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The second large class of spatial models
being developed are those developed fr&m estimating
parameters in equations plausibly characterizing
urban processes. Lowry's 1964 model was one of the
early examples of models in this stream of analysis
and recent developments are taking place at such
places as the National Bureau of Economic Research.2
These models are designed to be planning instruments
to aid decision-makers in allocating resources
within cities to improvevsome notion of urban

quality.

"Such models derive the urban spatial
patterns from conditions of supply and demand,
profit and utility maximization, and the market
equilibrium. Most models involve simultaneous
relationships and significant non-linearities.
As with the planning models, numerical solution
is often difficult and expensive. Whereas the
optimization models have no market interpretation;
the market oriented models contain no optimality
criteria. Most are either too complex or in-
adequately articulated to permit determination
of whether market solutions are efficient and,
if not, what kind of intervention would be best
to ensure efficienty. The situation is para-
doxical because most of the market oriented
models are formulated to guide public sector
planning for future urban growth." (Mills
(1972); p. 2).

Mills defined a model which was designed
to bridge the gap between these two classes of

models. Thus his model replicates resource allo-




cation in a spatial context and urban- area, and has
an explicit notion of efficiency in the sense of
welfare economics. In this paper we outline a
reformulation of the model presented by Mills and
we extend Mills' model in such a way that the urban
area being simulated could have multiple foci or
nuclei. Our reformulation contains certain
simiiarities in conception between the inter-
regional model of Moses (1960) and a model of
allocation within a city.

Mills examines an urban area as being
composed of a grid of squares, each square of a
fixed equal area. At the arbitra;ily specified
origin of the grid an export facility exists
through which all production in the city except
‘housing and transportation is exported to meet
exogenously given demands. The particular nature
of the central square causes an essentially circular
set of identical squafes to be generated in annuluses
around the focus. Such a result is similar to
that in Mills' theoretical model (1967).

In this reformulation, we allow for
multiple export (or import) nodes in contrast to
Mills' single node formulation. This extension
will permit one to simulate cities by market

mechanisms or with linear programming which have




multiple nodes and multiply peaked land rent
functions. The key to this refbrmulation is
the treatment of each square in the land grid
as a member of five square contiguous group.
The demands which transportatioﬁ makes on land
are determined for any square by the flows of

commodities crossing each of the four sides of

the square in question.to or from its: four neighbours.

Each square in this reformulation has the potential
for being uniquely treated by the market forces
in an equilibrium, whereas in Mills' formulation
a family of squares of equal distance from the
unique export node received like treatment from
the market forces in equilibrium. In this re-
formulation intermediate goods are presented
whereas in Mills' formulation they were not.

The linearity of the model is preserved
and so, like Mills, we can simulate cities with
the aid of a linear program. The reformulation
differs from Moses' interregional model in that
we treat regions as squares, have transportation
and production as land using, and treat inter -
square flow relationships in the five-square
grouping arrangement outlined above. 1In addition,
like Mills, we allow for substitutability of pro-

duction techniques #&nd for congestion costs,




Where possible we use the same symbols for

the analogous variables employed by Mills.

2. The Geography of the Urban Area.

The space which our hypothetical city
occupies before the erection of buildings and
roads etc. consists of an unbounded almost
homogeneous plane divided into a set of squares
of equal aréa. For convenience we say that the
size of the square is 1 urban unit; it could be a
square mile or a square yard or what have we. 1In
reality the choice of units in which to measure
the squares would depend on the capacity of the
coﬁputer to handle the particular problem in hand.
All squares are homogeneous in the sense that the
technology available for production and the trans-
portation within any square is identical before a
city has been erected. However, a cer@ain subset
of the available squares will be indicated a priori
as transportation nodes. A transportation node has
the property that imports or exports to or from the
city as a unit move from that or to that node.

It does not matter how many transportation
nodes we have within a system as long as they form
a subset of the total number of squares available

for the city to be developed on. Note that we consider




the landscape to be unbounded SOrthat there is

not the need to pack activities into a finite

area because of the scarcity of land in géneral

as in Forrester's urban model. Land is only
scarce in the sense that activities require to be
near transportation nodes; near in the sense to be
defined precisely in the general equilibrium model
of the city.

Tﬁe allocation problem is to organize
production within the city on the landscape in
order to meet given exogenous demands for physical
quantities of commodities potentially producible
in the city imposed on the city from outside the
particular city. These demands will be separated
into transportation - node specific subsets of
demands by the city-wide optimization process.

More microscopically, the allocation problem
consists of dividing land within a square between
use for the transportation of commodities within

the city and use for the production of various
commodities within the city. It will, of course,
be assumed that the transportation of all commodities
including workers requires land fbf transportation
and also the production of all commodities requires
land in order to have spaces for the buildings and

activities taking place within the city. The solution




to our allocation problem does not yield a parti-
cular location-allocation of space within squares
but it simply indicates the amount of each square
to be occupied by transportation and production.
A sub-allocation problem, not considered in this
model, would be to allocate space within squares
to transportation and to production.3

It does not matter how we number our
squares. That is the origin in our grid is
arbitrary. 1In fact it suffices to énalyze only
one representative square and its-four immediate
neighbours in order to see the analytical char-
acteristics of the model. We shall label this one
representative square, square ij. That is the
square is i units from the vertical axis and j
units above the horizontal axis. This is illus-

trated in Figure 2.1 below.
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In treating the transportation of commodities,
we must know the volume of flow crossing each of
the four sides of a square. We shall refer to the
sides of square i,j as 1, 2, 37and 4 corresponding
to the north, east, south, west direcfions in
Figure 2.1 respectively.

Production in the urban areé is devoted
to the production of r goods of which the 1,2,...,
r-1 commodities are available for export and all
r as inputs into the production processes of one
another and of housing, the Eth production acti-
vity. Transportation within the urban area is
also produced internally, and could be a consumer
of goods 1,2,...,r-1; however we have not formu-
lated it in that manner.

There is an external demand for quan-
tities §r, of the export goods r=1,2,...,r-1.

Following Mills, we define a set of s
production activities 1,2,...,s as being the number
of stories in the building employed in the produc-
tion of a commodity. We specify a set of input-
output coefficients aqrs to be the amount of input
g required per unit production of good & by pro-

duction activity s where:-
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10
2
’ } doods 1 to r-1
q = .
r-1
r - labour (labour as an input in production
_ can be equated to housing
r +1 - land production; see discussion
- below)
r + 2 - capital

Markets of labour and capital are com-
petitive hence demanders in the urban area for these
commodities face fixed prices of w and R respec-
tively. 1In equilibrium, the price of land will vary
Athroughout the city. RA is the opportunity cost
or the price of a unit when agriculture is worked
on it. Household consumption of the goods 1,2,...,
r-1 is included in the inputs into housing prod-
uction.

Since we will assume that each unit of
labour requires one unit of some type of housing,
then we can regard the labour input in production,
as an output of housing. It is possible to extend
the model by introducing different classes of
workersﬁby having workers distinguished by different

wage rates and housing preferences. Adjusting

the model along this line is simple and would provide
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an effective way of making social interpretations
of the market allocation of hoﬁsing ﬁype. If one
wishes to identify certain classes of workers with
a particular housing type then consumption patterns
can also be associated with them, in the form of
inputs in housing production. However, we assume
that all workers are identical, hence inputs into
housing production in this case are to be inter-
preted only as requirements in the physical pro-
duction process.

The housing/labour commodity differs
from any other commodity in the model in the
respect that there can be no net export or im-
port from or to the city of this commodity in
equilibrium. Actually there would be no difficulty
in having part of the cities labour force commute
to and from the city through transport nodes in
this model but we shall not incorporate this

extension.

3. Flow Equilibrium for Square ij.

We have two distinct cases for flow
equilibrium for squére ij; first is when square
ij is not a transportation node and second is when
square ij is a transportation node. In the first

case for commodity r we have the following sets of
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flows: i) there are gross flows to square ij
‘potentially from the four adjacent squares, ii)
there is net output of commodity r in square ij
after intermediate uses within square ij have
been deducted, and iii) there is the export flow
of commodity r from square ij to the four ad-
jacent squares. A square can be a trans-
shipment point if, for commodity r, gross flows
in equal gross flows out. These various sets of

flows are indicated in equation 3.1.

1 ,. . 2 . . 3, .
{(3.1) Tr (i, j-1) + Tr (i-1, 3) + Tr (i, j+1) +
4 . . .
T, (i+1, 3) + é X, q (i,3)
r 4 4
~-X Z a X i,j) =z 7" (i,3) =0
a=1 s rgs “gs (1,3) a r 3)

(r=1,...,r)
where the first four terms indicate flows of
commodity r to square i,j from each of the
four contiguous squares (super scripts indicate
the appropriate boundary of squares and location
indices refer to square of origin) the fifth
term is gross output of commodity r in square
i,j, the sixth term is total intermediate use
of r by other activities in square i, j and the

seventh term indicates total flows of commodity r
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from square i,j (all of which must go to a
contiguous square, possibly for trans-shipment
of course).
Ti (i, *+ 1) is the flow of commodity r
from the square to the north of i,j to square 1i,j.

X o (i,j) is the gross output of
commodity r in an s storey building in square i,j.
Included in X .o (i,j) are exports to other sources
generated within the square (i,j) plus exports to
the outside of the city when square (i,j) is a node.

Tg (i,3) is the flow of commodity r from
square i,j to the contiguous square across the d th
boundary or side of square i,J.

If square i,j is a transportation node
then equation (3,1) must be adjusted by adding
X (i,3) to the left hand side as an eighth term.
X (i,3) is then the flow of commodity r from node
i,j to the world outside of the city. As we
mentioned above X (i,79 is a variable to be
determined in the optimization. It could a
priori be assigned a negative sign if the city
is a net importer of commodity r.

As we noted above we designated a priori
certain squares within the city to be transportation
nodes where commodities flow into or out of the city.

In the objective function we assign relative values

to the various flows meeting at any particular
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node. These relative values can be looked

upon as indices of the cost of transporting the
particular commodity from (or to) the node

to (or from) the outside of the city. Diff-

erent commodities then have different relative
attractivenesses to the various nodes in the

city depending on the location of the node and the
nature of the transport facility. A node could

be for example either a railhead, a water shipping
head, a road network head, a teletype exchange, or
some combination of these facilities. City

-wide, we must have a balance equation which
indicates that of all nodes either importing

or exporting commodity r the overall imports

or exports meet the given exogenous demands

on the city.

We noted that the flows of commodities
éhoose their particular nodes according to the
prices of exporting or importing the commodity
at the particular node in question; Let % be
the set of all squares which are transportation

nodes. Then for commodity r

(i,3) = Er (r=1l,...,r-1)

(3.2) 5L x
ig§ r

(i,3) 2
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or the sum of exports (imports) from (to) all
transportation nodes must equal the exogenous

requirements §r imposed on the city.

4. Transportation Costs and Land Requirements
for square (i,3)

Transportation costs take two distinct
forms in the objective function, we have the
flow crossing the boundary of a square to be
composed of an element varying non-linearly {(in
general in an increasing way) with the volume
of flow. The non-linearity is introduced to
permit congestion costs to be operative in the
model. Finally, flows across the boundaries

of a square are land and capital using.

The non-linear component of transportation

costs is developed from an exogenously given
cost step-function designed to approximate a
smooth non-linear function. In Figure 4.1 we

have one such step-function.
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In Figure 4.1, we note the aggregated flows
crossing a boundary of square i,3j, namely
Td (i,3j) is decomposed into a set of flows moving
akvarious "congestion levels”; for example
de (i,j) flowing at cost Ck per unit flow?

The aggregate flow for a single boundary

is developed in the following constraint:

e (L) -z e @l (i) + 13 (4,54 ) 2 0
r r r =
.k r
where tr is a coefficient relating flows of commodity

r to aggregate flows over a boundary. For the

three other boundaries, we have analogously:

21 (i,3) -zt (2 (4,3) + T (i41,3) ) 2 0
r r r =

k x

2T (4,9) - It (T2 (4,3) + TL (1,3-1) ) 2 0

k r ,

2 (1,5 - e Tk (6,9 412 (-1,9) ) 20

k r r r

The step-function illustrated in Figure
4.1 is defined to approximate a smooth guasi-convex

function. Thus C > C for k > 0 and

k+1 k

™ (1,9 > ™ (1,5 k22

This implies that though in general we expect the

smallest flow to take place at the highest congestion




level (thé familiar always incfeasing average -
marginal cost curve), we admit sets of flows
which doxnot always satisfy this condition as
we move from level k to k+l. Note that by

setting C = Ck for all k, we have the familiar

k+1
case of total transportation costs varying
linearly with the volﬁme of flow. Marginal
equals average cost.s

The total cost of transportation.
in the urban area, excluding the land and
capital inputs, is

Tz ck T de (i,3)
ij k a

The transportation system requires
inputs of capital and land and we assume these
inputs to vary linearly with the size of the flow
at the first congestion level, bl and b2, units
of land, and capital respectively are assumed
required for each unit of flow.

Finally we constrain the model so that
the available land in a square i,j is not ex-
ceeded by use requirements. Thus

Z a X (i,j3) + b, & Tld(i,j)gl
S

2 = s 1
q r+l,q,s qr da
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5. The Objective Function and the Model's De-
composable Structure.

The objective function is

. _ 1d ,. .
Minz =2 (£ {(c; + Rb, + Ryb,) T (1,3) +
i,3 d
x kd . . . .
b C T (L,3) + £ =z (i,3) x_ (i,3)
- r r
k=2 r
— '
v
(i,3) =2
+ I (Ra_ + RA.a_ . + wa_ )
S r+2,r,s, r+l,r,s r,r,s
Xrs (1'3)} ]
where the variables for square i,j are:
Tld (1,3) the flow of commodities crossing
boundary d at congestion level 1,
kd

T (i,j) the flow of commodities crossing

boundary d at congestion level k,

x_ (i,j) the export of commodity r to the

r
out side of the city; takes value of
zero for (i,3) #2%,

X, (1,3) the gross output of commodity r

with technology s.

These variables must be non-negative. The coe-
fficient z_ (i,3) is an index of the relative
attractiveness of node (i,j) for exporting commodity

r from the city.




- 20 -

Though the city was assumed to develop
around transportation nodes on an unbounded grid,
we treat the problem as being composed of n
(finite} squares. Thus in equilibrium the open
bouhdary of the city must have a band of
unexploited squares (a subset of thern) between
the exploited»squéres and the opén space not
covered by the grid of n squares. Thus land
is only a constraint to the city as a unit in the
sense that it must be bid away from agriculture
at the exogenously given price of RA. Unexploited
squares are assumed left in agriculture.

The linear program whose solution yields
an efficiently structured city in equilibrium
consists of two general sets of constraints.

The first set is nearly decomposable square-wise
and the second set is decomposable square-wise.
Hence the Dantzig-Wolfe decomposition algorithm
could be used to solve the linear program.
However, the decomposable part of the system

has relatively small, sparse matrices which

cause the Dantzig-Wolfe algorithm to be relatively
slow to converge to a final solution. We have

not used the decomposition algorithm in solving
example problems. Figure 5.1 contains a schematic
representation éf the constraint matrix for the

linear program.
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For representative square (i,j) in Figure 5.1,
matrix a contains the technical coefficients of production,
matrix b contains part of the aggregation operation for
transported flows, matrix ¢ contains the transfer of
exports from transportation node (i,j) to the balance
identity of which matrix 4 is a part, vector e contains
the land constraints elements, and matrix f contains the
elements of the congestion cost function. 1In the upper
part of Figure 5.1, there are ofodiagonal elements, in
the area indicated as sparse, whidh are acting to transfer
flows from one square to or from the four adjacent squares.
It is these inter-square flows which link the system
together and prevent the problem from being completely
decomposable and hence trivial.

It is well-known that, for a decomposable linear
program, the decomposition principle (Dantzig-Wolfe
aigorithm) can be interpreted as a pricing mechanism
operating when e#ternalities are present.7 This gquality
has relevance to the urban nodel in this'paper. The land
owner of square (i,j) operates a "divisional program".

The "executive program" (the upper part in Figure 5.1) is
essentially one of co-ordinating flows between blocks in a
city and the "divisional program" is one in which the owner
of land in a block attempts to maximize profits on his

particular block. As Baumol and Fabian have indicated, no
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decentralized price system will solve a decomposable
linear program; a centralized authority must operate
the "executive program". The executive in our case
will be the planning authority which must allocate
land to transportation in the city at the prevailing
price for land and charge marginal costs for users of

the transportation system.

6. Land Prices and Examples

The dual problem to minimizing the cost of a
city is a linear program in which the value of urban
output exported and the value of urban land is maximized.
Shadow prices on land or land rent on each square will
emerge in the dual problem.

Several actual numerical runs of the model
have been completed at this time. The largest problem
to date is composed of a grid of 49 squares (7x7), with
a production technology for three export goods plus
housing. Technologies with from one fo five storeys
are permitted for each ggodsd The transportation system
is composed of three congestion levels and cities with
one, two and three export nodes have been simulated.
The linear program generated by these runs has 754
constraints and 2959 variables (including slacks) and
- has density of .55. Using MPSX (Mathematical
Programming System Extended) on an IBM 360 Model 85
optimal solutions to these linear programs were

generated in less than 8 minutes.
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Cities of 170 squares, and production in
buildings up to 10 storeys will involve programs with
2700 constraints and 13,000 variables,.

Outputs from a 7 x 7 square, two node example
are presented in Figures 6.1 to 6.3. Coefficients are
presented in the Appendix.

In Figure 6.1 we have a presentation of
commodities produced in each square, the intersquare
flows of commodities, and the storeys of building used

in production. On the left hand side of each square

we have outputs of commodities listed in decreasing
orders of magnitude of land occupied by the production
(top, down). For example, only agriculture was produced
in the three squares located center-top in Figure 6.1.
Note the zones of relative specialization in various
commodities. For example, immediately around the two
export nodes, housing occupies most land. The symbols
on the right-hand side of each square indicate flows
from each square. For example, good 3 having relatively
low transportation costs and relatively high labour
(housing)} inputs is exported from all sguares across

the third row of squares. Finally, we observe that

in this example all production took place in singke
storey buildings except that in the nodes. There good

1 was produced in structures of two different heights.
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In Figure 6.2 we have a presentation of the
land rents sustaining the allocation presented in
Figure 6.1. The open squares indicate the lowest
land rents, prevailing in agricultural areas where
rent is $.8 per acre. The highest rents obtain around
the export node, being $5.8 per acre or about 7 times
the basic land price in agriculture. The four inter-
vening land values are $3.597, $1,999, $.842, and
$.821 per acre.

Figure 6.3 contains a road system which
permits efficient resource allocation. Recall that
the program yields the amounts of land in a square
required for transportation plus the direction of
flow. The program does not produce a road systemn.
Only four areas for roads are indicated in the diagram
and yet more than four were generated by the optimi=
zation. We have grouped areas for roads into four

classes. Corresponding to the lines in decreasing

order of width we have the following fractions of the

relevant square used for roads.

Line 1 Land occupied .01 - .09
2 .001 - .009
3 .0001 - .0009
4 .00001 - .00009

Observe that in certain cases a thick line feeds onto a
thinner line in the next square. This occurs because
the system has substituted congested flow for less

congested flow on relatively cheaper land.
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Figure 6.2
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Figure 6.3




FOOTNOTES

1. See for example the survey, Scott (1970).

2. See for example the survey, Killbridge, O'Block,
and Teplitz (1969).

3. Aguilar and Hand (1968) have considered problems
of constructing the most profitable building on
a given parcel of land facing given factor prices
and given demand for services functions.

4, We have followed Mills in this formulation of
congestion costs. For any given road and a given
time phasing of transportation in a daily cycle,
the Ck‘s can be looked on as technical coefficients

or technically given impedence measures. However,
the time phasing of transportation will be a
function of the Ck's in a more realistic model and

efficient resource allocation in an urban area will
be simultaneously a time allocation problem con-
strained within a daily cycle and a timeless
resource allocation problem. Like most model
buildérs, we choose to abstract from the optimal
time phasing problem.

5. An amendment in the formulation of the resource
using aspects of transportation would be in order
for the case Ck+1 > Ckfor all k. That is rather

than have land and capital use as a function of
the flow at the first congestion level, we would
make these uses as a function of total flow at the
now constant cost per unit flow. The economic
aspects of the decomposable nature of the model
discussed in Section 6 still hold for the non-
congestion cost case.

6. See Orchard - Hays (1968; p. 263).

7. See for example Dantzig (1964) or Baumol and
Fabian (1964).

8. An alternate way of looking at a system of cities
is to consider general supply and demand schedules
defined at m points in space, to be designated as
cities. Each city then has to produce a set of
final demands (possibly negative) which satisfy
the excess demand schedules at the point in
guestion. A fixed point theorem is required to
prove that a bill of final demands and a set of
prices exist to satisfy the excess demand functions.
See for example Dorfman, Samuelson, and Solow
(1958; Chapt. 13).
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Where M and N are row and column indices indicating the
size of the grid under analysis
S indicates number of storeys (S= 1, ..., B)
R indicates number of the commodity (R = 1, ..., 3)
Export Costs indicate relative attractiveness of the
nodes for the various commodities (written as z in
text)
CK's are the terms Ck's in the text.

TR's are the terms Tr's in the text.




