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Abstract

It is remarkably easy to test for structural change, of the type that the classic F or
“Chow” test is designed to detect, in a manner that is robust to heteroskedasticity of
possibly unknown form. This paper first discusses how to test for structural change
in nonlinear regression models by using a variant of the Gauss-Newton regression. It
then shows how to make these tests robust to heteroskedasticity of unknown form and
discusses several related procedures for doing so. Finally, it presents the results of a
number of Monte Carlo experiments designed to see how well the new tests perform
in finite samples.
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1. Introduction

A classic problem in econometrics is testing whether the coefficients of a regression
model are the same in two or more separate subsamples. In the case of time-series
data, where the subsamples generally correspond to different economic environments,
such as different exchange-rate or policy regimes, such tests are generally referred to
as tests for structural change. They are equally applicable to cross-section data,
where the subsamples might correspond to different groups of observations such as
large firms and small firms, rich countries and poor countries, or men and women.
Evidently, there could well be more than two such groups of observations.

The classical F test for the equality of two sets of coefficients in linear regression
models is commonly referred to by economists as the Chow test, after the early and
influential paper by Chow (1960). Another exposition of this procedure is Fisher
(1970). The classic approach is to partition the data into two parts, possibly after
reordering. The n--vector y of observations on the dependent variable is divided into
an n1--vector y1 and an n2--vector y2, and the n × k matrix X of observations on
the regressors is divided into an n1 × k matrix X1 and an n2 × k matrix X2, with
n = n1 + n2. Thus the maintained hypothesis may be written as

[
y1

y2

]
=

[
X1 O
O X2

][
β1

β2

]
+

[
u1

u2

]
, E(uu>) = σ2I, (1)

where β1 and β2 are each k --vectors of parameters to be estimated. The null hypo-
thesis to be tested is that β1 = β2 = β. Under it, (1) reduces to

y ≡
[

y1

y2

]
=

[
X1

X2

]
β +

[
u1

u2

]
≡ Xβ + u, E(uu>) = σ2I. (2)

In the usual case where both n1 and n2 are greater than k, it is easy to construct a
test of (2) against (1) by using an ordinary F test. The unrestricted sum of squared
residuals from OLS estimation of (1) is

USSR = SSR1 + SSR2 = y1
>M1y1 + y2

>M2y2, (3)

where Mi = I−Xi(Xi
>Xi)−1Xi

> for i = 1, 2 denotes the n× n matrix that projects
orthogonally off the subspace spanned by the columns of the matrix Xi. The vectors
M1y1 and M2y2 are the residuals from the regressions of y1 on X1 and y2 on X2,
respectively. Thus USSR is simply the sum of the two sums of squared residuals.

The restricted sum of squared residuals, from OLS estimation of (2), is

RSSR = y>MXy, (4)

where MX = I−X(X>X)−1X>. Thus the ordinary F statistic is
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(y>MXy − y1
>M1y1 − y2

>M2y2)/k

(y1
>M1y1 + y2

>M2y2)/(n− 2k)
=

(RSSR− SSR1 − SSR2)/k

(SSR1 + SSR2)/(n− 2k)
. (5)

This test statistic, which is what many applied econometricians refer to as the “Chow
statistic”, has k and n − 2k degrees of freedom, because the unrestricted model has
2k parameters while the restricted model has only k. It will be exactly distributed as
F (k, n − 2k) if the error vector u is normal and independent of the fixed regressors
X, and k times it will be asymptotically distributed as χ2(k) under much weaker
conditions.

Tests based on the Chow statistic (5) have one obvious and very serious limitation.
Like all conventional F tests, they are (in general) valid only under the rather strong
assumption that E(uu>) = σ2I. This assumption may be particularly implausible
when one is testing the equality of two sets of regression parameters, since if the
parameter vector β differs between two regimes the variance σ2 may well be different
as well. A number of papers have addressed this issue, including Toyoda (1974),
Jayatissa (1977), Schmidt and Sickles (1977), Watt (1979), Honda (1982), Phillips
and McCabe (1983), Ohtani and Toyoda (1985), Toyoda and Ohtani (1986), and
Weerahandi (1987). However, none of these papers proposes the very simple approach
of using a test which is robust to heteroskedasticity of unknown form. The work
of Eicker (1963) and White (1980) has made such tests available, and Davidson
and MacKinnon (1985) have provided simple ways to calculate them using artificial
regressions. In this paper, I show how the results of the latter paper may be used to
calculate several heteroskedasticity-robust variants of the Chow test.

The plan of the paper is as follows. In Section 2, I discuss how to test for structural
change in nonlinear regression models by using a variant of the Gauss-Newton regres-
sion. In Section 3, I then discuss ways to make the tests discussed in Section 2 robust
to heteroskedasticity of unknown form. Finally, in Section 4, I present the results
of some Monte Carlo experiments designed to see how well the new tests perform in
finite samples.

2. Testing for Structural Change in Nonlinear Regression Models

Nonlinear regression models may seem unnecessarily complicated, but studying them
makes it easier to see how to make Chow-type tests robust to heteroskedasticity.
Suppose that the null hypothesis is

H0 : yt = xt(β) + ut, E(uu>) = σ2I, (6)

where the regression functions xt(β), which may depend on exogenous and/or lagged
dependent variables and on a k --vector of parameters β, are assumed to be twice
continuously differentiable. The matrix X(β), with typical element

Xti(β) =
∂xt(β)

∂βi
, (7)
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will play a major role in the analysis. In the case of the linear regression model
y = Xβ + u, X(β) is simply the matrix X. It is assumed that

plim
n→∞

(
1−
n
X>(β)X(β)

)
(8)

exists and is a positive-definite matrix.

For simplicity, it will be assumed that the sample is to be divided into only two
groups of observations; extensions to the many-group case are obvious. We first
define a vector δ ≡ [δ1 . . . δn]>, letting δt = 0 if observation t belongs to group 1 and
δt = 1 if observation t belongs to group 2. Note that it would be possible to let δt,
take on values between zero and one for some observations, which might be useful if
it were thought that the transition between regimes was gradual rather than abrupt.
If the null hypothesis is (6), the alternative hypothesis may be written as

H1 : yt = xt

(
β1(1− δt) + β2δt

)
+ ut, E(uu>) = σ2I. (9)

Thus the regression function is xt(β1) if δt = 0 and xt(β2) if δt = 1.

The alternative hypothesis H1 can be rewritten as

yt = xt

(
β1 + (β2 − β1)δt

)
+ ut = xt(β1 + γδt) + ut, (10)

where γ ≡ β2−β1. This makes it clear that H0 is equivalent to the null hypothesis is
that γ = 0. Since the latter is simply a set of zero restrictions on the parameters of
a nonlinear regression function, we can use a Gauss-Newton regression to test it; see
Engle (1982b) or Davidson and MacKinnon (1984). The Gauss-Newton regression,
or GNR, for testing H0 against H1 is easily seen to be

yt − xt(β̃) = Xt(β̃)b + δtXt(β̃)c + residuals, (11)

where β̃ denotes the vector of nonlinear least squares (NLS) estimates of β for the
whole sample.

The GNR (11) may be written more compactly as

ũ = X̃b + δ ∗ X̃c + residuals, (12)

where ũ is an n--vector with typical element yt − xt(β̃), and X̃ is an n × k matrix
with typical row Xt(β̃). Here “∗” denotes the direct product of two matrices, a
typical element of δ ∗X being δtXti(β̃), so that δ ∗ X̃, equals X̃t when δt = 1 and 0
when δt = 0. Thus we can perform the test by estimating the model using the entire
sample and regressing the residuals on the matrix of derivatives X̃ and on the matrix
δ ∗ X̃, which is X̃ with the rows that correspond to group 1 observations set to zero.
There is no need to reorder the data. Several asymptotically valid test statistics can
then be computed, including the ordinary F statistic for the null hypothesis that
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c = 0. In the usual case where k is less than min(n1, n2), it will have k degrees of
freedom in the numerator and n− 2k degrees of freedom in the denominator.

Unlike the ordinary “Chow statistic” given in (5), this procedure is applicable even if
min(n1, n2) < k. Suppose, without loss of generality, that n2 < k and n1 > k. Then
the matrix δ ∗ X̃, which has k columns, will have n2 < k rows that are not just rows
of zeros, and hence will have rank at most n2. When equation (12) is estimated,
at most n2 elements of c will be identifiable, and the residuals corresponding to all
observations which belong to group 2 will be zero. Thus the degrees of freedom for
the numerator of the F statistic, which is equal to the rank of [X̃ δ ∗ X̃] minus
the rank of X̃, must be at most n2. The degrees of freedom for the denominator
will normally be n1 − k. Note that when xt(β) = Xβ and min(n1, n2) > k, the F
statistic based on the GNR (12) is numerically identical to the “Chow statistic” (5).
This follows from the fact that the sum of squared residuals from (12) will then be
equal to SSR1 +SSR2, the sum of the SSRs from estimating the regression separately
over the two groups of observations.

It may be of interest to test whether a subset of the parameters of a model, rather
than all of the parameters, is the same over two (or more) subsamples. It is easy to
modify the tests already discussed to deal with this case. The null and alternative
hypotheses can now be written as

H0 : yt = xt(α, β) + ut, E(uu>) = σ2I, (13)

and
H1 : yt = xt

(
α, (1− δt)β1 + δtβ2

)
+ ut, E(uu>) = σ2I, (14)

where α is an l--vector of parameters that are assumed to be the same over the two
subsamples, and β is an m--vector of parameters the constancy of which is to be
tested. The Gauss-Newton regression is easily seen to be

ũ = X̃αa + X̃βb + δ ∗ X̃βc + residuals, (15)

where X̃α is an n× l matrix with typical element ∂xt(α,β)/∂αi, and X̃β is an n×m
matrix with typical element ∂xt(α, β)/∂βj , both evaluated at the estimates (α̃, β̃)
from (13). One would then use the F statistic for c = 0, which if m < min(n1, n2)
will have m and n− l − 2m degrees of freedom.

There are several asymptotically equivalent test statistics which may be calculated
from the artificial regression (12). They all have the same numerator, which is the
explained sum of squares from that regression. The denominator may be anything
that consistently estimates σ2, and if the statistic is to be compared to the F (k, 2n−k)
rather than the χ2(k) distribution, it must first be multiplied by (n − 2k)/k. If we
let Z̃ denote δ ∗ X̃, then the numerator of all the test statistics is

ũ>MX̃Z̃(Z̃>MX̃Z̃)−1Z̃>MX̃ ũ, (16)
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where MX̃ ≡ I − X̃(X̃>X̃)−1X̃>. What may be the best of the many valid test
statistics is the ordinary F statistic for c = 0 in (12), which is

ũ>MX̃Z̃(Z̃>MX̃Z̃)−1Z̃>MX̃ ũ/k

ũ>MX̃;Z̃ũ/(n− 2k)
, (17)

where MX̃;Z̃ is the matrix that projects orthogonally off the subspace spanned by X̃
and Z̃ jointly. Expression (17) is just (n− 2k)/k times the explained sum of squares
from the GNR (12) divided by the sum of squared residuals that artificial regression.

Rewriting expression (16) so that all factors are Op(1), we obtain

(n−1/2ũ>MX̃Z̃)(n−1Z̃>MX̃Z̃)−1(n−1/2Z̃>MX̃ ũ). (18)

This expression is a quadratic form in the vector

n−1/2Z̃>MX̃ ũ. (19)

Standard asymptotic theory tells us that this vector is asymptotically normally dis-
tributed with mean vector zero and covariance matrix

σ2 plim
n→∞

(
1−
n

Z̃>MX̃Z̃
)
. (20)

The middle matrix in (18), times anything that consistently estimates σ2, provides
a consistent estimate of the inverse of (20). Thus (18), divided by anything that
consistently estimates σ2, must be asymptotically distributed as χ2(k).

The key point which emerges from the above discussion is that every test statistic
based on the GNR (12) is actually testing whether the k --vector (19) has mean zero
asymptotically. Under relatively weak assumptions, this vector will be asymptoti-
cally normal, since it is essentially a weighted sum of n independent random vari-
ables, namely, the elements of the vector u. Under the much stronger assumption
of homoskedasticity, its asymptotic covariance matrix will be given by (20), which
allows us to use tests based on the GNR. Without this assumption, we will still be
able to compute test statistics as quadratic forms in the vector n−1/2Z̃>MX̃ ũ and
expect them to be asymptotically distributed as χ2(k), provided that we can some-
how obtain an estimate of the asymptotic covariance matrix of n−1/2Z̃>MX̃ ũ that
is consistent in the presence of heteroskedasticity. How this may be done is discussed
in the next section.
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3. Heteroskedasticity-Robust Tests

We are now ready to drop the often implausible assumption that E(uu>) = σ2I.
Instead, we shall assume initially that

E(uu>) = Ω, Ωtt = σ2
2 , Ωts = 0 for t 6= s, 0 < σt < σmax. (21)

Thus Ω, the covariance matrix of the error terms u, is assumed to be an n×n diagonal
matrix with σ2

t as its tth diagonal element. Except that σt is assumed to be bounded
from above by some possibly very large number σmax, we are not assuming that any-
thing is known about the σt. Since there is nothing that prevents σt from depending
on variables which affect xt(β), these assumptions admit virtually any interesting
pattern of heteroskedasticity, including autoregressive conditional heteroskedasticity,
or ARCH; see Engle (1982a). They do, however, rule out serial correlation or any
other sort of dependence across observations.

Under the assumptions (21), it is easy to see that the asymptotic covariance matrix
of the vector (19) is

plim
n→∞

(
1−
n

Z̃>MX̃ΩMX̃Z̃
)
. (22)

It is, in general, not possible to estimate Ω an n× n matrix which in this case has n
non-zero elements, consistently. However, by a slight modification of the arguments
used by White (1980), one can show that the matrix

1−
n

Z̃>MX̃ΏMX̃Z̃ (23)

consistently estimates (22), where Ώ is an n× n diagonal matrix with σ́2
t as the tth

diagonal element, and the diagonal elements σ́2
t have the property that

σ́2
t → σ2

t + vt as n →∞. (24)

Here vt is a random variable which asymptotically has mean zero and finite variance
and is independent of X̃ and Z̃. There are many choices for σ́2

t , of which the simplest
is just ũ2

t , the square of the tth residual from the initial NLS estimation of H0.

Combining (19) and (23), we obtain the family of test statistics

(n−1/2ũ>MX̃Z̃)(n−1Z̃>MX̃ΏMX̃Z̃)−1(n−1/2Z̃>MX̃ ũ)

= ũ>MX̃Z̃(Z̃>MX̃ΏMX̃Z̃)−1Z̃>MX̃ ũ. (25)

Since n−1/2Z̃>MX̃ ũ is asymptotically normal with covariance matrix (22), and the
matrix (23) consistently estimates (22), it is clear that (25) will be asymptotically
distributed as χ2(k) under H0. As shown by Davidson and MacKinnon (1985), vari-
ants of (25) can be computed by means of two different artificial regressions. The
most generally applicable of these is

ũt/σ́t = σ́t(MX̃Z̃)tc + residual. (26)
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The explained sum of squares from regression (26) is the test statistic (25). The inner
product of the regressor matrix with itself is Z̃>MX̃ΏMX̃Z̃, and its inner product
with the regressand is ũ>MX̃Z̃. The latter expression does not involve σ́t, because
the σ́t which multiplies each of the regressors cancels with the 1/σ́t which multiplies
the regressand. For regression (26) to be computable, σ́t must never be exactly equal
to zero, since, if it were, the regressand would be undefined; this problem can be
avoided in practice by setting σ́t to a very small number whenever it should really
be zero.

If ũt is used for σ́t, and it is probably the most natural choice, an even simpler
artificial regression is available. It is

ι = ŨMX̃Z̃c + errors, (27)

where ι is an n--vector of ones, and Ũ is an n×n diagonal matrix with ũt as the tth

diagonal element. The explained sum of squares from regression (27) is

ι>ŨMX̃Z̃(Z̃>MX̃Ũ>ŨMX̃Z̃)−1Z̃>MX̃Ũι. (28)

The vector ι>Ũ is simply ũ>, and the matrix Ũ>Ũ is simply Ώ with ũ2
t being used

for σ́2
t , so that (28) is just a special case of (25).

The artificial regression (27) is very easy to compute. The regressand is a vector of
ones. Each of the regressors is the vector of residuals from a regression of Z̃ on X̃,
each element of which has been multiplied by the appropriate element of ũ (to see
this, observe that ŨMX̃Z̃ = ũ ∗ MX̃Z̃). Thus one simply has to perform k + 1
linear regressions. Since k of them involve the same set of regressors, namely, the
matrix X̃, the computational burden (given appropriate software) is only moderately
greater than that of performing two linear regressions.

There are other choices for σ́2
t besides ũ2

t . One that was proposed in the context
of heteroskedasticity-consistent covariance matrix estimators (HCCMEs) for linear
regression models by MacKinnon and White (1985) is

σ̈2
t = ũ2

t /(MX̃)tt, (29)

where (MX̃)tt denotes the tth diagonal element of the matrix MX̃ . The reason
for using (29) is that, in the case of a linear regression model with homoskedastic
residuals, it provides an unbiased estimate of σ2

t = σ2, correcting the tendency of
squared residuals to be too small.

In the context of testing for structural change, assumptions (21) may seem more
unrestrictive than is needed. What has traditionally worried econometricians about
the ordinary F test is not the possibility that there may be heteroskedasticity of
unknown form, but the possibility that the variance of the error terms may simply
be different in the two sub-samples. It is easy to derive a version which allows only for
this possibility. First, estimate the model over each of the two groups of observations,
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obtaining sums of squared residuals SSR1, and SSR2, respectively. Then make the
definitions:

σ̂1 =
(

SSR1

n1 − k

)1/2

and σ̂2 =
(

SSR2

n2 − k

)1/2

, (30)

and let σ́t = σ̂1 for all observations where δt = 0 and σ́t = σ̂2 for all observations
where δt = 1. Now run regression (26) using the σ́t so defined. The explained sum
of squares from this regression will have the form of (25), and it will clearly provide
an asymptotically valid test statistic if in fact group 1 observations have variance
σ2

1 and group 2 observations have variance σ2
2 . Of course, if one is willing to make

the assumption that the variance is constant over each of the sub-samples, various
other procedures are available; see Jayatissa (1977), Weerahandi (1987), Watt (1979),
Honda (1982), and Ohtani and Toyoda (1985), among others.

4. Finite-Sample Properties of the Tests

The tests suggested in the previous section are valid only asymptotically. If they are
to be useful in practice, their known asymptotic distributions must provide reasonably
good approximations to their unknown finite-sample distributions. In this section, I
report the results of several Monte Carlo experiments designed to investigate whether
this is so. For obvious reasons, attention is restricted to the case of linear regression
models. Experiments were run for samples of sizes 50, 200, and 800, with n1 equal
to θn, θ being either 0.5 or 0.2, and with σ1 variously equal to σ2, four times σ2, or
one quarter of σ2. In all experiments, there were four regressors including a constant
term. The X matrix was initially chosen for a sample of size 50 and replicated as
many times as necessary as the sample size was increased, so as to ensure that the
matrix n−1X>X did not change. The regressors were a constant, the 90-day treasury
bill rate for Canada, the quarterly percentage rate of change in real Canadian GNP,
seasonally adjusted at annual rates, and the exchange rate between the Canadian
and U.S. dollars, in Canadian dollars per U.S. dollar, all for the period 1971:3 to
1983:4.

Choosing the X matrix in this way makes it easy to see how the sample size affects
the results. However, it may make the performance of the heteroskedasticity-robust
(HR) tests appear to be unrealistically good in moderately large samples. As Chesher
and Jewitt (1987) have shown, the values of the few smallest diagonal elements of
MX can have a very big impact on the finite-sample performance of HCCMEs.
Replicating the X matrix as the sample size is increased ensures that all diagonal
elements of MX approach one at a rate proportional to 1/n, so that, once n becomes
large, the HR tests are bound to perform reasonably well. With real data sets, one
would certainly expect the smallest elements of MX to approach one as n tends to
infinity, but possibly at a rate much slower than 1/n, thus implying that the HR tests
might perform less well for larger samples than these experiments suggest. In the
experiments, the smallest diagonal elements of MX were 0.7965 for n = 50, 0.9491
for n = 200, and 0.9873 for n = 800.
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The four test statistics that were computed in the course of the experiments were the
following:

1. The ordinary F statistic, expression (5), which is valid only under homoskedas-
ticity. It will be denoted F .

2. The heteroskedasticity-robust test statistic (28), based on the artificial regression
(27). It will be denoted HR1.

3. A heteroskedasticity-robust test statistic like (25), in which σ̈2
t defined by (29)

is used in place of ũ2
t . This statistic, which will be denoted HR2, is somewhat

harder to compute than HR1.

4. A test statistic with the form of (25), but where σ́t is either σ̂1 or σ̂2, where
the latter were defined in (30). This statistic, which will be denoted 2V (for
two variances) will be asymptotically valid under much less general assumptions
than HR1 and HR2.

The results of the Monte Carlo experiments are presented in Tables 1 and 2. Table 1
contains results for 18 experiments where the null hypothesis that β1 = β2 was
correct. The percentage of the time that each test rejected the null hypothesis at
the nominal 1%, 5%, and 10% levels is shown in the table. These numbers should
thus be very close to 1.0, 5.0, and 10.0 if the tests are behaving in finite samples as
asymptotic theory says they should.

In the first group of experiments, the variance in the two subsamples was equal.
The ordinary F test is thus completely valid, and, as we would expect, the rejection
frequencies for the F test were indeed very close to what they should be. All the other
tests performed reasonably well when σ1 = σ2. However, HR1 and HR2 tended to
under-reject, especially for θ = 0.2, when n1 was one-quarter the size of n2, while 2V
tended to over-reject somewhat. The performance of all tests improved sharply with
the sample size, and one could feel confident about using any of them for n ≥ 200.

In the second group of experiments, σ2 was four times as large as σ1. The F test was
therefore no longer valid, but it continued to perform quite well for θ = 0.5. However,
it rejected the null far too infrequently for θ = 0.2. The two HR tests performed
reasonably well for θ = 0.5, but they also grossly under-rejected for θ = 0.2. Even
for n = 800, they tended to reject too infrequently in the latter case. The 2V test
over-rejected quite severely for n = 50 and moderately for n = 200, but it performed
very well for n = 800.

The third group of experiments was similar to the second, except that σ1 was now
four times as large as σ2. This changed many results dramatically. The F test
continued to perform surprisingly well for θ = 0.5, but it rejected the null far too
often for θ = 0.2. The two HR tests generally performed well, although they over-
rejected somewhat when n = 50. The 2V test continued to over-reject quite severely
when n = 50 and moderately when n = 200.

From Table 1, two conclusions emerge. First, the two HR tests generally perform
quite well, but they usually tend to under-reject. There is thus no reason to prefer
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HR2 to the simpler HR1; the former simply under-rejects more severely in most cases.
Nevertheless, there are evidently some cases where HR1 can seriously over-reject, at
least for small samples, so that routine use of this test as if it were an exact test is
not justified. Secondly, the 2V test performs very well in medium and large samples,
but it tends to over-reject in smaller ones. Its good performance in reasonably large
samples makes sense, because it would be an exact test if σ̂1 and σ̂2 were replaced
by σ1 and σ2. Provided that both n1 and n2 are reasonably large, σ̂1 and σ̂2 will
provide good estimates of σ1 and σ2, and hence it is not surprising that the test
performs well. Of course, in these circumstances, the Wald test examined by Watt
(1979), Honda (1982), and Ohtani and Toyoda (1985), which also uses the estimates
σ̂1 and σ̂2, might well perform even better.

Table 2 presents results for 18 experiments where the null hypothesis was false. The
parameters were chosen so that for the case where σ1 = σ2 and θ = 0.5, the F test
would reject the null roughly half the time. The difference between β1 and β2 was
made proportional to n−1/2 so that there would be no tendency for the rejection
frequencies to increase with the sample size. What should happen under this scheme
as n →∞ is that all tests which are asymptotically equivalent will tend to the same
random variable, and thus reject the null the same fraction of the time. The results
in Table 2 largely speak for themselves. Once again, the 2V test performs well. It
performs quite similarly to HR1 and HR2 in most cases for n = 800, but it generally
rejects the null more frequently for smaller sample sizes.

The limited Monte Carlo experiments reported on here certainly do not provide a
definitive study of heteroskedasticity-robust tests for structural change. For example,
no attempt was made to study the effect of combining the ordinary F test with the 2V
test by first doing a pretest of the hypothesis that σ1 = σ2; see Phillips and McCabe
(1983) or Toyoda and Ohtani (1986). Such a strategy seems appealing, and it would
presumably produce results somewhere between those for F and 2V, depending on
the significance level of the pretest. There was also no attempt to quantify the size-
power tradeoffs of the various tests, although how useful such an exercise is when
size is not known in practice is unclear.

The most substantial omission is that the undoubtedly very complex relationships be-
tween test performance, the number of regressors, and the structure of the X matrix
were not studied at all. To do so would be a major undertaking, because it seems
unlikely that Monte Carlo evidence alone, without a strong theoretical framework
based on work like that of Chesher and Jewitt (1987), would allow one to say any-
thing interesting about those relationships. Nevertheless, a few fairly strong results
do seem to emerge from the Monte Carlo experiments. These are:

1. There seems to be no reason to use HR2 instead of the simpler HR1.

2. Since HR1 never seriously over-rejects at the 1% level, one should probably view
an HR1 statistic which is significant at the 1% level as providing quite strong
evidence against the null hypothesis.
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3. The 2V test performs very well in medium and large samples, although it over-
rejects somewhat in small samples. It generally has more power than the HR
tests, but they of course require much weaker distributional assumptions.

5. Conclusion

This paper has shown that it is remarkably easy to test for structural change in a
fashion which is robust to heteroskedasticity of unknown form. The tests can also be
modified so that they are robust only to a more structured form of heteroskedasticity
in which the variance differs between the two subsamples, although since numerous
other solutions to this simpler problem are available, this modification may be of
limited interest. The new tests are asymptotically valid for both linear and nonlinear
regression models. Monte Carlo evidence for the linear case suggests that, although
the finite-sample performance of even the best tests is sometimes poor, the ordinary
F test can be so misleading that it clearly makes no sense to ignore the possibility of
heteroskedasticity when testing for structural change. At the very least, one should
double-check the results of the F test by using one of the tests discussed in this paper.
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Table 1. Rejection Frequencies when the Null Hypothesis is True

n σ1/σ2 θ Test 1% R.F. 5% R.F. 10% R.F. θ Test 1% R.F. 5% R.F. 10% R.F.

50 1/1 0.5 F 1.10 5.15 10.30 0.2 F 0.70 4.65 9.85

HR1 0.45 5.00 10.30 HR1 0.00∗∗ 0.70∗∗ 5.10∗∗

HR2 0.25∗∗ 3.00∗∗ 8.05∗ HR2 0.00∗∗ 0.25∗∗ 2.40∗∗

2V 2.60∗∗ 7.30∗∗ 13.05∗∗ 2V 6.10∗∗ 12.90∗∗ 19.00∗∗

200 1/1 0.5 F 1.05 4.85 10.25 0.2 F 1.35 5.90 9.95

HR1 0.55 4.50 9.65 HR1 0.55 3.75 9.70

HR2 0.55 4.25 9.10 HR2 0.55 3.55∗ 8.90

2V 1.30 5.30 11.00 2V 2.25∗∗ 7.55∗∗ 11.80∗

800 1/1 0.5 F 1.25 5.30 10.40 0.2 F 1.25 5.30 10.30

HR1 1.15 5.45 10.05 HR1 0.95 5.00 9.85

HR2 1.10 5.45 9.90 HR2 0.95 4.85 9.60

2V 1.35 5.40 10.50 2V 1.20 5.60 10.70

50 1/4 0.5 F 2.65∗∗ 7.10∗∗ 11.80∗ 0.2 F 0.00∗∗ 0.10∗∗ 0.15∗∗

HR1 0.60 4.45 11.70 HR1 0.00∗∗ 0.25∗∗ 0.80∗∗

HR2 0.15∗∗ 2.70∗∗ 7.80∗∗ HR2 0.00∗∗ 0.10∗∗ 0.55∗∗

2V 2.50∗∗ 7.50∗∗ 13.80∗∗ 2V 3.70∗∗ 9.60∗∗ 14.75∗∗

200 1/4 0.5 F 2.35∗∗ 8.35∗∗ 12.60∗∗ 0.2 F 0.00∗∗ 0.15∗∗ 0.30∗∗

HR1 1.20 5.45 10.80 HR1 0.25∗∗ 1.90∗∗ 5.65∗∗

HR2 0.95 5.05 10.40 HR2 0.20∗∗ 1.65∗∗ 5.30∗∗

2V 1.60∗ 6.60∗ 11.95∗ 2V 1.65∗ 6.05 11.55

800 1/4 0.5 F 1.80∗∗ 5.35 10.10 0.2 F 0.00∗∗ 0.05∗∗ 0.15∗∗

HR1 1.00 4.85 10.10 HR1 0.75 4.05 7.55∗∗

HR2 1.00 4.70 10.00 HR2 0.75 3.95 7.35∗∗

2V 1.20 5.25 9.90 2V 1.45 5.75 9.60

50 4/1 0.5 F 2.45∗∗ 8.70∗∗ 13.90∗∗ 0.2 F 47.45∗∗ 63.70∗∗ 70.50∗∗

HR1 0.60 4.95 11.15 HR1 0.90 7.40∗∗ 16.05∗∗

HR2 0.20∗∗ 3.05∗∗ 7.75∗∗ HR2 0.40∗ 4.90 11.60

2V 2.45∗∗ 7.45∗∗ 12.40∗∗ 2V 9.15∗∗ 16.15∗∗ 22.20∗∗

200 4/1 0.5 F 2.70∗∗ 8.05∗∗ 12.95∗∗ 0.2 F 38.70∗∗ 56.70∗∗ 64.90∗∗

HR1 1.10 4.90 10.30 HR1 1.25 5.30 10.40

HR2 0.95 4.60 9.75 HR2 0.90 4.50 9.70

2V 1.50 5.90 11.35 2V 2.30∗∗ 6.65∗∗ 11.95∗

800 4/1 0.5 F 2.40∗∗ 7.60 12.60∗∗ 0.2 F 39.05∗∗ 55.60∗∗ 65.15∗∗

HR1 0.65 4.35 10.25 HR1 1.00 5.75 10.60

HR2 0.65 4.35 10.05 HR2 0.95 5.45 10.50

2V 0.80 4.65 9.90 2V 0.95 5.55 10.85

All results are based on 2000 replications.
∗ and ∗∗ indicate that the rejection frequency in question differs significantly at the
0.01 and 0.001 level, respectively, from what it should be if the test statistic were
distributed as χ2(4) or F (4, n− 8).
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Table 2. Rejection Frequencies when the Null Hypothesis is False

n σ1/σ2 θ Test 1% R.F. 5% R.F. 10% R.F. θ Test 1% R.F. 5% R.F. 10% R.F.

50 1/1 0.5 F 22.40 45.60 59.05 0.2 F 16.70 38.65 52.35

HR1 10.65 39.00 56.70 HR1 0.25 8.00 23.15

HR2 5.65 29.40 47.90 HR2 0.15 3.60 13.75

2V 30.45 52.80 63.70 2V 31.45 47.85 58.00

200 1/1 0.5 F 26.00 50.20 62.20 0.2 F 20.55 41.50 54.60

HR1 23.65 48.50 61.05 HR1 9.80 31.85 47.60

HR2 22.45 46.55 59.70 HR2 8.90 30.25 45.55

2V 28.05 51.30 63.10 2V 23.65 43.90 56.30

800 1/1 0.5 F 26.80 51.25 64.60 0.2 F 21.60 42.55 55.05

HR1 26.40 51.20 64.15 HR1 18.05 40.20 53.50

HR2 25.70 51.05 63.95 HR2 17.40 39.75 53.20

2V 27.25 51.35 64.80 2V 22.00 42.10 56.00

50 1/4 0.5 F 23.50 43.90 56.55 0.2 F 0.95 5.45 12.10

HR1 11.90 39.40 57.85 HR1 0.00 3.20 19.15

HR2 6.40 29.85 48.95 HR2 0.00 1.10 9.45

2V 36.55 57.35 69.50 2V 52.05 72.45 80.55

200 1/4 0.5 F 25.70 46.65 58.05 0.2 F 0.85 5.95 12.90

HR1 24.95 51.05 64.95 HR1 15.50 45.60 63.15

HR2 23.70 49.20 63.65 HR2 14.60 42.80 61.10

2V 31.90 56.15 67.40 2V 47.75 71.50 80.10

800 1/4 0.5 F 24.80 44.90 57.45 0.2 F 0.95 6.50 14.20

HR1 28.80 52.25 65.80 HR1 37.10 65.30 76.95

HR2 28.50 51.90 65.50 HR2 36.85 64.70 76.65

2V 30.95 53.40 66.30 2V 47.50 71.10 80.40

50 4/1 0.5 F 24.35 47.55 61.60 0.2 F 78.30 88.70 92.45

HR1 19.95 55.50 73.35 HR1 2.35 19.30 36.90

HR2 11.95 44.10 65.10 HR2 1.05 11.60 27.50

2V 47.95 69.85 80.25 2V 26.25 40.05 48.95

200 4/1 0.5 F 26.20 51.70 63.25 0.2 F 76.15 86.30 89.80

HR1 39.50 66.05 77.55 HR1 9.25 29.20 42.60

HR2 37.50 64.35 76.25 HR2 8.15 27.50 41.25

2V 46.55 69.75 79.00 2V 17.10 33.25 44.60

800 4/1 0.5 F 28.80 51.70 64.00 0.2 F 75.75 85.75 90.15

HR1 44.55 69.00 79.75 HR1 13.45 30.55 43.60

HR2 44.20 68.70 79.50 HR2 13.15 30.30 43.05

2V 45.55 69.70 79.95 2V 14.85 32.50 43.25

All results are based on 2000 replications.
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