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Abstract

Methods based on linear regression provide a very easy way to use the information
in control and antithetic variates to improve the efficiency with which certain fea-
tures of the distributions of estimators and test statistics are estimated in Monte
Carlo experiments. We propose a nevs; technique that allows these methods to be used when
the quantities of interest are quantiles. Ways to obtain approximately optimal control
variates in many cases of interest are also proposed. These methods seem to work well
in practice, and can greatly reduce the number of replications required to obtain a

given level of accuracy.



1. Introduction

Monte Carlo methods are widely used to study the finite-sample properties of esti-
mators and test statistics when analytic results are not available. Hendry (1984) pro-
vides a survey of Monte Carlo methods in econometrics, and Ripley (1987) and Lewis and
Orav (1989) provide more modern treatments from the perspectives of statistics and
operations research. One problem with Monte Carlo experiments is that the results are
inevitably random, since they depend on the particular set of pseudo-random numbers
used. To reduce this randomness to acceptable levels, it is often necessary to perform
many replications, and despite the rapidly declining cost of computation in recent
years, this means that a set of Monte Carlo experiments can be very costly.

In many cases, computational costs can be greatly reduced by the use of variance
reduction techniques to improve the precision with which the quantities of interest in
the experiment are estimated. One of the best-known such techniques is to make use of
what are called control variates. A control variate is a random variable that is cor-
related with the estimator or test statistic the properties of .which are being investi-
gated, and of which certain properties of the distribution are known. Control variates
can be calculéted only in the context of Monte Carlo experiments, because they depend
on things that cannot be observed in actual statistical investigations. The primary
property that a control variate must have is a known (population) mean. The divergence
between the sample mean of the control variate in the experiment and its known popula-
tion mean is then used to improve the estimates from the Monte Carlo experiment. This
works best if the control variate is highly correlated with the estimators and/or test
statistics with which the experiment is concerned. For examples of control variates in
econometric problems, see Hendry (1984) and Nankervis and Savin (1988).

In this paper we discuss a widely applicable, and yet very simple, procedure f or
using control variates to analyze the results of Monte Carlo experiments. The heart of

this procedure is a least squares regression. A simple modification allows this regres-
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sion to be used with antithetic variates instead of, or along with, control variates.
Thus the regression procedure encompasses and improves upon both of the two most widely
used methods of variance reduction. This procedure has been discussed in the operations
research liter‘ature,1 but is not covered in Hendry’s survey and appears to be unfam-
iliar to most econometricians. In the next section we therefore discuss it in some
detail. In Section 3 a modified version of the regression procedure is introduced that
can be used to estimate quantiles. Then in Section 4 we discuss how to choose control
variates in an (approximately) optimal fashion. In Section 5, the regression procedure
is extended to situations where more than one estimate of @ is obtained on each replic-
ation, as in the case of antithetic variates. Finally, in Section 6, we present some
Monte Carlo results which demonstrate how useful these procedures can be in practice.
Suppose that a Monte Carlo experiment involves N replications, on each of which we
obtain an estimate t;, j=1,..., N, of some scalar quantity 8. Except when discus-
sing quantile estimation, we shall suppose that @ is capable of being estimated as the
mean of the N t;’s calculated during the experiment. Obvious examples of 6 include the
bias, variance, skewness or kurtosis of a particular parameter estimate or test statis-
tic. If @ were the bias of some estimator, t; would be the estimate obtained on the j*"
replication, minus its true value; if it were the mean squared error of an estimator,
it would be the squared difference between the estimate on the j*" replication and its
true value; and so on. Another bossibility is that 6 might be the size or power of a
test statistic, that is, the probability that it exceeds a certain critical value,
under either the null hypothesis or some specified alternative. In such a case t 5 would
be unity if the test rejected the null hypothesis and zero otherwise. Since quantiles

(such as medians, or critical values for test statistics) cannot be estimated as the

Ripley (1987) and Lavenberg and Welch (1981) are two good references. The operations
research literature on the subject of control variates is very large, but most of it
is concerned with simulation problems of a type that do not arise in econometrics.
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mean of anything, they do not seem to fit into this general scheme. They require a
slightly different treatment, as we explain in Section 3.
It is always possible to estimate 6 without using a control variate. The obvious

estimator is the sample mean of the t i'S,

N
8=y X
which has variance
V(@) = Nv(t).
Now suppose that, for each replication, a control variate tT; is computed along with the
random quantity t; .2 The two primary requirements for t; are that it be correlated
with t; and that it have mean zero. If we can find such a control variate, we can
always obtain a more efficient estimate than 6, at least when N is reasonably large.
It is necessary only that the variance of t;, V(t), and its covariance with t;,
Cov(t,t), be finite and non-zero.
One way to write the control variate (CV) estimator for this case is
6(d) = 8 - 2T, _ (1)
where T is the sample mean of the T;'s and A is a scalar that has to be determined. On
average, T will be zero, since T; has population mean zero, so that 6(A) clearly has
the same mean as @. But in almost every actual sample, T will be non-zero. If, for
example, T is positive, and if the control variates T j are positively correlated with
the quantities t;, it is likely that ® will also exceed its true mean. In this case A
would be positive, so that 6(2) would involve subtracting a multiple of T from & .
The choice of A is obviously crucial. It seems natural to choose it so as to mini-

mize the variance of the CV estimator (1):

2 There may of course be more than one possible choice for T j- We shall consider the

possibility of using several control variates in the next section.



v(BQ) = N“[V(t) + 2A%(T) - 2a Cov(t,'t)] : (2)

Minimizing (2) with respect to A, we find that the optimal value of A is

_ Cov(t,T)
A* = W ’ (3)

so that (1) becomes

Cov(t,t)_?.

§(A*)E§-——ﬂ?r

Substituting (3) into (2), the variance of 6(A*) is then seen to be

2
V(6(a®) = N“[V(t) - Qvﬂ‘,tt—f’_] = (1 - pV(5), (4)

where p is the correlation between the control variate T; and the estimate t;. We see
from (4) that whenever this correlation is non-zero, V(6(A*)) will be less than V(8),
so that there will be some gain from using the control variate.

In the early literature on control variates (including Hammersley and Handscomb
(1964) and even Hendry (1984)), A was arbitrarily set to unity. This will be a good
choice if V(t;) and V(t;) are similar in magnitude and p is close to one, but it is
clearly not the best choice. Unless N is very small, we can generally do better by
estimating A*. This may be done in several ways, some obvious and some not so obvious.
One of the less obvious ones is to use a certain linear regression, which we will dis-

cuss at length in the next section.

2. Regression-based Methods for Using Control Variates

It is very easy to use a linear regression to calculate CV estimates. This regres-

sion may be written as
t = 6L + AT + residuals, (5)
where t and T are N-vectors with typical elements t j and T; respectively, and ¢ is an
N-vector of ones. Thus the regressand is a vector of quantities with mean @, and the

regressors are a constant term and the vector of control variates. It is no accident
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that the constant term in (S) is called 8 and the coefficient on T is called A. Be-
cause the t;’s have population mean zero, the constant term in (5) is simply the mean
of the t;’s. Moreover, the OLS estimate of A from (5) will provide an estimate of the
optimal A* defined in (3). This estimate is

A= (tTMtt)-ltTMtt ,
where M, is the matrix I - v(WTO)™T that takes deviations f rom the mean. It is easy
to see that A is Jjust the sample covariance of t and T, divided by the sample variance

of T, so that it is the empirical counterpart of A*.

The OLS estimate of 6 from regression (5) is

this follows from standard results for linear regressions with a constant term. Thus it
is clear from (1) that the OLS estimate & is equal to 8(A). Since A is consistent for
A*, under rather weak assumptions, 6 will be asymptotically equivalent to 8(A*).

Running regression (5) not only yields the CV estimate of 6, but also an esti-
mated variance for that estimate, which we need in order to gauge the accuracy of the
results and decide whether N is sufficiently large. This estimated variance is

&™), (6)
where @ is the standard error of the regression. The second factor here must tend to
N-l, since T asymptotically has no explanatory power for ¢, so that we could simply
use N'G? rather than (6) to estimate the variance of 8. The residuals from (5) are
the same as those from the regression of t- %t on T - T, which means that the esti-
mate & tends for large N to

(Cov(t,1))?

2
ZED = V(t)(1 - p9),

v(t) -

in accord with (4). This makes it clear that the better regression (5) fits (at least
asymptotically), the more accurate 8 will be as an estimate of 6. We shall explore the

implications of this fact in Section 4.



This analysis makes it clear that, contrary to what much of the literature on
control variates implies, the link between 6 and the t;'s need not be close. In parti-
cular, the older literature that sets A =1 implicitly assumes both that V(t)=V(T)
and that p is close to one, conditions that many potential control variates fail to
satisfy. In fact, any random variable that can be calculated along with t;, is cor-
related with it (either positively or negatively), and has mean zero, finite variance,
and finite covariance with t;, can be used as a control variate.

Since this is the case, there may well be more than one natural choice for T in
many situations. Luckily, formulating the problem as a linear regression makes it obvi-
ous how to handle multiple control variates. The appropriate generalization of (5) is

t = 6L + TA + residuals, (7
where T is an N x ¢ matrix, each column of which consists of observations on one of c
control variates. It is clear that the OLS estimate of 6 from this regression will once
again provide the estimate we are seeking, since all the columns of T have mean zero.
The OLS estimate of @ from (7) is

0= (LTMTL)-ILTMTt ,
where My =1 - T(TTT)_ITT. Since N'ILTMTL tends to unity as N tends to infinity, it is
easy to see that the variance of 6 is once again just N—lwz, where w is the true stan-
dard error of regression (7). Thus our objective in choosing control variates is simply
to make regression (7) fit as well as possible; see Section 4.

The residuals in regression (7) will often not be conditionally homoskedastic.
Thus it might be thought better to use as an estimate of the variance of @, not the
OLS variance estimate, but rather a heteroskedasticity-consistent one of the sort pro-
posed by Eicker (1963) and White (1980). In fact this is unnecessary, and may actually
be harmful when N is small. We are concerned here only with the variance of the esti-
mate of the constant. Since the other regressors are all by construction orthogonal to

the constant (in the population, although generally not in the sample), this variance



is in fact estimated consistently by the appropriate element of the ordinary OLS covar-
iance matrix; see White (1980). Of course, the OLS standard errors for the remaining
coefficients in (5) and (7) will not, in general, be consistent when the residuals of
(7) are heteroskedastic, but these coefficients are not of interest.

One aspect of this approach may be troubling in a few cases. It is that 6 is only
asymptotically equal to 8(A*), and is only one of many asymptotically equivalent ways
to approximate the latter. This should rarely be of concern, since in practice N will
generally be quite large. In Section 6, we describe some experimental results on how

well this procedure works for finite N .

3. Quantile Estimation

The estimation of quantiles is very often one of the objects of a Monte Carlo
experiment. For example, one may wish to characterize a distribution by its estimated
quantiles, or to estimate critical values for a test statistic. Since a quantile cannot
be expressed as the mean of anything, control variates cannot be used directly in the
way discussed above to improve the precision of quantile estimates. In this section we
propose a control variate regression that does much the same for quantiles as regres-
sion (7) does for means, variances, tail areas and so on.

Suppose that we generate observations on a random variable y with a distribution
characterized by the (unknown) distribution function F(y), and wish to estimate the a
quantile of the distribution F . By this we mean the value q, that satisfies

F(qa) = «. (8)
In the absence of any information about F, the sample quantile q, is the most effi-
cient consistent estimator of g, available. It is defined by replacing F in (8) by the

empirical distribution of the generated y’s:
-1 N -
N JZ_}1I(qa -y =, (9)

where the indicator function I is defined to be equal to one if its argument is posi-
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tive, and zero otherwise. If g, is not uniquely defined by (9), we may take for g, the
mean of the set of numbers that satisfy (9). If aN is not an integer, there will be no
d. that satisfies (9), in which case we may take for g, the mean of the set of numbers
that make the left-hand side of (9) as close as possible in absolute value to o« . In
the following discussion we shall for simplicity consider only values of « for which
(9) can be exactly satisfied for the chosen N .
Consider for some possibly random g, close to d. the random variable

I(@e-y) - .
If we suppose, in the case in which g, is random, that g, and y are independent, the
mean of this variable conditional on g , using (8), is

E(I(ga - ¥)) - @ = F(qa) - F(qy). (10)
Suppose also that q, approaches g, with a root-N rate of convergence:

o - 9o = O(N-%).
If the density f(qq) = F’(qs) exists and is nonzero, the mean (10) becomes, by Taylor’s
Theorem,

£(qu)(da - qa) + O(N7. (11)

The quantity f(q,) is not known in advance, but it may be estimated in a variety

of ways; see Silverman (1986). One approach that seems to work well is kernel estima-
tion (Rosenblatt (1956)), and we have used it in the experiments described in Section
6. Since the density only has to be estimated at a single point, the calculations are
not very demanding. Let us denote the estimate of f(q,) by f. Provided it has the
property that

f =f(qy) + o(1),
we see from (11) that

E((I(&a -y)) - a)/?) = Qo - Qo + o(N_%).
or, equivalently,

o - E((I(aa -y)) - oc)/?) = Qo + o(N-%). (12)



This result allows us to construct a regression in which the j*" observation on

the regressand is

gdx - (I(qu - yy)) - &)/% . (13)
The regression function must include a constant and one or more control variates of
which it need be known merely that their expectations are zero. All of the arguments of
the preceding section go through unaltered, and the estimated constant from the regres-
sion will, by (12), be an estimate of g, correct to the leading asymptotic order of
N-%. We shall call this control variate estimator qq .

The above analysis supposed the independence of the y; and the preliminary estim-
ate q., but since the argument is an asymptotic one, it is admissible to replace
strict independence with asymptotic independence. Thus it is possible in practice to
use the ordinary quantile estimate g, for g .

If the regressand (13) with g4 = qo is regressed on a constant only, the estimate
&a will be equal to g, , because what is subtracted from da in (13) is orthogonal to a
constant. The estimated variance of q, will be N times the estimated error variance

from the regression, that is
1 22, - z

NON-D (/f )J§1[ I(qa - ;) - OL] .
For large N this tends to

a1 - a)/(Nf2(qq)), (14)
which is the standard formula for the variance of a sample quantile. When the regres-
sion includes one or more control variates that have some explanatory power, the vari-
ance of g, will of course be less than (14).

An alternative approach has been used in the operations research literature (see

Lewis and Orav (1989), Chapter 11). The N replications are sectioned into m groups,

each consisting of M replications. One then calculates quantile estimates, and control

variates, for each of the m groups, and adjusts the average quantile estimate by
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regressing it on a constant and the average value of the control variate, using a
regression with m observations. This approach avoids the need to estimate 1/f, but
requires that both m and M (rather than just N = mM) be reasonably large. If M is too
small, the individual quantile estimates may be seriously biased, while if m is too

small, the estimates from the control variate regression may be unreliable.

4. Choosing Control Variates Optimally

So far we have said very little about how to choose the control variate(s) to be
used as regressors in regression (7) or its analogue for quantile estimation. Let t
denote the random variable that has expectation 8, and T the set of random variables
with known distributions from which control variates are to be constructed. Consider
the following generalization of (7),

t; = 0 + g(T;, ¥) + residuals, (15)
where the nonlinear regression function g(T, ¥) is restricted to have mean zero, and ¥
is a vector of parameters. Estimation of (15) by nonlinear least squares would yield ¥
and 6, the latter being a consistent estimator of 6.

One way of defining the conditional expectation E(t|T) is as the function g(T)
that minimizes the variance of t - g(T). Hence the variance of the residuals in (15)
will be minimized by using a control variate that is proportional to t* = (E(t|T) - e),
and consequently the precision of the estimate of 6 will be maximized by this choice.
This argument implies that the theoretical lower bound to the variance of a control-
variate estimate of 6 is proportional to the variance of t - T*.

Of course, if E(t|T) were known there would be no need to estimate 6 by Monte
Carlo: it would be enough just to calculate E(t) = E(E(¢t|T)). Further, in order to
compute t* we need to know @, which is precisely what the Monte Carlo experiment is
trying to estimate! Thus in practice T* will not be available. Instead, we want to find

functions of T that approximate T* as closely as possible. Thus we should make use of
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as much a priori information as possible about the relationship between t and T when
specifying g(T, ¥). In cases where not much is known about that relationship, it may
make sense to use a number of control variates in an effort to make g(T, ¥) provide a
good approximation to T*.

In the remainder of this section we consider several related examples. We assume
that the random variable of interest is normally distributed, and that another normally
distributed random variable is available to provide control variates. These assumptions
are often realistic, since in many cases asymptotic theory provides a control variate
that is normally distributed and tells us that the variable of interest will be approx-
imately normal; see Section 6. Let x denote the control variate and y denote the random
variable of interest; various functions of x and y will later be denoted T* and t. We
shall assume that x is distributed as N(O, 1), that y is distributed as N(u, 0‘2), and
that x and y are bivariate normal. In this case T consists of all possible functions of
x that have mean zero. Given our assumptions about x and y , we can write

y=up+pox +v, v~NO,I(1- pz)crz), (16)
where p is the correlation between y and x . Using (16), we can easily find optimally-
chosen control variates, as functions of x, for several cases of interest.

Suppose first that we wish to estimate p, the mean of y. It is clear that we
want t; to equal y; in regression (7). From (16) we see that E(t|x) = u + pox, which
implies that T* = pox, so that the optimal regressor in this case must be proportional
to x. We also see that the variance of ﬁ will be 1/N times the variance of v, i.e.
N-l(l - pz)o'z. In contrast, the naive estimate of u is the sample mean y, and its

. . -1 2
variance is N o

. Thus for any degree of accuracy, N could be smaller by a factor of
(1- pz) if the optimally-chosen CV estimate were used instead of the naive estimate.

Now suppose that we wish to estimate 0. The obvious choice for t is (y - ﬁ)z,
although any consistent estimate of u could be used. From (16) we see that

(y - w? = (pox +v)% = p’c’x® + 2poxv + Vo (17)

-12 -



This implies that

E((y - u.)zlx) = p?o?x® + (1 - P2’ (18)
The optimal regressor, adjusted to have mean zero, is evidently (x*> -1). From (17) and
(18), the variance of the optimally-chosen CV estimate &2 will be

2
NE [(pzcrzx2 + 2poxV + Vz) - (pzc.'rzx2 +(1- pz)orz)] = 2871 - pY)et. (19)

In contrast, the variance of the naive estimate is 2N 'o'. Thus for any degree of ac-
curacy, N could be smaller by a factor of (1- p4) if the optimally-chosen CV estimate
were used instead of the naive estimate. Note that the gain from using control variates
is less when estimating the variance than when estimating the mean, since (1 - p4) is
greater than (1 - pz) for all |p| <1. One can easily estimate o by taking the square
root of 3‘2. Using (19) and the standard formula for the variance of a function of a
random variable, the variance of ¢ will be

%N’lvz(l -oh,
which is again smaller than that of the naive estimate by a factor of (1 - p4).

Now suppose that we are interested in the size or power of a test statistic, so
that @ is the probability that y exceeds a certain critical value, say y°. Let t j=1
if y; exceeds y°® and t; =0 otherwise. The naive estimate of @ is just the mean of the
t J’s‘. Davidson and MacKinnon (1981) and Rothery (1982) independently studied this
problem under the assumption that the control variate, like the t j’'S, can take on only
two possible values, and proposed a technique based on the method of maximum likeli-
hood. These authors did not use a regression framework, but the estimator they proposed
turns out to be numerically identical to the OLS estimator of 6 from regression (5),
when t; is defined as

Ty = I(X - Qo) - . (20)

Thus t; is a binary variable that is equal to 1-o when x; exceeds ¢y, and -a
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otherwise, for some a that should be as close to 8 as possible. Since the probability
that x; will exceed gy, is @, (20) clearly has population mean zero.

The expectation of I(y - y°) conditional on x is not a step function like (20).
Thus the binary control variate proposed by ourselves and Rothery clearly cannot be
optimal. In fact, when y is N(u, o?) and x is N(O, 1), we see that

E(tlx) = Prob(v >y°-u- po-x)

q,[u+p<rx-y°]

ol - pz)uz

3((u + pox - y°)/w) = &(a + bx),

where a=(u-y°)/(o(1- pz)%). b=p/(1- pz)%, w=o(l- pz)‘2L and & denotes the
standard normal distribution function. There are many ways tp estimate ®(a + bx). The
easiest is probably to recognize that the fitted values from the regression of Yy; on x;
and a constant, which is the optimal CV regression for estimating the mean of the y i'S,
provide consistent estimates of (u + pox), and the standard error provides a consistent
estimate of w. These estimates, along with the CV estimates of u and o, can then be
used to construct a zero-mean control variate:

®(a + bx;) - &(({k - y°)/3). (21)
The second term in (21) is the unconditional mean of the first; if u and ¢ were known,
it would be O = E(t). Regressing the observations of t on a constant and (21) should
give a reasonably good estimate of @, even if the assumption that y is normally dis-
tributed is not quite correct. If we are interested in tail areas for two-tail tests,
the optimal regressor will be the sum of (21) and its analogue for the other tail.

When all our assumptions are satisfied, we see that (for large N) the variance of

8 will be

NE(t; - &(a + bx;)%,

Since the expectation of t; conditional on x; is ®(a + bx;), this expression reduces to
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N'E [<I>(a +bx)(1 - &(a + bx))], (22)

which can easily be evaluated numerically. The corresponding expression for the naive
estimator is N '6(1 - @).

Finally, consider quantile estimation. The optimal regressor is the conditional
expectation of expression (13). Since the factor of 1/f in (13) is just a constant, it
is unnecessary to include it in the optimal regressor, which is therefore

E((I(q« - ) - @)Ix).

This regressor would never be available in practice, but it may be approximated by

@[a“'ﬁ'aa'x] -<1>[‘_I°‘—"“]. (23)

o1 - p*t/? o

This control variate is very similar to (21), the optimal one for tail-area estimation,
with go replacing y° and the signs of the arguments of &(-) changed because we are now
interested in a lower rather than an upper tail. Asymptotically, using (23) as a con-
trol variate when estimating g, will produce the same proportional gain in efficiency
as using (21) when estimating « .

It might seem that one could improve on the procedures we have suggested by using
something other than OLS (or NLS) to estimate regressions (7) and (I15). In many cases,
notably for tail areas and quantiles, those regressions will have error terms that are
conditionally heteroskedastic. It might therefore seem appropriate to use some sort of
GLS procedure. Unfortunately, this turns out not to be the case. The problem is that
GLS will in general be consistent only if the regression model is correctly specified,
that is if g(T, ¥) in (15) is equal to t* for some ¥ . If one does not have the proper
specification of g(T, ), the residuals will not be orthogonal to all possible func-
tions of T. Since the GLS weights will necessarily be chosen as functions of T, they
may well be correlated with the OLS residuals, thereby biasing the GLS estimate of the
constant. In contrast, as we showed in Section 2, OLS yields a consistent estimate of @

under very weak conditions. Since it is unlikely in practice that one would know enough
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about y to construct a regressor that is actually optimal, OLS appears to be the pro-
cedure of choice.

It is interesting to see how substantially the number of replications can be re-
duced by the use of control variates, while maintaining a given level of accuracy.
Table 1 presents some illustrative results, for the simple case where x and y are both
N(O, 1). Each entry in the table is the ratio of the (asymptotic) variance for the
naive estimator to that for a control variate estimator. This ratio is the factor by
which the number of replications needed by the naive estimator exceeds the number need-
ed by the control variate estimator. For p and a‘z, only the ratio for the optimally-
chosen control variate (OCV) estimator is reported, and these entries are simply
(1- pz)_l and (1- pa)'1 respectively. For the tail areas (and quantiles, since the
results apply to both) the ratio for the OCV estimator is reported first, followed by
the ratio for the binary control variate (BCV) estimator discussed above.3 Entries for
the OCV estimator for tail areas (and quantiles) are the ratio of ®(a)(1 - &(a)) to
expression (22), which was evaluated numerically. Entries for the BCV estimator were
calculated in a similar fashion.

It is evident from Table 1 that the gains from using control variates can be very
substantial when y and x are highly correlated. They are greatest when estimating the
mean and least when estimating small-probability tail areas and‘ quantiles, where the
OCV estimators do however always outperform the BCV ones quite handily. Provided that
p2 2.9, a level of correlation between the control variate and the variable of inter-

est that is not unrealistic (see Section 6), there is always a gain of at least a fac-

The results for the binary control variate assume that the value of « used to con-
struct it is the same as the probability @ that y > y°. This assumption is trivial
to satisfy when one is estimating quantiles, but somewhat harder to satisfy when
estimating tail areas. If this assumption is not satisfied, the binary control vari-
ate will perform less well than these results suggest. See Davidson and MacKinnon
(1981), where we suggested choosing « to be the naive estimate of 0.
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tor of two when the optimally-chosen control variate is used. Thus it appears that it

will often be worthwhile to use control variates.

5. Antithetic Variates

Up to this point we have assumed that each replication of each experiment yields
only one estimate of 6. It may often be possible to obtain more than oné, however. One
technique that does so is the method of antithetic variates; see, among others, Hammer-
sley and Handscomb (1964), Rubinstein (1981) and Ripley (1987). This technique gener-
ates two different estimates of 6, say tj and t j2, on each replication, in such a
way that they will be highly negatively correlated, and then takes an average of their
average. For example, if one were interested in the bias of the least squares estimates
of a nonlinear regression model, one could use each set of generated error terms twice,
with all signs reversed the second time. This would create strong negative correlation
between the two sets of least squares estimates, so that their average would have much
less variance than either one alone.

In general, we shall suppose that there are £ different estimates of @ on each
replication. The estimates will be denoted t ji» J=1,...,N, i=1..,4£. A

simple procedure for estimating 6 in this case is to run the artificial regréssion
L
ty =01 + % 7i(t; - t1) + residuals, (24)
i=2

where t; and t; are vectors with typical elements t 5 and tj respectively. It is ob-
vious from previous results that regression (24) is valid. Since ty and tj are both
unbiased estimates of the same thing, their difference must have mean zero, and hence
it is valid to use that difference as a control variate. If additional control variates
are available, then of course they too can be included as additional regressors, so

that (24) would become

2
ty = 6L + ¥ 7i(ti - t;) + TA + residuals, (25)
=2
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where as usual T is a matrix of control variates. For quantile estimation the regres-
sand would be modified as described in Section 3.4

It does not matter which estimate of O is given the index 1 and put on the left-

hand side of regressions (24) and (25). The estimate of 6 from (25) is

6= (LTML)'ILTM'Q , (26)
where M denotes the matrix that projects onto the orthogonal complement of the subspace
spanned by T and (t;-t,) for i=2,..., 2. Provided only that the t; are linearly
independent, the subspace spanned by the vectors t;-t,, i=2,..., 2, is of dimen-
sion £-1 and is identical to the subspace spanned by, for example, the vectors
ti-t., i=1,3,4,...,24. In fact, for any i and j different from 1, ti-t; =
(ti-t1) - (tj-ti). Thus the projection M will be the same regardless of which t; is
the regressand, and so will be (LTML)-I, the first factor in (26). Hence the estimate
of 6 from (25) modified to have t; as the regressand must for all i be

(M) WM . (27)
But observe that M(t;-t ;) =0 for all i, j by the way M is constructed, which implies
that Mt, = Mt;. This then implies that the second factor in (27) is the same for all
t;, and so (27) will equal 6 regardless of which t; is the regressand in (25).

Regression (24) turns the venerable technique of antithetic variates into a simple
special case of the general procedure for using control variates, and also improves its
performance. Suppose we generate tj and t j2 on each replication, arbitrarily treat tj
as the regressand for (25), and treat (tjz-t;) as a control variate. The classical
approach of averaging the simple averages i(tj +t;;) is equivalent to restricting ¥y
to equal -.5 in the regression

ty = 6L + 7(t2 - t;) + residuals. (28)

Lavenberg and Welch (1981) note that the difference between two antithetic variates
can be treated as a control variate and used in a regression. The idea does not seem
to have been used in econometrics, however.
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This value of ¥ will be optimal if t; and t, have a correlation of -1, in which case a
perfectly accurate answer could be obtained, but will not be optimal in general. In
contrast, regression (28) automatically chooses a value of ¥ that will be (asymptotic-
ally) optimal. Of course, whether this technique will be useful at all depends on

whether we can obtain pairs of estimates that are highly negatively correlated.

6. Simulation Evidence

Since the theoretical arguments of this paper have all been asymptotic, one may
well wonder whether the CV estimators of various 6’s that we have discussed are in fact
reliable for reasonable values of N. By “reliable” we mean that 8% confidence inter-
vals based on normal theory and the estimated standard errors for 6 should cover the
true values approximately 8% of the time. One may also wonder whether the gains from
the use of control variates implied by the theory of Section 4 can actually be realized
in practice.

To investigate these questions, we performed a number of Monte Carlo experiments
designed to simulate the commonly encountered situation in which y is an estimator or
test statistic and x is the random variable to which it tends asymptotically. In the
experiments x was distributed as N(O,1) and y was distributed as Student’s t with
numerator equal to x and number of degrees of freedom d equal to 5, 10 or 30. As d
increases, the correlation between x and y increases, and the distribution of y becomes
closer to N(O, 1). We did 10,000 replications for N =500 and 5000 replications for
each of N =1000 and N =2000. Some of the results are shown in Table 2.

It is clear from the table that regression-based control variate methods work
extremely well for estimation of the mean. The 95% confidence intervals always cover
the true value just about 95% of the time, with the CV confidence intervals just as
reliable as the naive ones. The CV estimates are however much more efficient than the

naive ones, by factors that are almost exactly what the theory of Section 4 predicts
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given the observed correlations between x and y .5 Thus in this case, the fact that y
is Student’s t rather than normal does not seem to matter at all.

The results for estimation of the variance are not so good. The 95% confidence
intervals now tend to cover the true value somewhat less than 95% of the time, especi-
ally when d is small. This is true for both the naive and CV estimates, but- is more
pronounced for the latter. The efficiency gains are also much less than one would ex-
pect given the observed correlations between x and y . For example, if y were normally
distributed, a p2 of .982 (for the case where d = 30) should imply that the CV estimate
of variance is about 28 times as efficient as the naive estimate, while in fact it is
about 9.5 times as efficient. Nevertheless, the gains from using control variates are
substantial except when d=5.

The results for tail area estimation depend on what tail is being estimated. Every
technique works better as 6 gets closer to .5, and no technique works well when 0 is
very close to zero or one, unless N is extremely large. The table shows results for
what is called the 2.57% tail, but is really the tail area corresponding to the .025
critical value for the standard normal distribution. Thus the quantities actually being
estimated are .0536 when d=5, .0392 when d =10, and .0297 when d=30. All the
estimators are about equally reliable. They all perform well, but do have a tendency to
cover the true value less than 957 of the time when N =500, especially when d =30
(presumably because the tail area being estimated is smallest in that case). The gains
from using control variates are not as great as Table 1 would suggest, but are by no
means negligible. The BCV estimator works a good deal less well than the OCV one (even
though the latter is not really optimal here), especially when d =5. The BCV estima-
tor would probably have worked better if the value of « -used to construct the control

variate had been estimated, rather than fixed at .025.

For p?=.850, .940 and .982 respectively, 1/(1 - p?) is 6.67, 16.67 and 55.56 .
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Finally, we come to quantile estimation. As with estimators of tails, the princi-
pal determinant of the performance of quantile estimators is min((a, (1-a))N, the
number of replications for which y lies below (or above, if a>.5) the quantile being
estimated. None of the estimators is very reliable when estimating quantiles far from
.5, perhaps because the kernel estimates of f are not very accurate. In every case
shown in the table, the 957 confidence interval covers the true value less than 95% of
the time, sometimes quite a lot less. However, the CV estimators are generally only a
little bit worse than the naive estimator in this respect.

For the .05 quantile, the OCV estimator always outperforms the BCV and naive esti-
mators, but not by as much as Table 1 suggests that it should. It is clearly worth
using the OCV estimator in this case, but one must be a little cautious in drawing
inferences even when N is several thousand. For the .01 quantile, the OCV estimator
actually performs worse than the naive estimator in three cases, and worse than the BCV
estimator in four. It appears from the table that one simply should not use this esti-
mator when min((«, (1-@))N is small. Part of the problem with the OCV estimator is that
it is sometimes quite severely biased away from zero. The bias is most severe when
d=35, and it goes away rapidly as both N and « are increased. When min((e, (1-a))N is
less than about 20, these results suggest that it is probably better to use the BCV
estimator rather than the OCV one. Since the former has the additional advantage of
being somewhat easier to compute, one may prefer to use it even when min((«, (1-a))N is
greater than 20.

In the remainder of this section, we illustrate some of the techniques discussed
in this paper by using them in a small Monte Carlo experiment. The experiment concerns
pseudo t-statistics for OLS estimators based on a heteroskedasticity-consistent covari-
ance matrix estimator (or HCCME for short; see Eicker (1963) and White (1980)). The
model of interest is

y=XB +u, E(u')=Q, (29)



where X is nx k and Q is an n x n diagonal matrix that is known to thg experimenter
but is treated as unknown for the purpose of estimation and inference. The true covari-
ance matrix of the OLS estimates is

VR) = X' XxTaxx™x)
There are various HCCME'’s for this model, which all take the form

@ = XXX, (30)
but differ in how € is calculated. For the present experiment, we define f as a diag-
onal matrix with typical diagonal element equal to (n/(n—k))ﬁ% , where u, is the tt"
residual from OLS estimation of (29). Other choices for £} may work better in finite
samples; see MacKinnon and White (1985).

The statistics we shall examine are pseudo t-statistics of the form

Bi - Bio , (31)
(]7")1/2

where ﬁ, is the OLS estimate of B; for some i, Bj, is the value of B; used to generate
the data, and (1711)1/2 is the square root of the i*" diagonal element of (30). We shall

assume that the u¢’s are normally and independently distributed. Thus if (17“)1/2 in

1/2, the true standard error of B;, the statistic (31)

(31) were replaced by (V)
would be distributed as N(O, 1). This infeasible test statistic, which corresponds to
what we called x in Section 4, will be used to generate control variates for the actual
test statistic (31), which corresponds to what we called y, and of which the finite-
sample distribution is in general unknown.

We performed experiments for a particular case of (29) with two regressors and a
constant term, where the uy’s followed a particular pattern of heteroskedasticity
related to the X’s. We report results only for one particular B;. These results are
of course specific to that parameter of the particular model and data generating pro-

cess that we used. The results we shall discuss are in Table 3. What we are primarily

interested in is the relative performance of the CV and naive estimators as a function
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of the sample size n. We used 20,000 replications for n=25 and n=50, 10,000 for
n =100 and n =200, 5000 for n =400 and n =800 and 2500 for n =1600 and n = 3200.
As we explain below, this type of experimental design makes sense when control variates
are being used.

The first line of Table 2 shows that the correlation between the test statistic y
and the control variate x increases very substantially as the sample size n increases.
This is of course to be expected, since y is equal to x asymptotically. It means that
the efficiency of the CV estimator increases relative to that of the naive estimator as
n increases. That is why we can get away with reducing the number of replications by a
factor of two every time n increases by a factor of four. In fact, if we were only
interested in means and standard deviations, we could make N proportional to 1/n and
still obtain results for large sample sizes that were just as accurate as for small
ones. Since the cost of a Monte Carlo experiment is in most cases roughly proportional
to N times n, that would be very nice indeed. However, for estimating test sizes and
quantiles it appears that we cannot reduce N that rapidly; instead, making N approxi-
mately proportional to n-%, as we have done, seems to work quite well. For n = 3200,
the case for which experimentation is most expensive and the control variates most
useful, it would require between 7.5 and 618 times more replications to achieve the

same accuracy using naive estimation as using control variates.

7. Conclusion

This paper has discussed a very simple, and yet very general, method for using the
information in control variates to improve the efficiency with which quantities of
interest are estimated in Monte Carlo experiments. The information in the control vari-
ates can be extracted simply by running a linear regression and recording the estimate
of the constant term and its standard error. This technique can be used whenever one or

more control variates with a known mean of zero can be computed along with the esti-

- 23 -



mates of interest. It can also be used when more than one estimate of the quantity of
interest is available on each replication, as in the case of antithetic variates.

The regression technique for using» control and antithetic variates is not new,
although it does not seem to have been discussed previously in econometrics. There are
several new results in the paper, however. First of all, we have proposed a new way to
estimate quantiles by modifying this regression procedure. Secondly, we have proposed
ways to obtain approximately optimal control variates in many cases of interest, in-
cluding the estima_tion of tail areas and quantiles. Finally, we have obtained a number
of simulation results which suggest that these methods will generally work quite well
in practice, provided the number of replications is not too small, and that they can
dramatically reduce the number of replications required to obtain a given level of

accuracy.
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Table 1

Potential Efficiency Gains from Control Variates

Quantity 2
Estimated | p™: .50 .60 .70 .80 .90 .95 .99
M 2.00 .50 3.33 .00 10.00 20.00 100.00
o’ 1.33 .56 1.96 .78 5.26 10.26 50.25
o=.50 1.50 .69 1.97 .44 3.48 4.95 11.10
1.33 .47 1.66 .99 2.72 3.75 8.12
o=.25 1.45 .62 1.88 .32 3.29 4.67 10.45
1.29 .41 1.59 .90 2.58 3.55 7.62
=.10 1.33 .48 1.69 .06 2.89 4.08 9.09
1.21 .31 1.46 .71 2.30 3.13 6.66
a=.05 1.26 .38 1.56 .88 2.62 3.68 8.17
1.16 .24 1.36 .59 2.11 2.85 6.05
o=.025 1.20 .30 1.46 .74 2.40 3.35 7.41
1.11 .18 1.29 .49 1.95 2.62 5.50
a=.01 1.14 .22 1.35 .59 2.16 3.00 6.61
1.08 .13 1.22 .38 1.78 2.37 4.91

Notes: Each entry is the ratio of the (asymptotic) variance for the naive
estimator to that for a control variate estimator. When there are two
entries, the first is for the optimally-chosen control variate and the
second for the binary control variate.

Both x and y are assumed to be N(0,1).

Results for estimation of tail areas apply to quantile estimation as

well.
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Table 2

Performance of CV Estimators with Finite N

- 27 -

d.f S 10 30
N 500 1000 2000 500 1000 2000 500 1000 2000
p2 .853 .851 .850 .940 .940 .940 . 982 .982 .982
Mean:
95% naive 94.7 95.0 95.2 95.2 95.4 95.0 94.8 94.9 94.8
95% CV 95.3 94.6 95.2 95.3 95.8 95.3 94.6 95.0 95.5
Ratio 6.72 6.60 6.54 16.70 16.65 17.54 5$5.08 57.15 58.22
Variance:
95% naive 90.9 92.4 92.9 94.1 94.9 94.9 94.6 94.5 94.6
95% CV 88.7 90.2 91.6 92.5 93.4 93.7 93.2 94.0 94.2
Ratio 1.36 1.28 1.40 2.92 2.91 2.88 9.22 9.59 9.46
2.5% Tail:
95% naive 94.7 94.0 94.3 94.6 96.2 94.8 92.2 95.8 95.2
95% OCV 93.9 94.5 94.6 93.3 95.4 95.1 92.9 94.4 94.4
95% BCV 94.0 94.5 94.9 93.3 95.1 95.0 93.0 94.5 94.4
Ratio-OCV 1.67 1.69 1.71 2.00 1.99 1.99 2.91 2.93 2.95
Ratio-BCV 1.30 1.31 1.33 1.56 1.54 1.55 2.31 2.29 2.34
5% Quantile:
95% naive 91.3 92.2 93.1 91.6 93.5 93.6 92.4 93.1 93.1
95% OCV 90.4 91.8 91.9 90.7 92.9 93.1 91.8 92.9 93.7
95% BCV 90.4 91.9 92.0 90.8 93.0 92.9 91.3 93.2 93.9
Ratio-OCV 1.60 1.63 1.65 2.15 2.15 2.24 3.59 3.66 3.81
Ratio-BCV 1.41 1.44 1.43 1.83 1.83 1.85 2.84 3.00 3.04
Bias-naive -0005 -0007 -0018 +0006 +0007 +0005 +0006 +0005 +0015
Bias-0OCV -0053 -0033 -0024 -0028 -0020 -0005 -0008 -0008 -0009
Bias-BCV -0030 -0022 -0021 -0011 -0014 -0000 +0001 -0006 -0002
1% Quantile:
95% naive 86.1 88.4 91.4 86.6 89.1 91.7 87.0 89.9 91.0
95% OCV 82.3 86.9 90.7 83.3 88.0 91.0 84.4 88.9 90.0
95% BCV 84.6 87.8 90.4 84.4 88.1 91.1 84.0 89.3 89.7
Ratio-0OCV 0.29 0.98 1.08 0.63 1.25 1.30 1.76 1.95 1.99
Ratio-BCV 1.00 1.07 1.09 1.19 1.25 1.26 1.71 1.80 1.79
Bias-naive -0100 -0012 -0023 -0008 +0019 -0019 +0021 +0042 +0010
Bias-0CV -0867 -0203 -0109 -0300 -0099 -0072 -0078 -0026 -0024
Bias-BCV -0168 -0049 -0042 -0060 -0026 -0036 -0007 -0000 -0004
Continued ....




Notes to Table 2

OCV means the optimally-chosen control variate, and BCV means the binary
control variate, for tail-area and quantile estimation.

Entries opposite “95% naive”, “95% CV”, “95% OCV” and “95% BCV” represent the
percentage of the time that calculated 95% confidence intervals included the
true value of the quantity being estimated.

Entries opposite “Ratio-OCV” and “Ratio-BCV” are the ratios of the mean
square error of the naive estimator to that of the specified CV estimator.

To save space, the decimal point has been omitted from the entries for bias.
Thus, for example, -0016 should be read as -0.0016 .
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Table 3

Performance of Pseudo t-statistics Based on HCCME

Sample: 25 50 100 200 400 800 1600 3200

N: 20000 20000 10000 10000 5000 5000 2500 2500

p2 . 886 .938 . 963 .980 . 988 .994 . 997 . 998

mean:

naive -0.443 -0.176 -0.209 0.235 =-1.131 -4.480 -0.299 0.798
(0.928) (0.822) (1.092) (1.049) (1.446) (1.416) (2.023) (1.989)

Ccv 0.167 0.361 -0.127 -0.229 0.525 0.084 0.194 0.018
(0.312) (0.205) (0.209) (0.147) (0.158) (0.114) (0.118) (0.080)

median:

naive 0.072 -0.418 0.309 1.970 -1.779 -3.842 0.332 1.634
(1.091) (1.008) (1.330) (1.281) (1.794) (1.837) (2.592) (2.484)

Ccv 0.125 0.067 0.259 0.394 -0.286 0.173 -0.347 -0.101
(0.378) (0.302) (0.357) (0.297) (0.365) (0.322) (0.350) (0.321)

S.D.:

naive 1.312 1.163 1.092 1.049 1.022 1.001 1.011 0.994
(0.008) (0.006) (0.008) (0.008) (0.010) (0.010) (0.014) (0.014)

Ccv 1.324 1.162 1.086 1.044 1.029 1.012 1.007 1.003
(0.006) (0.004) (0.004) (0.002) (0.003) (0.002) (0.002) (0.001)

test size:

naive 9.845 7.480 6.540 5.980 5.160 5.560 4.880 5.440
(0.211) (0.186) (0.247) (0.237) (0.313) (0.324) (0.431) (0.454)

Cv 9.919 7.535 6.325 6.005 S5.125 5.197 5.099 5.186
(0.143) (0.117) (0.145) (0.126) (0.155) (0.130) (0.130) (0.111)

c. value:

naive 2.601 2.318 2.149 2.042 1.982 1.956 2.008 1.936
(0.021) (0.017) (0.021) (0.019) (0.025) (0.024) (0.037) (0.032)

Ccv 2.615 2.305 2.136 2.051 2.005 1.986 1.975 1.973
(0.019) (0.014) (0.014) (0.012) (0.014) (0.012) (0.015) (0.012)

Notes: Estimated standard errors are in parentheses.

Entries for mean and median are 100 times the actual values.

“test size” is estimated size of 5% one-tail test (in per cent).

“c. value” is estimated critical value for 5% two-tail test.
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