The reason for which the calculation of the length is complicated is that A is not an
arc-length parameter along c()\), since the norm of ¢/(A) depends on A. The reason for
this should be clear from Figure 4. A would be an arc-length parameter along the secant
joining m; to ms, but not along the arc. For small arcs, the difference is of the second
order of smalls, and so asymptotically it is something else that can be ignored.

If a geodesic is defined using a genuine arc-length parameter, € say, the calculation
of the length of the geodesic is greatly simplified. For an arc-length parameter, ||c'(¢)|| is
constant by definition. Thus if the geodesic is defined from € = ¢; to € = €3, its length is

[ le@nde
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Figure 4

The arc and the secant between two points of S(R")

which is just
(e2 —e1)]|<'(O)]-

Thus it is sufficient to calculate the norm of ¢/(¢) for just one value of ¢, at the beginning
of the curve, say. This suggests a way of implementing local tests based on geodesics. We
saw above that the “natural” parameter A was almost an arc-length parameter. It will
almost always be much easier to use than a genuine arc-length parameter. In particular,
the length of the (metric) geodesic from 3; to 12 can be approximated by ||c'(0)||, which,
from ((4.4)), is (2(1 — cos ¢))% The leading term in a Taylor expansion of this for small ¢
is indeed just ¢. This approximation clearly merits the name local, since it uses information
only about the start of the geodesic, which, for all the proposed statistics, is ;.

The approximation is not of much use for the metric connection, for which the length is
simply computed as just the angle between two square-root densities. But it is of great use
for the other connections that we consider. Let § be a parameter between zero and unity,
and suppose that we are interested in a connection, indexed by §, between two DGP’s with
log-densities of #; and £;. The connection turns out to be natural in the manifold P*(R™),
as follows. The DGP’s are represented in P’(R™) by the §** power of their densities, which
can be written as exp(64;), ¢ = 1,2. Just as with square-root densities, in ((4.2)), consider
a curve defined by convex combinations of these powers, as follows:

exp (6¢(X)) = [(1 — X) exp (861)) + Aexp (822))] /N5(A) (4.5)

where the normalisation factor Ns(A) is defined by the formula

1 é
M = [ [ (-0 ace) oy
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Although ) is still not an arc-length parameter, the curve cs()) defined by ((4.5)) is (we
state this without proof) the geodesic from m; to ms in the connection indexed by 6. Two
special cases are of particular interest. If A = 1, we obtain the so-called mizture connection,
given by simple convex combinations of densities. Note that in this case, N1(A) = 1. The
other case is the limit as § — 0. We shall see in a moment that this corresponds to
the so-called ezponential connection, in which geodesics are defined by means of convex
combinations of log-densities.

Let us now compute the approximate length of these geodesics, as ||cj(0)||. We find
without too much trouble from ((4.5)) that

£(0) = 7 (exp(6(6z — 1) — C(9)),

where the important function C is defined as follows:
C(6) = / exp (1 — )0z + 601) dy™. (4.6)

The function C can in fact be interpreted in several ways. It is the expectation under m;
of exp(6(¢2 — £1)), and thus the moment-generating function under m; of the random
variable £2 —¢;. It is also the expectation under m, of exp(6(¢1 —£2)), with a corresponding
interpretation as a moment-generating function. We shall see that most of our proposed
statistics can be expressed in terms of C and its derivatives.

The norm of the tangent c(0) can be computed using ¢'(0) and the expectation
definition of the norm in S(R"). We obtain

B = 5 [ o (447 - )

1 - -
= 6_2E° (626(lz t) _ 20(8)e 2=t 4 02(5)) : (4.7)

1
= L (0o - o)
Notice that the limit of this last expression as § — 0 is
C"(0) - (C'(0))”. (4.8)

The formula ((4.7)) permits the implementation of a series of local possibilities for a Wald
test. The DGP m; is replaced by the unrestricted ML estimate 4, and m; is replaced by
the “target” DGP rhy.

Consider now a geodesic from m; to my in the exponential connection, which corre-
sponds to the limiting case § — 0. The geodesic itself is given by the set of normalised

convex combinations

é(/\) = (1 - A)Zl + A, — log C(A) (49)
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in which the normalising term? turns out to be nothing other than the function C' of

((4.6)), evaluated at A. The derivative of £(\)is

O =Ly — £y —

and so the squared norm of the tangent to the geodesic at A is

Enn, (ez _ - g((:)) )2 . (4.10)

Now notice that
1
B (62 =) = 5753 / (€ — L) exp (1 — \)fs + M) dy™

_ ﬁ% / exp (1 — A1 + M) dy™ (4.11)

_oW
TN’

and, similarly,

Em, (82 —£)* = %(,\/\))

Consequently expression ((4.10)) becomes

- ()

(compare ((4.8))), which can be expressed more simply as
2

a2

or, if we define v(\) = log C()), as just 4"()). The length of the exponential geodesic

from m; to mg is therefore . .
/ VOV (4.12)
0

Notice that, as we mentioned earlier, this quantity is defined solely in terms of the func-

tion C of ((4.6)).

The exponential connection was chosen over other possibilities in the above calculation
of an exact geodesic length for two reasons. One is simply that the plain log density is
mathematically more tractable than fractional powers of the density. The other reason is

log C(}),

7 A term rather than a factor because we are working with a log density.
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deeper, and provides a theoretical justification for preferring the exponential connection
to the other connections in the context of hypothesis testing. It is that the function C
and its logarithm ~ inherit from the log-densities £; and £; a structure by which the
information in successive independent observations is accumulated additively in both the
approximate and exact lengths of the exponential geodesic connecting them, ((4.8)) and
((4.12)) respectively.

Although the reasoning can be extended without major difficulty to the case of de-
pendent observations, the present point can be made most clearly if we assume that the
DGP’s m; and m; generate n independent, but not necessarily identically distributed, ob-
servations. In this case, each of the log-densities £;,7 = 1,2 can be additively decomposed
as follows:

(™) = b, (4.13)

where /; is the log-density of observation ¢. Similarly C()A) can be written as

oM = / exp (2 (1= N)(&)e + A(ez)t)) dy"

t=0

- / [T exp (1 = \(&2)e + Ata)e) dy™
= H /exp ((1 = A)(41) + A(£2)e) dys,

so that

7(A) = En: 7e(A), (4.14)

where the contribution to y()\) from observation t, y¢(A), is just

7N) =log [ exp (1= M@+ A(e2)o) dye

Now consider the DGP’s on the exponential geodesic for values of A different from 1 or 0.
From ((4.9)) along with ((4.13)) and ((4.14)) we have

£A) =Y {1 =)&)+ &) — 1(V} -

We see that the additive structure of the log densities across observations is preserved,
or, in other words, if the DGP’s m; and m, generate independent observations, so do
the intermediate DGP’s on the exponential geodesic connecting them. It is important to
observe that this is not the case with any other connection, including the metric connection.
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One way of expressing the particular property of the exponential connection we have
just described is as follows. If we restrict attention to DGP’s for which the successive
observations are independent, this corresponds to restricting attention to a submanifold of
S(R™), call it P(R™), which is a product manifold of n unit spheres in S(R):

P(R") = Q) S(R).

It is clear that P(R™) is the subset of S(R™) containing square-root densities corresponding
to independent observations, that is, densities that factorise into n marginal densities. On
this product manifold, it can be checked that the inner product is the product of the P(R™)
inner products of the factors. Only the exponential connection preserves the structure of
P(R™), in the sense that geodesics between points of P(R") lie exclusively in P(R") only
for the exponential connection.

We may now write down both the exact and approximate distances in the exponential
connection between two DGP’s that generate independent observations. From ((4.12)) and
((4.14)) we conclude, first, that the exact distance is

/ ,lZw(A)dA; (4.15)

(4.16)

while the approximate distance is

If connections other than the exponential one are used, there is no additive structure for
the exact distance. However since the approximate distance, given by ((4.7)), is expressed
solely in terms of the function C, its multiplicative structure can be used in order to permit
a calculation in which each observation can be treated separately. The exact lengths are
in any event a good deal harder to compute, even for a single observation, and we shall
spend no time on them here.

5. Some Examples.

The examples in this section will be restricted to regression models, not necessarily
linear, with normal errors. The first, and simplest, example is of a straightforward location
model, which can conveniently be written as

Yt = P+ € t=1,...,n € ~ N(0,I). - (5.1)
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This is, as it stands, a one-parameter model of the type considered earlier: it defines a
curve in S(R). The curve is parametrised by p. If as usual £; denotes the log-density of
observation t, we have

1 1
be(ye, p) = —5log2m — 5 (ye — w’.
Consider the determination of the distance between two DGP’s in the family ((5.1)) char-

acterised by the parameters p; and p;. We first calculate the function C of ((4.6)) for
these two DGP’s. We obtain for each observation ¢:

C:(3) = exp {3 — iA1=V}

so that
1) = =3 (i — AL = ), (52)
The derivatives of v, are
1(A) = —%(m — p2)*(1 - 23),
and
7(A) = (1 — p2)*.

The distance between the DGP’s characterised by p; and p2 in the exponential connection
is therefore, by ((4.12)), for each observation:

/0 VATOVAA = [z — pu, (5:3)

where we have chosen the positive square root in order to obtain a positive length. For a
sample of n observations, the combination rule ((4.15)) can be easily applied: the distance

1S
Vnlpz — pal- (5:4)

Notice that ((5.4)) is both the exact and the approximate distance for the exponential
connection, or, in other words, y is an arc length parameter on the exponential geodesic.
For the connection indexed by §, the approximate squared distance for each observation is
given by ((4.7)):

2 (C(28) - €7(8)) =

5% [exp (—(u1 — p2)?6(1 — 26)) — exp (—(p1 — p2)?6(1 - 6))] -

For small values of |1 — p2| this expression can be expanded in a Taylor series. The result
is

(11 — p2)? (1 - @(#1 —p2)’ +.. ) , (5.5)

from which we can see that the leading term is independent of the choice of §, and coincides
with the result ((5.3)) for the exponential connection. The approximation is plainly far

22



from perfect, however, since we know that by construction the smallest ezact squared
distance is given by the metric connection, for which § = 1. The approximation to the

approximate distance given by ((5.5)) is however minimised at § = 3.

Things are a little less simple if we allow the variance to be variable. Consider next
the following model:

Yt = pt + €1, t=1,...,n € ~ N(0,0%I). (5.6)

Although we have allowed for another element of generality in ((5.6)), namely the pos-
sibility that the mean of each observation be different, this does not in fact lead to any
further complexity. Suppose that we consider two DGP’s, m; and mg, each described
by ((5.6)), with different parameters (g1,01) and (p2,02). Tedious but not very difficult
calculations demonstrate that the exponential geodesic through m; and m, passes through
DGP’s which are all of the form ((5.6)), so that the exponential connection preserves the
structure of the normal model.® The contributions 7:(\) can be computed, and they are,
if Apy denotes (p2): — (p2): and At denotes log(oz/01):

1 A1 —=X)(Ape)?e 247

207 (1— A+ Ae—24r) (5-7)

7t(A) = —)\AT — %log (1 -+ A6—2AT) -

This expression, like ((5.2)), depends on g3 and pg only through Apug, and it is easy to
see that in fact () itself depends only on |1 — p2]|2. The second derivative of ((5.7)) is
rather messy:

. 1 (1 _ 6—241-)2 (Aps)2e=2m
7 (A) = ’2‘(1 gt Ae‘zAT)2 (1— X+ Ae—247)
(1= 2X)(Apt)?e72m (1 — e7247)
- (1 — A+ he—24r)?
A1 = \)(Ape)Pe?m (1= e~247)?
- (1= X+ e—2ar)? '

(5.8)

The above expression simplifies considerably when it is evaluated at A = 0. We obtain

n 1 U% : 012 2
7:(0) =3 (1 - g) + s (Ape)”. (5.9)

It is certainly theoretically possible to compute the integral of the square root of ((5.8))
with respect to A from 0 to 1, since the integrand is the square root of a rational function of
A. However the complexity of the calculation is such that the effort hardly seems justified.

8 1t is well known, see Amari (1985) for example, that it preserves the structure of the exponential
family. The normal family is a subfamily of the exponential family, the more special structure of
which is also preserved.
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We make do therefore with ((5.9)), which permits us to use an approximate length for the
geodesic from m; to ma. The square of this approximate length is, for a sample size of n:

n o2\? o2
nfy_ i) L%y, e 1
2 ( U%) + pr |2 — pea| (5.10)

We have now developed enough tools to be able to consider the case considered by
Gregory and Veall (1985) (GV), in which a linear regression model is subject to nonlinear
restrictions on the regression parameters. The estimation of the unrestricted model is
simple, and can be done by ordinary least squares, although presumably the maximum
likelihood estimate of the error variance will be preferred over the OLS one in this context.
Suppose that this estimation yields an estimate 62 for the error variance and a vector
of fitted values ft with components fi;. The estimate 62 and the fitted values ji define
the DGP from which our geodesic is to start — it corresponds to the m; of the general
theory above. Theory has also suggested that for ma we take the DGP in the null model
that minimises the KLIC from m;. Alternatives would include the DGP that minimises
the exact exponential geodesic distance from m; to the null model, but that would be
computationally awkward. It is of course simple to minimise the approximate distance
((5.10)), and that provides another possibility.

First let us consider minimising the KLIC. From ((4.1)) and ((4.11)) it can be seen
that the KLIC from m; to mz is just —v/(0). From ((5.7)) it can be computed that

2 2
, n o1 n o]
= =1 - - 21
70 =3s(22) +5 (1-3)
1
- 2—0—2”#1 - M2||2-
2

It is immediate that this is minimised with respect to g2 and o2 by minimising the sum-
of-squares ||p1 — p2]|? so as to obtain f say, and then choosing 03 as

. 1 .
55 =07+ ;”Ml — fia|. (5.11)

The result ((5.11)) is familiar from the theory of pseudo-true values for misspecified re-
gression models.

Minimisation of the approximate length of the exponential geodesic, given by ((5.10)),
does not yield the same result. In fact, the sum-of-squares is again minimised, so that the
minimising g is still fi3, but the value for the variance parameter is different. It is readily
seen to be:

. 2 .
63 =01 + e — iz ||*. (5.12)

We now have two relatively simple candidates for an invariant Wald test. We can
calculate the approximate length of the exponential geodesic, as given by ((4.16)), from
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the unrestricted estimate of the DGP, characterised by ft and 62, to the point of the null
model characterised by jfi and either the 2 of ((5.11)) or the % of ((5.12)). The results
are, if it is the KLIC that is minimised,

~ o~ -2 "~
1. ~ 112 —1”#—#“2 1 —1”#‘#”2
gﬂﬂ—ﬂu(l—n Tz 1+§n 2z ) (5.13)

or, if the approximate length of the geodesic is minimised,
L. - N T A 51
§||u—y,||2 (1—2n IT 1+n 1——&—2— . (5.14)

Asymptotically, both of these are just

I — &l

5

which, apart from some numerical constants related to numbers of degrees of freedom, is
just the standard F test, since, as is clear from its construction as a minimiser of a sum
of squares, fi is the vector of fitted values from the (in general nonlinear) least squares
estimation of the restricted, null, model. Further, both of them can be expressed as simple
functions of this F-statistic and the sample size. For the special case in which the null
model is linear, their exact distributions could be computed, and they would have all the
usual optimality properties of the F' test. Notice however that they are both numerically
larger than (the appropriate multiple of) the F-statistic. That is of course a well-known
feature of conventional Wald tests.

It is perhaps worth a word that the minimised KLIC, times 2, is also a suitable
asymptotic test statistic. In this case, the minimised KLIC can be computed as

n ol = al)?

which is in fact precisely one half of the LR statistic, and also a numerical function of the
F-statistic.

It is evident from the above discussion that all the test statistics considered, ((5.13)),
((5.14)), and ((5.15)) require knowledge of fi, which is just the vector of parameter es-
timates obtained from estimating the restricted model. This violates the basic idea of
the Wald principle, and in the present context requires nonlinear estimation where the
unrestricted model needs only linear OLS. It is worthwhile therefore to consider tests that
do not have such strong requirements, and here C(a) tests seem natural candidates, since
they can be computed at any DGP in M. We will see how this can be done for the specific
example considered by GV; the method is easily seen to be quite general.

Gregory and Veall consider a model of the form
Yyt = T1¢P1 + T2t P2 + €, t=1,...,n € ~ N(0,0%I), (5.16)
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with the nonlinear restriction

Pr1f2 —1=0. (6.17)

Model ((5.16)) can evidently be estimated simply by OLS. Whether or not the restriction
((5.17)) is true, the OLS estimates are consistent for #; and B;. Therefore at least two
possible DGP’s in the model My defined by ((5.16)) with ((5.17)) suggest themselves
as DGP’s at which a C(a) test may be computed, namely those characterised by the

parameters (31,1/51) or (1/8z, B2).

As is clear from the general theory, the C(a) tests are defined invariantly, but it is
equally clear that the tests are not unique. It is true that, in the chosen parametrisation
of model ((5.16)), there are only two obvious points at which to consider computing a
C(a) test, but even then many more can be found with little expenditure of imagination.
For instance, a geometric mean of the form (8;/82)% and its reciprocal could well seem
particularly well suited to the model in hand. The invariance of the C(a) test thus seems
to be offset by the fact that it could be evaluated at a wide variety of points, each of
which will presumably yield a different value for the test statistic. (In general that is: with
linear restrictions that would not be the case.) We are still in effect confronted by the
problem that there is no natural direction towards M if we are restricted to working with
information yielded by the unrestricted (OLS) estimates.

Although this difficulty seems to be at least as serious as the non-invariance of the
conventional Wald test, it has a different origin, as can be made clear by geometric rea-
soning. Whereas the Wald test is affected by the representation of the restrictions, a C(a)
test clearly is not, precisely because it is invariant. Suppose that we choose to parametrise
((5.16)) in such a way that the restriction ((5.17)) appears as a zero restriction on one of
the parameters, for instance as

1
Yt = T1e71 + T2e(y2 + ;1-) + €.

Here 41 = 1, and 42 = B2 — (1/B1). The restriction is just that 72 = 0. The unrestricted
estimates are therefore 41 = f; and 42 = B, —(1/51). It seems to make sense to do a C(a)
test at the DGP with parameters (,31,0). But this conclusion is completely dependent
on our having chosen (3; as the other parameter of the model along with 7,. If instead
we had defined v; as f2, we would have had a different result. In Figure 5, we see two
possibilities out of an infinite number. In both, the coordinate curves corresponding to
v2 = constant are the same: one of them corresponds to the restricted model M. But the
other coordinate curves correspond to different choices of the other parameter, v;. It is
clear that the “natural” point of M given by the unrestricted estimate can be virtually
anything on M. This point should be borne in mind when reading the paper of Dagenais
and Dufour (1989).

A possible approzimate way out of this difficulty is suggested by the theory of artificial
regressions — see Davidson and MacKinnon (1990). Use of artificial regressions (linear
regressions) makes it possible to perform one-step efficient estimation in a simple way.
The idea is that, just as with C(a) tests themselves, it is possible to start from any DGP
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Figure 5

Parametrisation dependence of C(a) tests

in My, and, if it is close enough to the true DGP, also supposed to belong to My, obtain
by performing one linear regression an estimator asymptotically equivalent to maximum
likelihood. Without giving details — they are in Davidson and MacKinnon (1990) — what
one needs to do in the present context is to choose, in what we have seen must be an
essentially arbitrary fashion, some value of §; from which to start — call it B1. Then one
runs the (univariate) regression

r¢(£1) = Ri(B1)b + residual, (5.18)

where the regressand is

o 1
re(B1) = Yyt — T1¢P1 — Tar =
B

and the regressor is
T2t

Rt(,@1) =T1t — E

The one-step efficient estimator of 8, is then
Bi =B+, (5.19)

where b is the OLS estimate from ((5.18)).

Although the estimator ((5.19)) is not the exact restricted MLE, provided that the
true DGP is close to M, it should be reasonably close in many circumstances. The DGP
defined by ((5.19)) could well be a good place at which to compute a C(a) test. Such a test
would of course still depend on the original point of departure, 51, but this dependence
can reasonably be expected to be less important than it would be if the C(a) test were
computed at 3, itself.
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Table 1 shows the results of a small Monte Carlo experiment run to test these ideas.
Some of these results duplicate the work of GV and show that there is a fair amount
of experimental error both in their work and in that presented here. Variance reduction
methods are certainly available to rectify this state of affairs, but for present purposes
their use is not really necessary.

In addition to the two Wald tests computed by GV, called WA and WB in the Table,
three sets of easily computed statistics are shown, each set containing two statistics. The
first set, called CA1 and CA2, contains two “naive” C(a) tests, computed at the DGP’s
characterised by the parameters (8;,1/f3;) and (1/8z2, B2). Then in the second set are the
C(a) tests computed at the points obtained from the two used in the first set by a one-step
efficient estimation. These statistics are called OS1 and OS2 in the Table. Finally, since
the points used in the second set are asymptotically equivalent to maximum likelihood
estimates, the third set contains two LM test statistics computed just as if they actually
were ML estimates. The statistics in the third set are therefore always numerically greater
than those in the second set, by construction. In Table 2 the tests are tried out on two
DGP’s that do not satisfy the null hypothesis under test.

The results confirm the intuition about the C(a) tests computed at the one-step
efficient estimates. In Table 1, one sees by comparing the entries in the various lines OS1
and OS2 that the two statistics yield very similar inferences indeed. In Table 2, as one
might expect, their performances are not so similar, especially in very small samples. The
first two lines in each battery of tests correspond to the two tests considered by GV. The
extreme dependence of the test results on the way in which the restrictions are formulated
is again clearly visible. The next two lines, with the naive C(a) statistics, confirm the
point made above that, although these tests are invariant to model parametrisation and
to the formulation of the restrictions, they are affected by the choice of the point at which
they are evaluated to at least the same extent as is the Wald test by the way in which
the restrictions are formulated. The last two lines, containing the results yielded by the
pseudo LM tests, show that these, too, must be treated with caution. Although one or
the other of the one-step estimates is often close enough to the true restricted MLE for
there to be no appreciable difference between the C(«) test and the pseudo LM test, both
virtually never are at the same time, and sometimes both give bad pseudo LM tests.

In contrast, the OS tests not only agree rather well between themselves, but yield
very acceptable inference by any standards. Remember that no degrees-of-freedom correc-
tion has been applied even in samples of size no more than 20. The slight over-rejection
observed is therefore in no way objectionable. It would appear, then, that at very least
for testing nonlinear restrictions on linear models, a satisfactory alternative to the Wald
test is an OS test, performed by using the unrestricted MLE to obtain some, rather ar-
bitrary, DGP in the null model, then taking one step towards an asymptotically efficient
estimate by means of an artificial linear regression, and finally computing a C(«a) test at
the efficient estimate. The procedure involves no nonlinear procedures at all, and even
if the unrestricted model needed to be estimated nonlinearly, that one estimation would
be the only nonlinear estimation needed in order to perform a test. The proposed OS
test does not absolutely respect the Wald principle of using only information about the

28



Table 1

PERCENTAGE OF REJECTIONS IN 10,000 TRIALS FROM TESTS OF NOMINAL SIZE 5 PER CENT
NuLL HYPOTHESIS TRUE.

DGP Test n=20 n=30 n=40 n=50 n =100

B = 10, B2 =0.1 WA 31.63 26.13 2291 20.38 15.48
WB 7.08 5.91 5.94 5.20 5.14

CAl 8.27 6.73 6.51 5.63 5.46

CA2 32.71 26.98 23.59 20.82 15.72

0OS1 8.27 6.73 6.51 5.63 5.46

0S2 8.28 6.73 6.51 5.63 5.46

LM1 8.27 6.73 6.51 5.63 5.46

LM2 28.90 24.51 21.48 19.52 14.81

/= 5, B2 =0.2 WA 1891 16.36 1440 12.83 10.47
WB 6.94 6.03 6.10 5.66 5.26

CAl 8.03 6.93 6.83 6.10 5.40

CA2 20.02 16.96 14.81 13.22 10.67

0OS1 8.00 6.92 6.83 6.11 5.39

082 8.04 6.92 6.83 6.10 5.39

LM1 8.00 6.92 6.83 6.11 5.39

. LM2 18.37 1498 13.10 11.23 8.77

B = 2, B2 = 0.5 WA 10.19 8.83 8.07 7.34 6.00
WB 6.46 5.54 5.71 5.61 4.88

CAl 7.72 6.49 6.34 6.16 5.11

CA2 11.14 9.39 8.43 7.61 6.20

0OS1 7.69 6.45 6.39 6.12 5.09

0S2 7.87 6.54 6.38 6.13 5.10

LM1 7.69 6.46 6.39 6.12 5.10

LM2 10.27 7.87 7.30 6.74 5.27

B = 1, B2 =1 WA 4.63 4.70 4.72 4.57 4.87
WB 6.17 6.05 5.89 5.51 5.22

CAl 5.99 5.54 5.16 5.02 5.23

CA2 5.76 5.41 5.27 4.93 5.10

0S1 7.20 6.69 6.16 5.73 5.49

0S2 6.74 6.44 6.04 5.68 5.49

LM1 8.33 7.15 6.58 6.04 5.60

LM2 8.90 7.65 6.99 6.45 5.70
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Table 2

PERCENTAGE OF REJECTIONS IN 10,000 TRIALS FROM TESTS OF NOMINAL SIZE 5 PER CENT
NuLL HYPOTHESIS FALSE.

DGP Test n=20 n=30 n=40 n=50 n=100

B = 1.5, B2 =1 WA 69.49 83.75 91.61 96.18 99.87
WB 56.21 73.92 8547 92.64 99.76

CAl 60.41 76.05 86.83 93.35 99.78

CA2 71.35 84.72 92.12 96.36 99.87

0S1 58.70  75.23 86.45 93.19 99.77

0S2 60.59 76.14 86.87 93.41 99.77

LM1 59.07 75.34 86.52 93.21 99.77

LM2 64.14 78.59 88.15 94.14 99.79

/1 = 1, B2 =0.5 WA 25.16 46.00 68.30 84.84 99.94
WB 85.56 94.71 97.90 99.25 99.99

CAl 78.92 92.71 97.18  99.05 99.99

CA2 28.94 50.06 71.25 86.56 99.94

0S1 83.85 9391 97.45 99.09 99.99

0S2 67.77 85.30 92.87 96.12 99.79

LM1 85.76 9543 97.72  99.19 99.99

LM2 88.14 9541 98.09 99.34 99.99

unrestricted MLE — we saw that that was incompatible with invariance — and it is not
absolutely invariant either, but its computation requires little more than knowledge of the
unrestricted MLE, and its lack of invariance is not very troubling, at least in the example
considered, one which, up till now, has been thought of as exemplifying the worst aspects
of the lack of invariance of the conventional Wald test.

6. Conclusion.

A survey of differential-geometric methods as applied to econometrics has been given
and applied to the long-standing problem of the lack of invariance of the Wald test under
reparametrisations of the restrictions under test. A very large variety of intrinsic, and
hence invariant, possible test statistics has been unearthed, some simple to compute, and
others distinctly awkward. The geometrical analysis shows clearly what the reasons are
for the lack of invariance of the Wald test. It turns out that the less well-known C(a)
test is also subject to a lack of invariance, but for different reasons. At the root of all the
difficulties however is the fact that any projection (defined in whatever intrinsic fashion we
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please) of an unrestricted MLE on to a null model is in general hard to compute, in the
sense that it involves as much work as estimating the null model.

The “solution” proposed here is to use what I provisionally dub OS tests, as described
in the last section. These tests have an intuitive justification, and, in the small Monte
Carlo study, show themselves to behave remarkably well in circumstances that lead the
conventional Wald test to misbehave quite remarkably. Even if OS tests are not exclusively
based on information provided by the unrestricted estimates, and if they are not genuinely
invariant, they are still simple to compute once the unrestricted MLE is known, and do not
suffer very severely from lack of invariance. They appear, in short, a viable alternative to
the Wald test in circumstances in which the latter is suspected of yielding faulty inference
in reasonably sized samples.
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