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Abstract

Artificial linear regressions often provide a convenient way to calculate test statistics
and estimated covariance matrices. This paper discusses one family of these regres-
sions, called “double-length” because the number of “observations” in the artificial
regression is twice the actual number of observations. These double-length regressions
can be useful in a wide variety of situations. They are quite easy to calculate, and, in
contrast to the more widely applicable OPG regression, seem to have good properties
when applied to samples of modest size. We first discuss how they are related to the
familiar Gauss-Newton and squared-residuals regressions for nonlinear regression mod-
els, then show how they may be used to test for functional form, and finally discuss
several other ways in which they may be useful in applied econometric work.
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1. Introduction

In recent years, applied econometricians have become familiar with the idea that “arti-
ficial” regressions may provide a convenient way to compute many test statistics. Such
regressions are run after the model of interest has been estimated, using constructed
variables which depend on parameter estimates and on the hypotheses to be tested.
Test statistics may then be computed in several ways, perhaps as the explained sum
of squares from the artificial regression or as n (the sample size) times the uncentred
R2, both of which forms are often derived as variants of the LM statistic, or perhaps
as ordinary t or F statistics calculated from the artificial regression.

Three families of artificial regressions are widely used in applied work. The best-known
is the Gauss-Newton family, which can be used to test the parameters of a univariate
or multivariate nonlinear regression function. In the univariate case, this family simply
involves regressing the residuals from the restricted model (that is, the model in which
some of the parameters are estimated subject to the restrictions to be tested) on
the derivatives of the regression function with respect to all of the parameters of the
unrestricted model; see Section 3. An early and important application in econometrics
of tests based on the Gauss-Newton family was to testing linear regression models with
lagged dependent variables for serial correlation (Durbin, 1970; Godfrey, 1978), but
there have subsequently been a great many other applications; see Pagan (1984). For
a general discussion of these tests, see Engle (1982a).

A second widely-used family of artificial regressions is also applicable only to regression
models, and is useful when one wants to test for some form of heteroskedasticity.
In the univariate case, this family simply involves regressing squared residuals on
certain regressors with which they should be asymptotically uncorrelated under the
null hypothesis of homoskedasticity. Tests for various forms of heteroskedasticity which
utilize this family of artificial regressions include those suggested by Breusch and Pagan
(1979), White (1980), Koenker (1981) and Engle (1982b).

The third well-known family of artificial regressions is the “outer product of the gradi-
ent” or OPG family, in which a vector of ones is regressed on a matrix of the derivatives
of the contributions from the individual observations to the loglikelihood for the un-
restricted model. This was used to compute a variant of the Lagrange Multiplier test
by Godfrey and Wickens (1981), and has subsequently been used for several other
applications, notably the calculation of conditional moment tests (Newey, 1985) and
information matrix tests (Chesher, 1983; Lancaster, 1984). It can easily be applied to
any situation in which maximum likelihood estimation is employed and the loglikeli-
hood function can conveniently be written as a sum of the contributions made by each
of the observations.

When one is dealing solely with regression models, the utility of the Gauss-Newton and
squared-residuals regressions is unquestioned. In the context of more general models,
however, these artificial regressions are not applicable, and the obvious thing to do
is to use the OPG regression. Unfortunately, Monte Carlo evidence suggests that
tests based on this artificial regression tend to reject much too often in finite samples.
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The most dramatic case reported so far is found in Davidson and MacKinnon (1987),
where the OPG variant of the LM test incorrectly rejects the null more than 98% of
the time at the nominal 5% level for samples of size 100, and more than 53% of the
time for samples of size 1600! In this case the test had nine degrees of freedom; a
similar test with two degrees of freedom rejected the null 40% of the time for samples
of size 100 and 11% of the time for samples of size 1600. These results suggest that
the performance of tests based on the OPG regression may deteriorate markedly as
dimensionality increases; earlier results (cited below and in Section 4) dealt only with
cases having one or a very few degrees of freedom.

Available evidence thus suggests that using tests based on the OPG regression can be
extremely misleading, unless the sample size is very large relative to the number of
degrees of freedom. The basic reason for this is that the OPG regression provides an
estimate of the information matrix which is in general inefficient and can be severely
biased downwards in certain cases; see Section 2. As a result, variants of the LM test
calculated using the OPG regression are sometimes much too prone to reject the null
hypothesis.

Because the OPG regression is so widely applicable, there is no single procedure which
can always replace it. But one procedure which can often be used is the ”double-
length” artificial regression, or DLR, proposed in Davidson and MacKinnon (1984a),
a paper which is hereafter referred to as DM. This regression can be thought of as a
generalization of both the Gauss-Newton regression and the squared-residuals regres-
sion. It can deal with a wide variety of models, providing they involve only continuous
random variables. When the finite-sample properties of tests based on the DLR have
been studied, they have generally been quite good, and always far better than those of
tests based on the OPG regression; see Davidson and MacKinnon (1983, 1985), Bera
and McKenzie (1986), and Godfrey, McAleer, and McKenzie (1986).1 Nevertheless,
the DLR procedure does not seem to be well-known to applied econometricians.2 The
purpose of this note is to remedy this situation. Technical details, which may be found
in DM, are omitted.

2. Double-Length Regressions
The class of models for which these artificial regressions can be defined may be char-
acterized by

ft(yt, θ) = εt, t = 1, . . . , n, εt ∼ NID(0, 1), (1)

where each ft is a (suitably smooth) function which depends on the random variable
yt, a k --vector of parameters θ, and (implicitly) exogenous and/or predetermined vari-
ables. This may seem at first sight to be a rather restrictive class of models, but it

1 In addition, Davidson and MacKinnon (1984b, 1987) provide evidence on the perfor-
mance of the OPG regression in cases where the DLR is not applicable.

2 One exception to this generalization is a very recent paper by Larson (1987), which uses
the DLR to test functional form in models using pooled time-series and cross-section
data.
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is actually quite general. For example, any nonlinear regression model with normal
errors,

yt = xt(β) + ut, ut ∼ NID(0, σ2) (2)

can be written in the form of (1) by making the definitions

ft(yt,θ) ≡ (
yt − xt(β)

)
/σ, θ>≡ [β> σ].

Moreover, the class of models defined by (1) includes many non-regression models,
namely, models in which the dependent variable cannot simply be written as the sum
of a regression function and an error term. Models with non-normal continuously dis-
tributed errors can be transformed to the form (1) by transforming the distribution of
the errors to the normal distribution. Even many multivariate models can be handled,
although, since the algebra is a little complicated, we will not deal with such models
in this paper; see DM.

For a model of the form (1), the contribution to the loglikelihood l(θ) made by obser-
vation t is

lt = − 1−
2

log(2π)− 1−
2
f2

t + kt,

where

kt(yt,θ) ≡ log
∣∣∣∣
∂ft(yt,θ)

∂yt

∣∣∣∣
is a Jacobian term. Now let us make the definitions

Fti(yt, θ) ≡ ∂ft(yt, θ)
∂θi

and

Kti(yt, θ) ≡ ∂kt(yt,θ)
∂θi

,

and define F (y, θ) and K(y, θ) as the n× k matrices with typical elements Fti(yt, θ)
and Kti(yt, θ). It is easy to see that the gradient is

∂l(θ)
∂θ

≡ g(θ) = −F>(θ)f(θ) + K>(θ)ι, (3)

where ι is an n--vector of ones. The fundamental result of DM is that, for this class
of models, the information matrix I(θ) satisfies

plim
n→∞

(
1−
n

(
F>(θ)F (θ) + K>(θ)K(θ)

))
= I(θ), (4)

and so can be consistently estimated by

1−
n

(
F>(θ̈)F (θ̈) + K>(θ̈)K(θ̈)

)
(5)
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where θ̈ is any consistent estimate of θ. Note that we have defined I so that it is of
order unity in the sample size; what some authors refer to as the information matrix
is in our notation n times I(θ).

Strictly speaking, the LM statistic in its score form is

g̃>(nI)−1g̃

where g̃ ≡ g(θ̃) is the gradient evaluated at the restricted estimates θ̃. In practice,
however, we rarely know I, and so we must replace it with something which estimates
it consistently under the null hypothesis. Doing so does not affect the asymptotic
distribution of the resulting test statistic, but different ways of estimating I can yield
test statistics with dramatically different finite-sample properties. In the case of the
DLR, if we let f̃ , F̃ , and K̃ denote, respectively, f(θ̃), F (θ̃), and K(θ̃), (3) and (4)
imply that one valid form of the LM statistic for testing hypotheses about (1) is

(−f̃>F̃ + ι>K̃)(F̃>F̃ + K̃>K̃)−1(−F̃>f̃ + K̃>ι). (6)

This is the DLR variant of the LM statistic.

The DLR variant (6) is evidently just the explained sum of squares from the double-
length artificial regression

[
f̃
ι

]
=

[−F̃
K̃

]
b + residuals. (7)

This artificial regression has 2n “observations”. The regressand is ft for “observation”
t and unity for “observation” t + n, and the regressors corresponding to θ are −F̃t

for “observation” t and K̃t for “observation” t + n, F̃t and Kt denoting, respectively,
the tth rows of F̃ and K̃. Intuitively, the reason we need a double-length regression
here is that each observation makes two contributions to the loglikelihood function: a
sum-of-squares term − 1

2f2
t and a Jacobian term kt. As a result, the gradient and the

information matrix each involve two parts as well, and the only way to take both of
these into account is to incorporate two “observations” into the artificial regression for
each genuine observation. Notice that ordinary t and F statistics for the hypothesis
that those elements of b which correspond to restricted parameters are zero, are just
as valid, asymptotically, as the DLR variant of the LM statistic, (6).

In contrast to the DLR regression, the OPG regression is based on the general result,
utilized by Berndt, Hall, Hall, and Hausman (1974), that

plim
n→∞

(
1−
n

(
G>(θ)G(θ)

))

where G(θ) is an n × k matrix with typical element Gti(θ) = ∂gt(θ)/∂θi. Using this
result, it is evident that the information matrix can be consistently estimated by

1−
n

(
G>(θ̈)G(θ̈)

)
(8)
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The difference between (5) and (8) is that the former makes use of details about the
structure of the model (1) which the latter, because it is applicable to a much wider
range of models, ignores. As a result, (5) tends to estimate the information matrix
more accurately than does (8).

The OPG variant of the LM statistic is

ι>G̃(G̃>G̃)−1G̃>ι, (9)

which from (8) and the fact that g̃ = G̃>ι is seen to be equal to the explained sum of
squares from the artificial regression

ι = G̃c + residuals. (10)

For models of the form (1), g̃ = G̃>ι = −F̃>f̃+K̃>ι, so that the only difference between
the two variants of the LM test, (6) and (9), is that they use different estimates of
the information matrix. But this difference can be crucial, since if the estimated
information matrix is too small, its inverse, and hence the corresponding LM statistic,
will be too large. 3 The evidence cited in Section 1 suggests that this happens very
often with the OPG variant of the test.

3. Applications to the Nonlinear Regression Model
The general expression for a DLR, (7), is deceptively simple, since we have said noth-
ing about the structure of the matrices F̃ and K̃. It is therefore useful to consider
some special cases. In order to show how the DLR is related to the well-known Gauss-
Newton and squared-residuals regressions, we begin by considering a case where the
DLR is often unnecessary, namely, nonlinear regression models with (possibly) het-
eroskedastic errors. When restrictions apply to the regression function alone, or to the
skedastic function (which determines the variance) alone, there is no need to use dou-
ble-length regressions. However, when restrictions affect both the regression function
and the skedastic function, they become very useful.

Consider a univariate nonlinear regression model like (2), extended to allow for het-
eroskedasticity of known form by letting the standard deviation of ut be given by the
skedastic function h(α + Ztγ), where γ is a p--vector. When written in the form of
(1), this model becomes

ft(yt,θ) =
yt − xt(β)
h(α + Ztγ)

, (11)

where β is a k --vector (so that γ is now a (k + p + 1)--vector). The null hypothesis
of homoskedasticity is evidently equivalent to the hypothesis that γ = 0, since the
standard deviation is then h(α) ≡ σ. We shall initially assume that this hypothesis is

3 Evidently, the phrase “too small” in connection with an estimate of a matrix is a very
loose one, but it probably conveys the flavour of what is happening better than a more
rigorous discussion would do.
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true, so as to consider tests of restrictions on β alone, and will then separately consider
tests of the homoskedasticity assumption. The nature and number of the restrictions
on β is irrelevant; for simplicity, one can think of them as r ≤ k zero restrictions.
As before, quantities denoted by “∼” are evaluated at ML estimates subject to those
restrictions.

Calculating f̃ , F̃, and K̃ for (11) with γ = 0 and substituting them into (7) yields
the DLR [

ε̃
ι

]
=

[
X̃/σ̃ ũ/σ̃2

0 −ι/σ̃

] [
b
a

]
+ residuals, (12)

where ε̃ ≡ ũ/σ̃ is an n--vector of normalized residuals, and X̃ is an n× k matrix with
typical element ∂xt/∂βi evaluated at β̃; if the regression model were linear, X̃ would
be the usual X matrix. The first k regressors here correspond to β, while the last
one corresponds to α (i.e. σ). Because we are interested only in the explained sum of
squares from this regression, we may transform the regressors in any way that does
not affect the explanatory power of the regression. In particular, we may multiply all
the regressors by σ̃ to yield a DLR equivalent to (12):

[
ε̃
ι

]
=

[
X̃ ε̃
0 −ι

] [
b
a

]
+ residuals. (13)

It is now evident that the last regressor is orthogonal to the regressand. It is also
orthogonal to all those other regressors which correspond to elements of β that were
estimated without restriction (by the first-order conditions), and under the null hypo-
thesis it should be uncorrelated with the remaining regressors as well. Thus it must
be valid simply to drop this last regressor. But when it is dropped, the second half of
the DLR becomes irrelevant, since all remaining regressors are zero, and we are left
with the artificial regression

ε̃ = X̃b + residuals, (14)

which is a variant of the Gauss-Newton regression. It can be shown that the explained
sums of squares from (13) and (14) are in fact both functions of the same random
variable. They will not however be numerically identical, and the exact relationship
between them is

ESSDLR =
ESSGN

1− ESSGN/2n
,

where ESSDLR and ESSGN are, respectively, the explained sums of squares (i.e. the test
statistics) from (13) and (14). Clearly the former will always be larger than the latter,
so that the DLR will always be somewhat more prone to reject the null hypothesis
than the Gauss-Newton regression. The difference between them will usually be small
when the null hypothesis is correct, unless n is very small or ESSGN is very large.4

4 If, instead of the explained sum of squares, t or F statistics are used, it can be shown
that the DLR and Gauss-Newton regressions yield numerically identical results, except
for slightly different corrections for degrees of freedom.
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Now suppose that we impose no restrictions on β, but wish to test the hypothesis
that γ = 0, i.e. that there is no heteroskedasticity. Calculating f̃ , F̃, and K̃ and
substituting them into (7) yields the DLR

[
ε̃
ι

]
=

[
X̃/σ̃ ũ/σ̃2

(
h′(α̃)/σ̃2

)
ũ ∗Z

0 −ι/σ̃ −(
h′(α̃)/σ̃

)
Z

]


b
a
c


 + residuals, (15)

where “∗” denotes the Schur or direct product, so that a typical element of ũ ∗ Z is
ũtZti. After we multiply all regressors by σ̃ and the regressors which correspond to γ
by h′(α̃), (15) simplifies radically to

[
ε̃
ι

]
=

[
X̃ ε̃ ε̃ ∗Z
0 −ι −Z

] 


b
a
c


 + residuals. (16)

Notice that, as with all LM tests for heteroskedasticity, the actual functional form of
the skedastic function h(·) is irrelevant.

A more familiar test for heteroskedasticity is Breusch and Pagan’s (1979) LM test,
which is one-half the explained sum of squares from a regression of the squared nor-
malized residuals, centred about their mean of one, on a constant and the matrix Z:

ε̃ ∗ ε̃− ι = aι + Zc + residuals. (17)

It is not immediately obvious that the ESS from (16) is equivalent to this. The
first set of regressors in (16), those which correspond to β, are orthogonal both to
the regressand and to the regressor which corresponds to α, and are asymptotically
independent of the other regressors, so that they can be dropped from the DLR. This
leaves [

ε̃
ι

]
=

[
ε̃ ε̃ ∗Z
−ι −Z

] [
a
c

]
+ residuals. (18)

The X>X matrix from (17) is [
ι>ι ι>Z
Z>ι Z>Z

]
, (19)

while the X>X matrix from (18) is
[

ε̃>ε̃ + ι>ι (ε̃ ∗ ε̃)>Z + ι>Z
Z>(ε̃ ∗ ε̃) + Z>ι (ε̃ ∗ ε̃)>(Z ∗Z) + Z>Z

]
(20)

It can be seen that every element of (20) is equal either to twice the corresponding
element of (19), or to a random variable which will on average be twice the corre-
sponding element of (19), under the null hypothesis. This follows from the facts that
ε̃>ε̃ = ι>ι = n and that each element of ε̃>ε̃ is a random variable which is on average
equal to one.
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Since (19) is on average equal to one-half of (20), and the inner products of the
regressands of (17) and (18) with the regressors are clearly identical, it is easily seen
that one-half the explained sum of squares from (17) will be asymptotically equivalent
to the explained sum of squares from (18). Hence the LM statistic based on the
DLR (16) will be equivalent to the more familiar statistics based on the squared-
residuals regression (17), or on asymptotically equivalent regressions in which one
simply regresses the ordinary (non-normalized) squared residuals on ι and Z and then
calculates n times the ordinary centred R2 (Koenker, 1981).

When one simply wants to test a hypothesis about β, so that the Gauss-Newton
regression (14) is applicable, or a hypothesis about α and γ, so that the squared-
residuals regression (17) is applicable, there is no reason to use a DLR. But notice that
as soon as one has to deal with a hypothesis which imposes restrictions on β jointly
with α and/or γ, neither of the conventional procedures can be used any longer. The
DLR, in contrast, remains both valid and reasonably easy to use.

For example, consider the following model, in which the variance depends on one of
the parameters of the regression function:

yt = β0 + β1Xt1 + β2Xt2 + ut, ut ∼ N
(
0, (α + β2Xt2)2

)
. (21)

Under the null hypothesis that β2 = 0, the model (21) is homoskedastic, but under
the alternative it is heteroskedastic. A DLR to test this null hypothesis is

[
ε̃
ι

]
=

[
ι X1 ε̃ X2 + ε̃ ∗X2

0 0 −ι −X2

]



b0

b1

a
b2


 + residuals. (22)

The last regressor here is the one that corresponds to β2, the parameter which is being
tested. By comparing (22) with (13) and (16), we see that it is simply the sum of two
regressors, one which would test for β2 6= 0 in the regression function β0+β1Xt1+β2Xt2

and one which would test for β2 6= 0 in the skedastic function α + β2Xt2.

It may be noted that, for all of the cases examined in this section, the explained sum
of squares from the DLR (which is the LM statistic we wish to compute) is equal to 2n
minus the sum of squared residuals. This will be true whenever the null hypothesis is a
regression model, so that the regressand of the DLR consists of n normalized residuals
and n ones. This equality makes the LM test statistic particularly easy to calculate
when using a regression package which does not print the explained sum of squares
around zero.

4. Tests for Functional Form
The DLR form of the LM test becomes very useful when one wants to test the func-
tional form of a model. Consider the class of models

ζ(yt, λ) = xt(β) + ut, ut ∼ N(0, σ2), (23)
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where β is an unknown parameter vector and λ is (for simplicity) a scalar. These
models are clearly a special case of (1), since we can write

ft(yt,θ) =
(
ζ(yt, λ)− xt(β)

)
/σ.

We have assumed for simplicity that β and λ are not functionally related, but this
assumption will be relaxed below. Suppose the object is to test the hypothesis that λ
takes on a particular value, say λ∗. This is a very common situation in practice. For
example, if

ζ(yt, λ) =
yλ

t − 1
λ

, (24)

so that ζ(·) is the familiar Box-Cox transformation, we often wish to test the hypothesis
that λ = 0 (i.e. that the regressand is the logarithm of yt) or the hypothesis that λ = 1
(i.e. that the regressand is simply yt, provided the right-hand side effectively contains
a constant term).

The DLR for testing the hypothesis that λ = λ∗ is
[

ε̃
ι

]
=

[
X̃ ε̃ −ζλ(yt, λ

∗)/σ̃

0 −ι ζyλ(yt, λ
∗)/ζy(yt, λ

∗)

]
(25)

where the scalars in the last column of the regressor matrix, which should be treated
as typical elements of n--vectors, are

ζy(yt, λ) ≡ ∂ζ(yt, λ)
∂yt

, (26)

ζλ(yt, λ) ≡ ∂ζ(yt, λ)
∂λ

, (27)

and

ζyλ(yt, λ) ≡ ∂2ζ(yt, λ)
∂yt∂λ

. (28)

Regression (25) will usually be quite easy to implement, provided that the derivatives
(26) through (28) are not too hard to evaluate.

It is often desired to test for functional form in situations where theory suggests that
both linear and loglinear specifications are plausible. A well-known model that con-
veniently allows for both as special cases is the Box-Cox regression model

yt(λ) =
∑

i

βiXti(λ) +
∑

j

γjZtj + ut, (29)

where yt(λ) and Xit(λ) denote the Box-Cox transformation (24) applied to the vari-
ables yt and Xti, respectively; the variables Ztj are those, such as the constant term and
dummy variables, which cannot sensibly be transformed. This model differs slightly

–9–



from (23) because λ appears on the right-hand side of the equals sign as well as the
left, but this creates no difficulties.

Godfrey and Wickens (1981) first used the OPG regression to test linear and loglinear
null hypotheses against the general alternative (29). Davidson and MacKinnon (1985)
showed that it is just as easy, and far more reliable, to use the DLR. For both the
null of λ = 1 and the null of λ = 0, the regressand of the DLR has tth element ε̃t and
(n + t)th element 1 (where ε̃t denotes the tth normalized residual from the linear or
loglinear model as appropriate). The tth and (n + t)th elements of the regressors are
then (first for the null of λ = 1, then for the null of λ = 0):

for βi : Xti − 1 and 0; log(Xti) and 0

for γj : Zti and 0; Zti and 0

for σ : ε̃t and −1; ε̃t and −1

for λ : −
(
yt log(yt)− yt + 1−

∑

i

(
Xti log(Xti)−Xti + 1

))
and σ̃ log(yt);

−
(

1
2 log(yt)2 −

∑

j

(
1
2 log(Xti)2

))
and σ̃ log(yt).

There is a good deal of Monte Carlo evidence on the properties of the LM test based on
this DLR in comparison with alternative tests of linear and loglinear regressions; see
Davidson and MacKinnon (1983, 1985) and Godfrey, McAleer, and McKenzie (1986).
For the most part, the DLR test seems to perform very well even in samples of modest
size, while the Godfrey-Wickens OPG test tends to over-reject quite severely. None of
the studies finds any serious divergences between the actual and nominal size of the
DLR test for samples of 50 or more, although Godfrey et al. do find some noticeable
discrepancies for samples of size 20.

There is no reason to restrict attention to the Box-Cox transformation, since other
transformations are available which may be more widely applicable or more appropri-
ate for certain models. In particular, MacKinnon and Magee (1987) consider trans-
formations of the dependent variable of the form ρ(µy)/µ, where the function ρ(·) is
assumed to be monotonically increasing in its argument and to possess the following
properties:

ρ(0) = 0; ρ′(0) = 1; ρ′′(0) 6= 0. (30)

Many functions ρ(·) possess the properties (30), of course. One of the simplest is the
function y + y2, so that the transformation would be

ρ(µy)/µ = y + µy2 (31)

Evidently, (31) will be a convex function of y when µ is positive and a concave function
when µ is negative. This makes it clear that a test of µ = 0 can be interpreted as
testing against any form of local quadratic nonlinearity.
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For this transformation family, the model (23) would become

ρ(µy)/µ = xt(β) + ut, ut ∼ N(0, σ2). (32)

Like the Box-Cox family, this transformation family includes the linear case in the
limit as µ → 0, but unlike the Box-Cox it can be applied to variables of either sign
and to zero variables. MacKinnon and Magee show that the DLR to test the null
hypothesis that µ = 0 is the following:

[
ε̃
ι

]
=

[
X̃
0

]
b +

[
ε̃
−ι

]
a +

[− 1
2y ∗ y/σ̃

y

]
m + residuals. (33)

where y ∗ y is an n--vector with typical element y2
t . The simplest test statistic for

µ = 0 is then simply 2n minus the sum of squared residuals from (33).

Regression (33) is clearly very similar to the DLR for testing a nonlinear regression
model against a model with a Box-Cox transformation on the dependent variable alone;
only the regressor which corresponds to the parameter being tested (µ in this case, λ
in the Box-Cox case) is different. Notice that the explicit form of the function ρ(·)
does not affect the test regression, because, like all LM tests, this one depends only
on local properties. This test is particularly easy to do, and MacKinnon and Magee
show that it is sensitive to several common forms of model misspecification, including
nonlinearity in the regression function, heteroskedasticity, and skewness. The test is
related to, but in many circumstances more powerful than, the well-known RESET
test of Ramsey (1969) and Ramsey and Schmidt (1976).

Especially when dealing with cross-section data, it is often almost as important to
transform the dependent variable correctly as it is to specify the appropriate set of
regressors. By using double-length regressions, it is very easy to test the validity of
any particular transformation. In particular, the test based on (33) is easy to do and
may reveal serious problems with the specification of the model. Testing against a
Box-Cox transformation can also be useful in cases where the dependent variable is
always positive.

5. Additional Features of Double-Length Regressions
Double-length regressions can be useful in many situations where one is not interested
in computing test statistics. One major application is calculating estimated covariance
matrices. Suppose one obtains ML estimates of a model which is a special case of (1),
but not a regression model, using a technique which does not provide a valid covariance
matrix estimate. For example, one might estimate a model like (23), which involves a
nonlinear transformation of the dependent variable, by searching over λ and at each
step doing least squares conditional on λ. The covariance matrix printed by the least
squares package will be conditional on the estimate λ̂ and will therefore not be valid.

This is an ideal situation in which to use a double-length regression. By running the
appropriate DLR, one can both verify that a point sufficiently close to the maximum of
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the likelihood function has been obtained (since the explanatory power of the regression
should be exactly zero at the maximum and very close to zero nearby), and generate
the desired covariance matrix. The latter can be estimated by anything which is
asymptotically equivalent to 1/n times the inverse of (4), and the simplest thing is to
use the OLS covariance matrix estimate from the DLR, which will be

(
2n

2n− k − 2

) (
F>(θ̂)F (θ̂) + K>(θ̂)K(θ̂)

)−1
.

The factor 2n/(2n−k−2) arises because the DLR will have k+2 regressors (k of which
correspond to the parameters of the regression function, one of which corresponds to
the parameter of the transformation of the dependent variable, and one of which
corresponds to the variance of the error terms). Note that, in the case of models
like (23), the appropriate DLR will not be (25), since we are no longer evaluating
derivatives under the null hypothesis that λ = 0, and since it is no longer valid to
transform the regressors in ways which do not affect the explanatory power of the
DLR (because such transformations will affect the OLS covariance matrix estimate).

Double-length regressions can also be useful in at least two other contexts. Since the
matrix

(
F>(θ̈)F (θ̈)+K>(θ̈)K(θ̈)

)
approximates minus the Hessian matrix for θ̈ close

to the true parameter vector, it can be used in place of the latter as part of a Newton-
type hill-climbing procedure. At any arbitrary point on the hill, say θ̈, the algorithm
can calculate the DLR [

f̈
ι

]
=

[−F̈

K̈

]
b + residuals. (34)

and the estimated coefficient vector β̈ will approximate the direction of search which
would be used by Newton’s Method. Thus by combining (34) with a good line-search
algorithm, one can easily create an algorithm for maximizing likelihood functions when
the model can be written in the form (1).5 Such an algorithm may be used in place of
algorithms based on the OPG regression, such as the one proposed by Berndt, Hall,
Hall, and Hausman (1974).

The result (4), which is the fundamental result on which the DLR is based, can itself
be of use in the context of econometric theory. One may often want to find analytical
expressions for the information matrix, and it is frequently much easier to start from
(4) than from expressions for the Hessian or the outer product of the gradient, as the
reader may check using as examples (21), (23), and (32).

Finally, a word of warning. If the regressand or any of the regressors in a DLR is
constructed incorrectly, it is not only possible but in practice very likely that the re-
gression will yield a computed test statistic which is large and entirely meaningless.6

5 For a readable introduction to the art of numerical maximization, see Press et al.
(1986), Chapter 10.

6 This of course is equally true for the OPG regression.
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It is a very good idea to check most of one’s calculations by first running the regres-
sion without those regressors which correspond to the parameters being tested; this
regression should have no explanatory power at all if everything has been constructed
correctly. However, one cannot check the test regressors in this way, and an error in
their construction can easily lead to nonsensical results. For example, think of what
would happen if one inadvertently added a constant term to a DLR. Since the second
half of the regressand is always a vector of ones, the constant is bound to have sub-
stantial ability to explain it, and so one would in all likelihood obtain a “significant”
test statistic.

6. Conclusion
Double-length regressions are potentially a very useful part of the econometrician’s
kit of tools. Like the better-known Gauss-Newton and squared-residuals artificial re-
gressions, to which they are related, they generally have good finite-sample properties,
but they can be applied to far more situations. They have a wide variety of poten-
tial applications as part of maximization algorithms, as convenient ways to calculate
covariance matrix estimates, and as procedures to compute LM, and equivalent, test
statistics. We would argue that they should be used routinely to test regression equa-
tions for functional form, just as Gauss-Newton regressions are routinely used to test
for serial correlation and squared-residuals regressions are routinely used to test for
heteroskedasticity.

–13–



References

Bera, A. K. and McKenzie, C. R. (1986). “Alternative forms and properties of the
score test,” Journal of Applied Statistics, 13, 13–25.

Berndt, E. R., Hall, B. H., Hall, R. E., and Hausman, J. A. (1974). “Estimation
and inference in nonlinear structural models,” Annals of Economic and Social
Measurement, 3, 653–665.

Breusch, T. S. and Pagan, A. R. (1979). “A simple test for heteroskedasticity and
random coefficient variation,” Econometrica, 47, 1287–1294.

Chesher, A. (1983). “The information matrix test: Simplified calculation via a score
test interpretation,” Economics Letters, 13, 45–48.

Davidson, R. and MacKinnon, J. G. (1983). “Small sample properties of alternative
forms of the Lagrange Multiplier test,” Economics Letters, 12, 269–275.

Davidson, R. and MacKinnon, J. G. (1984a). “Model specification tests based on
artificial linear regressions,” International Economic Review, 25, 485–502.

Davidson, R. and MacKinnon, J. G. (1984b). “Convenient specification tests for
logit and probit models,” Journal of Econometrics, 25, 241–262.

Davidson, R. and MacKinnon, J. G. (1985). “Testing linear and loglinear regressions
against Box-Cox alternatives,” Canadian Journal of Economics, 25, 499–517.

Davidson, R. and MacKinnon, J. G. (1987). “Testing for consistency using artificial
regressions,” Queen’s University Economics Department Working Paper No. 687.

Durbin, J. (1970). “Testing for serial correlation in least-squares regression when
some of the regressors are lagged dependent variables,” Econometrica, 38,
410–421.

Engle, R. F. (1982a). “A general approach to Lagrange Multiplier model
diagnostics,” Journal of Econometrics, 20, 83–104.

Engle, R. F. (1982b). “Autoregressive conditional heteroskedasticity with estimates
of the variance of United Kingdom inflation,” Econometrica, 50, 987–1007.

Godfrey, L. G. (1978). “Testing against general autoregressive and moving
average error models when the regressors include lagged dependent variables,”
Econometrica, 46, 1293–1301.

Godfrey, L. G., McAleer, M., and McKenzie, C.R. (1986). “Variable addition and
Lagrange Multiplier tests for linear and logarithmic regression models: Theory
and Monte Carlo evidence,” Australian National University Working Paper in
Economics and Econometrics No. 136.

Godfrey, L. G. and Wickens, M. R. (1981). “Testing linear and log-linear regressions
for functional form,” Review of Economic Studies, 48, 487–496.

–14–



Koenker, R. (1981). “A note on Studentizing a test for heteroskedasticity,” Journal
of Econometrics, 17, 107–112.

Lancaster, T. (1984). “The covariance matrix of the information matrix test,”
Econometrica, 52, 1051–1053.

Larson, A. C. (1987). “Using the Box-Cox transformation with pooled time series
and cross-section data,” paper presented at the Australasian Meetings of the
Econometric Society, University of Canterbury, Christchurch, New Zealand.

MacKinnon, J. G. and Magee, L. (1987). “Transforming the dependent variable in
regression models,” McMaster University Department of Economics Discussion
Paper No. 87-08.

Newey, W. K. (1985). “Maximum likelihood specification testing and conditional
moment tests,” Econometrica, 53, 1047–1070.

Pagan, A. R. (1984). “Model evaluation by variable addition,” in K. Wallis and
D. F. Hendry, ed., Quantitative Economics and Econometric Analysis, Basil
Blackwell, Oxford, 103–133.

Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T. (1986).
Numerical Recipes, Cambridge University Press, Cambridge.

Ramsey, J. B. (1969). “Tests for specification errors in classical linear least-squares
regression analysis,” Journal of the Royal Statistical Society, Series B, 31,
350–371.

Ramsey, J. B. and P. Schmidt (1976). “Some further results on the use of OLS and
BLUS residuals in specification error tests,” Journal of the American Statistical
Association, 71, 389–390.

White, H. (1980). “A heteroskedasticity-consistent covariance matrix estimator and
a direct test for heteroskedasticity,” Econometrica, 48, 817–838.

–15–




