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THE IMPLICATIONS OF STEADY STATE GROWTH FOR ENDOGENOUS AND

EMBODIED TECHNOLOGICAL CHANGE.

1. Introduction.

The concern of ;his paper is with necessary, father than sufficient,
conditions for the existence of steady state growth paths. In a sense this
is a negative approach to growth theory but it does have its positive aspects.
Firstly, it enables us to appreciate the restrictive nature 6f our assumptions
concerning technological change if a steady state growth path is fo exist.
Secondly, it emphasizes the fact that if one wishes to study the implications
of technological change in any but its simplest forms, it will be fruit-
less to investigate the properties of steady state growth paths.

One may classify growth models according to the technological change
assumptions that they embody. Technological change may be either exogenous
0£ endogenous . Under either of these categories one may further classify
the model according to whether technological change is embodied or dis-
embodied. Lastly, if technological change is embodied, one then classifies
the model according to whether there is a general or fixed coefficient
production function.

The simplest class of models are those in which technological change
is both exogenous and disembodied. Swan [9] has shown the wéll known result
that for a steady state growth path to exist for all time, technological
change must be 1ab§r augmenting and change ﬁt a constant exponential rate.
Nol so well known is the extension of this result to the case where technological
change is.embodied and there is & fixed coefficient production function.
Recently Inada [3} has shown that Swan's result is applicable in this case

also if we assume the existence of ths steady state growth path for any

t T

value of the savings ratio s in a non-degenerate closed interval and

also that the economic lifetime of capital goods is constant on this path.

-1 -




If the latter assumption is dropped the problem remains oﬁen. Also open
is the samé problem but with a general production function replacing the
previous fixed coeffilicient production function.

Sufficient conditions for a steady state growth path to exist when
technological change is endﬁgenous and embodied and there is a fixed co-
efficient production function have beén studied by Arrow [1] and the model
extended to n general production function by Levhari [5]1. Sulficient
conditions have>aiso been studied by Sheshinski [8] fbr the case where
technological change is endogenous but disembodied. 1In all these learning
by doing models technological change is purely labor augmenting and a
power function of gross cumulative investment. From'now on this will be
referred to as Arrow Type technological change. Necessary conditions have
recently been studied by Inada [4] for the disembodied case and also foi
the embodied but fixed coefficient production function case. 'Levhari and
Sheshinski [7] have also studied neceséary conditions for the disembodied
case. Under the conditions of Theorem 1 below 1t was éhown that for a
bnlanced growth path to exist technological change must be Arrow Type .

The purpose of this paper is to enquire whether Lhis result can be
extended Lo Lhe.cnse of a general production function where technological
change is endogenous and embodied. In fact, it is shown that the result
doés carry over to this case.

However, central to the proof to be illustrated beiow, is Inada's
result [4] on the pseudo-production function (i.e., the function that
relates total output to total cumulative gross investment and total labor
supply in a vintage model). In fact, it is precisely this critical dependence
thal makes the procedure shown below inapplicable to the casc where |

technologienl change is exogenous and cmbodied and there is a gencral
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production function. In this case Fisper [2] has shown that a capital
aggregate exists, and this is a necesséry requirement for thé existence
of a pseudo-production function, if and only if technological change is
purely capital augmenting. It is therefore deemed necessary to first
explain Inada's result.

Let us now introduce the following notation:

G: Cumulative gross investment at time %.

L: Total laboir employment at time ¢.

Q: Total output at time t from all vintages.

0: Exponential rate of growth of ihe labor supply.

tw: Rate of growth of G on the balanced growth path.

Inada first observes that on a banlanced growth path the following
relation holds:

¢"/L = GI:)'/I..o = k(s) where m = g/

and k is a constant for any given value of the savings ratio. Clearly
G0 and ® may depend on s. Now suppose that the pseudo-production

function, Q = Q(G,L), exists. As the eguation of motion is:

G = sQ(G,L)

it is seen thal on & steady state growth path:

H!

w
]

= Q(G,L)/G = ¥(G,L) say.

Then 6(G,L) takes the same value for all {G,L) which locate on the

curve .

Gm(s)/L = k(s) in Fig. 1 below.




Inada then shows that as s increases this curve shifts to the left, no
two curves intersecting, and & decreases. (The proof reguires that |
there be full employment of labor at least for a while. In the model to

be considered in the next section positive marginal products and continuous
production functions are assumed and so this full employment assumption is
trivially satisfied.) Thus the value of $ is completely determined by

k{(s) and so onec may write:

3(G,L) = H(G L)

For any value of (G,L) in the non-shaded area above. This area is de-
lineanted by the extreme values between which the savings ratio must be
chosen.

It now becomes clear that @ = GH(GamL}. Levhari and Sheshinski [7]
have also shown this result but under alternative conditions. This is
summarized by:
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Theorem 1. [Inada, Levhari and Sheshinski ].
A nccessary condition for the existence of a balanced growth path,
(a) for all initial conditions or
(b} for all time and for any value of the savings ratio in a
non—degeneréte closed interval,
is that the pseudo-production function exist and have the following
representation:

Q = G.H(G L) = G.H(GnL/G) where- n=1-m.

In particular, it is noticed that the pseudo-production function must be

homogeneous of degree one in G and GnL.

Prooif .

For a complele proof see [{4] and [7}."

Theorem 1 will be used in the final section of.this paper even
though 1t is not possible to find the explicit form of the pseudo~production
function. When this theorem is applied to the pseudo-production function
obtained when the vintage production funcfions are of the fixed co-
efficient variety and technological change is endogenous and embodied it
is quickly scen that it must be Arrow Type.

B In the hext section the model and the assumption will be explained
and also the implicit representation of the pscudo-production function
will be derived. In the final section Theorem 1 will be applied to this
implicit representation in order (o derive results concerning what type
ol technological change assumptions are compatible with the existence of

steady state growth paths.

2. The Model and the Implicit Representation of the Pseudo-Production

Function.

The following additional notation will be used in this section:

fn ]




Qv,t :
1 :
Y
Lv,t :
m(Gv) :
X(GV) :
G

v
m{t) :
Wt H

Output at time ¢t from machines of vintage v.

Investment in machines of vintage v.

Labor.fprce employed at time t with machinesrof vintage v;
The capital augmenting technoiogical progress function which
is assumed to depend only on Gv' ¢ 1is a continuous function.
The labor augmenting technological progresslfunction which

is assumed to depend only on Gv' A 1s a continuoué
function snd so also is A ’{(G). It should be noted that
technologlcal progress is assumed to be factor augmenting.
Gross capital accumulation at time v.

The age of the oldest capital good.in use at time ¢t.

The wage rate at time ¢t.

The vintage production function is written as:

Q, ¢ = FIp(G)I, AE)L T &)

v,t s t

It is assumed that:

1. Fi1,0] =0 i.e., it is impossible to produce without labor.

2. F

is. homogeneous of degree one in its arguments, i.e.,

constant returns to scalc apply.

3. F is concave with positive first partial derivatives and

negative second partial derivatives.

‘As was mentioned earlier, a constant savings ratio is assumed,

and also:

L, = Loe = labor supply at time t. (2)




Clearliy:

t
Lt =I L"r ¢ dv = demand for labor at time ¢t. (3)
H
t-m(t)
Iv = Gv " . (4)
Gt = j Ivdv (5)
’ =

Perfect competition is assumed so total output is maximized.
This also implies that there is Tull employment of labor and that the
marginal product of labor will be the same in all vintages and equal to

Lthe current wage rate. Therefore:

8F/8Lv’t = Wt . (6>
By Assumption 2 above:

aF/a(A(GV)LV R h{l(Gv)Lv’t/w(Gv)Iv] say: (D

3

where, by Assumption 3, h’ < 0 and the prime denotes the derivative.

Define the function f(f = h_l) by :

ft

A(GV)LV’t/m(GV)IV I[BF/B(K(GV)LV R » (8)

¥

where, clearly, £’ -< 0. Then, by (6) and (7),

W, = k(Gv)h[k(Gv)LV’t/m(Gv)Iv] (9)
Therefore:
9(G,) 7
L, ¢ = XTE;T £lw /A6 1T | - (;0)




AL this point it is necessary to stipulate our assumptions concerning
h(0) and also the technological progress functions. it is trivially
assumed that @(Gv) and A(Gv) are always positive‘and normalized so
that ¢(0) = A(0) = 1. Also, either one of the followingAtwo mutually

exclusive assumptions will be made:

Assumption 1. h(0) 4is finito, X’(GV) > 0 and @’(GV) > 0.

Assumption 2. h(0) is infinite.

If Assumption 1 ié applicéble it is not necessarily efficient to
employ all machines but the aésumptions concerning technological change
guarantee that the more recent vintages will always be employed in preference
to older ones. If Assumption 2 is applicable it is clear that one will
employ all vintages: there is no economi¢ obsolescence. Therefore, in

either case one may write:

L

Lt-m(L)

where, in the latter case, m(t) is infinite and so no additional tech-
nblogical change assumptions are required.
‘Remark. '

It appears at first sight that the following possibility is not
included by either Assumption 1 or 2 abbve:- namely, h{(0) finite but
)\’(Gv)_E 0. However, in general, the marginal product of labor employed

at time t on vintage v (i.e., MPL _ ) is:
v, L

Lv,t

M.DP. = A(Gv)h[A(GV)LV’t/¢(GV)IV]-
Therefore, as illustrated in the disgram below which is drawn for a
particular time period t, the marginal productivity curve may shift

downward as we consider older vintages. In the case illustrated one would
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employ machines of vintage v as w, < )\(Gv Jh(0), but not machines

l H
l N
of vintage vy (where vy < vl). But if A’(Gv) = 0 then the curve will

not shift. In other words, if one employs machines of vintage v one

1’
will employ nll machines for the same reason as the employment of any of
them. This means that this éase is effectively inéluded in the analysis
under Assumption 2.

M.P.
Lv,t “

K(Gv Yh(0)
1 \

Wt \

K(sz)h(O)

0 : QPA(GV)LV,t/w(GV)IV

It is now possible to show:
Theorem 1.
If either Assumption 1 or 2 is applicable the pseudo-production

function exists and has the following implicit representation:

gg . g% D £13/AA @] = FIL, £136/AAG) I

Proof .

As F[.,.] 1is homogeneous of degree one in its arguments:
b[@(GV)IV.A(GV)LV’tJ = F[1, )\(Gv)Lv’t/Qp(Gv)Iv]cp(Gv)IV

Relations (1), (10) and (11) imply:

t

qQ, - J’ FIL 2t /MG )@ T (2)
t-m(t)
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Also (3) and (10) imply:

¢ 0(G.)

. v .
Lt = j 'ﬁa-‘;-j- f[wt/l(Gv)]IVdv : (13)
t-m(t) '

Substitute =z = Gv’ and therefore Ivdv = dz, into (12) and (13). Then:

t
Q = FI1, £lw /X(2)11p(z)dz ' (14)
Seom(t) A
G
t (z)
L, = %TET f[wt/l(z)]dz (15)
Geom(ty
The object now is to eliminate G and w from (14) and (15)

t-m(t) t

In order to obtain the implicit representation of the pseudo-production
function. 1In other words, it is necessary to eliminate two unknowns from
two oquafions. It is at this point that one must distinguish carefully
between Assumptions 1 and 2. ' In tﬂe latter case an infinite marginal
preduct of lahor at the origin implies that all machines are in use so:

Gymeey =0 . (16)

but w is unknown. Under A.1, is unknown, but it is now

¢ Stom(t)

possible to determine the wage rate in terms of G Therefore in

t-m(t)’
¢ither case there is one less variable to be eliminated. In fact, under

Agsumplion 1 the wage rate will be equél to the marginal product of labor

on the oldest machine in use. Therefore by (9):

we = A6 ,\) h(0) (17)

(t)
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Suppose Assumption 1 is applicable. Substitute (17) into (15) and

one obtains:

G
(z) - . S
L, = %TET £IMG, . 4y )n(0)/N(2) 1dz = T(Gy Gy cyy) S8Y- (18)
G om(t) ’

Now differentiate this partialiy with respect to Gt—m(t)' Therefore:

G
t .
- (z) : o
BT/BGt_m(t} =.;. h(0) fﬁz;; f’[l(Gt_m(t))h(O)/k(Z)]l'{Gt_m(t))dz (19).
G
t-m(t) -

. . f . .
It is clear that (18) may be solved for Gt—m(t) if ané only if BT/BGt_m(t)
is one signed. As f’ < 0 this is certainly the case if k‘(Gé) > 0

which, in fact, was assumed. Therefore one may write:

t,Lt) Say: (20)

Substituting (17) and (19) into (14) and also (19) into (18) the following
identities are seen to hold {(where the time subscript has -been dropped as

it is now redundant):

G .
Q= -’. F{1, T'[A(g(G,L))n(0)/)(z)]1] p(z)dz (21)
g(G,L)
G .
L= f %%—:—;— k) [X(g(G,L))h(O)/)\(z)]dz (22)
g(G,L) .

"In order to obtain the required implicit representation of the
pseudo-production function it remains 6n1y to eliminate g(G,L) between
(21) and (22). Relationships (21) and (22) imply the folliowing:
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G _
/36 = FI1, £IM(@)n(0)/1(G)I] o(G) + [hz(on(g>j‘ A(2)%/3G.dz1"(g)  (23)
g
. o G ! s
/3L = h7(0) A(g) A'(g) I' A(z) dg/oL.dz (24)
3
, G |
/G = 0 = {—(5 £ (g)h(0)/A(G)]1 + A’(g) h(0) j A(z) 3g/d6.dz (25)
g
_ G _
JL/JL = 1 = X'(g) h(0) J' A(z) dg/dL.dz : (26)
g .

where A(z) = ¢(z) f'[R(g)h(O)/k(z)]/Xz(Z)-

One now notes, as expected, that (24) and (26) imply:
/AL = h(0Alg) = w by (17) (27)

From (23) and (27):

/3G + MG) 0l6) ¢ 30/ (6)100/3L = FI1, £ [3Q/ AL/ (6) 11ep(6)  (28)
/ 3
+ h{0)\ (G)aQ/aLj' A(z) 5& dz
g

)\ﬁg; £ [0/ dL (6) 139/ 3L

By (25) the last two terms of (28) sum to zero so the theorem follows.

Now suppose Assumption 2 is applicable. Substitute (16) into (15):

L=J’ %E—E% tlw/A\(z)1dz
o

The partial derivative of the right hand side of this expression with

respect to w is always a negative function of w, as f’/ < 0, irrespective
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of any assumptions that might be made concerning the technological change
functions. Therefore one may solve for the wage rate as a function of G
and L:

w = w(G,L) say.

It can quickly be verified, tﬁat by following the same procedure as béfOre,
one again obtains (27) and hence the Theorem. Therefore the Same result
is applicable under either assumption-“
Remark.

As either Assumption 1 or 2 leads to the same result it will not be
necessary, in the next section, to distinguish the two. 1In the above
analysis they were essentially sufficiency conditions for the existence of

the pseudo-production function.

3. The Derivation of the Necessary bonditions for Steady State Growth.

The existence of ﬁ steady state growth path for all time and for any
value of the savings ratio in = non-degenerate closed interval, or for all
initial conditions, implies, as was seen earlier, that the pseudo~-production
function takes the form:

Q = ¢ H(G L) ' (1)

Therefore:

R/ = H(y) - myH'(y) _ (2)

il

B (y)G" , (3)

0Q/ JL

where y - G-mL.
The partial derivatives, oQ/3G and Q/OL, must be positive
(unless L is zero so, as F[I1,0] = O, BQ/BG is zero also: but this

is trivial) as BF/BIV and aF/aLv . are positive by assumption.
_ ; .
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Now using (1), (2), {(3) and Theorem (2.1}, one obtains:

H(y) = myH'(y) = @(®) [FIL2Ix(®E' (1] - x(6)E[x(@H () IH' () (4)

where w{G) = Gn/l(G)-
This is an identity in &G and vy. First; differentiate both sides

of (4) partially with respect to G and re-arrange. Therefore:
w’ (G [H(y) - myH'(y)] = (G "(GH (¥ [(GH' (y)] (8)
Divide both sides of the above by (G)OQ/0G to obtain:

0/(6) - W (@OH (Y (GH (y)]
w (G) H(y) - myH'(y)

(6)

Lastly, differentiate both sides of (6) partially with respect to vy,

multiply through by [H(y) - myH ' (y) 1f [ (G)H'(y)]/H'(y) and re-arrange

to getl:
) [ (@H(y)] & H%y) _H'(y)(Q-m) ~ myH"(y} {_ ,
O @R GT B @ iy T Ty s R (0
Alternatively:
n’(G)R(G,y) = 0 where (8)
 Jlog £ I(@H ()] H/(A-m) - myEy)  HUy)
R(G:y) = ay g - H(y) — myH’(y) + Hf(y) (9)

We have theretore shown:
lemma 1.
Under the conditions of Theorem 1.1., G and L must always

satisfy: '
' (GIR(G,y) = O

- 14 -




where R{(G,y) is given by (9), vy = G "L and %(G) = Gn/h(G).

Proof .

As above.“
Lemma 2.

If n’(G) = 0 for all G belonging to some open iﬁterval then
technological change must have an Arrow Type representation on this same
interval.

As n’(Gﬁ =0 and OQ/0G *‘0 equation (5) implies ¢'(G) = 0.

By the definition of =n(G), 7/(G) = 0 implies A{(G) = G" and hence thé
1emma.“ | | -
Lemma 3.

1f G* and y* are such that R(Gx,y¥) = 0 then, assuming
' (GIR(G,y) = 0, either:

(a) n'(G*) = 0 or

(b) R(G,y*) = 0 for all G ¢ Ne(G*) and for alil small ¢ 1less

than some € where NQ(G*) = [G: O <|G—G*{< el.
Suppose the lemma is false. Then:
(1) x'(G*) 4 0 and

(2) there exists ¢® and e. <&, c° Ne (G*) such that

1
‘1
R(G",y*) $ 0. Now as 1'(G) is a continuous function so also

is 7w ’(G). Therefore (1) implies there exists €q? say, such

that = (G) % 0 for all G e Ne (G*). Now choose € < €o-
2
As e <& we have G ¢ N_(G¥) so 7/(c°) # 0. But this,
2
together with (2), viclates the condition n’(Go)R(GO,y*) = 0.

Therefore (1) and (2) cannot hold simultaneously and so the lemma

is proved.“
- 15 =




Lemma 4.
Suppose G is such that x’/(G) % 0. Then R{G,y) = 0 for all
y and all G g NS(E).

Proof.

As 1 '(G) % 0 and = ’(G)R(G,y) = 0 one must have R(E,y) =0 for
all y. Then Lemma 4 follows from Lemma 3.”
Remark.

The purposc of Lemma 4 is the following. If x'(G) = 0 for all
G e Ne(G) thgn Lemma 2 is applicable which is what we want. Therefore
one may as wéll assume that there exists G¥ such that. 7 (G*) % 4] and:
so0 by Lemma 4, R(G,y) =0 for all G ¢ NB{G*). Under these two cénditionsr
it is then possible to shoﬁ Lemma 6 below. But Lemma 6 and Lemma 7 are
contradictory so there does not exist G* such that ﬂ’(G*)>% 0. This
information is summarized in Theorem 1 below.

By the above argpment we have circumvented the following difficulty.
There may exist a G¥, say, such that =’(G*) = 0 but ﬁ}(G) $ 0 for
all G { Gx yet G g NS(G*). In this case Lemma 2 would not be applicable.
Lemma 5.

1! technological change is purely capital augmenting one can aggregate
invesiments of different vintages in terms of efficiency units:
specifically,

t
k’(Gv) % 0 dimplies Q = F| ji;¢(Gv)Ivgv, Ll.

Proof. .

0 =all vintages will be employed regardless of h(0).

3 7
As A (Gv)
Therefore (2.10) implies:

L, y = PGIEW)T . : (10)

-~ 16 -




Also (2.14) together with (10) implies:

Gt Gt -
Q = J- F[l,f(wt)3 w(z)dz = FEl,f(-wtjlj p(z)dz ' (117)
: o

o

Similarly (2.15) implies:
G

- t
L, = £ I p(2)dz (12)
0

Equations (11) and (12) then show that:

G . t
t
Q = FIL/£(w),L] = FI j. p(z)dz,L] = Fl J. w(Gv)IvdV,L]
) ' -

as was required."
Lemma 6. .

Suppose there exists G¥ such that 7 (G*) %.0. Then the vintage
and pseudo~production functions have a Cobb—Douglas representation for all
Ge NE(G*)-

Proof.

In the proof to follow al1ll identities will be understood to refer to
the interval Ne(G*)'

As x'(G*) $ 0 we have R{G,y) = 0 by Lemma 4.

Define 6(y) by:

8'(y) = [H'(y)(1-m)-myH*(y) 1/ [H(y)-myH'(y)] - HAy)/H'(y) (13)

Thoen, by the definition of R(G,y) in (9), and as R(G,y) = 0, the
following identity must hold:
Log .f [n(GYH'(y)] = 8(y) + X(G) say, (14)

- 17 -




or:

£ (G (y)] = 2 H (15)
Differentiate (15) partially with respect to y to obtain (16)
and with respect to G to obtain (17):
@OEAE (@E ()] = 87(e® PP = g7/ (yyrmam’ (] (16)
HOH (D I(@E ()] = 1@ MMP= w6yt nan’ ()1 (17)

Now multiply (17) by n(G)H”(y), substitute into (16), and divide through

by fIx(G)H'(y)] (note that L # 0 so this is valid) to get:

a1/ (GYH' ()8 '(y) = K (G&)n(G)H (y) (18)

As n’(G*) £ 0 by assumption and =x'(G) is a continuous function,

w’(GY 4 0 for all G e NS(G*). Therefore (18) may be re-written:

H'(y)8'(y) = a(G)H(y) say. ’ (19)

Then differentiating both sides of (195 partially with respect to G
one sees that a’(G) = 0 so a(G) = a say.

Alternatively, (18) may be writtén:

X (@ = b(Y)n'(G)/n(G) say, (20)

as H¥(y) # 0 by nature of our assumptions on the vintage production
funelions. Again, differentinte both sides of (20) with respect to y

and one sees that b'(y) = 0 or b(y) = b say.

- 18 =~




Substituting (19) and (20) with a(G) = a and b(y) = b into

(18) yields a = b. Therefore (19) and (20) imply:

\

aH¥(y)/H'(y) = adLog.H'(y)/dy ' » (21)

it

8’ (y)

Hi

¥/(G) = an’(@)/n(G) = adLog.n(G)/dG (22)

From (21) and (22),‘respectively:

ee(y)

Ht

kliﬁ’(y)]a say, , (23)

i

ALY kz[ac(G)]a say . ' (24)

Now substitute (23) and (24) into (15) to get:

’ - . ! a _ -
Fln(GH (y)] = ko[ﬂ(G)H (y)]™ where Eo = k1k2 (25)

Put x = n{G)H'(y) into (25} to get:
_ a
f(x) = kox . (26)
Then by the definition of f in terms of h:

h(x) = kgl/h e (27)

Therefore one may write:

Hi]
1

. 4-1/3 1/a
an,t/B[X(Gv)LV’t] h[A(Gv)Lv’t/m(GV)IVJ k [k(Gv)Lv,t/@(Gv)IV] (28)

by (27) where Q . =Flp(G)I , A(G)L, iy

Integrating (28) with respect to ?\(GV)Lv ¢ while holding

H

m(GV)IVI constant yields:
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Q

-1 ' ~1 (1l+a)
vt = K /a.a/(l+a).[cp(Gv)IV] /a.[)\(Gv)LV,t] a /"‘+Y[q;(cv)41v1 (29)

where Y[.] is the arﬁifrary constant of integration.
However, F is homogeneous of dagree one in cp(GV)IV and
K(Gv)Lv’t. Therefore:
Y[cm(Gv)Iv] = YDm(Gv)Ivi.c.

whoere ¢ 18 an arbitrary constant. Therefore Y is a linear homogeneous
function. Using this fact, together with (29), and setting Lv,t = 0

so Qv,t = 0 as it is impossible to produce without labor, it is seen that
Y[.] = 0. (Earlier in this derivation L = 0 was excluded as meaning-
less. This is not at variance with>setting Lv ¢ = 0 as clearly this is

)

possible even with a positive labor force.) Therefore:

-1/a -1/a (1+a)/a
Q, ¢ = K .a/(l+a)-D$(Gv)Iv] g1, ] (30)

v, L

i.e., the vintage production function has a Cobb-Douglas representation
which is the first part of the Lemma.

As the vintage production fﬁnction is Cobb-Douglas h(0) =
s0 there is no restriction on the technological change assumptions.
Therefore assume technological change»is purely capital augmenting:
this involves no loss of generality in the Cobb-Douglas case. Putting

A(GV) = 1 in (30) and applying Lemma 5 one obtains:

G
i
= [k;l/aa/(1+a)]{J cp(z)dz]—l/aLi(;1+a)/a (31)

o}

%

s0 the sccond part of Lemma 6 is anlso Lrue."
Lemma 7.
If the vintage production function is given by (30) for G g NG(G)
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then:

,n-m/aGn-m/aL1+1/a

(a) Q= j where j 1is a constant and G ¢ NP(G).

it

and (b) n'(G) =0 for all G ¢ Ne(G).
Proof .

Again, all identities refer to G ¢ Ne(G)' We first show part (a).

From (26):

£ [w(G,L)/ A (z)]

]

ko[W{G,L)/R(Z)}a , (32)

Equations (2.14), (2.18) and (2.16) and the fact that (in the h(0) = w

case) one can solve for a solution L w(G,L), imply, after substitution

from (30) and (32):

G
Q = kgl/aa/(1+a). J”_{ko[w(G,L)/K(z)]a} (1+a)/a p(z)dz (33)
o
G
L=k I cp(z)[w(G,L)/)\(z)]a/K(z). dz : (34)
o

Then (33) and (34) imply:
dLog®/dL = 1/rL where r = a/(l+a) as w = 0Q/JL.

Therefore:

Q= s = YT s 1" | (35)

where S(G) is the arbitrary constant of integration: a function of G

as @ is a function of G and L. Using (35) and the fact, by Theorem 1.1,
that @ is homogeneous of degree one in G and GnL it can be verified
tllu.t:

s(pe) = p s (36)

where p  is an arbitrary positive constant.
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As (36) is valid for any p it can be differentiated with respect

to p, holding G constant, to obtain:

68 (pG) = (r+n-1)p" T 25(0)

which, after substituting into (36) and setting p = 1, yields:

dLog .5(G)/dG = 8/(6)/S(G) = (r+n-1)/G

Therefore:

< .. r+n=1
S(G) = (J&) (37)
where J is the constant of integration. Now substitute (37) into {35)
to get:; -

Q= j(r+n-1)/r G[G-mL]l/r - J.n«m/a Gn-m/a L1+1/a

which is part (a) of the Lemma.
Noting that (30) implies (31) and by using part (a) of the Lemma

we have:

.6
Fe j’ 'm(z)dz]—l/a (38)

O

Differentiating both sides of (38) w.r.t. G yields:

0(G) = [1 - n(l+a)] g P+a) (39)

But (30) shows that purely capital augmenting technological change is

equivalent to purely labor augmenting technological change providing:

1+1/a

o Y = @ (40)
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TheA(39) and (40) imply A(G) = bG"  so 7’(G) = 0. As the pseudo~production

function is Cobb-Douglas one can assume ¢(G) = 1 without loss of generality:
so part (b) of the lemma is true-"

Finally we obtain the desired result given by:

- Theorem 1.

Under the conditions-of Theorem 1.1. if technological change is
factor augmenting and a function only of gross cumulative investment at
the time of installation and also ¢(.), A(.) and A‘(.) are continuous
functions then;

If either Assumption 2.1. or 2.2. is appiicable technological change
must be Arrow Type.

If there exists G* such that 1’(G*) % ¢ then by Lemma 6, {(30)
is applicable for all G ¢ Ne(G*). But then part (b) of Lemma 7 requires
n’(G*) = 0 which is a contradiction. ‘Therefore ®#’(G) = 0 for all G
and the Theorem follows from Lemma 2.",

Remark 1.

As the applicabllity of Theorem 1.1(b) pertains to points (G, L)
in the non-shaded area of Figure 1 the same restriction must also be‘
made with respect to Theorem 1 above.

Remark 2.

Theorem 2.1. implicitly defines fhe pseudo-production function
Q = Q(G,L). It i8 clear that in general the sign of 82Q/BGZ is indeter-
minnte: in particular it may well be ﬁositive. However, if the conditions

of Theorem 1.1. arc applicable, then one must have:

Q(pG, p"L) = pa(G,L)
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where p 1is an arbitrary positive constant. Differentiate both sides

of the above with respect to p to get (after setting p=1):

i

Q(G,L) = G3Q/3G + (1-n)LdQ/dL

Differentiate both sides of the above with respect to G to.get,
2 2 2
Gd"Q/36” + (1-n)LA"Q/3GAL = 0

and with respect to L to get:
2 2 . 2 _
[(1-n)L3°Q/OL” - ndQ/dL] + GO“Q/3LdG = 0.

As n is a positive fraction and BZQ/BLz < 0  the tefm'in brackets
is negative. Therefore BZQ/SLBG‘> 0. But equation (3.1) can be used to
verify the equality of the cross partial derivatives. Therefore aZQ/aGZ < 0.
In other words, even though the production process operates under conditions
of increasing returns to scale so that BZQ/BGZ may be positive, if a
balanced growth path is to exist these returns to scale must not be large
enough Lo cause increasing returns to capital taken alone.

Remurk 3. '

Lemma 5 gives a simple aggregation result in the event that tech-
nological change is purely capital auémenting (@) = o, m’(G) arbitrary).
If technological change is Arrow Type then a balanced growth path exists
(see Levhari [5]) so that Theoreﬁ 1l.1. gives a simple aggregation result

in this case also.

Furthermore if technological change is Hick's neutral and:

A(G) = p(6) = G (41)
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then, as shown below, Q = Q(G,L) is homogeneous of degree 1l+n in its
arguments providing h(0) is finite. Substitute (41) into (2.12) and

{2.13) and, as h{(0) is finite, substitute (2.17) also. Then:

t
n n n_-
Q, = -f Ffl.f[h(O)Gt_m(t)/Gv}] G I dv (42)
t-m(t) ' '
t -
n n
L, = I £IN0)G,_ (\y/G,1 T dv (43)
t-m(t) ‘ :

One observes from (2.14) and (2.15) that output does not depend on the
time profile of investment. Therefore one can multiply Gt by p (a

positive constant) by multiplying Iv (and hence Gv and G ) by

t-m(t)
p so the right hand sides of (42) and (43} become, respectively:

t

I F[l,f[h(O)pnG:_m(t)/pnG::]] PGy I dv = o¥ g by (42)
t-m(t)

t
j' f[h(O)pnGz_m(t)/pnG:] PI dv = pL by (43).
t-m(L)

Therefore pn+1Q = Q(pG,pL) as reguired.

Remark 1.

Suppose that technological change depends also on gross cumulative
output. at the time of installation. In other words, the vintage production
function is:

Q = Flp(G ,8 DI, MG ;8 )L 1]

v,t y b




where:

v

‘Sv = f Q. dr = gross cumulative output at time V.
’ .
v-m{v)

If the conditions of Theorem 1.1(b) are applicable so there is a constant

savings ratio:

so, in particular;

8, = SV(GV) say.
Therefore one may write:
0(G,,8 ) = (G ) and A(G ,8 ) = A(G ).

It is now seen that under the conditions of Theorem 3.1. the same result

il

must apply. That is, one must have 5'(Gv) 0 and so m(Gv,Sv) is
constant and also K(GV) = G:. Thus technological change must be purely

labor augmenting. Also:
I - oy = B
X(G)) = A(G,S (G ) = G

But ns the existence of a balanced growth path is assumed for all time
Sv(va) = pSv(Gv)' Therefore the A{(.) function must be homogeneous of
degree n in its arguments. In fact, this was assumed by Levhari [6] in
his study of sufficignt conditions.

With this formulation, the same implicit representation of the
pseudo-production function (Theorem 2.1.) would hold, with the required

changes in the ¢(.) and A(.) functions.

This hypothesis has nothing to say about Lundberg's Horndal Effect
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where output per man-hour rose over time even without any new investment;
It may be considered better to replace m(Gv,SV) by m(Gv,St) or @(Gt,sv)
and to make corresponding changes in the }(.) function. This would then
explain the Horndal Effect. However, in this case Theorem 2.1. does not
hold and 1 have been unable to obtain the necessary conditions for the
existence of a balenced growth path.
Remark 5.

For compieteness one might consider the technological change
functions w(Gt,St) and A(Gt,st) which again would explain the Horndail

Effect. The vintage production functions then aggregate to:
Q = Flp(G,8)G, x(G,S)L].

This may be shown rigorously from the preceding aﬂalysis but is intuitively
clear: For in this case learning by doing has been separated from embodi-
ment so the vintage concept plays no role and the capital stéck and labor
force may be aggregated in efficiency units. Note that even if h(0) is
finite there will not be any economic obsolescence. Now Inada [4] has
shown that if the production function is of the form @Q - FiG,L,K(G)]

then necessary conditions for balanced growth require that technological

change, K(G), be Arrow Type. Thus it is clear that in our case (G, 8)

is constant and A(G,5) 1is homogeneous of degree n in its arguments.
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