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A NOTE ON GAMMA DISTRIBUTED LAGS#*
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1. Introduction

Solow [10] generalized Koyck?s method for distributed lags
to a family of J-shaped or unimodel lag distribution given by the
Pascal distributions, Jorgenson [5] advances it to what he calls the

general Pascal distribution., A distributed lag function is given by

(L) 7y = poXy + P1%yy *+ Py ot e
= PoXt + pylxy + p2L2x.h + oaes
= [py + pL -i-p'?.L2 + o0 Ix = p (L)xg
where yi and X are observed values of dependent and independent
variables at time t and the coefficlents are unknown paramenters, and L
is the lag operator. Jorgenson defines the class of rational distributed

-]
functions as the sequence { Py s ...,pj,...} € 1y ={ p | pj=l, p.20} and
. J=0

J
he represents p(L) by the quotient of two finite polynomials

(2) p(L) = %

¥,
The author wishes to thank Professor K, Kuga of Osaka
University for his valuable comments on an earlier draft of the paper and
for helping me on the discussion of the lag operators.




where w(L) = uy + wL + ...+ w L™, and v(L) = v+ L +.. 4 L1, and

u(L) and v(L) do not possess any common latent roots.

To analyse the representation of the infinite polynomial
p(L) by (2), let us first consider a lag operator A =p(L) whose coefficients

w0
lie in a probabilistic space {p| .2 Py = 1, pj% 03}, and

J=0
e @
A J,.,ct = [ gpjxt"j, (E)zpj}%._l-j, e ] == ‘\'jt = [yt’y-b’_l’ .'.]

and th = (xt’xt—l’ ...) lies in a space of bounded sequences of numbers,
X={ P‘b-j | < Ky for all j and ¥ K< + =} .(l) If we take the norm of
operator A as= [l ==(p 3)2, then the operator A which maps X into X

is a pormed ring [Liusternik and Sobolev 8: pp. 90-91], and if we define the
unit operator, e = (1,0,0, .,.,0, ...), then the theorem 2 on page 91 of
Liusternik and Sobolev may be applied and e + A will have an inverse

operator (e + A)~T,

Now let us suppose we have an operator space E, and
¥, © X, X € X and (e + B) Ty = A x, where A and B belong to the operator
space E. Since (e + B) y, ¢ X, and Ax ¢ X, if ||Bl}c} sthen ¥, = (e + B)'1

A X, and conversely if y, = (e + B)~1a Xy, then (e +B) y, = A x.

(1) It is obvious that ¥ € X, since Vox = [yt-k’ Tpgeqr «oo]

= [ijxt-—j—k’ zpjxt_j_k..l’ LI Jag [Kt_k’ Kt..k—l, L] .]t




We may note that even if (e + B) and A are finite polynomials, (e + B)"lA

will be infinite since (e + B)™F = e - B+ B® - ... is infinite.

Koyck lag is obtained by putting A ={1-A, 0,...,0,... },
B ={0,-»,0,...,0,...}, and Solow's Pascal distributed lag is obtained
by putting A = {(1-1)",0,...,0,... } and B ={0,- (D), (EN2,...0,
Jorgenson?s representation (2) corresponds to (e + B) = {1, vi,...,vh} and

A= {U.O,ul,...,um}‘

Koyck and Solow generates the distributed lag coefficients {pk}
by & priori specifying the distributions with one or two paramenters, whereas

Jorgenson tries to approximate {pk} by two finite polynomials whose

coefficients are given by {vk} and {uk} . Consequently Jorgenson?s positions
are twofold: (i) the infinite series {p } may be approximated to a

desired degree of accuracy by two finite polynomials and (ii) it is better

to have fewer number of unknown coefficients {vg} and {uk} to be estimated,
The degrees of polynomials, m and n are given a priori. However, it seems
difficult to satisfy the two criteria (i) and (ii) above simultaneously:

as long as one seeks the position (i), the degrees of polynomials, m, and n

may get larger and larger.(z)

(2) In the approximation theorem 2 [5:p.142] Jorgenson states{ v} and f{u }
may be taken to correspond to the probability distributions of a
non-negative, integer-valued, random variable. However, unless one
constrains v and w_ to be non-negative a priori, it seems difficuit
to estimate them to be non-negative. '




Furthermore, if one uses any estimation procedures .which do not
impose any constraints on the unknown parameters, then one will face two
difficulties: (1) there is no guarantee that{ vy} or {w.} are non-
negative, and (2) the transformetion from y, = w(L). /v(L)xg+ vy to v{L)yy

3
u(L)xy + v(L)w, will generate autocorrelatiog.

In summary one may be obliged to choose one of the two approaches
to the distributed lags: one is to follow the Koyck~Solow line by
specifying a priori the shape of distributed lags, and the other is to
follow Jorgenson's approach by choosing the two finite polynomials of
degrees n and m with a hope to attain ardesired level of accuracy in

approximating {pk} .

Since the latter approach tends to involve three problems, i.e,
(i) the choice of n and m, (ii) estimation procedures which guarantee
nonnegative coefficients, and (iii) autocorrelation, it may be better %o

specify the shape of distributed lags with one or two parameters.,

In this note we propose to represent the unknown parameters of the
distributed 1ags<{pk } by a family of J-shaped or unimodal lag distrib-
utions given by the gamma function, and once we obtain the estimates of

the parameter(s) of the gamma distribution by an appropriate estimation

(3) These two points, especially the second, may be surmounted by using
a technique given in [4]. The first point is also applicable to the
Almon distributed lags.




procedure, we approximate the distribution to a discrete distribution.
As discussed in the following sections, the estimation of gamma dis-

tributed lags is simplier than that of Solow?s Pascal distributed lags,

2. Gamma Distributed Lags

Let the sequence of the unknown coefficients in equation (1)
follow the gamma distribution

(3) po= _1_ kX k» 0, 50

FZSS

where 1 ® kS-le~Kgk = 1, and p, =0 for s41.
I‘tsj o

Then as illustrated in Figure 1, for different values of s, {pk} has the

unimodsl distributions, The maximum value of Py is reached at k = s ~ 1,

Figure 1 Camma Distribution

Ir P is given as in equation (3), equation (1) becomes

¢ - s 5=l -kk -
(1) vy piki)k e L" x. = p(L) x.




e

One may approximate the distribution (3) in a discrete version,
since the values of k, in discrete time period analysis, are integer values.

(4) 1 kS-1 ek ak - 1 5 kS-lek

T(s) G k=0

where G =% Kk5-le—k,
k=0

As given in Figure 1, Py is zero for s # 1, and thus in this
case equation (1)* becomes

Iy = Py % +'p2xt-2 Foeen
If one is certain that P, is not zero, then the gamma distribution (3)
may be changed to

(5) B = _(]:;_ks‘le"k k1, sy O.

3. BEstimation of the Gamma Distributed Lags

The estimation of the gamma distriuted lags (4) or (5) involves
the problem of nonlinearity in the parameter, and thus an appropriate
nonlinear estimation method should be used. In our example we use the
modified nonlinear least squares method of Marquardt [9]. As an
illustration of the gamma distributed lags we will estimate the investment
function of the total manufacturing industry in Canada using annual data,

and we use Jorgenson's investment function given in [6]:

() 1= u(L)[Kf - Ky ]+ oKy +ug




-7 -
where It = gross investment at time t
Kt = expected capital stock at time b
Kt—l = net capital stock at the beginning of time "
S .= depreciation rate
(L) = distributed lag function
uy, = disturbance term.
We represent the expecged capital stock at time t by
o K= 53
where V£ and Py are respectively the current value of output measured
in terms of value added in total manufacturing and price deflator for

the total manufacturing output. )

Since we use annual data and since investment includes some items
which will be completed within the same period (i.e. capital item
charged to the operating expenses), let us use the gamma distributed lag

structure of equation (5). If we substitute (7) into (6), we will obtain

(4) Jorgenson uses the user cost, but we used P as “he price deflator
because data to derive the user cost were not available,

The sources of data are as follows: Fixed capital series were taken
from Fixed Capital Flows and Stocks Manufacturing 1926-1960, Dominion
Bureau of Stasistics, Latalogue No. 13-523 August 1966. Total
manufacturing fixed capital series in constant 1957 dollars are given
in p.A-6 for 1926.1960. From 1961 to 1967, the figures were provided
by Mr. €. Braithwaite of D.B.S.

The output figures were obtained from census value added by
manufacturing given in M.C. Urquhart (ed.) Historical Statistics of
Canada, Cambridge University Press, 1965, @-11 in p. 463 and in Canada
Year Book, vario s issues,

The price index, P,, was taken from "the general wholesale price
indexes,” Canadian Statistical Review, various issues. The series
based on 1935-39=100 were converted to a 1957=100 basis.




[s2]
T kS le®x 46K . +u

8) Iy = Ny tk t-l ot

t

Q™

where X, = Vh-ktl - Vt-k .
Prnn  Pox

The first term of the right hand side of equation (8) is an infinite series,
and for estimation it is necessary to limit the sum to some finite number.
Following Klein [7] and Dhrymes [3], we truncate the infinite sum at m and
rewrite (8) in the alternate form

(8)7 I, =6n + B % Ll ¥x, 4+ 8K, . +u

E =1 bk Tl T g

(5)
where n = = & k5 Ve ¥M, and M = max(x

).
—) b,k -k

The choice of m is not a trivial matter, since the estimate of

s may depend upon m, As a possible criterion, one may turn to the

{(5) The Klein-Dhrymes technique gives = zt 8 )\jx_j which is independent
30
of t, and this is possible due to the exponentiality of the Koyck lag. ¢
If we follow their line more closely, then we could re-formulate (8) as
follows:

B t"il s-1 -k,

I KS-LleHKx + 8§ K +u
t o § k=0 Tk

+
t, t-k tel t

]
=3
It ™8

_1__
_ B slk n

x, (b)) Le~(P)y L5k 4y
g o -

-k t-1  t

t-1
B Z kS Leky

N 5Lk,
- bk $ a+k)
G k=0

+
k=0 t "k

+§ Kt-l + ut

DI'@ G ™ G W
EM&B

Since (1 + % ys-1 ¢ (14k)51, we may approximate

- B s-1 .~k B 18-1.~t
It—aZk ext__k-f-{_}_t e~V N, 8Kp 4 +tuy

where n , = g (l+k)s"le‘kx_k.

k=0
This approach, compared to the one presented in equation (&)Y, has an
estimation errors which are built in when we approximated (1+k/t) by (1+k),
and they do not disappear. Whereas equation (8)% guarantees that the
estimation errors disappear as m = %,




principle of the nonlinear least squares which is to minimize the sum of
squares, Q = E (yt - ft)z , Where ¥y and ft are respectively dependent
variable and Ezilinear function whose coefficients are to be estimated.
Since the estimate of the variance of uy, Bﬁ, is given by Q/(T-k), k
being the number of parameters to be estimated, we may choose m such that
5% is a minimun, ()
We have experimented with m = 4,5,6,7,8,9, and as shown in
Table 1, at m=b6, the estimate of the variance of u,, Gﬁ, reaches a

minimum within this range of m. As a set of initial values for the

estimation of equation (8)% we chose ﬁo = 1.0, éo = .16, ;o = 2.0, and

~

50 = .0685. The choice of§ o Was from the average depreciation value of
capital stock series, whereas ;o’ éo’ and go were arbitrarily chosen.(7)
In Table 1 the figures in parentheses were the estimated standard errors
of the coefficients, ﬁg is the coefficient of determination adjusted for
degrees of freedom, var is the estimated variance of the disturbance term,

and W is the DurbinWabtson test statistics,

(6) The range of m to be examined will be limited by the number of data
available at hand, and the minimum if attained will be a local one.
In our experiment the sample period without counting the lags is from
1949 to 1967 for all values of m,

{7) Since the nonlinear least squares method only guarantees a local minimum,
we tested whether converged values of the parameters, especially the
estimate of s, may differ by the choice of initial value of sy For
this purpose we chose s, = 1.5 and s, = 4.0, while holding the initial
values of other parametérs unchanged. m was set at 6. The converged
values of the estimated coefficients were the same up to four decimal
places,
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Table 1: Changes in the Upper Sum Number m and
Estimated Results

m ﬁ E s 3 ﬁ? var W

L 736.4415 L7710 2.8243 L0277 .82 27165.5 1.37
(418.5039) (.1801) (.4548 (.0211)

5 748.,2283 .8216 2.9991 .0204 .8l 23173.9 1.40
(363.9757) (.1671) (.4190)  (.0R00)

6  780.2656 .84,86 3.0295 L0142 .85 21167.2 1.41
(350.9799  (.1577) (.3619) (.0199)

7 795.3340 BL61 2.9901 .0128 .85 21727.1 1.46
(364.9233) (.1617) (.3645)  (.0207)

8 797.6076 8489 2.9901 .0120 .85 21849.1 1.44
(368.2027) (.1639) (.3629) (.0210)

9  797.00L6 .8522 2.9882 L0115 .85 21853,2 144

(368.5688) (.1653) (.3605) (.0211)

The lag structure estimated as in Table 1 for m = 6 is presented
in Figure 2, The peak of the lag response occurs at k=2.0295, or during

the previous period because of the way lag is set up by equation (5).
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Following the criterion of choosing m above, we chose m = b,
The estimated results tend to be stable over the change in the value m.
The Durbin-Watson test statistics indicate no first-order autocorrelation

at .0l level.®) | P

Ui
O~ p

0 1 2 3 I 7 Lags in Years

Figure 2: The Time Form of the Distributed Lags

4, Conclusions

The gamma distributed lag presented in the previous section
seems to work fairly well and compared to the Pascal distributed lag,
the former involves only one unknown parameter to be estimated, s, which
does not have to be an integer, and thus the estimation procedure is

easier than that of the Pascal distributed lag.

(8) If the first order autocorrelation exists, we may transform equation
(8)* into

% ~le—k F *
I't‘,- = C(.o -+ _GB_ El kS le Xtk + 5Kt._l + e‘b

2R

% 3 ¥*
where I’t = It— pIt_l, G,O-—B nO ( 1-‘9 ) 3 thk— xt—k—pxt-k-l,
3*
Kt = Kt"pKt-l’ and 8y = Wy = PYy 4. This equation may be

estimated by the nonlinear least squares method.




- 12 -

One may advance the gamma distribution to a more general form

" than equation (4). We may put

1 51 _-0k
= = ke o >0
T G
where G = L kS-Lle~0K  and Py attains maximum at k = 2 a L, Koyck lag

may be represented by putting s = 1. We tested this general form for m = 6,

and the resultis were

n=902.8861 , B = .795L, & =2.8497 , &= .9912

(563. 344k ) (.2821) (1.9057) (.9453)
3= .01127, B = .83, var =23(67.2, DW = 1.35
(.0230)

In general the generalized form tended to have a strong multicollinearity
between the first derivative variable associated with o and that with s.

The estimated simple correlation between a and s was .98,

Equation (8)¢ is moderately nonlinear and the nonlinear least
squares method seems to be applied without any difficulty. The consistent
properties of nonlinear least squares under certain regularity conditions
were given in Hartley and Booker [2]. If there is a simultaneous deter-
mination of investment, It’ and output, Vt’ then we may apply a technique

such as given in [1].

By truncating the infinite series as we did in equation (8)f we may
incur some errors on the part of the estimators, and the magnitude of the
error will depend on the size of m as well as on the value of s. Whenm
gets large relative to s, the maximum order of errors will tend to be zero.

This may be illustrated as follows:

The gamma distributed lag model without truncation is glven by
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3

_ B & ;s-1-k
(9) I = kzl ke % F 8K, Ty

Pan

whereas the truncated version is

- B s-1 -k P
(10) 1, =80+ £ }El S A L
- s-1_-k
where n=_Lt. ¥ x5 e M. The difference between (9) and (10) in
k=m-+1

estimating parameters arises from the first order partials associated

with B and s. For equation (9) they are

oL, _ 1 s ks—le—kxt y
3B G k=1 -
aI% a( L ks-lgk
o 1 -
'a'i =B T 5 ke %) .
S k= ds

whereas for equation (10) they are

oL 1 -
t T1+'”L1£'k83“ekx

3B G k=1 t-k
L ps-1.-

Ay _p B o0 =k hey )

os k=1 ds

Comparing 3I, with 3IF , we find that
p 1 )

it e s

op ds
ol m
e emy L o3 kSleky
© . 31 3
where ¢, = L ¥ kSLe™X, It is clear that asm » ®, ¢ - 0, and o1t - 9Lt
1 G 1 o
38 9B
%*
And for ?_:_E_’g and _a_I’g_ we find that
os ds
X _ B w
b= B 0§ yS-ledy + B % e-lek
35 Cpemn bk TG k=l -k
=4+ g
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2 1. s-1 o
where A= T gk e %)) is the neglected term due to truncation,
k=mt-1 ds

and it is a source of errors caused by using equation (10) instead of (9).

The maximum order of this source of errors will be given as

follows; since as argued in section 1 X is a bounded sequence such

that ’x%_kl ¢ ht for all k, A becomes

o 1 | s-l -k
‘ A’:'Qﬂa( G X ) |
9s

© 1 ys5-1 =k
¢ 2 3( g k>""e™) K = ek
k=m-+L 55 t 2t

@ 1 j5-1o-k
where €, = X 3 G k¥™*€™)  The maximum order of the source of errors,

k=m+L s

€K, will tend to zero as m —~ P ¢ = 0. How fast ¢, as well as e,tends

towards zero depends on the value of s.

Queents University.
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