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Abstract

We consider several issues related to Durbin-Wu-Hausman tests, that is tests based
on the comparison of two sets of parameter estimates. We first review a number of
results about these tests in linear regression models, discuss what determines their
power, and propose a simple way to improve power in certain cases. We then show
how in a general nonlinear setting they may be computed as “score” tests by means
of slightly modified versions of any artificial linear regression that can be used to
calculate Lagrange Multiplier tests, and explore some of the implications of this result.
In particular, we show how to create a variant of the information matrix test that tests
for parameter consistency. We examine the conventional information matrix test and
our new version in the context of binary choice models, and provide a simple way to
compute both tests using artificial regressions.
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1. Introduction

There are at least two distinct questions we may ask when we test an econometric
model. The first is simply whether certain parametric restrictions hold. This question
is what standard t and F tests attempt to answer in the case of regression models, and
what the three classical tests, Wald, LM, and LR, attempt to answer in models esti-
mated by maximum likelihood. The second is whether the parameters of interest have
been estimated consistently. Hausman (1978), in a very influential paper, introduced a
family of tests designed to answer this second question and called them “specification
tests.” The basic idea of Hausman’s tests, namely that one may base a test on a “vec-
tor of contrasts” between two sets of estimates, one of which will be consistent under
weaker conditions than the other, dates back to a relatively neglected paper by Durbin
(1954). Wu (1974) also made use of a test for possible correlation between errors and
regressors in linear regression models which was based on a vector of contrasts. We
shall therefore refer to all tests of this general type as Durbin-Wu-Hausman, or DWH,
tests.

There has been a good deal of work on DWH tests in recent years; see the survey paper
by Ruud (1984). In this paper, we consider several issues related to tests of this type.
In section 2, we review a number of results on DWH tests in linear regression models.
The primary function of this section is to present results for the simplest possible case;
these should then serve as an aid to intuition. We also present some new material on
the distribution of DWH test statistics when the model being tested is false, and on a
simple way to improve the power of the tests in certain cases.

In section 3, we provide a simple and intuitive exposition of results, originally due to
Ruud (1984) and Newey (1985), on the calculation of DWH tests in nonlinear models
as “score” tests by means of artificial linear regressions. We go beyond previous work
by showing that any artificial regression which can be used to compute LM tests
can be modified so as to compute DWH tests. An immediate implication of our
argument is Holly’s (1982) result on the equivalence of DWH and classical tests in
certain cases. They will be equivalent whenever the number of restrictions tested by
the classical test is no greater than the number of parameters the consistency of which
is being tested by the DWH test, provided that those parameters would actually be
estimated inconsistently if the restrictions were incorrect. We also show that there
are circumstances in which the DWH and classical tests will be equivalent (in finite
samples) even when incorrect restrictions would not prevent the parameters in question
from being estimated consistently. Thus rejection of the null by a DWH test does not
always indicate parameter inconsistency.

In section 4, we build on results of Davidson and MacKinnon (1987a) to show how to
compute a DWH version of any score-type test based on an artificial regression, even
one not designed against any explicit alternative. We show how this procedure may be
applied to tests such as the information matrix test (White, 1982; Chesher, 1984), and
Newey’s (1985) conditional moment tests. In section 5, we discuss the power of DWH
tests as compared with classical tests, in the case where the two are not identical.
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It is seen that in many cases the DWH test, with fewer degrees of freedom than the
corresponding classical test, will be more powerful. Finally, in section 6, we discuss the
information matrix test and its DWH version in the context of binary choice models.
We provide a simple way to compute both tests based on artificial regressions.

2. The Case of Linear Regression Models
Suppose the model to be tested is

y = Xβ + u, u ∼ IID(0, σ2I), (1)

where there are n observations and k regressors. When conducting asymptotic analysis,
we shall assume that plim(n−1X>u) = 0 and that plim(n−1X>X) is a positive definite
matrix. When conducting finite-sample analysis, we shall further assume that X is
fixed in repeated samples and that the ut are normally distributed.

The basic idea of the DWH test is to compare the OLS estimator

β̃ = (X>X)−1X>y

with some other linear estimator

β̂ = (X>AX)−1X>Ay, (2)

where A is a symmetric n × n matrix assumed for simplicity to have rank no less
than k. If (1) actually generated the data, these two estimators will have the same
probability limit; they will have the same expectation if X is fixed in repeated samples
or independent of u.

The test is based on the vector of contrasts

β̂ − β̃ = (X>AX)−1X>Ay − (X>X)−1X>y

= (X>AX)−1
(
X>Ay −X>AX(X>X)−1X>y

= (X>AX)−1X>AMXy, (3)

where MX ≡ I−X(X>X)−1X is the orthogonal projection onto the orthogonal com-
plement of the span of the columns of the matrix X. The complementary orthogonal
projection will be denoted PX , and throughout the paper the notations P and M sub-
scripted by a matrix expression will denote orthogonal projections, respectively, onto,
and onto the orthogonal complement of, the span of the columns of that expression.

The first factor in (3), (X>AX)−1, is simply a k×k matrix with full rank. Hence what
we want to do is to test whether

plim(n−1X>AMXy) = 0. (4)

The vector X>AMXy has k elements, but even if AX has full rank, not all those
elements may be random, because MX may annihilate some columns of AX. Suppose
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that k∗ is the number of linearly independent columns of AX not annihilated by MX .
Then if we let these columns be denoted by X∗, testing (4) is equivalent to testing

plim(n−1X∗>AMXy) = 0. (5)

Now consider the artificial regression

y = Xβ + AX∗δ + residuals.

The ordinary F statistic for δ = 0 in (5) is

y>PMXAX∗y/k∗

y>MX;AX∗y/(n− k − k∗)
. (6)

If (1) actually generated the data, this statistic will certainly be valid asymptotically,
since the denominator will then consistently estimate σ2. It will be exactly distributed
as F (k∗, n− k − k∗) in finite samples if the ut in (1) are normally distributed.

There are many possible choices for A. In the case originally studied by Durbin (1954),
β̂ is an IV estimator formed by first projecting X onto the space spanned by a matrix
of instruments W, so that A = PW ; see Wu (1974), Hausman (1978), Nakamura and
Nakamura (1981) and Fisher and Smith (1985). The test is then often interpreted as
a test for the exogeneity of those components of X not in the space spanned by W.
This interpretation is misleading, since what is being tested is not the exogeneity or
endogeneity of some components of X, but rather the effect on the estimates of β of
any possible endogeneity.

Alternatively, β̂ may be the OLS estimator for β in the model

y = Xβ + Zγ + u, (7)

where Z is an n× l matrix of regressors not in the span of the columns of X, so that
A = MZ . This form of the test thus asks whether the estimates of β when Z is
excluded from the model are consistent. It is a simple example of the case examined,
in a much more general context, by Holly (1982); see Section 3 below.

There is an interesting relationship between the “exogeneity” and omitted-variables
variants of the DWH test. In the former, A = PW , and PWX∗ consists of all columns
of PWX that do not lie in the span of X, so that the test regression is

y = Xβ + PWX∗δ + residuals. (8)

In the latter, provided that the matrix [X Z] has full rank, MZX∗ = MZX. Now
suppose that we expand Z so that it equals W. Evidently, X∗ will then consist of
those columns of X which are not in the span of W, so that the test regression is

y = Xβ + MWX∗δ + residuals. (9)
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But it is evident that (8) and (9) will have exactly the same explanatory power. This
means that exactly the same test can be interpreted as a test for exogeneity or as a test
for the consistency of parameter estimates when certain variables have been omitted.
For more on this, see Ruud (1984).

The matrix A could also be almost any sort of n × n covariance matrix, so that (2)
would then be a GLS estimator. Note that in this case the DWH test is not testing
for a non-scalar covariance matrix, but rather for misspecification of the regression
function. A special case of this is the differencing specification test, where A is a
matrix such that β is a vector of estimates based on first-differenced data; see Plosser,
Schwert, and White (1982) and Davidson, Godfrey, and MacKinnon (1985). In this
case, there are a few minor complications caused by the fact that X>AX does not
have full rank. A similar procedure when the null hypothesis involves estimation by
GLS was proposed by Boothe and MacKinnon (1986). Breusch and Godfrey (1986)
discuss a variety of tests of this sort and call them “data transformation tests.”

It is often claimed that DWH tests may fruitfully be used when the null hypothesis is
not that the data were generated by (1), but simply that the OLS estimates β̃ from
(1) are consistent. While this is true up to a point, there are two major difficulties
with trying to use DWH tests in this way. The first problem is that DWH tests cannot
directly test the hypothesis that parameters are estimated consistently. Suppose that
the model under test is

y = Xβ + u. (10)

If the data were generated by

y = Xβ + Zγ + u, u ∼ IID(0, σ2I),

where MXZ 6= 0 and γ 6= 0, and in the testing regression (8)

PWMXZ = 0,

then estimates of β from the null model (1) will be inconsistent, but the power of the
test based on (8) will be equal to its size. The problem here is that, for certain choices
of W, WMXZ may equal zero, even though MXZ 6= 0.

Conversely, a rejection by a DWH test does not necessarily imply that parameter
estimates are inconsistent, as may be seen from the following simple example. Let the
null model be (10) as before, and let the data be generated by

y = Xβ + γz + u, (11)

with the n × k random matrix X and the n × 1 random vectors z and u being
distributed in such a way that plim(n−1X>z) = 0 and plim(n−1X>u) = 0. Clearly,
OLS estimation of (10) will yield consistent estimates of β. The DWH test may be
based on the regression

y = Xβ + z(z>z)−1zx∗δ + u, (12)
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where x∗ may be any column of X. Unless z>x∗ happens to be exactly equal to zero,
in which case the test cannot be computed, a t test for δ = 0 in (12) will be numerically
identical to a t test for γ = 0 in (11). Thus, if γ = 0, and the sample is large enough,
the DWH test will reject the null hypothesis with probability one, even though β is
in fact consistent! The reason for this is that in a finite sample we have computed
a DWH test that is meaningless asymptotically, because the regressor z(z>z)−1zx∗

vanishes. Unfortunately, it is often possible to do this. In such circumstances, results
from DWH tests may easily be misinterpreted.

The second problem with using DWH tests of (1) when neither (1) nor (5) actually
generated the data is that the denominator of (6) will then provide an overestimate of
the amount of noise in the actual data generating process, or DGP. Specifically, if the
data are generated by the process

y = Xβ0 + a0 + u, u ∼ N(0, σ2
0I),

where a0 may be thought of as a linear combination of omitted variables, then the F
statistic for δ = 0 in (5) will be distributed as doubly non-central F (k∗, n − k − k∗)
with numerator and denominator non-centrality parameters (NCPs)

a0
>PMXAX∗a0

σ2
0

(13)

and
a0
>MX;AX∗a0

σ2
0

, (14)

respectively. If one considers the artificial linear regression

a0 = Xα + AX∗ψ + residuals, (15)

then (14) is the sum of squared residuals from (15), and (13) is the reduction in the
sum of squared residuals due to the inclusion of AX∗ in (15). When regression (15)
fits perfectly, this means that X and AX∗ jointly explain all the variation in a0. The
numerator NCP (13) then simplifies to

a0
>MXa0

σ2
0

, (16)

and the denominator NCP (14) is equal to zero. The test will then have as much power
as any test with k∗ degrees of freedom could have. However, when (15) fits less than
perfectly, the numerator NCP (13) is smaller than (16), and the denominator NCP
(14) is greater than zero, both of which cause the test to have less power; see Thursby
and Schmidt (1977).

In certain cases, it is possible to improve the estimate of σ2, reducing the denominator
NCP and hence increasing power. Consider again the case where A = MZ . Whenever
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ρ(AX) = ρ(MZX) < ρ(Z), the DWH test differs from the classical test for γ = 0 in
(7), and the test regression

y = Xβ + MZXδ + u (17)

fits less well than regression (7), because the latter has additional regressors. Instead
of using the ordinary F statistic for δ = 0 in (17), then, one might use the test statistic

y>PMXMZXy/k∗

y>MX;Zy/(n− k − l)
. (18)

The denominator here is the estimate of σ2 from (7); the ordinary F statistic would
use the estimate of σ2 from (17).

The test statistic (18) will be asymptotically valid whenever (7) generated the data,
and it will have the F (k∗, n − k − l) distribution in finite samples when the null
hypothesis that E(β̂ = β̃) is true, the regressors are fixed, and the errors are normal.
Reducing the number of degrees of freedom in the denominator of an F test has the
effect of reducing power; see Das Gupta and Perlman (1974). Thus, if the data were
generated by (17), the modified F test (18) would have less power than the ordinary
F test. However, in some cases where (1) is false, (7) may fit much better than (17),
thus yielding a much lower estimate of σ2. In such cases, the modified F test (18) will
be more powerful than the ordinary one.

3. General Nonlinear Models
Since the work of Hausman (1978), it has been well known that DWH tests may be
used in the context of very general classes of models involving maximum likelihood
estimation. There are three principal theoretical results in this literature. The first,
due to Hausman, is that the (asymptotic) covariance matrix of a vector of contrasts
is equal to the difference between the (asymptotic) covariance matrices of the two
vectors of parameter estimates, provided that one of the latter is (asymptotically)
efficient under the null hypothesis. This is essentially a corollary of the Cramér-Rao
bound.

The second principal result, due to Holly (1982), is that when the two parameter
vectors being contrasted correspond to restricted and unrestricted ML estimates (the
vectors consisting only of those parameters which are estimated under the restrictions),
the DWH test will in certain circumstances be equivalent to the three classical test
statistics, Wald, LM, and LR. Whether this equivalence holds or not will depend on
the numbers of parameters in the restricted and unrestricted models, and on the rank
of certain matrices; as we show below, the results are completely analogous to those
on whether the DWH test based on (17) is equivalent to the F test based on (7).

The third principal result, due to White (1982), Ruud (1984), and Newey (1985), is
that tests asymptotically equivalent to DWH tests can be computed as score tests.
As Ruud and Newey recognized, this implies that various artificial regressions can be
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used to compute these tests. The only artificial regression which has been explicitly
suggested for this purpose is the so-called outer-product-of-the-gradient, or OPG, re-
gression, in which a vector of ones is regressed on the matrix of contributions from
single observations to the gradient of the loglikelihood function. This regression is
widely used for calculating LM tests; see Godfrey and Wickens (1981). It has more
recently been suggested by Newey (1985) as an easy way to calculate “conditional mo-
ment” tests, including some which are DWH tests. Unfortunately, the OPG regression
is known to have poor and often disastrous finite-sample properties. See Davidson and
MacKinnon (1983, 1985a), Bera and McKenzie (1986), Chesher and Spady (1988), and
Kennan and Neumann (1988); the last two provide spectacular examples. As we shall
now show, any artificial regression that can be used to compute LM tests can also be
used to compute DWH tests. In view of the poor properties of the OPG regression,
this result may be important for applied work.

There are many classes of models for which artificial linear regressions other than the
OPG regression are available. These include univariate and multivariate nonlinear re-
gression models (Engle 1982, 1984), possibly with heteroskedasticity of unknown form
(Davidson and MacKinnon, 1985b), probit and logit models (Davidson and MacKin-
non, 1984b), and a rather general class of nonlinear models, with nonlinear transfor-
mations on the dependent variable(s), for which “double-length” artificial regressions
with 2n “observations” are appropriate (Davidson and MacKinnon, 1984a, 1988). To
the extent that evidence is available, these all appear to have better finite-sample
properties than the OPG regression.

We shall deal with the following general case. There is a sample of size n which gives
rise to a loglikelihood function

L(θ1, θ2) =
n∑

t=1

`(θ1, θ2), (19)

where θ1 is a k --vector and θ2 an l --vector of parameters, the latter equal to zero if the
model is correctly specified. Maximum likelihood estimates of the vector θ = [θ1

>,θ2
>]>

under the restriction θ2 = 0 will be denoted θ̃, while unrestricted estimates will be
denoted θ̂. The scores with respect to θ1 and θ2 are denoted by g1(θ) and g2(θ); thus

gi(θ) =
n∑

t=1

∂`t(θ1, θ2)
∂θi

, i = 1, 2.

A hat or a tilde over any quantity indicates that it is evaluated at θ̂ or θ̃, respectively.

The model represented by (19) is assumed to satisfy all the usual conditions for maxi-
mum likelihood estimation and inference to be asymptotically valid; see, for example,
Amemiya (1985, Chapter 4). In particular, we assume that the true parameter vector
θ0 is interior to a compact parameter space, and that the information matrix

I(θ) ≡ lim
(
E(gg>)

)
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is a finite, nonsingular matrix. The submatrix of I corresponding to θi will be denoted
Iii; the corresponding submatrix of I−1 will be denoted (I−1)ii.

Taking Taylor series approximations to the first-order conditions for θ̃1 and (θ̂1, θ̂2)
around θ0, and applying a suitable law of large numbers, we find that

n1/2(θ̃1 − θ0
1) ∼= I−1

11 [Ik O]n−1/2g(θ0)

and
n1/2(θ̂1 − θ0

1) ∼= [Ik O]I−1n−1/2g(θ0),

where Ik is a k × k identity matrix, and O is a k × l matrix of zeros. It follows that

n1/2(θ̃1 − θ0
1) ∼=

(
I−1
11 [Ik O]− [Ik O]I−1

)
n−1/2g(θ0)

=
(
I−1
11 − (I−1)11

)
n−1/2g1(θ0)−

(
(I−1)12

)
n−1/2g2(θ0). (20)

From (20) it is easy to show that the asymptotic covariance matrix of n1/2(θ̃1− θ̂1) is

(
(I11)−1[Ik O]− [Ik O]I−1

)
I
(
(I11)−1[Ik O]− [Ik O]I−1

)>

= (I−1)11 − (I11)−1. (21)

The first term in (21) is the asymptotic covariance matrix of n1/2(θ̂1 − θ0
1), and the

second is the asymptotic covariance matrix of n1/2(θ̃1 − θ0
1), so that (21) is a special

case of Hausman’s principal result.

Standard results on partitioned matrices tell us that

(I−1)11 =
(
I11 − I12(I−1

22 )I21

)−1

and
(I−1)12 = −(

I11 − I12(I−1
22 )I21

)−1
I12 I−1

22 ,

and substituting these into (20) yields the following expression for n1/2(θ̃1 − θ̂1):

I−1
11 n−1/2g1 +

(
I11 − I12(I−1

22 )I21

)−1(I12 I−1
22 n−1/2g2 − n−1/2g1).

This expression allows us to derive easily computed test statistics based on the general
notion of an artificial regression.

In the usual case of testing restrictions in the context of maximum likelihood estima-
tion, an artificial regression involves two things: a regressand, say r(θ), and a matrix
of regressors, say R(θ), partitioned as [R1 R2], which have the properties that

(i) R>(θ)r(θ) is the gradient of the loglikelihood function at θ, and

(ii) n−1R>(θ̈)R(θ̈) consistently estimates the information matrix whenever θ̈ consis-
tently estimates θ.
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Replacing the gradients and information sub-matrices in (22) by their finite-sample
analogues, evaluated at θ̃, and ignoring factors of n, yields the expression

(R̃1
>R̃1)−1R̃1

>r̃ − (R̃1
>M̃2R̃1)−1R̃1

>M̃2r̃ = −(R̃1
>M̃2R̃1)−1R̃1

>M̃2M̃1r̃, (23)

where M̃i denotes the matrix which projects onto the orthogonal complement of the
subspace spanned by the columns of R̃i, for i = 1, 2. Notice that the left-hand side of
(23) resembles the expression for a restricted OLS estimator minus an unrestricted one.
Think of r̃ as the regressand, R̃1 as the matrix of regressors for the null hypothesis,
and M̃2 as the matrix which projects onto the orthogonal complement of the space
spanned by the additional regressors whose coefficients are zero under the null.

Now consider the artificial regression

r̃ = R̃1b1 + M̃2R̃
∗
1b2+ residuals, (24)

where the n × k∗ matrix R∗
1 consists of as many columns of R1 as possible subject

to the condition that the matrix [R̃1 M̃2R̃
∗
1] have full rank. The explained sum of

squares from this regression is

r̃>PR̃1; M̃2R̃∗1
r̃ = r̃>PM̃1M̃2R̃∗1

r̃,

since R1
>r̃ = 0 by the first-order conditions. Under suitable regularity conditions, it is

easily shown that this statistic is asymptotically distributed as χ2(k∗) under the null
hypothesis that θ2 = 0. This result also extends to any situation where the data are
generated by a sequence of local DGPs with θ2I21 = 0 which tends to θ2 = 0, provided
that I21 has full rank; we discuss this important proviso below.

Notice that (24) may be rewritten as

r̃ = R̃1(b1 + b2)− R̃2(R̃2
>R̃2)−1R̃2

>R̃1b2 + residuals.

Thus, as with the linear case, it makes no difference whether we use (24) or

r̃ = R̃1c1 + P̃2R̃
∗
1c2 + residuals (25)

for the purpose of computing a test.

The classical LM test can of course be computed as the explained sum of squares from
the artificial regression

r̃ = R̃1b1 + R̃2b2 + residuals (26)

The equivalence result of Holly (1982) now follows immediately. Suppose that l < k,
so that there are fewer restrictions than parameters under the null hypothesis, and
that R̃2

>R̃1 has rank l. Then it must be the case that R̃1 and

P̃2R1 = R̃2(R̃2
>R̃2)−1R̃2

>R̃1
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span the same space as R̃1 and R̃2, so that (26) and (25) will have exactly the same
explanatory power. The LM and DWH tests will then be numerically identical. Pro-
vided that I21 = plim(n−1R̃2

>R̃1) has full rank l, the asymptotic equivalence of all
forms of classical and DWH tests, which is Holly’s result, then follows immediately
from the numerical equality of these two tests.

When I21 does not have full rank, some elements (or linear combinations of elements)
of the vector θ1 will be estimated consistently by θ̃1 even when the restrictions are
locally false. More precisely, if we assume that θ2 = n−1/2η, so that the discrepancy
between θ2 and 0 is O(n−1/2), then when I21 does not have full rank, certain linear
combinations of the components of the vector n1/2(θ̃1 − θ0

1) will have mean zero,
regardless of the value of η. Ordinarily, when I21 has full rank, this could be true
only for certain values of η (including η = 0), and the DWH test would have power
whenever η did not have those values. This local result is of course true globally for
linear regression models.

In this situation, the results of DWH tests may easily be misinterpreted. When I21

does not have full rank, one must drop as many columns of P̃2R̃1 as necessary and
reduce the degrees of freedom for the test accordingly. In practice, however, R̃2

>R̃1

may well have full rank even though I21 does not, so that the investigator may not
realize there is a problem. As a result, the null hypothesis of consistency may well
be rejected even when θ̃1 is in fact consistent. The key to understanding this is to
recognize that, even though the null hypothesis of the DWH version of a classical test
is θ2 I21 = 0 rather than θ2 = 0, the test is still testing a hypothesis about θ2 and
not a hypothesis I21. When the test is done by an artificial regression, I21 is merely
estimated by n−1R̃2

>R̃1, and if I21 does not have full rank, the estimate by itself will
almost never reveal that fact (although combined with an estimate of the variance of
R̃2
>R̃1, it could do so). This is precisely analogous to the case of the linear regression

model (10), where incorrectly omitting the regressor Z had no effect on the consistency
of β̂.

Note that this is a problem for all forms of the DWH test, and not simply for the score
form. In cases where the information matrix is block-diagonal between the parameters
which are estimated under the null and the parameters which are restricted, the former
will always be estimated consistently even when the restrictions are locally false in the
sense discussed above. This implies that the asymptotic covariance matrix of the vector
of contrasts, expression (21), must be a zero matrix. But the finite-sample analogue
of (21) will almost never be a zero matrix, and it is usually computed in such a way
as to ensure that it is positive semi-definite. As a result, it will be just as possible to
compute, and misinterpret, the DWH statistic in its original form as in its score form.

4. DWH Tests in Other Directions

In Davidson and MacKinnon (1987a), we showed that the Holly result is perfectly
general when the null hypothesis is estimated by maximum likelihood. The reason
for this is that when one set of estimates is asymptotically efficient if the model is
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correctly specified, the other set is always asymptotically equivalent (locally) to ML
estimates with some set of restrictions removed; Holly’s result then shows that, when
the number of restrictions removed is no greater than the number of parameters esti-
mated under the null, and the information matrix satisfies certain conditions, a DWH
test is equivalent to a classical test of those restrictions.

As a corollary of this result, we can start with any score-type test and derive a DWH
variant of it, similar to the test based on regression (24). Consider an artificial regres-
sion analogous to (26), but with R̃2 replaced by an n×m matrix Z̃ = Z(θ̃):

r̃ = R̃1c1 + Z̃c2 + residuals. (27)

The matrix Z must satisfy certain conditions, which essentially give it the same prop-
erties as R̃2; these are discussed below. Provided it does so, and assuming that the
matrix [R̃1 Z̃] has full rank, the explained sum of squares from this regression will be
asymptotically distributed as χ2(m) when the DGP is (19) with θ2 = 0.

The variety of tests covered by (27) is very great. In addition to LM tests based on all
known artificial regressions, tests of this form include Newey’s (1985) conditional mo-
ment tests, all the score-type DWH tests discussed in sections 2 and 3 above, White’s
(1982) information matrix test in the OPG form suggested by Lancaster (1984), and
Ramsey’s (1969) RESET test.

We now briefly indicate how to prove the above proposition. The proof is similar to
standard proofs for LM tests based on artificial regressions, and the details are therefore
omitted. As noted above, it is necessary that Z̃ satisfy certain conditions, so that it
essentially has the same properties as R̃2. First, we require that plim(n−1r̃>Z̃) = 0
under the null hypothesis; if this condition were not satisfied, we obviously could not
expect c2 in (27) to be zero. Second, we require that

plim(n−1Z̃>r̃>r̃Z̃) = plim(n−1Z̃>Z̃) (28)

and
plim(n−1Z̃>r̃>r̃R̃1) = plim(n−1Z̃>R̃1), (29)

which are similar to the condition that

plim(n−1R̃1
>r̃>r̃R̃1) = plim(n−1R̃1

>R̃1); (30)

(30) does not have to be assumed because it is a consequence of property (ii) and the
consistency of θ̃. Finally, we require that a central limit theorem be applicable to the
vector

n−1/2Z̃>M̃1r̃ (31)

and that laws of large numbers be applicable to the quantities whose probability limits
appear on the right-hand sides of (28), (29), and (30).
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Consider the vector (31). Asymptotically, it has mean zero under the null hypothesis,
and its asymptotic covariance matrix is

plim(n−1Z̃>M̃1r̃
>r̃M̃1Z̃),

which is equal to

plim
(
n−1

(
Z̃>r̃>r̃Z̃ − Z̃>r̃>r̃R̃1(R̃1

>R̃1)−1R̃1
>Z̃ − Z̃>R̃1(R̃1

>R̃1)−1R̃1
>r̃>r̃Z̃

+ Z̃>R̃1(R̃1
>R̃1)−1R̃1

>r̃r̃>R̃1(R̃1
>R̃1)−1R̃1

>Z̃
))

.
(32)

Rewriting (32) so that each term is a product of probability limits which are O(1),
using (28), (29), and (30), and simplifying, we find that

plim(n−1Z̃>M̃1r̃
>r̃M̃1Z̃) = plim(n−1Z̃>M̃1M̃1Z̃).

This plus the asymptotic normality of (31) implies that the statistic

(n−1/2r̃>M̃1Z̃)
(
plim(n−1Z̃>M̃1Z̃)

)−1(n−1/2Z̃>M̃1r̃) (33)

is asymptotically distributed as χ2(m). But since our assumptions imply that a law
of large numbers can be applied to n−1Z̃>M̃1Z̃, the explained sum of squares from
regression (27), which is

r̃>M̃1Z̃(Z̃>M̃1Z̃)−1Z̃>M̃1r̃,

will asymptotically be the same random variable as (33).

It is obvious how to construct a DWH version of this test, and it is now obvious
that such a test will be asymptotically valid. We obtain the DWH version simply
by replacing Z̃ in (27) with M̃ZR̃1 or P̃ZR̃1. It is evident that if Z̃ satisfies the
conditions imposed on it above, then so will P̃ZR̃1, because it is simply the projection
of R̃1 onto the space spanned by Z̃. As usual, the number of degrees of freedom of
the test will in regular cases be m if n ≤ k, in which case the DWH and ordinary score
test statistics will be numerically identical. When m > k, however, the DWH test will
have fewer degrees of freedom than the ordinary score test (i.e., at most k).

The DWH versions of score tests may be particularly useful when m is large. Consider
White’s (1982) information matrix (IM) test. As Lancaster (1984) has shown, this can
easily be computed via the OPG regression, which is a special case of regression (27).
In this case, r̃ is an n-vector of ones, R̃1 is the matrix G̃1, the tith element of which
is ∂`(θ)/∂θi, evaluated at θ̃, and Z̃ is a matrix of which a typical element is

∂2`(θ)
∂θi∂θj

+
∂`(θ)
∂θi

∂`(θ)
∂θj

, i = 1, . . . ,m, j = 1, . . . , i, (34)
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evaluated at θ̃. The number of columns in Z̃ is 1
2 (k2 + k), although in practice some

columns often have to be dropped if [G̃1 Z̃] has less-than-full rank.

Except when k is very small, the IM test is likely to involve a very large number of
degrees of freedom. Various ways to reduce this have been suggested; one could, for
example, simply restrict attention to the diagonal elements of the information matrix,
setting j = i in (34). But this seems arbitrary. Moreover, as Chesher (1984) has
shown, the implicit alternative of the IM test is a form of random parameter variation
which will not necessarily be of much economic interest. People frequently employ the
test not to check for this type of parameter variation, but because it is thought to have
power against a wide range of types of model misspecification. Model misspecification
is often of little concern if it does not affect parameter estimates. A possible way to
reduce the number of degrees of freedom of the IM test, then, is to use a DWH version
of it. This can easily be accomplished by replacing Z̃ in the artificial regression (27)
by P̃ZG̃1.

In many circumstances, we believe, the DWH version of the IM test will be more
useful than the original. Instead of asking whether there is evidence that the OPG
and Hessian estimates of the information matrix differ, the test asks whether there is
evidence that they differ for a reason which affects the consistency of the parameter
estimates. One could reasonably expect the DWH version of the test to have more
power in many cases, since it will have at most k degrees of freedom, instead of 1

2 (k2+k)
for the usual IM test. Note, however, that it will still be impossible to compute the
test when n < 1

2 (k2 + k), since P̃ZG̃1 would in that case equal G̃1. Even in its DWH
version, then, the IM test remains a procedure to be used only when the sample size
is reasonably large.

Of course, it makes sense to do a DWH version of the IM test only when the full
test is testing in directions which affect parameter consistency. This is by no means
always so, since the directions in which the IM test tests are those which affect the
consistency of the estimate of the covariance matrix of the parameter estimates. (And
this implies that even the full IM test will have no power against misspecifications that
affect the consistency of the estimates of neither the parameters nor their covariance
matrix.) Consider, for instance, the case of linear regression models, where the IM test
is implicitly testing for certain forms of heteroskedasticity, skewness, and kurtosis; see
Hall (1987). For a linear regression model with normal errors, the contribution to the
loglikelihood function from the tth observation is

`t = 1−
2

log(2π)− log(σ)− (
yt −Xtβ)2

)
/(2σ2) (35)

where β is a p--vector so that k = p+1. The contributions to the gradient for β and σ,
respectively, are

Gti(yt −Xtβ)Xti/σ2, (36)

and
Gtσ = −1/σ + (yt −Xtβ)3/σ2. (37)
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The second derivatives of (35) are

∂2`t

∂σ∂σ
= −1/σ2 − 3(yt −Xtβ)2/σ4,

∂2`t

∂σ∂βi
= −2(yt −Xtβ)Xti/σ3,

and
∂2`t

∂βi∂βj
= −XtiXtj/σ2.

The right-hand side of the OPG regression consists of the test regressors Z̃tj plus p
regressors G̃ti, which correspond to the βi, and one regressor G̃tσ, which corresponds
to σ (G̃ti and G̃tσ are evaluated at OLS estimates β̃ and σ̃, the latter using n rather
n−p in the denominator). The test regressor corresponding to any pair of parameters
is the sum of the second derivative of `t with respect to those parameters and the
product of the corresponding first derivatives, again evaluated at β̃ and σ̃.

We simplify all these expressions by using the fact that, since the test statistic is an
explained sum of squares, multiplying any regressor by a constant will have no effect
on it, and by defining et as ũt/σ̃. The regressors for the OPG version of the IM test
are thus seen to be:

for βi : eiXti, (38)

for σ : e2
t − 1, (39)

for βi, βj : (e2
t − 1)XtiXtj (40)

for βi, σ : (e3
t − 3et)Xti (41)

for σ, σ : e4
t − 5e2

t + 2. (42)

When the original regression contains a constant term, (40) will be perfectly collinear
with (39) when i and j both refer to the constant term, so that one of them will have
to be dropped, and the degrees of freedom for the test reduced by one to 1

2 (p2 + 3p).

It is evident that the (βi, βj) regressors are testing in directions which correspond to
heteroskedasticity of the type that White’s (1980) test is designed to detect (namely,
heteroskedasticity that affects the consistency of the OLS covariance matrix estimator)
and that the (βi, σ) regressors are testing in directions that correspond to skewness
interacting with the Xti. If we subtract (39) from (42), the result is e4

t − 6e2
t +3, from

which we see that the linearly independent part of the (σ, σ) regressor is testing in
the kurtosis direction. The IM test is thus seen to be testing for heteroskedasticity,
skewness, and kurtosis, none of which prevent β from being consistent. Hence it would
make no sense to compute a DWH variant of the IM test in this case, and indeed it
would be impossible to do so asymptotically. If one did do such a test in practice, one
would run into precisely the problem discussed in the previous section: The test might
well reject if the model suffered from heteroskedasticity, skewness, or kurtosis, but the
rejection would not say anything about the consistency of β̃ or of σ̃.
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5. The Power of DWH and Classical Tests
When the DWH version of a classical test differs from the original, the former may or
may not be more powerful than the latter. Although this fact and the reasons for it
are reasonably well-known, it seems worthwhile to include a brief discussion which, we
hope, makes the issues clear. We shall deal with the general case of section 3, and we
will rely heavily on results in Davidson and MacKinnon (1987a).

Suppose the data are generated by a sequence of local DGPs which tends to the point
θ0 ≡ (θ0

1,0). The direction in which the null is incorrect can always be represented
by a vector

M1(R2w2 + R3w3),

where M1 ≡ M1(θ0), R2 ≡ R2(θ0), and R3 is a matrix with the same properties as
R1 and R2, which represents directions other than those contained in the alternative
hypothesis. The vectors w2 and w3 indicate the weights to be given to the various
directions; one can think of w2 as being proportional to θ2. Following Davidson and
MacKinnon (1987a), it is possible to show that under such a sequence any of the
classical test statistics for the hypothesis θ2 = 0 will be asymptotically distributed as
noncentral χ2(l) with noncentrality parameter (or NCP)

plim
(

1−
n
(w2

>R2
>+ w3

>R3
>)M1R2

)(
plim

(
1−
n
R2
>M1R2

)−1
)

× plim
(

1−
n
R2
>M1(R2w2 + R3w3

)
.

(43)

This NCP is the probability limit of n−1 times the explained sum of squares from the
artificial regression

M1(R2w2 + R3w3) = M1R2b + residuals. (44)

When the DGP belongs to the alternative hypothesis, so that w3 = 0, this regression
fits perfectly, and (43) simplifies to

plim
(

1−
n
w2
>R2

>M1R2w2

)
,

which is equivalent to expressions for noncentrality parameters found in standard ref-
erences such as Engle (1984).

Similarly, the noncentrality parameter for the DWH variant of the classical test against
θ2 = 0 will be the probability limit of n−1 times the explained sum of squares from
the artificial regression

M1(R2w2 + R3w3) = M1P2R2b
∗ + residuals. (45)

If we make the definition
C ≡ (R2

>R2)−1R2
>R1,

–15–



regression (45) can be rewritten as

M1(R2w2 + R3w3) = M1R2Cb∗ + residuals. (46)

From (44) and (46), it is clear that the DWH and classical tests will have the same
NCP in two circumstances. The first of these is when l = k and the matrix C has
full rank, which is the familiar case where the classical and DWH tests are equivalent.
The second is when

R2w2 = R2Cw∗, (47)

where w∗ is a k --vector. In both these cases, regressions (44) and (46) will have the
same explained sum of squares.

When the DWH test is not equivalent to the classical tests and condition (47) does not
hold, it must have a smaller NCP than the classical tests. This will be true whether
or not w3 = 0, since R2C can never have more explanatory power than R2. Whether
the DWH test will have more or less power than the classical test then depends on
whether its reduced number of degrees of freedom more than offsets its smaller NCP.

6. Binary Choice Models: An Example
In this section, we consider a simple example where a DWH variant of the IM test does
make sense. Failures of distributional assumptions, of the sort which do not affect the
consistency of least squares estimates, do render ML estimates of binary choice models
inconsistent. It is therefore both important to test for these and interesting to see if
they are affecting the parameter estimates.

We shall be concerned with the simplest type of binary choice model, in which the
dependent variable yt may be either zero or one and

Pr(yt = 1) = F (Xtβ), (48)

where F (x) is a thrice continuously differentiable function which maps from the real
line to the 0–1 interval, is weakly increasing in x, and has the properties

F (x) ≥ 0; F (−∞) = 0; F (∞) = 1; F (−x) = 1− F (x). (49)

Two examples are the probit model, where F (x) is the cumulative standard normal
distribution function, and the logit model, where F (x) is the logistic function. The
contribution to the loglikelihood of the tth observation is

`t(β) = yt log
(
F (Xtβ)

)
+ (1− yt) log

(
F (−Xtβ)

)
.

The contributions to the gradient for yt = 1 and yt = 0 are, respectively,

f(Xtβ)Xti/F (Xtβ)
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and
−f(−Xtβ)Xti/F (−Xtβ),

where f(x) is the first derivative of F (x). Thus the corresponding elements of the
matrix G>G are (

f(Xtβ)
F (Xtβ)

)2

XtiXtj (50)

and (
f(−Xtβ)
F (−Xtβ)

)2

XtiXtj . (51)

The second derivatives of `t(β) for yt = 1 and yt = 0 are, respectively,

f ′(Xtβ)F (Xtβ)− f2(Xtβ)
F 2(Xtβ)

XtiXtj (52)

and
−f ′(Xtβ)F (−Xtβ)− f2(−Xtβ)

F 2(−Xtβ)
XtiXtj , (53)

where f ′(x) denotes the derivative of f(x), and we have used the symmetry property
of (49) which implies that f ′(x) = −f ′(−x). The sum of (50) and (52) is

f ′(Xtβ)
F (Xtβ)

XtiXtj , (54)

and the sum of (51) and (53) is

−f ′(Xtβ)
F (−Xtβ)

XtiXtj . (55)

The random variable whose two possible realizations are (54) and (55) is the difference
between the OPG and minus the Hessian. If the model is correctly specified, the
expectation of this random variable is

F (Xtβ)
(

f ′(Xtβ)
F (Xtβ)

XtiXtj

)
+ F (−Xtβ)

(−f ′(Xtβ)
F (−Xtβ)

XtiXtj

)

= f ′(Xtβ)XtiXtj − f ′(Xtβ)XtiXtj = 0.

The IM test asks whether it is in fact equal to zero.

The IM test may be based on the OPG regression, as usual, or it may be based on the
artificial regression proposed by Engle (1984) and Davidson and MacKinnon (1984b)
specifically for binary choice models, which we shall refer to as the PL (for probit and
logit) regression. Computing the IM test by means of an artificial regression other
than the OPG regression may be attractive because of the very poor finite-sample
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properties of the latter; see Chesher and Spady (1988), Davidson and MacKinnon
(1985a), Kennan and Neumann (1988), and Orme (1987b).

The regressand for the PL artificial regression is

r̃t =
yt − F (Xtβ̃)

(
F (−Xtβ̃)F (Xtβ̃)

)1/2
, (56)

and the regressors corresponding to the βi are

f ′(Xtβ̃)XtiXtj(
F (−Xtβ̃)F (Xtβ̃)

)1/2
. (57)

We want to construct the test regressors so that the ij th test regressor times (56)
yields (54) when yt = 1 and (55) when yt = 0. It is thus easily seen that the ij th test
regressor must be

Z̃t,ij =
f ′(Xtβ̃)XtiXtj(

F (−Xtβ̃)F (Xtβ̃)
)1/2

. (58)

This artificial regression was also derived by Orme (1987a).

In the probit case, this artificial regression has a very interesting interpretation. Since
f(Xtβ) is the standard normal density,

f ′(Xtβ) = −(2π)−1/2 exp
(

1−
2
(Xtβ)2

)
Xtβ = −Xtβ f(Xtβ),

so that (58) becomes
−f(Xtβ̃)Xtβ̃XtiXtj(
F (−Xtβ̃)F (Xtβ̃)

)1/2
. (59)

This is identical to the test regressor one would get if one did an LM test of the model
(48) against the alternative

Pr(yt = 1) = F

(
(Xtβ)

/
exp

( k∑

i=1

i∑

j=1

XtiXtjγij

))
, (60)

which can be derived from the latent variable model

y∗t = Xtβ + ut, ut ∼ N
(
0, exp

(
2

k∑

i=1

i∑

j=1

XtiXtjγij

))

yt = 1 if y∗t > 0, yt = 0 otherwise.

(61)

The model (61) is thus a special case of a model which incorporates a natural form
of heteroskedasticity. The general model was considered by Davidson and MacKin-
non (1984b), who derived the appropriate LM test. This model is special because the
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variance of ut depends exclusively on the cross-products of the Xti. It is clear that
the implicit alternative of the IM test is precisely this heteroskedastic model. More-
over, just as for ordinary regression models it is only heteroskedasticity related to the
cross-products of the regressors which affects the consistency of the covariance matrix
estimates, so for probit models it is only heteroskedasticity of this type which (locally)
prevents the information matrix equality from holding and which thus renders ML
probit estimates inconsistent. This is purely a local result, of course; if a DGP involv-
ing any form of heteroskedasticity were some fixed distance from the probit model,
one could not expect ML estimates based on homoskedasticity to be consistent.

Notice that if one of the Xti, say Xtj , is a constant term, the test regressor (59) which
corresponds to Xtj is

−f(Xtβ̃)Xtβ̃(
F (Xtβ̃)F (−Xtβ̃)

)1/2
,

which is a linear combination of the regressors (57) that correspond to the β̃i. This test
regressor must therefore be dropped, and the degrees of freedom of the test reduced
to 1

2k(k + 1)− 1.

Newey (1985) recognized that the IM test implicitly tests against heteroskedasticity in
the case of probit models, and he suggested that this test may be particularly attractive
for such models. He proposed to use the OPG form of the test. The PL version dis-
cussed here is no more difficult to compute than the OPG form, however, and it seems
to have much better finite-sample properties. In the Appendix, we present detailed
results of a small Monte Carlo experiment designed to investigate the performance of
the OPG and PL tests, in regular and DWH versions.

The Monte Carlo experiments yielded two main results. First, we found that the
PL form of the IM test proposed above performed reasonably well for moderately
large samples, but that it generated far too many realizations in the right-hand tail,
and that its rate of convergence to its asymptotic distribution was disappointingly
slow. (Since binary choice models are often estimated with large samples, this will not
necessarily be a fatal drawback.) In contrast, the OPG form of the IM test performed
dismally in samples of all sizes, sometimes rejecting the null more than 90% of the
time at the nominal 5% level. These dreadful results are consistent with those of
Chesher and Spady (1988), Davidson and MacKinnon (1985a), Kennan and Neumann
(1988), and Orme (1987) for other applications of the OPG form of the IM test; the
problem is primarily that n−1G̃>G̃ tends to estimate I(θ) very poorly. Like Kennan
and Neumann, we found that the performance of the OPG form deteriorated markedly
as the number of degrees of freedom for the test was increased.

Second, we found that in some realistic cases, but not all cases, the DWH version of the
IM test can have significantly more power than the ordinary version. This was most
likely to be the case when the number of parameters was large, so that the DWH variant
of the IM test would have many fewer degrees of freedom than the ordinary IM test;
unfortunately, this was also the circumstance in which the finite-sample performance
of all the tests was worst.
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Based on these results, we find it difficult to endorse Newey’s (1985) recommendation of
the IM test for probit models. The conventional OPG form of the test should clearly
not be used. Among the tests we studied, the DWH version computed via the PL
regression generally performs the best, both under the null and under the alternatives
we studied, but its finite-sample performance is far from ideal. It might well be more
productive to test for particular, relatively simple forms of heteroskedasticity which
do not involve many degrees of freedom, especially those which seem plausible for the
model at hand, rather than to calculate any form of the IM test.

7. Conclusion
This paper has dealt with several aspects of Durbin-Wu-Hausman tests. The main
contribution of the paper has been to show that DWH tests may be based on any
artificial regression that can be used to compute score-type tests, and that any test
based on such a regression can be converted into a DWH test. In particular, we have
shown that this is true for the information matrix test, and we have demonstrated how
to compute a DWH version of the IM test for the case of binary choice models.

References

Amemiya, T. (1985). Advanced Econometrics, Cambridge, MA, Harvard University
Press.

Bera, A. K., and C. R. McKenzie (1986). “Alternative forms and properties of the
score test,” Journal of Applied Statistics, 13, 13–25.

Boothe, P., and J. G. MacKinnon (1986). “A specification test for models estimated
by GLS,” Review of Economics and Statistics, 68, 711–714.

Breusch, T. S., and L. G. Godfrey (1986). “Data transformation tests,” Economic
Journal, 96, 47–58.

Chesher, A. (1984). “Testing for neglected heterogeneity,” Econometrica, 52,
865–872.

Chesher, A., and R. Spady (1988). “Asymptotic expansions of the information
matrix test statistic,” presented at the Econometric Study Group meeting,
Bristol.

Das Gupta, S., and M. D. Perlman (1974). “Power of the noncentral F test: Effect
of additional variates on Hotelling’s τ2 test,” Journal of the American Statistical
Association, 69, 174–180.

Davidson, R., L. G. Godfrey, and J. G. MacKinnon (1985). “A simplified version of
the differencing test,” International Economic Review, 26, 639–647.

Davidson, R., and J. G. MacKinnon (1983). “Small sample properties of alternative
forms of the Lagrange Multiplier test,” Economics Letters 12, 269–275.

–20–



Davidson, R., and J. G. MacKinnon (1984a). “Model specification tests based on
artificial linear regressions, International Economic Review, 25, 485–502.

Davidson, R., and J. G. MacKinnon (1984b). “Convenient specification tests for
logit and probit models,” Journal of Econometrics, 25, 241–262.

Davidson, R., and J. G. MacKinnon (1985a). “Testing linear and loglinear
regressions against Box-Cox alternatives,” Canadian Journal of Economics, 25,
499–517.

Davidson, R., and J. G. MacKinnon (1985b). “Heteroskedasticity-robust tests in
regression directions. Annales de l’INSÉE, 59/60, 183–218.
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Appendix

In this appendix, we report the results of a small Monte Carlo experiment designed to
shed light on Newey’s (1985) conjecture that the IM test may be particularly attractive
for probit models. There are two main results. First, we find that the OPG form of the
IM test for probit models rejects the null far too often in samples of moderate or even
rather large size, while the PL form of the IM test proposed in this paper performs
much better. Second, we find that in some realistic cases the DH version of the IM
test may have significantly more power than the ordinary version.

In all our experiments, the matrix X consisted of a constant term and one or more
other regressors, which were normally distributed and equi-correlated with correlation
one half. Only one set of realizations of these variables was generated, and only for 100
observations. For larger sample sizes, this set of observations was replicated as many
times as necessary. This scheme reduced the costs of the simulation, made it easy to
calculate NCPs (which for a given test depend only on X and on the parameters of
the DGP), and ensured that any changes as n was increased were not due to changes
in the pattern of the exogenous variables.

We first investigated the performance under the null of the ordinary IM test and its
DH version, calculated by both the OPG and PL regressions, for samples of size 100,
200, 400, 800, and 1600. We let k, the number of parameters under the null hypothesis,
vary from 2 to 4, so that the number of degrees of freedom for the ordinary IM test
was 2, 5, or 9, and for the DH version 2, 3, or 4. The DH and ordinary IM tests are
thus identical when k = 2.

Results for samples of sizes 100, 400, and 1600 are shown in Table 1. The most striking
result is the extreme tendency to over-reject of the OPG tests, which worsens rapidly
as k increases and diminishes only slowly as the sample size increases. For k = 4, the
OPG IM test rejects over 98% of the time at the nominal 5% level when n = 100,
and over 50% of the time even when n = 1600. It is clear that the sample would
have to be enormous for this test’s true size to be anywhere close to its nominal one.
The DH version of the OPG test is slightly better behaved than the original, but the
improvement is marginal. Previous results on the finite-sample performance of the
OPG test have generally not been favorable to it, but the present results are far worse
than those reported previously. Since most applications are likely to involve many
more than four parameters, it seems doubtful that the OPG form of the IM test for
probit models can ever yield even approximately reliable results in samples of the size
that are typically used by econometricians.

The tests based on the PL regression are far better behaved than the OPG tests, but
are still a long way from their asymptotic distribution even in samples of 1600. They
have roughly the right mean, but their standard deviations are too high because very
large values occur much more often than they should by chance. As a result, they
tend to under-reject at the 10% level and over-reject at the 1% level, while being fairly
close to their nominal size at 5%. Curiously, the problem of too many outliers appears
initially to get worse as n increases; for k = 4 (the worst case), the standard deviation
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for both the ordinary and DH versions is largest for n = 400, as is the rejection
frequency at the nominal 1% level.

Since the OPG test rejects so often as to be completely useless, there is apparently no
choice but to use the PL version; however, these results suggest that even it should
be regarded with considerable suspicion, especially if there are more than a very few
parameters and the sample size is not very large indeed.

Our second set of experiments was designed to investigate power when the data were
generated by (61). Calculation of NCPs showed that, for a wide range of γij chosen
so that all cross-products contributed very roughly the same amount to the variance,
the NCP for the DH version was only slightly smaller than the NCP for the ordinary
IM test. In more extreme cases, such as when only one γij was non-zero, the NCP for
the DH version could be less than half as large. In the former case, the DH version
should be more powerful asymptotically, since a slight reduction in the NCP is more
than offset by what can be a substantial reduction in degrees of freedom, but in the
latter the ordinary IM test would be more powerful.

The object of the Monte Carlo experiments was to see how accurately the asymptotic
analysis of Section 5 predicted finite-sample power. We considered a single “plausible”
pattern for the γij and then scaled the latter to the sample size so that the tests would
have power somewhere around 50% at the nominal 5% level. The resulting NCPs,
which are of course invariant to the sample size, were 5.15 for k = 2, 6.18 and 5.97
(DH version) for k = 3, and 9.16 and 8.57 (DH version) for k = 4.

Results for the PL tests only are shown in Table 2; results for the OPG tests are not
shown because, as one would expect from the results in Table 1, they always rejected
far more often than asymptotic theory predicted. The table also shows, in rows labelled
“Asymp”, the values that would be expected if the test statistics actually had their
asymptotic non-central chi-squared distributions.

The behavior of the PL tests when the null is false is broadly consistent with their
behavior when it is true. In particular, they reject much too often at the 1% level, and
they have means which are often far too large, because there are many more extremely
large values than asymptotic theory predicts. However, they do not consistently under-
reject at the 10% level, and the pattern as n increases is not always monotonic. For
the case considered here, asymptotic analysis predicts that the DH version will have a
modest power advantage. This is usually the case in the experimental results as well,
although the ordinary IM test is sometimes more powerful when n is small, especially
at the 1% level.
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Table 1. Performance of Alternative Tests Under the Null

k Obs. Test Mean Std. Dev. Rej. 10% Rej. 5% Rej. 1%

2 100 OPG 6.94∗∗ 7.36∗∗ 46.5∗∗ 40.1∗∗ 28.2∗∗

PL 1.81∗ 2.67∗∗ 7.8∗ 5.2 2.3∗∗

2 400 OPG 4.11∗∗ 5.45∗∗ 28.0∗∗ 21.4∗∗ 12.4∗∗

PL 1.91 2.04 8.2∗ 4.1 1.2

2 1600 OPG 2.74∗∗ 3.60∗∗ 17.3∗∗ 11.0∗∗ 4.9∗∗

PL 1.96 1.95 9.3 4.3 1.0

3 100 OPG 21.71∗∗ 11.27∗∗ 84.5∗∗ 79.5∗∗ 67.6∗∗

PL 4.14∗∗ 5.87∗∗ 6.6∗∗ 4.9 2.7∗∗

OPG-DH 15.79∗∗ 11.07∗∗ 76.7∗∗ 70.1∗∗ 57.5∗∗

PL-DH 2.44∗∗ 4.69∗∗ 6.0∗∗ 4.4 2.3∗∗

3 400 OPG 13.40∗∗ 10.82∗∗ 55.7∗∗ 47.5∗∗ 32.2∗∗

PL 4.79 4.87∗∗ 9.8 6.4∗ 3.1∗∗

OPG-DH 9.31∗∗ 9.09∗∗ 51.2∗∗ 44.0∗∗ 30.3∗∗

PL-DH 2.81∗ 3.51∗∗ 8.8 5.7 2.4∗∗

3 1600 OPG 8.53∗∗ 6.94∗∗ 33.6∗∗ 25.3∗∗ 14.2∗∗

PL 4.91 4.04∗∗ 9.7 6.2∗ 2.9∗∗

OPG-DH 5.55∗∗ 5.81∗∗ 29.3∗∗ 22.9∗∗ 12.7∗∗

PL-DH 2.95 3.21∗∗ 9.6 5.8 2.4∗∗

4 100 OPG 35.37∗∗ 8.70∗∗ 99.4∗∗ 98.3∗∗ 94.2∗∗

PL 6.64∗∗ 5.72∗∗ 6.2∗∗ 4.5 2.6∗∗

OPG-DH 22.09∗∗ 10.01∗∗ 92.0∗∗ 88.7∗∗ 79.4∗∗

PL-DH 2.60∗∗ 3.19∗∗ 4.8∗∗ 3.0∗∗ 1.6∗

4 400 OPG 37.48∗∗ 21.15∗∗ 88.9∗∗ 84.4∗∗ 75.2∗∗

PL 8.22∗∗ 7.92∗∗ 9.1 6.6∗ 3.7∗∗

OPG-DH 24.72∗∗ 19.82∗∗ 82.0∗∗ 75.8∗∗ 65.4∗∗

PL-DH 3.57∗∗ 5.17∗∗ 8.0∗ 5.6 2.8∗∗

4 1600 OPG 21.94∗∗ 15.81∗∗ 62.5∗∗ 53.1∗∗ 38.5∗∗

PL 8.78 5.51∗∗ 9.9 6.0∗ 2.6∗∗

OPG-DH 12.92∗∗ 13.35∗∗ 55.7∗∗ 47.3∗∗ 33.3∗∗

PL-DH 3.76∗ 3.63∗∗ 8.9 5.8 2.2∗∗

All results are based on 2000 replications.
∗ and ∗∗ indicate that a quantity differs from what it should be asymptotically at the .05 and
.001 levels, respectively.

Degrees of freedom for the ordinary IM tests are 2 for k = 2, 5 for k = 3, and 9 for k = 4.

The standard deviations of χ2 random variables with 2, 3, 4, 5, and 9 degrees of freedom are,
respectively, 2, 2.45, 2.83, 3.16, and 4.24.
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Table 2. Power of Alternative Tests

k Obs. Test Mean Rej. 10% Rej. 5% Rej. 1%

2 Asymp. PL 7.15 64.0 51.6 28.3

100 PL 7.40 47.4∗∗ 40.3∗∗ 27.1∗

200 PL 7.49∗ 53.6∗∗ 44.0∗∗ 27.7

400 PL 7.77∗∗ 59.5∗∗ 48.9* 30.0

800 PL 7.90∗∗ 62.1 51.0 30.1

1600 PL 7.76∗∗ 65.4 53.2 31.4∗

3 Asymp. PL 11.18 57.4 44.5 22.6

PL-DH 8.97 64.0 51.5 28.5

100 PL 35.19∗∗ 55.1∗ 52.1∗∗ 46.8∗∗

PL-DH 31.43∗∗ 57.2∗∗ 51.5 44.9∗∗

200 PL 37.29∗∗ 63.2∗∗ 58.4∗∗ 51.6∗∗

PL-DH 33.02∗∗ 65.5 58.8∗∗ 49.0∗∗

400 PL 30.76 61.3∗∗ 56.4∗∗ 48.9∗∗

PL-DH 26.62∗∗ 64.9 57.5∗∗ 47.2∗∗

800 PL 23.22∗∗ 65.2∗∗ 58.5∗∗ 47.8∗∗

PL-DH 19.27∗∗ 67.2∗ 60.4∗∗ 46.3∗∗

1600 PL 17.84∗∗ 64.6∗ 56.5∗∗ 42.0∗∗

PL-DH 14.47∗∗ 67.1∗ 58.1∗∗ 43.1∗∗

4 Asymp. PL 18.16 64.5 51.9 28.6

PL-DH 12.57 75.0 63.9 40.1

100 PL 114.08∗∗ 50.8∗∗ 48.9∗ 45.9∗∗

PL-DH 114.18∗∗ 51.7∗∗ 50.1∗∗ 47.3∗∗

200 PL 159.94∗∗ 67.0∗ 64.3∗∗ 59.6∗∗

PL-DH 141.66∗∗ 69.8∗∗ 66.2∗ 61.0∗∗

400 PL 120.85∗∗ 68.7∗∗ 64.1∗∗ 57.8∗∗

PL-DH 107.29∗∗ 73.0∗ 68.8∗∗ 61.1∗∗

800 PL 69.29∗∗ 66.0 61.2∗∗ 51.4∗∗

PL-DH 60.12∗∗ 72.6∗ 67.2∗ 56.9∗∗

1600 PL 33.78∗∗ 60.0∗∗ 53.4 40.5∗∗

PL-DH 27.15∗∗ 68.5∗∗ 60.6∗ 48.6∗∗

All results are based on 2000 replications.
∗ and ∗∗ indicate that a quantity differs from what it should be asymptotically at the .05 and
.001 levels, respectively.

Degrees of freedom for the ordinary IM tests are 2 for k = 2, 5 for k = 3, and 9 for k = 4.
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