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GENERAL SPATIAL PRICE EQUILIBRIUM¥*

John M. Hartwick

l. Introduction

In 1952, Sémuelson {(1952) showed how the problem
of determining the flows of a commodity moving between_
‘spatially separated points in an equilibrium when transpor-
tation costs were positive could be treated as an extremum
problem. Samuelson's approach was to maximize gross economic
rent (the sums of producers and consumers surpluses at all
~points} net of transportatioh costs in the system. The
earliest use of his procedure of maximizing economic rent
for characterizing equilibria is that of Cournot (1927;
Chapter X) and Cournot dealt with the identical problen.

In this paper I will utilize the Cournot-Samuelson
‘-approach to characterize an equilibrium in Mosak's general
equilibrium trade model (1944) for the case when transpor-
tation costs between countries are positive and the pro-
duction of transportation goods is endogenous to the system.
Elséwhere I have indicated that the Cournot-Samuelson approach
- could be used to generalize the Hitchcock-Koopmans transpor-
tation problem in linear Programming, the von Thunen problem
in pricing and allocating agricultural land, and the
-Weber problem in locating new firms. Mosak's model with

transportation costs has been redeveloped with the aid

*A paper presented to the Canadian Economics Association,
St. John's, Nfld. , June, 1971
I am indebted to Frank Flatters for helpful comments.




of the Cournot-Samuelson approach by Takayama and Judge-
 (1964) {(1970) but these latfer authors did not make trans-
portation costs éndogenous nor did they develop economically
meaningful dual problems. The explicit:treatment_of-trans—
portation costs as endogenous to the model reveals new
- properties of the Cournot-Samuelson spatial price equilibrium
problem and foquses attention on some ﬁegleCted issues in
stability analysis and monetéry theory.

The notion of-maximizing economic rent will no
Idoubt arouse consternation in the minds of modern economic
theorists,' A host'of battles have been foughﬁ over the
welfare significance of changes in the magnitudes of pro-
ducers and consumers surpluses.l - Samuelson -was well-aware_
that the maximization of economic rent could not be inter-
preted in a welfare sense and went so far as to giverthe
magnitude, net economic rent, an alias, net social payoff.
Of economic rent net of transportcosts or net social pay-
off Samuelsbn noted "This magnitude is artificial in the
sense that no competitor in the market will be aware of
of concerned with it. It is artificial in the sénse that
after an Invisible Hand has led us to its maximization, we
need not necessarily attach any social significance to the
result" (1952, p. 288). In other words, in reaching. an
equilibrium the economic system acts AS IF it were maxi-
‘mizing economic rent. I find it useful to denote the Cournot-

Samuelson approach as another in the economist's kit of




AS IF principles. Two other well-known AS IF principles
‘are (a) the consumer reachés an equilibrium in allocating
his budget as if he were maximizing a utility function and
(b)'an economy without transéctions costs reaches an
equilibrium as if the tatonnement.were done "by means of
'tiékets" Walras (1954, p. 37). Neither utilify functions
nor tickets are assumed to exist in the sense of being
empirically observable and yet the assumption that they
éxist permits various empirical observations to be "explained".
From another standpoint, we know that demand and
supply schedules can be derived in full economic ‘general
equilibrium as solutions of individual optimization problems.2
Given these Well—defined supply and demand schedules an
equilibrium can be shown to exist. The Cournot~Samuelson
AS IF principle considers sets of siﬁgle—valued supply and-
demand functions and characterizes an equilibrium as the
solﬁtion of an economic rent maximization problem; this
equilibrium will be a special case of the static equilibrium
defined under the most general conditions but it will none-
theless be an equilibrium. It is the conditidns defining
the equilibrium which are of interest and which emerge as
outputs of the Cournot—Samuelson approach rather than as
inputs as in the most disaggregated analysis of economic
general equilibrium.
The Cournot-Samuelson approach is useful because it

correctly characterizes equilibria in a relatively simple




,Qay; The approach is deficient in the sense that it fails
to characterize ﬁeifare aspects of an equilibrium and also
that it lacks generality in the sense that it requires
isingle—falued supply aﬁd demand curves to be defined a
priori.

Much of the analysis in this paper considers a
situation in which divefse_demand and supply schedules are
linear. This permits the extremum problem to be posed as
a quadratic program rather than as a more general type of
non-linear program.

In Section 2, a two region-four commodity example
of the Mosak model with endogenous transportation costs is
presented in detail. 1In Seétion 3, the m region - n
commodity case is presented. In Section 4 notes on the
existence of a solution and the stability of a price |
'adjustment_procedure are developed. The analysis in Sec-
tion 5 deals with the interpretation of transportatioh
costs as transaction costs and the relevance of such an
interpretation to monetary theory isrconSidered. In Section
6, a duality theorem is presented which permits non-linear
supply and demand schedules to be introduced into the general
_commoditf - m region problem. Section 7 contains a summary

of the results of this paper.

r
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2. A Two Region - Four Commodity Example

VThe regions will consist of two spatially separated
points. There will be three commodities labelled with sub-.
scripts 1, 2, 3 which are transported between the points at
somé positive transportation cost measured in dollars per |
unit transported between the points. Commodity 4 will be
a produced transportation good whose-price will be Tye The
transportation good will be produced in both regions and
will be utilized or consumed in making round‘triﬁs between
the points.3 It will be assumed that transportation goods
;can'be £ransported at zero cost and so the unit price in
the separate regibns will be the same in equilibrium.

The reason the number three fof the non-transpor-
tation goods waé chosen was in order to provide enough scope
'ﬁo illustrate different supply and demand conditions for
the commodities at different points. Ignoring trans-
portation goods, there are three possible cases for market
conditions for commodities: The Hitchcock—Kodpmans case of
_fixed demands and/or supplies at various points, the gener-
alized Hitchcock—Koopmans case of variable demands and/or
supplies (but not both demands and supplies at one point)
Vat various points; and the Cournot-Enke-Samuelson case of
variable demands and supplies (both at each point) at varioﬁs
points. Figgre 1 below illustrates diagrammatically the
equilibrium for two point - four commodity example. This
example includes the various possible cases for bommodity

markets.
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The first three back-to-back diagraﬁs labelled
Figures la, b, and c respectively each illustrate an equi-
librium for one good, numbered 1, 2, and 3 respectively
flowing between the two regions or points in our world.

In Figure 1ld, we have separate supply functions for the
transportation good in each region. All prices in a region
enter simultaneously in the determination of the equilibrium
values for flows in a region. Hence the genefal equilibrium
structure of our model.4 In equilibrium, the flows of goods
suppiied from region k equal the flows of good i delivefed
to region 1. Also in equilibrium, the price of good i

in the region of delivery minus the price ofrqood i in the
region of supply equals the cost of transporting a unit

6f good i between the regions if a flow of good i actually
takes place between the regions in equilibrium.

We shall be dealing with only one schedule for each
commodity in each region. Thus rather than dealing with
demand and supply schedules for goods 1 and 2 in region 1,
we shall define excess demand and excess supply schedules
for goods 1 and 2 respectively. We define all our schedﬁles
to be linear in prices in order to make use of the quadratic
' pfogram as opposed to a more general non-linear program.

Figure 2 presents the equilibrium illustrated in
Figure la, b, and ¢ in an alternative way. In Figure 2 we
have combined the equilibria in the separate regions for a
good in one gqguadrant and we have redefined the equilibria-r
rfor region 1 for goods 1 and 2 in terms of linear excess

demand and excess supply curves.
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We have the following demand and supply relation~

ships which were illustrated in Figures 2 and 1d. For

region 1
1 gl Ll 1.1 1 1 1
I B P IR R P AP T F LS SV
1_..1 .1 1 1 1 1 1 1
©82 T ¥92277951717953M37 04y
1 _ 1,11 .1 1 .1 1
dy = =833M3¥ 831 M 83,83,y
1_,. b 1.1 1 1 1 1 1
B4 T Y944T4791 179227033
"where edi is excess demand in region 1 for commodity 1
esi is excess supply in region 1 for commodity 2
d; is demand in region 1 for commodity 3
si is Supply in region 1 for commodity 4
'ﬂi (i=1,...,4) is the price for commodity i in
region 1
.Gij is the parameter indicating the effect of a
unit change in the price of the jth commodity
in region 1
Uij is the parameter indicating the effect of a

unit change in the price of the jth commodity

on the supply of the ith commodity in region 1

o,
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For region 2,

2 _ .2 2 2
51 7 011" %14y
2 .2
9279
s2 = g2
3 =3
2 _ .22 2 2 2 2 2 2
54 T 9447470171792 0373
where gg is the fixed demand in region 2 for commodity 2.
§§ris the fixed supply in region 2 for commodity 3.

and the remaining terms have definitions analogous

to those forrsimilar terms above, defined for region

If there is a flow between points ‘in equilibrium, then xi,
is the volume of the flow of good i méaSured in physical
units. |

We shall also require value xier(i=1,2,3) indicating
the interregional flow obtaining if trading-relationships
remained fixed and the system behaved as if transportation
éosts were zero. The xe's as well as the corresponding prices,
we's, are indicated in Figure 2.5 Specifically in order to |
define ﬂie and xie we afe required to solve a constrained
economic rent maximizing problem. We can proceed as if
wie‘s and xie's are known because they can be solved for
once the constrained economic rent maximization problem is
solved; Takayama and Judge (1964) have indicated how to

solve the relevant problem. Note that if in equilibrium
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a positive flow moves between two points then nil at delivery
point 1 equals ﬂik at supply point k plus transportation cost
k1l

ti . Also the. flow xlk at supply point k equals the flow

xil at demand point 1.

The transportation good, numbered 4, is produced in

flows xi and xz in regions 1 and 2 respectively.ri‘2 = rfl
units of good 4 are required to transport a unit of good
i between points 1 and 2 where i=1, 2, 3. The cost of trans-

porting a unit of good i between region I and 2 is

P12 2112 2
"4t T Mgty T Y i

where ﬂ4 is the price of a unit of good 4,’the transportation
qobd. |

Our primal problem will be the constrained minimization
of the negative of the economic rent foregone because trans-
portatlon costs are non-zero. The selection of this problem
as primal is purely for convenience; Dorn treats the primal
as a minimization problem. We shall minimize the negative
‘of the sum of the areas abCﬁiﬂi, edfﬁ;ﬂg and gkhﬂgﬂg in Figure
2 subject to the condition that the differences in supplied

and delivered prices be less than or equal to unit transport

costs.
First we fix Ty at some value7 and deterMine P SO as
to
b e : 1
minlimize ipCp-rp
subject to -Ap>-t

p20
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where '
_mlge e 1 1 e e 2 2 e e_ 2
R R TP A Y P e L PP ot
1 1 1
“811 812 %13
1 1 1
%51 922 653 0...
~ 1 1 1 ]
¢ %31 832 833
2
011 0 0
0... 0 0 0
. 0 0 - 0
A= 1 1
1 1
1 1
— (& & e e .2 2
r = (xl' er X3_r xlr ézr §3)

_ 21 12 - 21
t = (ﬁ rl m4r2 ,ﬂ4r3 )

Our dual problem, fellowing Dorn (1960) is to find a vecﬁor
(p,v) so as to

maximize —%pCp—tv

. T
subject to A" viCp=r
v2>0

Vecto¥ v isg
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-and AT is matrix A transposed. Observe that we can convert
this problem to an econoﬁic reht maximizing problem rather
.than a problem minimizing economic rent foregone.

We now have a set of prices and flows which optimize
the gquadratic prégram. These prices imply a flow of trans-
portation goods xi+x§. The interregional flows imply a
: démand for a speéific flow of transportatidn goods.r That
is the demand for transport-is | |
- 21, 12 21

T = rl xl+r2 x2+r3 x3

>where (xi, Xy 23) are optimalf If xi+xz#T, then a new,ﬂ4"
must be selected and the program optimized once again.
,From theorems of Debreu and Kakutani we are assured that a-
fixed point or an equilibrium pride vector exists which
satisfies the transportation flow equilibfium COndition.Q,
Thus an equilibrium for the model exists.

In general, it will hot be possible for balance of
payments equilibrium for each regibn to be satisfied when
the transportation Qood flow equilibrium condition is
satisfied. In short, balance of payments equilibrium will
not obtain in a world with endogenous“transportation goods.,
Also observe that there is a unique price for tranSportation_
goods which permits an equilibrium to obtain. Hence the

equilibrium price vector is also unique. Recall that many

conventional general equilibrium models have an equilibrium

-~ price vector unique up to multiplication by a positive

scalar; that is these models are homogenous of degree zero
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in terms of prices.

3. The n Commodity, m Region Case with Linear Schedules

The jth region will be a point at which are defined
n schedules, soﬁe for demand and some for supply. We shall
order the commodities in each region the same way. In region
j there will be a set I?d of indices indicating linear schedules

es

of excess demand, Ij for excess supplies, I? for demands,'

I?.fer supplies, I? for fixed demands and I? for fixed
supplies. The sum of the numbers elements in the six sets
will be n, or the total number of commodities. Note a region
can ﬁave no schedule for some commodity i. This will be
represented by a zero for the ith commodity in the set of
either fixed demands'of fixed supplies. Note also that in
region- i, commedity'i'can be.represented by either a demand
schedule (including excessrdemands or fixed demands) or a
supply schedule'(including excess supplies or fixed supplies)
but never by both. In other werds the sets of indices |
defined above are disjoint and any five of the six sets could
be empty fo: a region;There are m regions.

Specifically, we have for commodity i in'region j
for excess.demand |

NP B I, B I S 3
.di Gilﬂl+6i2ﬂ2+'"+6inﬂﬁ+ﬁi’n+lﬂn+l

for excess supply

s I B j ] 5 j :
51 T 9311012 ot 0 T 05T e 1 The L
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for demand

? .‘lr:l+6’:.J J

I N, [ B
R e UL E L
for supply
i RS [ JS, (| J 3,57 j
Si OilTT1+O'izTT2+...+O'- T=4+05 m

inn i,n+l n+l

for fixed demand .

ad = 43
i = ¢

and for fixed supply

5
sj = 83

where the variables and coeffiéients have been defined for

the example in Section 2. We are of course assumingjthat'

_ ' o . od?

demand curves have the usual appearance, that is — < 0
: CoaTs

and also supply curves slope upward, that is 1

o]
387
—"'lll-> 0.

O3
i

. In addition we require our basic matrix C to be
positive semi-definite (to define a convex function) and

to be symmetric. Hence if region j demands commodity i

14 , _9al s

~ and supplies commodity k, then i_ "k .
] J
My omy

For this m'region, n commodity case, matrix C will
be a symmetric positive semi-definite nmxnn matrix with the

structure indicated below.
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. n

m n

" The positive_semi—definiteneés éssumption'can bé,'
related to the notion of dynamic stability.' For a two-region
case where all schedules are defined for eitherrdemahds or
supplies (not excess demands or supplies ﬁor fixed demands

or supplies) and the price‘vector is the same in both
countries (that is, no transportation qosts) the symmetry

and positive definiteness of matrix C imblies that the price
adjustment process (tatonnement) demonstrates true dynamic
stability in the sense of Samuelson.10 The geographic
separation of suppliers and démanders introduces a new
dimension to the tatonnement proéess. Theie must be arrange—
ments so that prices are announced 51multaneously in each

of the two places. Prices must differ, with the spatlal
dimension, in eqﬁilibrium by the cost of transportation..
Thus the price vector will not be the same in each -of the
two reglons so that the positive deflnlteness of C is .a

more general case of stablllty condltlons than the true

dynamic ones.
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Furthermore we are here dealiné not with two but
with m regions and with supply and demand schedules of a
greater variety of forms than those diséussed immediately
above. Recall that matrix C contains elements of excess
ISupply and demand functions as well as fixed demand and
‘supply functions.ll

In summary, the symmetry and positive semi—definiﬁeness
of matrix C has an interpretation as a stability condition
for a price adjustmént process when transportation costs
aie eéxogenous. For an equilibrium to exist, the conditions
on demand and supply curves are fhe same as those for true
dynamic stability (local stability).

In the general n commodity, m region case the primal
problem which is the constrained minimization of economic

rent foregone pfobiem will be:

minimize f(p) = ipCp-rp
subject to . -Ap > -t
p >0

where p is an mnxl véctof indicating>prices for commbditiés
in various regions. Elements of vector p will be two types.
For a region k acting as a net supplier fot‘commodity i the
element will be nik—ﬁi, and for a rggion k acting is a net
demander for commodity j the element will be ﬁ?—ﬂ?.
| It is easiest to consider the structure of matrix

A as a number of separate units. First each row will have

two entries, each being a positive number, namely one or
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unity. Let us consider vector p with all elements excised
except those pertaining to commodity i. Let matrix A be

- shrunk to a size such that there are no gaps where the
-entriés'wérereXCised, Now the part of matrix A corres-
ponding to.this,new part of vector p is a classic "trans-
éortation matrix" with all positive“entries.lz‘,Reordéring
the entries of p so that all entries corresponding to
demand points are on the left and.all COrresponding to
supply poihts are -on therright, the corresponding submatrix

of A will be:

number of number of
demanders for ‘ suppliers for
commodity i : commodity i
! = ' ' r s
, 1 1
number of 1 1
1 1

suppliers for ¢

commodity i

=t e » o
,pa-l

o e
'_l

=i e
]
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Note that the matrix above can have its columns reofdered
to obtain the original subvector of p.r

The complete matrix A consistsrof n such submatrices,
each submatrix correspoﬁding to a single commodity excluding
transport. .These n submatrices will be vertically stacked
upon one another. Given that the elements of p are orderéd
in accord with the arrangement of eléments of matrix C,
we noted that the submatrices will not have all columns
corresponding to demand price elemenfs on the left and all
columns corresponding to supply price elements on the right.
'The .columns must be in an irregular pattern. In addition
when we have all n submatrices stacked to form matrix A,
the columns of a submatrix corresponding to cdmmodity i |
will in general be separated by wvarious numbérs of columns
of zeros. These columns of zeros will have positive entries
correspondiﬁg to eithér demand or supply prices for commodity
3.

To summarize, matrix A will consist of n submatrices

of ‘the form of the above submatrix, that is

Commodity
1

n
A = _ | Commodity
2

Commodity

n
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with the columns'reOrdered to Suit_the ordering of»coﬁmodities
and regions in matrix C and in vector p.

Let g, be the number of net demanders for commoéity
i and sy be the number of net suppliers. Now the submatrix

. corresponding to commodity i will have q;S; rows and (qi+ si)

n n _
columns. Hence matrix A will have I q;8; rows and & (qi+ si)
, i . i

dolumns, ’
Vector t will be composed of ; q;84 elements. Each-
element t?g indicates the cost of shigping‘a unit of commodity
i from region k to regibn L. | 7 |
Vector r will be composed of g (q + s, ) elements.

i
Each element w1ll be elther a flxed demand or supply, or

an element x% for a progected-demand or supply.
The dual to the general n commodity, m region case

will be a constrained maximization of economic rent problem, -

that is
maximize g{p,v) = 3pCp - tv
Subject to = Av +#Cp=1

v > 0
where AT is thertransposevof the matrix A from the bﬁoblem
‘immediately above and vector v isa lx ; q9;8; vector of
interpoint flows. An element of v is fo; example x?z or
the physical flow of commodity i froﬁ_fegion k to region 2.

There will be a unique value for the price of the

transportation good which will result in the demand for
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transport equalling the supply required in equilibrium.
The theorems of Debreu and Kakutani assure that'sﬁch'an

equilibrium can exist.13

4.. Aspects of EXistence and Stability

We have seen that an equilibrium can exist for a
_ general trade model w1th produced or endogenous transpor-
tation costs. The important economic issue is whether
there exist forces which w111 drive the economy to the
equlllbxlum. -Samuelson»(l947; p. 112) made formal Walras'
"fiction" developed originelly by Walras to indicate that
the economy Qould move to an eeuilibrium. Samuelson's
"true dynamic stability" is a well defined process which
was invqked to assure that an equilibrium would be obtained
for an economy. | |

| Let us assume that if the price of the tfansportation
_good.is fixed initially then a tatonnement process,.pefhaps
 formalized like_“true dynamic stability" analysis, exists
which results in economic rent maximization or the clearing
of all markets except that for the transportation good.
Asking for such a proeess is not demanding much more than
is required of modern treatments of Walras' tatonnement.
However, the fact that the transporﬁatibn good market is
not necessarily in equilibrium after the tatonnement is’
complete requires that the process of price adjustment be-
repeated with alternative initial prices for the traneportation

good.
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We can illustrate the situation in Figure 3 below.

We are considering the market for the transportation good.




_23_,
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Figure 3
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At initial price w%, the demand for the transportation good
is q%ﬁ and the supply is q%s in Figure 3. Observe that we

can define an orthodox supply curve through p01nt (wl, qésj

by assuming all commodlty prlces are held constant except

that price for the transportation good. The demand curve

1D,
pr 9p )

By varying Py we trace out a series of demand points.

is simply point (w

Correspondlng to each value for Prp there will be a supply
curve. The schedule of demand points mlght be schedule D
indieated in Figure 3. quilibrium is indicated to be at
point (HT, qT)

The nature of the D schedule depends on the nature
of matrix C discussed in Seetion 3. The properties of the
D schedule will determine whether the equilibrium is stable
and unique. The nature of this model suggests that the
concept of stability must be extended to account for feed-
back from the transportation good market. A family of
tatonnements are required, one member of the family for
each value of the price of the transportation good and then
the question of stability becomes that of ascertaining
whether the signals fed back from the non-transportation
good markets will cause the transportation good market to
tend toward a unique equilibrium value for the price and
output of the transportation.good. The‘development of a
well-behaved tatonnement with feedback remains to be under—

'taken.14
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5. Trade with Endogenous Transactions Costs

The generalzmodel developed in Section 3 can be used
to illustrate some aspects of an economy with money and
transactions costs. We can consider an economy to be
chataoterized by a finite number of linear supply schedulos
for each of n goods and a finite number of linear demand

schedules.15

A fixed amount of an ﬁ+l good is cohsumed
in méking‘étransaction. We shall consider this n+l good to
be tradable and shall call it the transactions good This
model is then a multi-commodity case of the generallzed
Hitchcock-Koopmans transportation problem with endogenous
- transactions (transportation) costs, | |

We can interpret transactions costs as brokerage
fees which must oerpaid when each transaction takes place.
We shall let the services of money be the transactlons good.
If we fix the price of a unit of the transactions good
at  say Tor and determine an equilibrium by maximizing
.economic rent in the system, a specifio quantity of the

tranéactions good will be demanded, say q, in Figure 4.
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This procedure can be repeated with alternative initial
-ﬁ's.and a'demend schedule Dy, is traced out. Let ST be

the supply of the transactions good as a function of the
-stock of money in the system. Money is'supplied by decree
~at ze;e cost to the monetary authority. The unique,price
for the transactions good eccurs at Pe in Figure 4.

The slope of the demand schedule for the transactions
good will deﬁend on the parameters of the demand and
- supply schedules for commodities or on the structure of
a matrix analogous to matrix'ciin Section 3. We noted this
result in Section 4. There exists the possibility of
multiple intersections of Dep with ST as well as the poesie
bility of no intersections. The-nature of the.DT schedule
will determine the nature of ﬁhe stability of the economic
system. 1In the well-behaved case illustrated in Figure 4
the equilibfium is unique; the absolute price level is.
determined and for alternative stocks of money, alternative
price vectors exist.

The confroversies in monetary theory arising from
Patinkin's deveiopment of the "real balance effect" are dealing
with a different set of issues. In those debates, the focus
was on the process whereby flows of cash balances and flows .
- of other commodities traded were related.16 Clower argues
that "the conception of money economy implicit in modern
..accounts of the general equilibrium theory of money and

prices is formally equivalent to the classical conception
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of a barter ecohbmy", Clower (1967). He cites Patinkin's
opus as one of those modern accounts. I share7C10wer's
opinion and feel, like Niehans (1969), that the basic problem
With Patinkin-like analyses is that though moneyibalances
are introduced to overcome explicitly acknowledged trans-
actions costs, yet those transactions costs nevér explicitly
appear in the models. The model developed above in this
Section has been developed with those transactidns costs
~explicitly included. -
' . We have aséumed that the services of money can affect
transactions costs. It is analogous with the fact that the
amountrof grease affects the amount of force needed to move
a locomotive., However we also know that-there does not exist
a'point-where the addiiion of more grease eliminates friction
-entirely. Similarly we might expect that though the cost
- of producing money may be zero, there does not exist a point
 where the price of its services becomes zero.

Note also that changes in the stock of money have
an effect on the flows of other goods in the system. The.
model thus has important "real balance effects" though these
effects arise from very different sources than in Patinkin's

model.

6. The Case of Non-linear Demand and Supply Schedules

The assumption of linearity in various schedules has

permitted us to appeal to the well-developed mathematical
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literature on quadratlc programming in order to formulate
our Mosaklan model of trade with a produced transportatlon
good. Samuelson's original formulation of the problem of
épatial pPrice equilibrium for one commodity flows did not
require linearity in either the demand and supply schedules
or the excess supply or excess demand schedules. Below is
an outline of our general model when nonlinearities are
pérmitted. Our programs have general nonlinear objective
functions with linear constraints.

The following two region - two commodity example with
exogenous transportation costs will illustrate an equilibrium
with nonlinear supply and demand schedules. With no loss
of generality, we will restrict consideration to cases involving
only supply and demand schedules father than cases involving
‘excess demand énd supply schedules and fixed demands and
supplies. |

The following problem is analogous to the negative
- 0f the economic rent foregone minimizing prdblem of SeCtion

2 and 3. Minimize

3
fo1apal, ndham - xS ? - 09
m . )
e 1
+fgl l(ﬂir ﬂ;)dﬂl - xf (wi - ni)
T
1 .
(6.1)
ﬂl 1,1 1 e1 1 e
vJe2 aynys mdm, - x5 (v - 1)
m
2
e . 2
+fgz Sg(ﬂi, Hg)dﬂz - xg (ﬂ; - ﬂg)
T _
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subject to:
2 _e e 1 12
(my=my) = (my=my) 2 -t
(6.2)
1 e e 2 21
- (mymmy) — (mymma) 2 -t
_ /2. e e . 1 1 e _e_ 2 |
P (wl Tor My=Tyr To=Tsr T, Hz) > 07 o {(6.3)
: aqi , o
where G records the effect on the quantity of the ith
ams : :

commodityldemanded in region j of a change in .the price of

_the ith cgmﬁodity in ;egiqn i. | ‘

_i%. records the effect on the supplj of the ith
commodityagémanded in region k of a change in the price of
the ith commodity in region k.

t?k is the fixed exogenousiy given cost bf trans-

porting a unit of the ith commodity between regions h and k.
8 (p) is the sum of the four integrals. We require

the minimand 6 (p)- rp or 6.1 to be convex. The Kuhn-Tucker

conditions can be set down for the problem'(6.172{3).

96 12 _ el
3ﬂ2 1 o gl
1
_ 96 _ 21 _ xe1
Bﬂ% 2 2 - -
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_ 36 _ 12 et (6.4)
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and Ap - t =0 . ' (6.5)
u(Ap - t) =0 (6.6)
u >0 (6.7)
_ 12 21, . .
Vector u = (xl ' X, } is the shadow flow corresponding to

the prices. An element x?g is the physical flow of commodity
1 between k and 1.
The vector V8 (p) canrbe,expressed as the product of

‘a matrix and the price vector as indicated below.

1 1 T F 1 .7
le 3s1 i ﬂ§ _Ei
: awl El Sﬂl ﬁl|
1 1 2 2 - _ 1 el
Vo (p) = _ | : T
1 1 | : 272
8q2 3q2
1 -1 1) .11
Sﬂl ™ 3ﬁ2 . “2'
e ——— —— ———— — oS ———— —— —— — ——— — . 2
2 2 -2 e
| aql 3q1 nl_ﬂl
2 -2 2 =2 :
Ianl T anz Ty
| 2 2
lasz» 832 ,
-2 -2 2 =2 e” =2
{anl T Bﬂz ﬂ2 wz Wz

Observe that V6 (p) above is analogous to expression Cp in

the quadratic piogram. For duality to hold in quadratic
programming in the sense of Dorn, it was necessary that C

be positive semi-definite and symmetric. The symmetry assump-
tion was required to prove that the value of the primal equals
the value of the dual in equilibrium. Hence I conjecture |
that symmetry is required in the above matrix in the expression

of vs(ﬁ).l7
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These results permit us to place a segment of the
literature on spatial price equilibrium in perspective.
Symmetry of demand and supply functions or excess demand
end supply functions in the neighbourhood of equilibrium is
a necessary equilibrium condition. The admissable models
of spatial price equilibrium with linear schedules have
symmetry for all ranges of the non-negative prices. Efforts
have been made to dispense with the symmetry condition by
Yaron, Plessner, and Heady (1965), Plessner and Heady {1970)
~and to define valid models of spatial price equilibrium.
However, the above result indicates that symmetry of'the
coefficients is a necessary equilibrium condition and efforts
to dispense with the symmetry condition are‘misdirected.

We have dealt with a nonlinear programming problem
and its Kuhn-Tucker equilibrium conditions. The economics
of the problem suggests that a valid dual problem must
exist. For a two region ~ one commodity nonlinear spatial

price equilibrium problem, the following'Figure is illustrative.
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A

'Figure 5
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We observe that the x and 7~ are defined with respect
to the net rent maximizing prices and qﬁantities.r It should.
be apparent that area ﬂzabcul has the identical structure
to the corresponding area for the problem with linear demand
and supply schedules. This leads me-to conjecturé the exis-

"tence of the following valid locally gquadratic non-linear

programming duality relationship.
The primal is defined as
minimize o (p) - rp

subject to -Ap > -t

and V8(p) = C(p)p

where p e 8 = {plp 2 0 ;.o C(p) is symmetric}

and 6 (p) is convex.

The dual problem is -

maximize -9 (p)~-tu’
-subject to 8 {p)+uvA = r
w0

peTand T = {plve(p) = C(p)p
j where C(p) is symmetric}
The duality theorem is: If the primal has a'solution,’then‘
‘the dual has a solution and the value of the primal equals
the value of the dual.
This new duality relationship is more general than

Dorn's in the sense that V0 (p) need only be locally gquadratic

and symmetric. It is less general in the sense’ that the
domain of p is restricted to set S for the primal and T for

-the dual. A proof of the theorem will make use of the
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* Kuhn-Tucker theorem as in Mangasarian's (1969; p. 126)
exposition of Dorn's result. The difficult step involves
 the definition of the properties of S and the mapping of
the set of admissable § vectors into the set of p vectors
which minimize 6 (p). A proof remains to be developed.
Finally, we should-note that the introduction of
endogenous transportation costs into the model with non-
linear schedules requires no essentially new analysis.
The analys1s in Sections 2 and 3 and results in Sections 4
and 5 carry over to the non-linear case with no essential

change.

7. Concluding Remarks

- We have taken Mosak's general equilibrium trade model

and introdueed endogenous transportétion costs by means of

the Cournot-Samuelson economic rent maximization principle.

With regard to trade and monetary theory, we noted the

emergence of new balanee of payments problems, new problems

in the definition of a tatonnement,rand new problems in

the definition of the price level and a monetary equilibrium.
The Mosakian model with exogenous transportation

costs and linear supply and deﬁand schedules has been anaiysed

in a rapidly groWing literature on "séatial price equilibrium”.

We have been able to define an economically meaningful dual

spatial price equilibrium_problem ahd to focus on the effects

of endogehous transportation costs on the nature of the
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specification of the model and of the equilibrium. Finally,

we observed that a ﬁodelrwith non-linear demand and supply
scliedules could be defined and that symmetry in tﬁe basic

matrix defining a model of spatlal price equ1llbr1um played

an 1ndlspen51ble role. A new duallty relatlonshlp, generallzlng

- é
Dorn's quadratic programming problem was presented. '
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FOOTNOTES

The most recenht one is recorded in the current issue of

the American Economic Review, where the protagonists
are M. Krausse, D.M. Winch, and E.J. Mishan (1971;
p. 199).

See for example Nikaido (1970; Sections 33 and 40).

One delivery will consist of a ship or vehicle trans-

porting the commodity to the delivery point from

the supply point and having that ship or vehicle
return empty. Other settings could be envisaged'but
the accountlng procedures will always remain the
same in an economic sense.

The Hitchcock-Koopmans transportation problem in linear

- In

programming and the Cournot-Enke-Samuelson problem -
in spatial price equilibrium deal with only one com-
modity. These problems have been subsumed in a more
general one commodity model in Hartwick (1970), .
(1971). Mosak treated the many-commodity-problem or
the general equilibrium model but w1thout trans-
portation costs. .

a one commodity model, with exogenous transportation
costs, the 7% and x®s defined for the system are
indeed the prices and interregional flows obtaining
for the case when transportation costs are zero.

See Hartwick (1971). However in a multicommodity
case the removal of transportation costs and sub-

- sequent maximization of economic rent will result

in an equilibrium ln hich the prlces and flows are
different from the 7€ 5 and x® s indicated in Figure
2. The n¢'s and x® s in our general model must be
defined in terms of the equilibrium obtaining when:
transportation costs are not zero. :

These remarks indicate that the primal-dual programs

developed below are not suitable algorithms for
solving general spatial price equilibrium problems
but are. suitable for elucidating the nature of an B
equilibrium once it is known to exist. Alternatively,
we can consider a pair of primal-dual problems for
this spatial price equilibrium problem as follows:

a solution to the constrained economic rent maximiza-
tion problem yields new variables, ﬂ?'s'and x§'s which
appear in the dual constrained economic rent foregone

‘minimization problem. This phenomenon of having

variables from the primal appear in the dual of a non-
linear program is a general result although the parti-
cular case developed below is novel in the use that

it makes of the variables carried over from one problem

to the other.
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7. Observe that in fixing m, we are fixing values for (i)
the price of transpor%ation between any two points
for any commodity and (ii) the intercepts of the
schedules in Figure 2. We are thus in a position
to set up a constrained economic rent maximization
problem as Takayama and Judge (1964) and (1970)
have done. We proceed differently however in order

~ t+o develop an economically meaningful dual problem

~to that of Takayama and Judge and to analyze the .
economic implications of having transportation costs
endogenous. '

8. For a two-region case with variable demands andrsuppliesj
the objective function is:: , - o ,

minimize  3pCp - rp or the negative of area

. AERFD — - 3EBCF + ABCD  in Figure 1F below.
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The dual objective function is:
maximize -%pCp - tv
of the negative of ‘area
AERFD - -3EBCF - AEFD
in Figure Fl. A | |

gee Debreu (1959; p. 19) or the exposition of the same .
material in Lancaster (1968;. pp. 349-352) . Heurist-
ically, what we are doing in the proof of a fixed
point in this problem is to vary the price of the
transportation good over all non-negative values
and to check whether, for a particular value of the
price w,, the amount of the transportation good
demandeé equals the amount supplied. The proof of
the existence of a fixed point assures us that an

" equilibrium exists although of course numerically,
there is no way to solve for such an equilibrium.
See Dorfman, Samuelson and solow (1958, Section 13.4)
for a lucid account of similar existence result '
namely the existence of a solution in the Walras-
Cassel model. = S - ' .

cee Samuelson (1947; pp. 270-274).

Woodland (1970) has developed a technique for numerically
solving spatial price equilibrium problems which.
treats each point as an "individual" and the sum
of all individual functions as market functions. '
spatial price equilibrium problems are then treated
as disaggregated market price convergence problems.

‘See for example Gale (1960; p. 15).

See footnote 9.

The problem raised in this model for a stability analysis
are similar to those first discussed by Walras in
a model with production as opposed to a model with
only exchange. See Patinkin (1965; p. 534).

The assumption of linearity can be removed without

changing the results as we shall note in Section 6.

See for example Archibald and Lipsey (1958}.
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In a recent paper dealing with a related model of spatial

price equilibrium, Takayama and Wwoodland (1970) have
demonstrated that symmetry in the above matrix must

hold for the value of their dual to equal the value

of their primal. One might examine the proofs of duality
in quadratic programming to observe where the symmetry
assumption is invoked. :
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