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Abstract

We propose several Lagrange multiplier tests of logit and probit models, which may be
inexpensively computed by means of artificial linear regressions. These may be used to
test for various forms of model inadequacy, including the omission of specified variables
and heteroskedasticity of known form. We perform a number of sampling experiments
in which we compare the small-sample properties of these tests and of likelihood ratio
tests. One of the LM tests turns out to have better small-sample properties than any
of the others. We then investigate the power of the tests against local alternatives.
Finally, we conduct a further series of sampling experiments to compare the power of
various tests.
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1. Introduction

The logit and probit models, together with their multi-response and multivariate gener-
alizations, are now widely used in applied econometric work. Such models are typically
estimated by maximum likelihood methods which require the numerical maximization
of a loglikelihood function. Since this is usually much more expensive than, say, cal-
culating ordinary least squares estimates for a linear regression model, investigators
often display a natural reluctance to test the specification of the model as thoroughly
as would normally be done in the regression case. There is thus a clear need for speci-
fication tests of logit and probit models which are easy to understand and inexpensive
to compute.

In this context, it seems natural to investigate the use of Lagrange multiplier, or score,
tests, because they require only estimates under the null hypothesis, and they can
often be computed by means of artificial linear regressions. The literature on LM
tests for logit and probit models is, however, remarkably limited. The recent survey
of qualitative response models by Amemiya (1981) does not mention LM tests at all,
and the survey of LM tests by Engle (1982) describes only one such test for logit and
probit models, which appears to be new.

In this paper, we discuss several varieties of LM test for logit and probit models, each
of which may be computed by means of an artificial linear regression. For a given
alternative hypothesis, there turn out to be two different artificial linear regressions
which generate five different, but asymptotically equivalent, test statistics. These
procedures may be used to test both for omitted variables, which was the case examined
by Engle (1982), and for heteroskedasticity of known form. The latter is a serious
problem in the case of logit and probit models, because it renders parameter estimates
inconsistent.

We perform two sets of sampling experiments. In the first set, we examine the perfor-
mance of six tests under the null: the five LM or pseudo-LM tests referred to above,
and the Likelihood Ratio test. We find that one of the LM tests outperforms the
other tests, in the sense that the small-sample distribution of the test statistic under
the null more closely approximates the asymptotic distribution. Thus use of this test
rather than any of the others will generally result in Type I error being known more
accurately. We also find that different asymptotically equivalent tests based on the
same artificial regression may behave very differently in small samples.

In the second set of sampling experiments, we investigate the power of two LM tests
and the LR test. We compare the power of the tests both at fixed critical values
and at estimated critical values based on the previous experiments, so as to control
the level of Type I error. We also examine how closely the distributions of the tests
approximate their asymptotic distributions under local alternatives, which is all that
asymptotic theory has to tell us about the power of these tests. The approximation
turns out to be quite poor in many cases.
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2. LM Tests for Logit and Probit Models

The tests we shall develop are applicable to a fairly wide class of binary choice mod-
els, of which the logit and probit models are by far the most commonly encountered
varieties. In models of this class, the dependent variable can take on only two values,
which it is convenient to denote by 0 and 1. The probability that yt, the tth observa-
tion on the dependent variable, is equal to 1 is given by F

(
xt(β)

)
. F is an increasing

function of xt which has the properties that F (−∞) = 0 and F (∞) = 1. xt is a
possibly nonlinear function, which depends on Xt a row vector of exogenous variables,
and β, a column vector of parameters to be estimated. In the commonly encountered
linear case, xt(β) = Xtβ.

The only difference between the logit and probit models is that they employ different
functions for F . In the case of the probit model,

F
(
xt(β)

)
= Φ

(
xt(β)

)
, (1)

where Φ denotes the cumulative distribution function of the standard normal distri-
bution. In the case of the logit model,

F
(
xt(β)

)
=

exp
(
xt(β)

)

1 + exp
(
xt(β)

)

=
1

1 + exp
(−xt(β)

) .
(2)

Note that, for both (1) and (2), F (−z) = 1 − F (z), a convenient property of which
we shall make use below. Other binary choice models use other functions in place of
(1) and (2); see Amemiya (1981). Provided the functions also have this symmetry
property, everything we say below will apply to them as well.

We shall denote by `t(β; yt) the contribution to the loglikelihood function made by
the tth observation. It is easy to see that

`t(β; 1) = logF
(
xt(β)

)
, and

`t(β; 0) = logF
(−xt(β)

)
.

(3)

Thus the loglikelihood function is

`(β;y) =
n∑
t=1

`t(β; yt). (4)

In the linear case, this function is globally concave for both the logit and probit models,
except in pathological cases where it is unbounded; see Amemiya (1981). Thus ML
estimates may be found in a straightforward fashion by maximizing it.
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We shall denote the gradient of (4) with respect to β by the row vector g(β;y). Its
ith component is

gt(β;y) =
n∑
t=1

Gti(β; yt),

where

Gti(β; yt) =
(

yt

F
(
xt(β)

) +
yt − 1

F
(−xt(β)

)
)
f
(
xt(β)

)
Xti(β). (5)

Here Xti(β) denotes the derivative of xt(β) with respect to βi; in the linear case, this
will simply be equal to Xti. f(z) denotes the first derivative of F (z), and we have made
use of the fact that f(z) = f(−z). For the probit mode, f(z) = φ(z), the standard
normal density. For the logit model,

f(z) =
exp(−z)(

1 + exp(−z)
)2 . (6)

The ML estimates β̂ must of course satisfy the first-order conditions

g(β̂;y) = 0. (7)

The variance-covariance matrix of β̂ may be consistently estimated in at least three
different ways. We define the information matrix, I(β), as the matrix whose ij th

element is
E

(
gi(β;y)gj(β;y)

)
. (8)

This may of course be consistently estimated by minus the Hessian, evaluated at β̂,
but this estimator turns out to be inconvenient in this context.1 A more convenient
estimator is

ÎOPG = G>(β̂)G(β̂), (9)

where G(β̂) is the matrix with typical element Gti(β; yt). The use of the “outer prod-
uct of the gradient” estimator ÎOPG for estimation and inference has been advocated
by Berndt, Hall, Hall, and Hausman (1974). The third way to estimate I(β) is simply
to use I(β̂). It is easily derived that a typical element of I(β̂) is

Îij =
n∑
t=1

f2
(
xt(β̂)

)
Xti(β̂)Xtj(β̂)

F
(
xt(β̂)

)
F

(−xt(β̂)
) . (10)

Notice that (10) depends on y only through β̂. This is not true for the other two
estimators of the information matrix.

1 Strictly speaking, it is of course I ≡ n−1I which is consistently estimated by minus
1/n times the Hessian. Here and elsewhere, we ignore this distinction when it is not
important to the argument.
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We are now ready to discuss LM tests. Suppose that we estimate the model subject
to k distinct restrictions, where k is equal to or less than m, the dimension of β. For
concreteness, the reader may wish to bear in mind the linear omitted variable case, in
which

xt(β) = X1tβ1 +X2tβ2, (11)

and the restrictions are that β2 = 0. However, everything that we shall say is valid
much more generally. We will denote the restricted ML estimates by β̃; in the special
case of (11), β̃> = [β̃1

> 0>]. It follows from standard results (Engle, 1982) that the
restrictions may be tested using the LM statistic

g(β̃)Ĩ−1g>(β̃), (12)

where Ĩ is any consistent estimate of I(β), which depends on β̃ and may also depend
directly on y. The dependence of g on y has been suppressed for notational conve-
nience. Under the null hypothesis, this statistic will be asymptotically distributed as
chi-squared with k degrees of freedom.

LM statistics based on ĨOPG and I(β̃) are particularly attractive, because they can
easily be computed using an OLS regression package. We consider the former case
first. Using (9) and the definition of g(β), the LM statistic (12) becomes

LM1 = ι>G(β̃)
(
G>(β̃)G(β̃)

)−1
G>(β̃)ι, (13)

where ι denotes an n--vector of ones. Expression (13) is clearly just the explained sum
of squares from the artificial linear regression

ι = G(β̃)b + errors, (14)

in which a vector of ones is regressed on the matrix G(β̃). This form of the LM
statistic has been used by Godfrey and Wickens (1981) in a different context; it does
not seem to have been suggested previously in the context of logit and probit models.

Regression (14) actually generates two valid test statistics. First there is the explained
sum of squares, LM1, which in this case is also equal to n times the uncentered R2.
Second, there is the statistic

F1 =
(n− SSR)/k
SSR/(n−m)

, (15)

the distribution of which approaches F (k, n−m) as n tends to infinity. This is calcu-
lated just like the ordinary F statistic for linear regression models: n is the restricted
sum of squared residuals, and SSR is the unrestricted sum of squared residuals from
regression (14). It is easily seen that F1 is asymptotically equivalent to LM1, since
k times the numerator of F1 is equal to LM1, and the denominator tends to unity
asymptotically under the null. This of course implies that when there is only one
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restriction, the t statistic on the column of G(β̃) corresponding to the restriction will
provide an asymptotically valid test statistic.

We now turn our attention to LM statistics based on I(β̃). Let the matrix r(β̃) be
constructed with typical element

Rti(β̃) =
f
(
xt(β̃)

)
Xti(β̃)

(
F

(
xt(β̃)

)
F

(−xt(β̃)
))1/2

(16)

and the vector r(β̃) be constructed with typical element

rt(β̃;y) = yt

(
F

(−xt(β̃)
)

F
(
xt(β̃)

)
)1/2

+ (yt − 1)

(
F

(
xt(β̃)

)

F
(−xt(β̃)

)
)1/2

. (17)

Now consider the artificial linear regression

r(β̃) = R(β̃)c + errors, (18)

the explained sum of squares from which is

LM2 = r>(β̃)R(β̃)
(
R>(β̃)R(β̃)

)−1
R>(β̃)r(β̃). (19)

Expression (19) is an LM statistic, because it is easily verified that r>(β̃)R(β̃) = g(β̃)
and that R>(β̃)R(β̃) = I(β̃). The artificial regression (18) was suggested by Engle
(1982) for the linear case.2

Regression (18) actually generates three different test statistics. First, there is the
explained sum of squares, LM2. Second, there is n times the uncentred R2 from the
regression. Using the notation r̃ = r(β̃) and R̃ = R(β̃), the latter test statistic can
be expressed as

nR2 =
r̃>R̃(R̃>R̃)−1R̃

r̃>r̃/n
.

As Engle (1982) points out, plim(r̃>r̃/n) = 1, so that (20) is asymptotically equivalent
to LM2. Finally, there is the pseudo F statistic

F2 =
(r̃>r̃ − SSR)/k
SSR/(n−m)

, (21)

2 Note that equation (17) can be rewritten as

rt(β̃;y) =
yt − F

(
xt(β̃)

)
(
F

(
xt(β̃)

)
F

(−xt(β̃)
))1/2

. (17a)

This expression for rt(β̃;y), which was not in either the working paper or published
versions of this paper, may be slightly more convenient than (17).
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which is analogous to F1 in every respect: k times the numerator is equal to LM2, and
the denominator tends to unity asymptotically, under the null. Once again, the fact
that F2 is valid implies that when there is only one restriction, the t statistic on the
column of R̃ corresponding to the restriction will also be an asymptotically valid test
statistic.

The specification of xt(β) as a nonlinear function allows the tests just described to be
used for a variety of purposes. The most obvious one is testing whether one or more
additional variables should be added to a linear logit or probit model. A somewhat less
obvious application is testing for heteroskedasticity. Since heteroskedasticity causes
parameter estimates from logit and probit models to be inconsistent, it is a serious
problem. Moreover, because these models are usually estimated using cross-section
data, it is a problem that is likely to be encountered quite often.

Consider first the following latent variable model:

Yt = Xtβ1 + ut, ut ∼ N
(
0, exp(2Ztβ2)

)
,

yt = 1 if Yt > 0,

yt = 0 if Yt ≤ 0.

(22)

Here Yt is an unobserved (latent) variable, Xt and Zt are row vectors of observations
on exogenous variables, and β1 and β2 are vectors of unknown parameters. To ensure
that both β1 and β2 are identifiable, we must specify that Zt does not include a
constant term. Clearly, when β2 = 0, ut will be N(0, 1), and (22) will then yield the
ordinary linear probit model. An LM test of the hypothesis that β2 = 0 will test the
ordinary probit model against the heteroskedastic alternative given by (22).

The above model implies that the probability that yt = 1 is

Φ
(
Xtβ1/ exp(Ztβ2)

)
= F

(
xt(β1,β2)

)
, (23)

where

xt(β1,β2) =
Xtβ1

exp(Ztβ2)
, (24)

since for the probit model F (z) is defined to be Φ(z). It is clear that we can specify
xt as in (24) for the logit model as well, which implies that

log
(

Pt
1− Pt

)
=

Xtβ1

exp(Ztβ2)
= xt(β1,β2),

where Pt is the probability that yt = 1. Since this logit specification involves no latent
variable, expression (25) cannot properly be called a specification of heteroskedasticity.
But it seems to be a reasonable specification nonetheless, and we shall for brevity use
the term ‘heteroskedasticity’ to refer to it.
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Given this specification of xt(β), it is now straightforward to use any of the LM or
approximate LM tests discussed above to test for heteroskedasticity. For the benefit
of practitioners, we note that

∂xt(β1,β2)
∂β1

∣∣∣∣
β1=β̃1,β2=0

= Xt, and

∂xt(β1,β2)
∂β2

∣∣∣∣
β1=β̃1,β2=0

= −Xtβ̃1Zt,

(26)

where these expressions are to be interpreted as row vectors. Using these results in
equations (5) or (16) and (17) allows one to generate the artificial regressions (14) or
(18) very easily.

3. Small-Sample Properties of Alternative Tests

In this section, we present the results of a number of sampling experiments designed to
study the small-sample properties of the tests described above. The data generating
process was either a logit or a probit model, with

xt(β) = (β0 + β1Xt1 + β2Xt2 + β3Xt3)/ exp(β4Xt3), (27)

where Xt1 and Xt2 were independent N(0, 1) variates (the same realizations being
used in all experiments), and Xt3 was a linear time trend. The sample size was always
chosen as an integer multiple of 50, and the same sets of 50 observations on X1, X2,
and X3 were repeated the required number of times in order to ensure that the matrix
n−1X>X did not change as the sample size increased The trend term X3 was set equal
to 0.10 + 0.01t for t = 1 to 50. We chose 50 as the smallest sample size to investigate
because, in our experience, probit and logit models are rarely estimated using samples
smaller than that (since smaller samples would rarely contain enough information to
make estimation worthwhile). The largest sample size used in our experiments was 200.
Because computational cost is roughly proportional to sample size, to have investigated
substantially larger sample sizes would have been prohibitively expensive.3

The null hypothesis was that β2 = β3 = β4 = 0, so that only β0 and β1 were estimated
under the null. For the experiments reported in this section, the null was always true,
with β0 = 0 and β1 taking on various values. Basically, β1 was chosen so that the
model predicted yt reasonably well, but not so well that X1 was ever in danger of
being a perfect classifier.

The test statistics examined in our experiments are LM1, F1, LM2, F2, and n times
the R2 from regression (18), as well as the likelihood ratio test statistic. We chose not

3 To perform the numerical maximizations, we used NAG subroutine E04EBF, which
employs analytical second derivatives. In two of the 18,000 replications performed,
this routine failed to find a maximum for the null hypothesis. These two replications
were replaced.

–7–



to examine Wald test statistics because they are clearly unattractive in this context.
Estimation of the null will here be easier than estimation of the alternative, and many
investigators will wish to avoid the latter entirely by using one of the LM-type tests.
If estimation of the alternative is undertaken, estimates under the null will normally
already be available, so that calculation of the LR statistic will then be trivial, much
easier than calculation of a Wald statistic. Moreover, just as there are several LM-type
tests, so too are there several Wald-type tests, and attempting to deal with them all
would have made reporting the experimental results quite difficult.

The results of eight experiments are presented in Tables 1 through 3. The hypotheses
that β2, β3, and β4 were zero were each tested separately. Since the resulting test
statistics have only one degree of freedom, we transformed them into test statistics
which would be asymptotically N(0, 1) under the null. This was done by taking their
square roots and multiplying by minus one if the coefficient of the test regressor in
the artificial regression (14) or (18) was negative, or, in the case of the LR test, if the
unrestricted coefficient estimate was negative.

All of the test statistics turned out to have means acceptably close to zero; thus we do
not report this information. On the other hand, the standard deviations of the various
test statistics differed dramatically, and these are therefore presented in Table 1. In
this table, ‘Hyp.’ indicates which coefficient is being tested, and ‘Exp.’ indicates the
sample size (50, 100, or 200), whether the logit or probit model was used, and the
value of β1. The numbers under ‘Std. Dev.’ are the observed standard deviations of
the various test statistics in 1000 replications, and the numbers in brackets following
these are asymptotic t statistics for the hypothesis that the true standard deviation is
unity.4

Several features of Table 1 are striking. The only test statistic which ever has an
estimated standard deviation of less than one, and the only test statistic for which the
hypothesis that the standard deviation is unity cannot be rejected most of the time,
is LM2. Of particular interest is the performance of F2 and nR2, which are based
on exactly the same artificial regression as LM2; the latter is n times the R2 from
regression (18). Nevertheless, they always have larger standard deviations than LM2,
often so large that they will clearly yield highly unreliable inferences. There seems to
be an explanation for this. Note that

nR2 =
n

r̃>r̃
LM2, (28)

the first factor here being a random variable with a plim of unity. Unless there is
substantial negative covariance between this factor and LM2, nR2 will have greater
variance than LM2, which is exactly what we find in Table 1. Similarly, F2 is related

4 This t statistic is (s − 1)(2N)1/2, where s is the standard deviation, and N is the
number of replications. Since N is always 1000, the normal approximation on which
this statistic is based should be quite accurate.
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to LM2 by the equation

kF2 =
n−m

r̃>r̃ − LM2
LM2. (29)

Since r̃>r̃ is Op(n) while LM2 is Op(1), under the null hypothesis, the first factor in
(29) will tend to be very similar to the first factor in (28), so that kF2 and nR2 can be
expected to be very close. Indeed, Table 1 shows that the standard errors of F2 and
nR2 are always extremely similar, much more so than those of any of the other test
statistics.

It seems clear from Table 1 that we would always wish to use LM2 rather than the
pseudo-LM statistics F2 and nR2 based on the same artificial regression. The choice
between LM1 and F1 is not so clearcut, since the standard deviations of those two
statistics tend to be very similar. However, close examination of Table 1 shows that
the standard deviation of F1 always exceeds that of LM1, which is in turn always
greater than unity, so that LM1 clearly dominates F1. This then leaves three test
statistics which are worth examining more closely: LR, LM1, and LM2. Detailed
results for these three statistics are presented in Tables 2 and 3. Here ‘Rep.’ and
‘Nobs.’ indicate the number of replications and the sample size, respectively. Besides
the standard errors, we report here the proportion of the time that the test statistics
exceeded 2.576, 1.960, and 1.645 (the 0.01, 0.05, and 0.10 critical values of the standard
normal distribution) under ‘0.01 tail’, ‘0.05 tail’, and ‘0.10 tail’, respectively. These
are followed by estimated asymptotic absolute t statistics for the hypotheses that these
proportions are 0.01, 0.05, and 0.10.5 Finally, under ‘0.05 crit.’ we report estimated
critical values for tests with a size of 0.05, together with estimated 95% confidence
intervals on these estimates.6

Tables 2 and 3 are largely self-explanatory. It is evident that LM2 is much the best
behaved of the three test statistics in almost all cases, followed at some distance by
LR, and at a long distance by LM1. This last always rejects the null hypothesis more
often than it should, sometimes rejecting more than 10% of the time at a nominal 1%
level. The performance of all the test statistics tend to improve as the sample size
increases, and tends to worsen when β1 is increased. Tests of β2 = 0 and β3 = 0 tend
to be better behaved than tests of β4 = 0, perhaps because of the greater nonlinearity
involved in the heteroskedastic alternative.

The poor performance of LM1 relative to LM2 is not entirely unexpected. As we show
in the Appendix, the random variable towards which all of the LM test statistics tend
asymptotically, LM0, depends on y only through the gradient; the information matrix

5 This t statistic is equal to (p̂−p)/(p(1−p)/N)1/2, where p̂ is the observed proportion
and p is the expected proportion if the test statistic were really N(0, 1). Use of the
normal approximation to the binomial is justified by the fact that N is always 1000.

6 Note that these confidence bounds, which are based on non-parametric inference, are
not symmetric around the estimate. For details on their calculation, see Mood and
Graybill (1963, 406–409).
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does not depend on y at all. LM2 differs from LM0 only because the former uses I(β̃)
while the latter uses I(β0), where β0 is the true parameter vector. Note that, since
β̃ is an ML estimate, I(β̃) is asymptotically efficient for I(β0). In contrast, LM1 uses
ĨOPG, which does depend directly on y and must therefore be a less efficient estimator
than I(β̃). Since the asymptotic distribution of LM0 depends on I(β0) being non-
random, we would expect that LM2, which uses a relatively efficient estimate of I(β0),
should more closely approximate the distribution of LM0 than does LM1. For a similar
argument, see Davidson and MacKinnon (1983).

The results of these experiments are thus quite definite. One is least likely to make
a Type I error if one uses LM2. Indeed, except for tests of β4 = 0, where it tends to
reject the null less often than it should, LM2 seems to have a small-sample distribution
that is remarkably close to its asymptotic one. The likelihood ratio test is less reliable
than LM2, but it is still reasonably well behaved. However, LM1, F1, F2, and nR2 are
often very badly behaved; they may reject a true null hypothesis much too often.

4. Power of the Tests

In this section, we investigate the power of the tests dealt with previously. In order
to do so, we first investigate the asymptotic distribution of the LM test statistic when
the null hypothesis is false, but the data generating process, or DGP, is assumed to
be ‘close’ to the null. On the basis of this asymptotic distribution, which is of course
the same for all the LM and pseudo-LM tests and for the LR test, we know what the
power of the tests should be asymptotically. We can then see how this compares with
the actual power of the tests in small samples.

The parameter vector β may be partitioned into two column vectors, β1 and β2, of
lengths m − k and k, respectively. The ‘true’ value of β1 is β0

1 , and the ‘true’ value
of β2 is 0, where the meaning of ‘true’ should become clear in a moment. Thus β0 is
the vector whose first m − k elements are β0

1 and whose last k elements are 0. The
information matrix from a sample of size n is defined by

I ≡ bI ≡ E0

(
g>(β0;y)g(β0;y)

)
, (30)

where the expectation in (30) is taken assuming that β = β0, and I represents the
average information contained in one observation.

The DGP is characterized by the loglikelihood function

n∑
t=1

`t(at,β0; yt), (31)

where
`t(at,β0; 1) = log

(
F

(
xt(β0)

)
+ at

)
,

`t(at,β0; 0) = log
(
F

(−xt(β0)
)− at

)
.

(32)
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The numbers at have the properties that

0 ≤ F (
xt(β0)

)
+ at ≤ 1 (33)

and

n−1/2
n∑
t=1

at = Op(1). (34)

Each individual at therefore becomes small like n−1/2 as n becomes large, so that the
DGP approaches the null hypothesis in large samples.

This characterization of the DGP is unrelated to the alternative hypothesis against
which the LM test is constructed. The standard case where the DGP is a special case
of the alternative hypothesis is easily accommodated, however. Suppose that, for some
scalar α of order n−1/2, the probability that yt = 1 is F

(
xt(β0

1 , αβ
0
2)

)
, which is nested

in the parametric family F
(
xt(β1,β2)

)
. This parametric family clearly includes the

null at β1 = β0
1 , α = 0. Then the at, being of order n−1/2, can to that order be

approximated by

α

k∑

j=1

β0
2j f

(
xt(β0

1 , 0)
)
Xtj(β0

1 , 0), (35)

where Xtj(β0
1 ,β2) denotes the derivative of xt with respect to the j th element of β2.

If the at were defined by (35), then the results of our analysis below would correspond
with standard results for the case where the DGP is embedded within the alternative
hypothesis.

Now define the 1×m vector

Λ ≡ n−1/2
n∑
t=1

at
(
Gt(β0; 1)−Gt(β0; 0)

)
, (36)

where, as before, Gt(β0; yt) is the contribution to the gradient g(β0;y) made by the
tth observation. From (5), we see that

Gt(β0; 1) =
f
(
xt(β0)

)

F
(
xt(β0)

)Xt(β0),

Gt(β0; 0) =
−f(

xt(β0)
)

F
(−xt(β0)

)Xt(β0),

(37)

where Xt(β0) (a row vector of length m) is the gradient of xt evaluated at β0.

The vector Λ and the information matrix I may be partitioned according to the
distinction between β1 and β2 as follows:

Λ = [Λ1 Λ2] I =
[
I11 I12

I21 I22

]
.
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It is shown in the Appendix that the asymptotic distribution of all the LM statistics
is non-central chi-squared, with non-centrality parameter

n
(
Λ2 −Λ1I

−1
11 I12

)
(I−1)22

(
Λ2
>− I21I

−1
11 Λ1

>)
. (38)

Here I−1
11 denotes the inverse of I11, while (I−1)22 denotes the 2-2 block of I−1. It is

easily derived that
(I−1)22 =

(
I22 − I21I

−1
11 I12

)−1
. (39)

Now define the matrix R as the matrix with typical element Rti(β0), where the latter
was defined in (16), and partition it as [R1 R2]. In addition, define the n× 1 column
vector r0 by the equation

r0t = at

(
F

(
xt(β0)

)
F

(−xt(β0)
))−1/2

. (40)

Clearly, I = R>R, and Λ = n1/2r0
>R. In addition, make the definition

M1 ≡ I−R1(R1
>R1)−1R1

>. (41)

Then it is evident that
Iij = R1

>Rj for i, j = 1, 2, (42)

and that
(I−1)22 = (R2

>M1R2)−1; (43)

this result follows immediately from (39). Making use of these results, we can reduce
expression (38) for the non-centrality parameter to

r0
>M1R2(R2

>M1R2)−1R2
>M1r0. (44)

This expression may readily be computed by means of artificial linear regressions.

The results we have just derived are strictly valid only in the limit, as the sample size
tends to infinity and the DGP tends to the null hypothesis. If they are to be useful,
these results should be approximately valid when the sample size is moderate and the
DGP is some distance from the null. To see whether this is in fact the case, and
to compare the power of alternative tests, we conducted a further series of sampling
experiments, similar to the ones reported on in Section 3; the results are presented in
Tables 4 and 5.

In these experiments, xt(β) was given by (27), and one of β2, β3, or β4 was always
non-zero; which one, and its value, are indicated under ‘Alt.’ in the tables. With
two exceptions, the value of the non-zero parameter was chosen so that when the
hypothesis being tested (indicated under ‘Hyp.’) was the alternative which generated
the data, λ, the square root of the noncentrality parameter, would be 1.96. The value
of λ is shown under ‘Root NCP’ in the tables. Setting λ = 1.96 ensures that the power
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of a test at the 0.05 level should be approximately 0.5, since if the test statistic were
distributed as N(λ, 1), it should be greater than 1.96 half the time (in addition, of
course, it would be less than −1.96 a very small fraction of the time). The design of
our experiments was such that λ was always very small when the alternative which
generated the data was not also the hypothesis under test; for the most part, therefore,
we report results only for the case where they were the same.

According to the asymptotic theory, each of the test statistics should be N(λ, 1); recall
that they have been transformed so that they are asymptotically standard normal.
We therefore report the means and standard deviations of the statistics, together with
t statistics for the hypotheses that the mean is λ and the standard deviation is one;
the t statistics are asymptotic in the latter case. It is evident from the tables that the
asymptotic approximation is somewhat deficient. The mean is often significantly too
small for LM2, and it is sometimes significantly different from λ (but not always too
small) for LR and LM1. The standard deviation is often significantly different from
unity, tending to be too small for LM2. Power using the asymptotic critical value of
1.96 is shown under ‘Power (A)’. When the mean is less than λ, power suffers. In
consequence, LM2 always has less power using a critical value of 1.96 than either of
the other test statistics;

Such a comparison is not fair, however, because LM2 was also less likely to reject
the null when it was true. A more reasonable comparison is to use different critical
values for each of the test statistics, based on the estimated 0.05 critical values from
the experiments reported on in Section 3. Test powers at these estimated critical
values are shown under ‘Power (E)’, and the estimated critical values under ‘Est.’.
The performance of all three tests is now quite similar, with LM1 and LR tending to
do slightly better than LM2 in most cases. However, LM1 has quite low power when
testing the hypothesis that β4 = 0. The reason for this appears to be that the standard
deviation of LM1, although greater than one, is substantially less than it was when
the null was true, so that the estimated critical values are too conservative.

By and large, the asymptotic results do not appear to be seriously misleading when the
alternative which generated the data is β2 6= 0 or β3 6= 0, but when β4 6= 0, they can
be misleading. In almost all cases when β4 6= 0, the actual mean of the test statistic
is far less than λ. This discrepancy diminishes as the sample size is increased, and it
diminishes even more strikingly when the value of λ is halved to 0.98; see Table 4. The
effect of each of these changes is to reduce the value of β4, so that the DGP is closer to
the null hypothesis. This suggests that the poor performance of the asymptotic theory
in this case is due to the nonlinearity of xt(β) with respect to β4.

The results of this section do not provide any clearcut guidance on the choice of tests.
The fine performance of LM2 under the null does not carry over to the alternative,
although on a size-corrected basis it is rarely much less powerful than the other tests.
The LR test generally performs quite well, and it would seem to be preferable to LM1

because of its better performance against β4 6= 0 and under the null. Unfortunately,
the LR test is expensive. In our experiments, calculating the three LR test statistics
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took more than ten times as much computer time as calculating both LM1 and LM2

for all three alternatives.

5. Conclusion

In this paper, we have discussed two forms of the LM test for logit and probit models.
These were derived in the context of general nonlinear binary choice models. They
may be used to test for both omitted variables and heteroskedasticity, among other
things. In a series of sampling experiments, we compared these two forms of the LM
test, along with several pseudo-LM tests based on the same artificial regressions, as
well as the likelihood ratio test. We found that LM2 tends to be the most reliable test
under the null, but not the most powerful. We also found that pseudo-LM tests may
behave very differently from genuine LM tests that are based on the same artificial
regression.

Appendix

In this appendix, we show that, under local alternatives as specified by equations (31)
to (34) in the text, both LM1 and LM2 tend asymptotically to the same random vari-
able, LM0. We then work out the asymptotic distribution of LM0. Our specification
of local alternatives is more general, and our results more explicit, than the treatments
in standard references such as Engle (1982).

We first derive an expression for β̃ = [β̃1
> β̃2

>]>, the vector of constrained parameter
estimates. β̃1 is defined by the likelihood equations

g1(β̃1,0;y) =
n∑
t=1

Gt1(β̃1,0; yt) = 0, (A1)

where g1 and Gt1 denote the gradients of ` and `t with respect to β̃1 only. Taylor
expansion of these likelihood equations yields

0 = n−1/2
n∑
t=1

Gt1(β0; yt) + n1/2(β̃1 − β0
1)>

(
1−
n

n∑
t=1

Ht11(β0; yt)
)

+Op(n−1/2), (A2)

where Ht is the contribution from the tth observation to the Hessian of the loglikeli-
hood, and Ht11 is the block corresponding to β1.

We must show that the Taylor expansion in (A2) is valid. First of all, we note that
E

(
Gt1(β0; yt)

)
= Op(n−1/2). This follows from the facts that E0

(
Gt1(β0; yt)

)
= 0 and

that the difference between the likelihoods used in calculating these two expectations
(namely, at) is Op(n−1/2). The law of large numbers allows us to conclude that

1−
n

n∑
t=1

Gt1(β0; yt)
)

= Op(n−1/2).
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Similarly,
E

(
Ht(β0; yt)

)
= E0

(
Ht(β0; yt)

)
+Op(n−1/2). (A3)

Thus, from the central limit theorem and the standard result (the information matrix
equality) which tells us that

E0(−Ht) = E0(Gt
>Gt),

we may deduce that

1−
n

n∑
t=1

Ht(β0; yt) = 1−
n

E0

( n∑
t=1

Ht(β0; yt)
)

+Op(n−1/2)

= −I +Op(n−1/2).

(A4)

Consequently,
1−
n

n∑
t=1

Ht11(β0; yt) = −I11 +Op(n−1/2).

This is therefore not only Op(1) but also bounded away from zero, since asymptotic
identifiability requires that I be strictly positive definite. From (A2), then, β̃1−β0

1 =
Op(n−1), and the Taylor expansion is justified. In fact,

n1/2(β̃1 − β0
1) = I−1

11

(
n−1/2

n∑
t=1

G>t1(β0; yt)
)

+Op(n−1/2). (A5)

The LM statistic in any of its various forms may be written as

g2(β̃;y)(I−1
∗ )22 g2

>(β̃;y), (A6)

where nI−1
∗ is some estimator, consistent if β = β0, of n times the inverse of the

information matrix. The choice of this estimator does not affect the fact that, under
local alternatives, nI−1

∗ is asymptotically non-stochastic and equal to I−1, because the
likelihood differences at introduce only terms of order n−1/2.

By (A4) and (A5),

n−1/2g2(β̃;y) = n−1/2
n∑
t=1

Gt2(β̃; yt)

= n−1/2
n∑
t=1

Gt2(β0; yt)

+ n1/2(β̃1 − β0
1)>

(
1−
n

n∑
t=1

Ht12(β0; yt)
)

+Op(n−1/2)

= n−1/2(g(β0;y)
[−I−1

11 I12

Ik

]
+Op(n−1/2),

(A7)
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where Ik is the k × k identity matrix. Thus the LM statistic (A6) is equal to

1−
n
g(β0;y)

[−I−1
11 I12

Ik

]
(I−1)22

[−I12I
−1
11 Ik

]
g>(β0;y) +Op(n−1/2). (A8)

The asymptotic term in (A8) is the random variable called LM0 in the text; is evident
that LM0 depends on y only through the gradient g(β0;y).

The expectation of n−1/2g(β0;y) is easily calculated. It is

E
(
n−1/2g(β0;y)

)
= n−1/2

n∑
t=1

at
(
Gt(β0; 1)−Gt(β0; 0)

)
= Λ. (A9)

The equality here follows from the definition of Λ in (36) and from the fact that
E0

(
g(β0;y)

)
= 0. By the argument used to derive (A4), it is evident that

Var
(
g(β0;y)

)
= E

(
1−
n
g>(β0;y)

(
g(β0;y)−Λ))

= I +Op(n−1/2). (A10)

It is now straightforward to compute that

Var
(
n−1/2g(β0;y)

[−I−1
11 I12

Ik

])
=

(
(I−1)22

)−1 +Op(n−1/2). (A11)

Now let the random vector on the left-hand side of equation (A11) be denoted by x>.
By a central limit theorem applied to the vector n−1/2g(β0;y), x is asymptotically
normal. Its mean is

µ ≡ [−I21I
−1
11 Ik

]
Λ>,

and its covariance matrix is
(
(I−1)22

)−1, which we shall call A. Then it is immediate
from (A8) that, if one ignores terms not of leading order, LM0 is equal to x>A−1x.

It is a standard result that, if x is distributed as N(µ,A), then the statistic x>A−1x
has the noncentral chi-squared distribution, with number of degrees of freedom equal
to the rank of A and non-centrality parameter µ>A−1µ; see, for example, Hogg and
Craig (1978, p. 413). In this case, the rank of A is k (the dimension of β2), and the
non-centrality parameter is

(
Λ2 −Λ1I

−1
11 I12

)
(I−1)22

(
Λ2
>− I21I

−1
11 Λ1

>), (A12)

which is equivalent to expression (38) in the text.

Although this calculation is strictly for the LM statistic, a similar calculation shows
that (A12) gives the non-centrality parameter for the LR statistic as well.
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Table 1. Standard Deviations of Alternative Test Statistics

Hyp. Test Exp. Std. Dev. Exp. Std. Dev. Exp. Std. Dev. Exp. Std. Dev.

β2 LR 50/L/3 1.092 (4.11) 100/L/3 1.051 (2.30) 200/L/3 1.064 (2.88) 100/L/6 1.080 (3.60)

LM1 1.124 (5.56) 1.068 (3.03) 1.068 (3.02) 1.116 (5.20)

F1 1.135 (6.05) 1.068 (3.06) 1.069 (3.08) 1.120 (5.37)

LM2 1.045 (2.02) 1.034 (1.50) 1.054 (2.43) 1.042 (1.88)

F2 1.239 (10.7) 1.106 (4.73) 1.101 (4.53) 1.473 (21.1)

nR2 1.213 (9.51) 1.104 (4.64) 1.099 (4.44) 1.441 (19.7)

β3 LR 50/L/3 1.039 (1.75) 100/L/3 1.022 (1.00) 200/L/3 1.033 (1.49) 100/L/6 1.062 (2.76)

LM1 1.115 (5.14) 1.063 (2.81) 1.052 (2.35) 1.132 (5.89)

F1 1.123 (5.49) 1.065 (2.92) 1.053 (2.38) 1.138 (6.15)

LM2 1.015 (0.69) 1.012 (0.55) 1.029 (1.28) 1.043 (1.90)

F2 1.270 (12.1) 1.097 (4.36) 1.078 (3.48) 1.490 (21.9)

nR2 1.195 (8.73) 1.092 (4.13) 1.076 (3.42) 1.451 (20.2)

β4 LR 50/L/3 1.164 (7.35) 100/L/3 1.102 (4.55) 200/L/3 1.031 (1.38) 100/L/6 1.115 (5.15)

LM1 1.484 (21.7) 1.336 (15.0) 1.163 (7.27) 1.546 (24.4)

F1 1.567 (25.3) 1.356 (15.9) 1.168 (7.53) 1.587 (26.2)

LM2 0.990 (0.46) 1.035 (1.55) 1.001 (0.05) 0.990 (0.46)

F2 1.083 (3.70) 1.087 (3.88) 1.038 (1.70) 1.280 (12.5)

nR2 1.080 (3.56) 1.086 (3.83) 1.038 (1.68) 1.270 (12.1)

β2 LR 50/P/2 1.084 (3.74) 100/P/2 1.014 (0.61) 200/P/2 1.017 (0.77) 100/P/4 1.049 (2.20)

LM1 1.149 (6.65) 1.055 (2.48) 1.039 (1.74) 1.108 (4.82)

F1 1.157 (7.02) 1.057 (2.57) 1.040 (1.79) 1.112 (4.99)

LM2 1.031 (1.37) 0.992 (0.34) 1.006 (0.26) 1.002 (0.08)

F2 1.318 (14.2) 1.150 (6.72) 1.100 (4.49) 1.676 (30.2)

nR2 1.289 (12.9) 1.140 (6.27) 1.098 (4.38) 1.628 (28.1)

β3 LR 50/P/2 1.064 (2.85) 100/P/2 1.049 (2.17) 200/P/2 1.030 (1.34) 100/P/4 1.029 (1.30)

LM1 1.178 (7.94) 1.127 (5.67) 1.070 (3.14) 1.138 (6.19)

F1 1.194 (8.69) 1.131 (5.86) 1.072 (3.20) 1.145 (6.47)

LM2 1.025 (1.14) 1.032 (1.44) 1.023 (1.01) 1.002 (0.11)

F2 1.326 (14.6) 1.179 (8.00) 1.120 (5.38) 1.696 (31.1)

nR2 1.287 (12.8) 1.172 (7.68) 1.118 (5.29) 1.647 (28.9)

β4 LR 50/P/2 1.133 (5.95) 100/P/2 1.061 (2.73) 200/P /2 1.019 (0.84) 100/P/4 1.105 (4.70)

LM1 1.550 (24.6) 1.393 (17.6) 1.213 (9.52) 1.601 (26.9)

F1 1.632 (28.3) 1.415 (18.5) 1.220 (9.82) 1.640 (28.6)

LM2 0.915 (3.80) 0.957 (1.92) 0.971 (1.31) 0.925 (3.37)

F2 1.105 (4.68) 1.071 (3.18) 1.038 (1.72) 1.484 (21.7)

nR2 1.101 (4.54) 1.072 (3.20) 1.039 (1.72) 1.464 (20.8)

Figures in parentheses after standard deviations are asymptotic t statistics for the
hypothesis that the true standard deviation is one.

In x/y/z, x is the number of observations, y = L if logit and y = P if probit, and z is
the value of β1.
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Table 2. Performance of Test Statistics–Logit

Rep. Nobs. Slope Hyp. Test Std. Dev. 0.01 tail 0.05 tail 0.10 tail 0.05 crit.

1000 50 3 β2 LR 1.092 (4.11) 0.020 (3.18) 0.076 (3.77) 0.138 (4.01) 2.16 (2.05–2.30)

LM1 1.124 (5.56) 0.022 (3.81) 0.085 (5.08) 0.148 (5.06) 2.23 (2.06–2.39)

LM2 1.045 (2.02) 0.012 (0.64) 0.059 (1.31) 0.124 (2.53) 2.04 (1.94–2.14)

1000 50 3 β3 LR 1.039 (1.75) 0.012 (0.64) 0.052 (0.29) 0.100 (0.00) 1.97 (1.86–2.13)

LM1 1.115 (5.14) 0.016 (1.91) 0.077 (3.92) 0.137 (3.90) 2.19 (2.07–2.32)

LM2 1.015 (0.69) 0.010 (0.00) 0.044 (0.87) 0.095 (0.53) 1.92 (1.81–2.04)

1000 50 3 β4 LR 1.164 (7.35) 0.032 (6.99) 0.086 (5.22) 0.153 (5.59) 2.34 (2.18–2.45)

LM1 1.485 (21.7) 0.092 (26.1) 0.182 (19.2) 0.249 (15.7) 3.03 (2.88–3.29)

LM2 0.990 (0.46) 0.006 (1.27) 0.050 (0.00) 0.101 (0.11) 1.97 (1.82–2.08)

1000 100 3 β2 LR 1.051 (2.30) 0.010 (0.00) 0.062 (1.74) 0.117 (1.79) 2.04 (1.95–2.14)

LM1 1.068 (3.03) 0.013 (0.95) 0.067 (2.47) 0.122 (2.32) 2.04 (1.97–2.18)

LM2 1.034 (1.50) 0.006 (1.27) 0.057 (1.02) 0.109 (0.95) 2.00 (1.91–2.09)

1000 100 3 β3 LR 1.022 (1.00) 0.009 (0.32) 0.053 (0.44) 0.102 (0.21) 2.01 (1.85–2.12)

LM1 1.063 (2.81) 0.015 (1.59) 0.057 (1.02) 0.128 (2.95) 2.05 (1.72–2.18)

LM2 1.012 (0.55) 0.007 (0.95) 0.052 (0.29) 0.096 (0.42) 1.98 (1.84–2.09)

1000 100 3 β4 LR 1.102 (4.55) 0.011 (0.32) 0.082 (4.64) 0.141 (4.32) 2.19 (2.05–2.33)

LM1 1.336 (15.0) 0.060 (15.9) 0.141 (13.2) 0.211 (11.7) 2.76 (2.53–2.94)

LM2 1.035 (1.55) 0.006 (1.27) 0.061 (1.60) 0.115 (1.58) 2.00 (1.87–2.29)

1000 200 3 β2 LR 1.064 (2.88) 0.016 (1.91) 0.067 (2.47) 0.125 (2.64) 2.11 (1.98–2.27)

LM1 1.068 (3.02) 0.017 (2.22) 0.062 (1.74) 0.133 (3.48) 2.09 (1.94–2.24)

LM2 1.054 (2.43) 0.012 (0.64) 0.065 (2.18) 0.120 (2.11) 2.08 (1.97–2.22)

1000 200 3 β3 LR 1.033 (1.49) 0.009 (0.32) 0.057 (1.02) 0.108 (0.84) 1.99 (1.89–2.18)

LM1 1.052 (2.35) 0.014 (1.27) 0.062 (1.74) 0.115 (1.58) 2.04 (1.91–2.21)

LM2 1.029 (1.28) 0.009 (0.32) 0.056 (0.87) 0.107 (0.74) 1.98 (1.89–2.16)

1000 200 3 β4 LR 1.031 (1.38) 0.012 (0.64) 0.058 (1.16) 0.112 (1.26) 2.02 (1.89–2.15)

LM1 1.163 (7.27) 0.031 (6.67) 0.101 (7.40) 0.145 (4.74) 2.31 (2.20–2.50)

LM2 1.001 (0.05) 0.010 (0.00) 0.045 (0.73) 0.103 (0.32) 1.91 (1.82–2.02)

1000 100 6 β2 LR 1.080 (3.60) 0.021 (3.50) 0.075 (3.63) 0.127 (2.85) 2.12 (2.01–2.33)

LM1 1.116 (5.20) 0.022 (3.81) 0.077 (3.92) 0.153 (5.59) 2.21 (2.07–2.35)

LM2 1.042 (1.88) 0.009 (0.32) 0.063 (1.89) 0.117 (1.79) 2.06 (1.95–2.19)

1000 100 6 β3 LR 1.062 (2.76) 0.018 (2.54) 0.069 (2.76) 0.118 (1.90) 2.13 (1.98–2.32)

LM1 1.132 (5.89) 0.029 (6.04) 0.093 (6.24) 0.146 (4.85) 2.26 (2.11–2.49)

LM2 1.043 (1.90) 0.014 (1.27) 0.063 (1.89) 0.114 (1.48) 2.09 (1.94–2.26)

1000 100 6 β4 LR 1.115 (5.15) 0.019 (2.86) 0.080 (4.35) 0.134 (3.58) 2.19 (2.05–2.33)

LM1 1.546 (24.4) 0.116 (33.7) 0.204 (22.3) 0.284 (19.4) 3.06 (2.89–3.30)

LM2 0.990 (0.46) 0.005 (1.59) 0.044 (0.87) 0.095 (0.53) 1.91 (1.83–2.08)
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Table 3. Performance of Test Statistics–Probit

Rep. Nobs. Slope Hyp. Test Std. Dev. 0.01 tail 0.05 tail 0.10 tail 0.05 crit.

1000 50 2 β2 LR 1.084 (3.74) 0.014 (1.27) 0.069 (2.76) 0.134 (3.58) 2.07 (1.98–2.22)

LM1 1.149 (6.65) 0.016 (1.91) 0.082 (4.64) 0.155 (5.80) 2.18 (2.08–2.38)

LM2 1.031 (1.37) 0.006 (1.27) 0.054 (0.58) 0.117 (1.79) 1.98 (1.88–2.08)

1000 50 2 β3 LR 1.064 (2.85) 0.017 (2.22) 0.061 (1.60) 0.120 (2.11) 2.08 (1.94–2.20)

LM1 1.178 (7.94) 0.029 (6.04) 0.094 (6.38) 0.162 (6.54) 2.30 (2.19–2.47)

LM2 1.025 (1.14) 0.006 (1.27) 0.052 (0.29) 0.111 (1.16) 2.00 (1.88–2.10)

1000 50 2 β4 LR 1.113 (5.95) 0.022 (3.81) 0.089 (5.66) 0.148 (5.06) 2.26 (2.16–2.36)

LM1 1.550 (24.6) 0.113 (32.7) 0.211 (23.4) 0.287 (19.7) 3.10 (2.96–3.30)

LM2 0.915 (3.80) 0.003 (2.22) 0.025 (3.63) 0.071 (3.06) 1.73 (1.67–1.81)

1000 100 2 β2 LR 1.014 (0.61) 0.010 (0.00) 0.051 (0.15) 0.103 (0.32) 1.98 (1.84–2.12)

LM1 1.055 (2.48) 0.012 (0.64) 0.059 (1.31) 0.131 (3.27) 2.06 (1.91–2.21)

LM2 0.992 (0.34) 0.009 (0.32) 0.044 (0.87) 0.096 (0.42) 1.93 (1.80–2.05)

1000 100 2 β3 LR 1.049 (2.17) 0.012 (0.64) 0.063 (1.89) 0.116 (1.69) 2.03 (1.94–2.17)

LM1 1.127 (5.67) 0.021 (3.50) 0.087 (5.37) 0.139 (4.11) 2.23 (2.10–2.31)

LM2 1.032 (1.45) 0.011 (0.32) 0.057 (1.02) 0.112 (1.26) 1.98 (1.92–2.13)

1000 100 2 β4 LR 1.061 (2.73) 0.013 (0.95) 0.061 (1.60) 0.122 (2.32) 2.05 (1.91—215)

LM1 1.393 (17.6) 0.062 (16.5) 0.164 (16.5) 0.237 (14.4) 2.80 (2.55–3.04)

LM2 0.957 (1.92) 0.002 (2.54) 0.032 (2.61) 0.086 (1.48) 1.79 (1.73–1.95)

1000 200 2 β2 LR 1.017 (0.77) 0.012 (0.64) 0.056 (0.87) 0.094 (0.63) 2.01 (1.88–2.17)

LM1 1.039 (1.74) 0.013 (0.95) 0.061 (1.60) 0.107 (0.74) 2.05 (1.94–2.19)

LM2 1.006 (0.26) 0.008 (064) 0.051 (0.15) 0.091 (0.95) 1.98 (1.85–2.12)

1000 200 2 β3 LR 1.030 (1.34) 0.008 (0.64) 0.053 (0.44) 0.113 (1.37) 1.99 (1.89–2.10)

LM1 1.070 (3.14) 0.011 (0.32) 0.070 (2.90) 0.125 (2.64) 2.07 (1.98–2.21)

LM2 1.023 (1.01) 0.007 (0.95) 0.052 (0.29) 0.110 (1.05) 2.00 (1.87–2.09)

1000 200 2 β4 LR 1.019 (0.84) 0.007 (0.95) 0.056 (0.87) 0.106 (0.63) 2.05 (1.92–2.20)

LM1 1.213 (9.52) 0.044 (10.8) 0.106 (8.13) 0.170 (7.38) 2.39 (2.19–2.76)

LM2 0.971 (1.31) 0.003 (2.22) 0.049 (0.15) 0.095 (0.53) 1.92 (1.84–2.08)

1000 100 4 β2 LR 1.049 (2.20) 0.017 (2.22) 0.066 (2.32) 0.109 (0.95) 2.09 (1.97–2.22)

LM1 1.108 (4.82) 0.018 (2.54) 0.080 (4.35) 0.136 (3.79) 2.19 (2.06–2.34)

LM2 1.002 (0.08) 0.005 (1.59) 0.052 (0.29) 0.099 (0.11) 1.98 (1.85–2.07)

1000 100 4 β3 LR 1.029 (1.30) 0.012 (0.64) 0.061 (1.60) 0.107 (0.74) 2.03 (1.93–2.15)

LM1 1.138 (6.19) 0.023 (4.13) 0.087 (5.37) 0.135 (3.69) 2.27 (2.15–2.40)

LM2 1.002 (0.11) 0.007 (0.95) 0.050 (0.00) 0.097 (0.32) 1.96 (1.87–2.05)

1000 100 4 β4 LR 1.105 (4.70) 0.015 (1.59) 0.081 (4.50) 0.142 (4.43) 2.15 (2.04–2.25)

LM1 1.601 (26.9) 0.112 (32.4) 0.230 (26.1) 0.311 (22.2) 3.17 (3.04–3.43)

LM2 0.925 (3.37) 0.003 (2.22) 0.029 (3.05) 0.072 (2.95) 1.76 (1.68–1.90)
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Table 4. Power of LM and LR Tests–Logit

Rep. Nobs. Alt. Hyp. Root NCP Test Mean Std. Dev. Power (A) Power (E) Est.

500 50 β2 = 0.704 β2 1.96 LR 1.79 (3.80) 0.974 (0.82) 0.418 0.356 2.16

LM1 1.79 (4.17) 0.906 (2.97) 0.440 0.330 2.23

LM2 1.66 (7.87) 0.841 (5.03) 0.384 0.344 2.04

500 50 β2 = 0.704 β3 0.11 LR 0.17 (1.47) 0.969 (0.97) 0.038 0.034 1.97

LM1 0.20 (1.80) 1.059 (1.87) 0.062 0.048 2.19

LM2 0.17 (1.47) 0.946 (1.71) 0.032 0.036 1.92

500 50 β2 = 0.704 β4 −0.42 LR −0.44 (0.32) 1.086 (2.73) 0.094 0.050 2.34

LM1 −0.59 (2.74) 1.395 (12.5) 0.192 0.028 3.30

LM2 −0.36 (1.60) 0.923 (2.42) 0.038 0.038 1.97

500 100 β2 = 0.498 β2 1.96 LR 1.88 (1.77) 0.978 (0.69) 0.450 0.422 2.04

LM1 1.90 (1.37) 0.963 (1.17) 0.488 0.436 2.04

LM2 1.80 (3.91) 0.900 (3.17) 0.428 0.420 2.00

500 200 β2 = 0.352 β2 1.96 LR 2.01 (1.03) 0.996 (0.11) 0.506 0.464 2.11

LM1 2.01 (1.12) 0.981 (0.61) 0.514 0.476 2.09

LM2 1.96 (0.04) 0.949 (1.62) 0.500 0.464 2.08

500 50 β3 = 5.33 β3 1.96 LR 1.87 (1.98) 1.025 (0.81) 0.464 0.460 1.97

LM1 2.13 (3.34) 1.163 (5.15) 0.568 0.496 2.19

LM2 1.74 (5.40) 0.909 (2.88) 0.438 0.446 1.92

500 100 β3 = 3.77 β3 1.96 LR 1.87 (2.00) 0.973 (0.86) 0.478 0.448 2.01

LM1 2.04 (1.71) 1.102 (3.22) 0.540 0.512 2.05

LM2 1.81 (3.56) 0.917 (2.62) 0.452 0.444 1.98

500 200 β3 = 2.67 β3 1.96 LR 1.98 (0.45) 0.990 (0.33) 0.508 0.496 1.99

LM1 2.07 (2.25) 1.065 (2.05) 0.538 0.506 2.04

LM2 1.94 (0.32) 0.957 (1.36) 0.498 0.494 1.98

500 50 β4 = 4.00 β4 1.96 LR 1.16 (14.2) 1.261 (8.25) 0.290 0.180 2.34

LM1 1.05 (18.6) 1.090 (2.84) 0.230 0.014 3.30

LM2 0.90 (25.1) 0.942 (1.83) 0.118 0.118 1.97

500 100 β4 = 2.83 β4 1.96 LR 1.58 (8.38) 1.017 (0.53) 0.352 0.284 2.19

LM1 1.63 (6.88) 1.063 (2.00) 0.380 0.140 2.76

LM2 1.36 (15.5) 0.866 (4.25) 0.244 0.226 2.00

500 100 β4 = 1.41 β4 0.98 LR 0.90 (1.71) 1.066 (2.08) 0.172 0.118 2.19

LM1 1.01 (0.55) 1.204 (6.46) 0.236 0.082 2.76

LM2 0.81 (4.08) 0.954 (1.46) 0.130 0.114 2.00

500 200 β4 = 2.00 β4 1.96 LR 1.64 (7.09) 1.009 (0.30) 0.382 0.354 2.02

LM1 1.78 (3.46) 1.126 (3.98) 0.464 0.330 2.31

LM2 1.52 (10.7) 0.917 (2.61) 0.320 0.348 1.91

Figures in parentheses after means and standard errors are t statistics for the hypo-
theses that, respectively, the mean is equal to Root NCP and the standard error is
equal to one.

Standard errors for estimates under ‘Power (A)’ may be calculated as
(
p(1−p)/500

)1/2,
where p is the estimated power.
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Table 5. Power of LM and LR Tests–Probit

Rep. Nobs. Alt. Hyp. Root NCP Test Mean Std. Dev. Power (A) Power (E) Est.

500 50 β2 = 0.428 β2 1.96 LR 1.86 (2.24) 0.989 (0.34) 0.448 0.382 2.07

LM1 1.90 (1.37) 0.959 (1.29) 0.474 0.374 2.18

LM2 1.71 (6.56) 0.848 (4.82) 0.384 0.374 1.98

500 100 β2 = 0.303 β2 1.96 LR 1.94 (0.37) 0.991 (0.29) 0.494 0.486 1.98

LM1 2.00 (0.91) 1.007 (0.21) 0.520 0.482 2.06

LM2 1.85 (2.67) 0.901 (3.14) 0.458 0.480 1.93

500 200 β2 = 0.214 β2 1.96 LR 1.96 (0.01) 0.958 (1.33) 0.496 0.480 2.01

LM1 2.00 (0.93) 0.974 (0.81) 0.516 0.474 2.05

LM2 1.91 (1.15) 0.915 (2.69) 0.488 0.482 1.98

500 200 β2 = 0.214 β3 0.12 LR 0.19 (1.49) 1.000 (0.00) 0.058 0.054 1.99

LM1 0.20 (1.68) 1.047 (1.49) 0.062 0.054 2.07

LM2 0.19 (1.43) 0.992 (0.25) 0.058 0.052 2.00

500 200 β2 = 0.214 β4 −0.46 LR −0.49 (0.58) 1.064 (2.03) 0.098 0.074 2.05

LM1 −0.60 (2.56) 1.285 (9.01) 0.160 0.090 2.39

LM2 −0.47 (0.33) 1.031 (0.97) 0.068 0.080 1.92

500 50 β3 = 3.25 β3 1.96 LR 2.01 (1.15) 0.977 (0.73) 0.522 0.454 2.08

LM1 2.36 (7.95) 1.112 (3.55) 0.652 0.522 2.30

LM2 1.83 (3.61) 0.825 (5.53) 0.450 0.430 2.00

500 50 β3 = 4.91 β3 2.96 LR 2.60 (8.11) 0.985 (0.47) 0.748 0.704 2.08

LM1 3.03 (1.56) 1.027 (0.85) 0.844 0.772 2.30

LM2 2.27 (20.5) 0.758 (7.64) 0.678 0.650 2.00

500 100 β3 = 2.30 β3 1.96 LR 1.94 (0.52) 1.007 (0.23) 0.506 0.480 2.03

LM1 2.18 (4.15) 1.158 (5.00) 0.576 0.480 2.23

LM2 1.84 (2.82) 0.929 (2.25) 0.482 0.470 1.98

500 200 β3 = 1.63 β3 1.96 LR 1.94 (0.58) 0.933 (2.13) 0.480 0.468 1.99

LM1 2.08 (2.56) 1.036 (1.14) 0.532 0.492 2.01

LM2 1.89 (1.89) 0.888 (3.55) 0.466 0.446 2.00

500 50 β4 = 3.64 β4 1.96 LR 1.31 (12.5) 1.153 (4.85) 0.316 0.230 2.26

LM1 1.20 (16.2) 1.049 (1.55) 0.246 0.028 3.10

LM2 0.99 (24.8) 0.877 (3.90) 0.140 0.210 1.73

500 100 β4 = 2.57 β4 1.96 LR 1.53 (9.59) 0.997 (0.10) 0.336 0.302 2.05

LM1 1.67 (5.99) 1.088 (2.79) 0.388 0.140 2.80

LM2 1.33 (16.4) 0.850 (4.74) 0.228 0.296 1.79

500 200 β4 = 1.82 β4 1.96 LR 1.70 (6.05) 0.942 (1.85) 0.398 0.368 2.05

LM1 1.92 (0.70) 1.089 (2.82) 0.490 0.340 2.39

LM2 1.55 (11.0) 0.833 (5.29) 0.334 0.350 1.92

Figures in parentheses after means and standard errors are t statistics for the hypo-
theses that, respectively, the mean is equal to Root NCP and the standard error is
equal to one.

Standard errors for estimates under ‘Power (A)’ may be calculated as
(
p(1−p)/500

)1/2,
where p is the estimated power.
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