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The Generalized Transportation Problem as a
Quadratic Program

John M, Hartwick
Queen’s lUniversity
I. Introduction »

In Hartwick [1970] | indicated that there ex-
isted an economic rent maximization problem which gener-
alized the Hitchcock [1941]-Koopmans [1947] transporta-
tion probleﬁ in linear phogrémming and that this new
problem was a.special case of the Cournot-Enke-

Samuelson [1952] spatial price equilibrium problem. The
latter probiem was shown to be an economic rent maximiza-
tion problem, also., My suggested generalization of the
Hitchcock-Koopmans problem was to replace the fixed
demands and supplies in the linear program by demand
schedules and supply schedules which were functions of
delivered and supplied prices respectively and to solve
for the optimal’' interpoint flows by means of maximizing
gross economic rent iﬁ the system,

| asserted that a dual problem to the generalized
transportation problem (the Hitchcock-Koopmans, geaneralized
Hitchcock-Koopmans, and Courﬁot—Enke-Samuelson problems)
was a problem in which economic rent foregone was mini-
mized, the economic rent being foregone because of the
presence of non-zero tranSportation.costs. That dual
was presented and suggested to represent a hew optimality

principle in spatial price equilibrium,
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In this paper | shall demonstrate that when all
demands and supply schedules are either ]inegr or are
points or scalars, then the generalized transportation
problem and its dual can be expressed as a primal~dual
quadratic program, this latter program being due to
Dorn [1960] and Mangasarian [1969]. The dual ity theoren
of Dorn [1960] provides the mathematical foundation for
the existence of a solution to the linear varsion of the

generalized transportation problem and its dual.

2., A Primal-Dual Quadratic Program

The class of programs which we are concerned with

is
Miniﬁize f(z) = $zCz+rz (n
sub ject to
Az 2 b (2)
zZo (3)

where C is a symmetric, positive definite nxn matrix and
where r is an nxl vector, 2z is an nxl vector and A is an
mxn matrix. This problem will be referred to as Problem
DI. |

A dual problem to Problem DI ijs

Méximize a(z,v) = -4zCz+by 4)




sub ject to
A'v-—CZ - (5)

(6)

<
ty
@

where v is an mx| vector. This problem is due to Dorn

[1960] and will be referred to as Problem DIf. Note

that a transpose of a matrix is indicated by a prime

and row and column vectors do not have a distinct symbol.
Below are the duality theorems without proofs

for the Problems DI and DIi due to Dorn [1960] and

Mangasarian [f969], and two other theorems of interest

for the generalized transportation problem in Section 3.

Theorem 2.1 (Dorn [1960]; Duality Theorem).
If z solves Problem DI, then Problem DIl has a

solution (2,v). Also
£(z) = g(z,v) (7)

Theorem 2.2 (Mangasarian [1969]; Converse Duality Theorem,)
HF (;,V) solves Problem D!1, then Problem DI has

a solution 2. Also C(z-2) = 0 and f(2) = o(2,v).

Theorem 2.3 (Optimality Criterion).
Let z_ and (zé,vo) be feasible solutions to

Problems D} and DI respectively and

f(zy) = g(z4,v,) (8)
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Then z, and (z,,v,) are optimal solutions to
Probiems DI and Dil respectively,
Proof: Let 2 be a feasible solution to Problem Dl.

From (I)
f(2)-f(z,) = %202+r£-%zoCzo—rzo
and from (8)
= %zCz+rz+%z°Czo-bvo
and since C ijs posﬂﬁve*ﬁsemi-deFinitez
F(%)-F(zo) 2 QCzo+r£-bvo (9)
From (5) and (3)
202 = 2(A"v,or)
and from (2) and (6)

~-bv ) -2A”

o Yo

Substituting these last two relationships in (9)
F(2)-f(z4) 2 QA’VO—%P+r§-£A’vo = 0,

Thus z, solves Problem DI.
Since D| has a sofutioh, then by Theorem 2.1,
DIl has a solution (zo,vo).

In the following theorem, a; will be the ith row
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of matrix A, v; the ith entry in vector v, and B; the

ith entry in vector b.

Theorem 2.4 (Equilibrium Theorem)
Let z and (%2,¢) be feasible solutions to Problems
DI and DIl respectively. These solutions are

oﬁtimal if and only if
Vi = 0 whenever a;2>8; (10)

Proof: Suppose condition (10) holds. From (3) and (10)

VA% = 9b , (11)
From (5),
VAZ-2C2 = %p (12)

Substituting from (11} in (12), we get
£3C3+r2 = -L13C3+b0

which by Theorem 2.3 indicates that 2 and (%,V)
areroptimél solutions to Problems DI and DI}
respectively.

Suppose now that 2 and (2,9) are optimal

solutions. From Theorem 2. |

42C2+rz = -33C5+b¥




or
~-2C2 = p2-bv (13)

2 and (2,v) must satisfy (2)(3) and (5)(6) re-
spectively. |

From (5)

N>
i

N

)

A A
ZA7 v-2C

Substituting from (13)

or

Gi(aiz-B;) = @ ('4)

Since Oi and (ajz-B;) are non-negative for all
i, from (2) and (3), each component of the sum
in (13) must equal zero. Hence condition (10)

Obta ins .

3. The Generalized Transportation Problem

Our geographic world will consist of m spatially
separated points of supply for one homogeneous commodity
and n spatially separated points of demand for the com-
modity. The supply points will be subdivided into three
non-empty sets, Each point I|,...,h will have a linear

excess supply schedule defined as a function of supply
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price. Each point: h+l,...,k will have a |inear supply
schedule defined as a function of supply price, Each
point k+l,...,m will have a fixed supply defined. The
inverse functions of the schedules at points ,..,.,k
will also be defined, that is supply price as a function
of quantity supplied.

in summary, the m supply points are defined by
their quantities supplied.

Q
s = m LEa o + s
651 miNT w1ﬂ1

ob > (i=!,...,h)

A (o] ~
. = . 1. F .
S.I w_l'rr.l_ w.l'rr_l
or > (i=h+t, ... k)
T, = ?r.?_ + -}-—S'E
1 w4 J

% } (i=k+1,...,m)

where es. is excess supply at point i (i=l,...,h)
s; is supply at point i (i=h+L,..,k)
0. is supply at point i (i=kth...,m)

m; is the price at a supply point i (i=l,...,m)

The n demand points are analogously defined in
terms of three subsets of demand relations, excess demand

schedules, demand schedules, and fixed demands,




ed. =
J
or
Tt o=
J
d - =
J
or
1=
"
S.
J

where ed

We
at a point

point with

nara’ -n. m.! i
J J J J
> (=1, e ee h?)
Q0 1
T, - = ged.
J Tl‘j J
_
ne o - . 7t
J J J J
> (j=h'+|,...,k')
ol 1
T, = = d.
J n, J
J _

}) (i=k’+1,...,n)

is excess demand at point (J=J,...,h')
is demand at point j (J=h'+!,...,k')
is demand at point (j=k’+1,...,n)

is the price at a demand point j (j=I,...,n)

define a single excess supply or excess demand
on the grounds that know a priori whether a

both demand and supply schedules will be a net

exporter or importer of the commodity in equilibrium. A

preliminary problem is solved before the quadratic program

is set up.

Our quadratic program is thus not a satis-

factory algorithm for solving actual spatial equilibrium

problems but is a device for elucidating the nature of a

general spatial price equilibriunm.

Figure | below will ilfustrate the nature of the

ensuing quadratic program for a two point case. It is

in fact Samuelson’s spatial price equilibrium diagram.




X
=

—
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Figure 1
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The x axis indicates interpoint Flow., The p axis indicates
price. Thus an excess demand is equal to an excess
supply by definition since following Samuelson’ schedules
x=n{+ ww; and x=ngt-72né are excess supply and excess
demand schedules respectively. Samuelson’s two point
spatial price equilibrium problem was to animize area
ngécn? - ﬁéacn; or what he termed net social payoff,
Hartwick’s dual was to minimize area ace sub ject to
ﬁé-ﬂ[ 2 £|2' |

If we let the excess supply and excess demand
schedules become simply supply and demand schedules at
two points, we have the generalized Hitckcock~Koopmans
transportation problem. Once again the maximization_of
area n%écw? - néacnl yields a flow equilibrium in the
primal problem and the minimization of area ace sub ject
to ﬁé-ﬂl 2 t)2 vields a price equilibrum in the dual
problem. We could of course combine a partial Samuelson
problem and & partial generalized Hitchcock-Koopmans
problem,

In Figure |, ne and x® indicate the price and
interpoint flow which would obtain if transportation
costs were zero. Thus triangle ace indicates economic
rent foregone because transportation costs are positive,
For any point we can define quantity K; as the area of a

triangle




(i=|,...,k) for supply points

0o e e
KE = WX and S
(i=|,...,k’) for demand points
e e’ e . .
where Ty =Tg = in Figure |
and  x] = x5 =x° in Figure I.

Ki thus represents the total economic rent which a point
could reap if transportation costs were zero. K; is a
constant which once we have determined the general
pattern of interpoint flows, does not vary with the
precise solution values for price:+£r flows. We shall
have occasion to make use of K = 3 Kj e

We shall also introduce another constant

~ Kk
T = E: x?.t

i gi
where t | is the cost of transporting a unit of the
Ji
commodity from supply point i to demand point j.
e _,&_,°

Since the schedules in Figure | are linear, the
two point primal-dual problems éketched above can be
expressed separately as quadratic programs. We will
now see that these two programs do in fact define a
saddle point problem or that they are indeed dual to
each other.

The primal problem to the ganeralized transporta-




tion probiem will

Problem GlI. We are
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be defined as follows and labelled

minimizing economic rent foregone.

Minimize flp) = ipCptrp
sub ject to |
Ap 2 t
p20

where p is an mnxl vector

= _ole R 121 topte € e_. e_
P (ﬂl ﬂl PN "ﬁJ ﬂJ 3oeee s ﬂn ﬁn s T Mis see s ﬂi wi, see g ﬂm ﬂm)

where C is a diagonal mnxmn positive semi-definite mater ix

- 0

where r is a Ixmn vector

r = (0,---,0kf,-6k{+.f,s--,"5n'0,:-t,0k’ G-k_t.-l,-lc' o—m)
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where A is an mnxmn"transportation” matrix with two ones
in each row, the ﬁeﬁaining entries”being zeros. The
first entry in a row is associated with a demand at a
point and the second with a supply. |If in any row the
relevant demand is a fixed value and the relevant supply
is a fixed value, then the two entries are negative and
positive respectively, These rows correspond with entries
in the £ vector with negative signs. The t vector is
defined following the A matrix., Otherwise the entries

are positive and negative from left to right in each row.

I~ -

1
.

and where t is an mnx! vector
t = (tl!’tzi"-.'tnk"-.'tk’,k+i’—tk'+!,k+"‘."

~tn'k+',-l.,“’tn m)

’
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Note that if C were zero and the related part of A re-
moved, we have the dual to the Hitchcock-Koopmans |inear
programming, transportation problem.4 IFron the other
hand r were zero and the related part of A removed, we
have the dual to the combined generalized Hitchcock-
Koopmans and Cournot-Enke-Samuelson problem. Either of
these two problems could be isolated if the elements of
the other problem were removed from matrices C and A
when r was still taken to be zero.

Problem Gl is of the form of Problem D] and so
if a feasible solution exists to Problem Gl we know that
it has a minimum and that its dual exists and also has a
solution by Theorem 2.1. Following Dorn and Mangasarian,

the dual to Problem Gl is the foltowing, Problem GI1f,

Maximize glp,v) = -1pCp+tv
sub ject to
Alv-Cp = p
v 20

We now observe that since min f(p) = max g(p,v) when the

problems are solved, vector v canbe defined as

e e e e
Vo (X X X2 R e XXk e e e X o | X o [

+xk,+"k+|,...,+xn’k+l,...,+xn’m)
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and v is in fact the desired interpoint flow vector since
it is also Feasibie.s
Now if we cancel the opposite signed constants
x?i’s from the constraints of Problem Gil and alter the
ob jective function of Problem Gll as follows:

K-’f+g (p,v)

where constants K and T were defined above, we see that
Problem GIl is an intebpoint pure flow problem which
yields the flows which simultaneously maximize economic.
rent in the system and minimize transportation costs

sub ject to quantities demanded equalling quantities
supplied, We shall label Problem Gl| amended to result
in @ rent maximization problenm, Prob lem GTilI. A solution
to Problem G| implies a solution to Probieﬁ Gil which in
turn implies a solution to GT1{, the generalized trans-
portation problem, the solution of which yields optimal
interpoint flows,

I1f C is made equal to zero, the corresponding
part of A’ removed, and the equality in the constraints
changed té less than or equal to, we have the Hitchcock-
Koopmans linear programming transportation problem.
A!ternativeiy, if the elements of C,t,A’, and r related
to the supplies o, (i=k+l,...,m) and J5J(J=k'+l,...,n)
were removed, we would have the primal problem“For the

combined Cournot-Enke-Samue Ison problem and the general jzed
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Hitchcock-Koopmans probiem, These problems could be
isolated as distinct problems by further excisions of
elements of C,t,A’, and r.

Theorem 2;4 indicates that one of the price
equilibrium relationships of the Hitchcock-Koopmans
transportation problem carries over to the general
problem in GI and Gil. That is, if the equilibrium
prices between any two fixed demand and fixed supply points
differ by . less than the cost of transport, then no
shipment will be undertaken between those two points.

On the other hand, if the equilibrium prices between any

other two demand and supply points | and i differ by more than the
cost of transport then X = gji
between i and j will equal the flow taking place if there

or the actual flow

were no transportation costs, The economics of this last
condition is clear, |If in equilibrium profits can be
made from transporting the commodity between two points,
then transportation will be carried on to the point

where demanders are all served or where the maximum
possible flow takes place. That maximum flow is the flow
obtaining when transportatioh costs are zero. As long as
the program has feasible solutions and at least one de-
mand, supply, excess demand, or excess supply schedule
has some non-zero and finite slope, then we will not

e . ey ep . .
observe xji = xji in equilibrium, By introducing some
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elasticity of demand and supply into the transportation
problem, we rule out the necessity for corner solutions;
excess supplies will not obtain if the problems are
feasible. The familiar condition in the Hitchcock-
Koopmans problem of an excess supply in equil ibrium
implying a zero price does not appear in the general
problem,

Theorem 2.4 indicates that if problems G| and
Gil are feasible and_if the value of the ob_jective func-
tion of Problem Gi, plus the value of the ob jective
function of Problem GTIi, plus 12’3 tjixji sum to K, then the
problems are optimized; For the'two-point Cournot-Enke-
Samuelson case or the generalized Hitchcock-Koopmans case,
Theorem 2.4 indicates if Eﬁ(ﬂé,nl)rand §7=(x2|) are
feasible and if area nﬁ'néé+ﬂ?ﬁ|c+néaCHl+ace equal

ﬁg'n?p in Figure | then a solution p, X has been obtained.

4, The Dual and Analogies in Physics

Koopmans and Reiter [195}; pp. 258-259] indicated
th&t Kiréhhoff’s Law on the distribution of current in an
etectfica! net&ork was derived from a constrained quadratic
minimization problem in which total heat was minimized
subject to certain constraints on the flows of electrical
current and that this problem was analogous to the
minimization of transportation costs sub ject to flow

constants.7 Since heat is associated with waste or a
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foss of energy in the transmission of electrical current,
the analogy might be made instead with minimizing economic
rent :foregone rather than with minimizing transport costs.
The problem analogous to the Kirchhoff quadhatic program
would then be the Problem Gl or the constrained minimiza-
tion of economic rent foregone because of the presence
of positive transportation costs, Problem Gl does not
contain the Hitchcock-Koopmans constrained transportation
cost minimizétion problem within it. Transportation
costs in a social accounting sense are notra loss or
waste in the same sense in which economic rent foregone
is a loss.

. The actual reason for subtracting transportation
costs from the ob jective function of maximizing economic
rent is that in a fully specified general equi{ibrium
problem like that of Mosak [1944; Chapt., 5] except for
the addition of tranSpoﬁtation costs, or in other words
in a Mosak model with endogenous transportat jon costs,
there will be a sector producing transportati on goods
the value of whose output is identical in value to the
costs of transportation. Hence when we net out trans-
portation costs from rent maximization, we are actually
netting out the value associated with a sector which is
not producing any output for final consumption. Transe
portation cost minimization inheres in the maximization of

the value of output and the former is in general not the
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objective of economic men. It ;s the latter goal which
is the objective.

The treatment of problems |ike the generalized
transportation problem as a quadratic program has been
carried out by Takayama and Judge [19647[1970]. These
‘authors dealt with a many commodity extension of the
Cournot-Enke-Samuelson mode| . However in neither paper
have they been successful in formulating a true duali

8

problem,
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FOOTNOTES

Dorn [1960] enunciated this theorem but the proof was marred
by an error. Mangasarian's proof is based on the
Kuh-Tucker theorem and makes no reference to Dorn's
theorem except to mention the origin of the general
enunciation. Hence, we ascribe the theorem to
Mangasarian.

Since C 1is positive semi-definite, for any two vectors
X and y,

(x-y)C(x-y) = xCx+ yCy - 2xCy > O

or
xCx + yCy > +2xCy .

See Samuelson [1952; p. 288].
See Gale [1960; p. 15].

Cp becomes a flow vector equal to x?i - in'

An interesting equilibrium condition for the Tinear
programming transportation problem which appears
to have been overlooked by Gale [1960; p. 15]
in his exposition is that an optimal interpoint
flow vector must satisfy strict equality for all
fixed demands. This is a natural economic con-
dition, namely that in minimizing transportation
cost, one must minimize the weighted flows from
supply points to demand points and given an
aggregate linear transportation cost function,
this can be done by always not over supplying
any demander. To prove this result, assume an
optimal solution exists in which one demand &.
is less than the flow received. Hence hy the
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8
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equilibrium theorem for linear programming, the
demand price n'. at j must be zero, But if

J
n3=0, the dual price constraint, nj-ni =t
(ti; *+0; mhT = 0) can never be satisfied.

Hence equality for demands must be satisfied by
an optimal solution.

For other problems in physics, see Dorn [ 19607 and
references therein,
As far as | know, the economic rent foregone minimiza-

tion dual originated in my paper Hartwick [1970].
The definition of the generalized Hitchcock-
Koopmans derives from that paper also and hence
so does the general ized transportation problem,
In that earlier paper, the analysis relied
heavily on the use of diagrams. Those diagrams
make clear the nature of the Cournot-Enke-
Samuelson model as an economic rent max-min
problem as well as the nature of the generalized
Hitchcock~-Koopmans problem. Figure | is the
basic diagram for the two point case of the
latter problem.,
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