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Abstract

When there are few treated clusters in a pure treatment or di�erence-in-di�erences

setting, t tests based on a cluster-robust variance estimator (CRVE) can severely over-

reject. Although procedures based on the wild cluster bootstrap often work well when

the number of treated clusters is not too small, they can either over-reject or under-

reject seriously when it is. In a previous paper, we showed that procedures based on

randomization inference (RI) can work well in such cases. However, RI can be imprac-

tical when the number of clusters is small. We propose a bootstrap-based alternative

to randomization inference, which mitigates the discrete nature of RI P values in the

few-clusters case.

Keywords: CRVE, grouped data, clustered data, panel data, wild cluster bootstrap,
di�erence-in-di�erences, DiD, randomization inference

∗The procedure discussed in this paper was originally proposed in a working paper circulated as �Ran-
domization Inference for Di�erence-in-Di�erences with Few Treated Clusters.� A revised version of that
paper no longer contains the WBRI procedure. This draft borrows heavily from the previous version of the
working paper. We are grateful to Je�rey Wooldridge, seminar participants at the Complex Survey Data
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1 Introduction

During the past decade or two, it has become common for empirical work in many areas
of economics to involve models where the error terms are allowed to be correlated within
clusters. Much of this work employs di�erence-in-di�erences (DiD) estimators, where the
dataset has both a time and a cross-section dimension, and clustering is typically at the
cross-section level (say, by state or province). Cameron and Miller (2015) provides a recent
and comprehensive survey of econometric methods for cluster-robust inference.

Despite considerable progress in the development of suitable econometric methods over
the past decade, it can still be a challenge to make reliable inferences. Doing so is particularly
challenging in the DiD context when there are very few treated clusters. Past research,
including Conley and Taber (2011), has shown that inference based on cluster-robust test
statistics can greatly over-reject in this case. MacKinnon and Webb (2017b) explains why
this happens and why the wild cluster bootstrap of Cameron, Gelbach and Miller (2008)
does not solve the problem; see also MacKinnon and Webb (2017a). When there are very
few treated clusters, the restricted wild cluster bootstrap often severely under-rejects, and
the unrestricted wild cluster bootstrap often severely over-rejects.

One potentially attractive way to obtain tests with accurate size when there are few
treated clusters is to use randomization inference (RI). This involves comparing estimates
based on the clusters that were actually treated with ones based on control clusters that were
not treated. Several authors have recently investigated this approach; see Conley and Taber
(2011), Canay, Romano and Shaikh (2017), Ferman and Pinto (2015), and MacKinnon and
Webb (2018a).

RI procedures necessarily rely on strong assumptions about how similar the control
clusters are to the treated clusters. MacKinnon and Webb (2018a) shows that, for the
Conley-Taber procedure, these assumptions almost always fail to hold when the treated
clusters have either more or fewer observations than the control clusters. As a consequence,
the procedure can over-reject or under-reject quite noticeably when the treated clusters are
substantially smaller or larger than the controls. MacKinnon and Webb (2018a) suggests
that more reliable inferences can often be obtained by basing randomization inference on t
statistics rather than coe�cient estimates.

In Section 2, we brie�y discuss some existing procedures for inference with clustered
errors. Subsection 2.1 explains how the wild cluster bootstrap works. Subsection 2.2 then
introduces randomization inference and discusses two variants of it, the one based on co-
e�cient estimates proposed in Conley and Taber (2011) and the one based on t statistics
proposed in MacKinnon and Webb (2018a). All RI procedures encounter a serious practical
problem when the number of controls is small. Since there are not many ways to compare
the treated clusters with the control clusters, the RI P value can take on only a small number
of values in such cases. We discuss this problem in Section 3.

Section 4 then introduces a modi�ed RI procedure closely related to the wild cluster
bootstrap that solves this problem in some cases. This procedure is the main contribution
of this paper. In Subsection 4.1, we show that it can substantially improve inference in cases
where the only problem is an insu�cient number of control clusters. An empirical example
from Decarolis (2014) is presented in Section 5. Section 6 concludes.
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2 Cluster-Robust Inference

A linear regression model with clustered errors may be written as

y ≡


y1
y2
...
yG

 = Xβ + ε ≡


X1

X2
...
XG

β +


ε1
ε2
...
εG

, (1)

where each of the G clusters, indexed by g, has Ng observations. The matrix X and the

vectors y and ε have N =
∑G

g=1Ng rows, X has k columns, and the parameter vector β has
k rows. Each subvector εg is assumed to have covariance matrix Ωg and to be uncorrelated
with every other subvector. The covariance matrix Ω of the entire error vector is block
diagonal with diagonal blocks the Ωg. OLS estimation of equation 1 yields estimates β̂ and
residuals ε̂.

Because the elements of the εg are in general neither independent nor identically dis-
tributed, both classical OLS and heteroskedasticity-robust standard errors for β̂ are invalid.
As a result, conventional inference can be severely unreliable. The true covariance matrix
for the model (1) is

(X ′X)−1

(
G∑

g=1

X ′gΩgXg

)
(X ′X)−1. (2)

This can be estimated by using a cluster-robust variance estimator, or CRVE. The most
popular CRVE is:

G(N − 1)

(G− 1)(N − k)
(X ′X)−1

(
G∑

g=1

X ′gε̂gε̂
′
gXg

)
(X ′X)−1, (3)

where ε̂g is the subvector of ε̂ that corresponds to cluster g. This is the estimator that
is used when the cluster command is invoked in Stata.1 Based on the results of Donald
and Lang (2007) and Bester, Conley and Hansen (2011), it is common to assume that the
t statistics follow a t(G− 1) distribution; this is what Stata does by default.

It is not obvious that using t statistics based on the CRVE (3) is valid asymptotically. The
proof requires technical assumptions about the distributions of the errors and the regressors
and how the number of clusters and their sizes change as the sample size tends to in�nity. See
Djogbenou, MacKinnon and Nielsen (2018). Nevertheless, test statistics based on (3) seem
to yield reliable inferences when the number of clusters is large and there is not too much
heterogeneity across clusters. In particular, the number of observations per cluster must
not vary too much; see Carter, Schnepel and Steigerwald (2017) and MacKinnon and Webb
(2017b). However, t statistics based on (3) tend to over-reject severely when the parameter
of interest is the coe�cient on a treatment dummy and there are very few treated clusters;
see Conley and Taber (2011) and MacKinnon and Webb (2017b). Rejection frequencies can
be over 75% when all the treated observations belong to the same cluster.

1One of the earliest CRVEs was suggested in Liang and Zeger (1986). Alternatives to (3) have been
proposed in Bell and McCa�rey (2002) and Imbens and Kolesár (2016), among others.
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In this paper, we are primarily concerned with the di�erence-in-di�erences (DiD) model,
which is often appropriate for studies that use individual data in which there is variation in
treatment across both clusters (or groups) and time periods. We can write such a model as

yigt = β1 + β2GTig + β3PTit + β4TREATigt + εigt, (4)

i = 1, . . . , Ng, g = 1, . . . , G, t = 1, . . . , T,

where i indexes individuals, g indexes groups, and t indexes time periods. Here GTig is
a �group treated� dummy that equals 1 if group g is treated in any time period, PTit is a
�period treated� dummy that equals 1 if any group is treated in time period t, and TREATigt

is a dummy that equals 1 if an observation is actually treated.
The coe�cient of most interest, on which we focus in this paper, is β4, which measures

the e�ect on treated groups in periods when there is treatment. In many cases, of course,
regression (4) would also contain additional regressors, such as group and/or time dummies,
which might make it necessary to drop GTig, PTit, or both. Following the literature, we
divide the G groups into G0 control groups, for which GTig = 0, and G1 treated groups, for
which GTig = 1, so that G = G0 +G1.

We are concerned with the case in which G1 is small. In this case, as previously noted,
CRVE-based inference fails. It also fails when G0 is small if every cluster is either treated
or not treated. However, in a DiD model where treatment only takes place in some time
periods, it is possible for CRVE-based inference to perform well even when G0 = 0; see
MacKinnon and Webb (2017a,b). In the remainder of the paper, since we are focusing on
the DiD case, we assume that only G1 may be small.

The reason for the failure of CRVE-based inference when G1 is small is explained in de-
tail in MacKinnon and Webb (2017b, Section 6). Essentially, the problem is that the least
squares residuals must be orthogonal to the treatment dummy variable. This implies that
they sum to zero over all the treated observations. When those treated observations are
spread over many clusters, there is no problem. But when they are concentrated in just a
few clusters, some of the terms that are summed in the middle matrix of (3) severely under-
estimate the corresponding quantities in the matrices X ′ΩgX.2 This causes the standard

error of β̂4 to be seriously underestimated.

2.1 The Wild Cluster Bootstrap

The wild cluster bootstrap (WCB) was proposed in Cameron, Gelbach and Miller (2008) as
a method for reliable inference in cases with a small number of clusters, and its asymptotic
validity is proved in Djogbenou, MacKinnon and Nielsen (2018).3 The WCB was studied
extensively in MacKinnon and Webb (2017b) for the cases of unbalanced clusters and/or
few treated clusters. Because we will be proposing a new procedure that is closely related
to the wild cluster bootstrap in Section 4, we review how the latter works.

2Of course, even when G1 is not small, the matrices N−1g X ′g ε̂g ε̂
′
gXg in (3) do not estimate the corre-

sponding matrices N−1g X ′ΩgX in (2) consistently, because the former matrices necessarily have rank 1.
But the summation in the middle of expression (3), appropriately normalized, does consistently estimate
the matrix X ′ΩX, appropriately normalized. See Djogbenou, MacKinnon and Nielsen (2018) for details.

3A di�erent, but less e�ective, bootstrap procedure for cluster-robust inference was previously suggested
in Bertrand, Du�o and Mullainathan (2004); see MacKinnon and Webb (2017a).
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Without loss of generality, we consider how to test the hypothesis that βk, the last
coe�cient of β in equation (1), is zero. Then the (restricted) wild cluster bootstrap works
as follows:

1. Estimate equation (1) by OLS.

2. Calculate t̂k, the t statistic for βk = 0, using the square root of the kth diagonal element
of (3) as a cluster-robust standard error.

3. Re-estimate the model (1) subject to the restriction that βk = 0, so as to obtain
restricted residuals ε̃ and restricted estimates β̃.

4. For each of B bootstrap replications, indexed by b, generate a new set of bootstrap
dependent variables y∗big using the bootstrap DGP

y∗bigt = Xigtβ̃ + ε̃igtv
∗b
g . (5)

Here y∗bigt is an element of the vector y∗b of observations on the bootstrap dependent
variable, Xigt is the corresponding row of X, and v∗bg is an auxiliary random variable
that follows the Rademacher distribution; see Davidson and Flachaire (2008). It takes
the values 1 and −1 with equal probability.4

5. For each bootstrap replication, estimate regression (1) using y∗b as the regressand.
Calculate t∗bk , the bootstrap t statistic for βk = 0, using the square root of the kth

diagonal element of (3), with bootstrap residuals replacing the OLS residuals, as the
standard error.

6. Calculate the bootstrap P value as

p̂∗s =
1

B

B∑
b=1

I
(
|t∗bk | > |t̂k|

)
, (6)

where I(·) denotes the indicator function. Equation (6) assumes that the distribution
of tk is symmetric. Alternatively, one can use a slightly more complicated formula to
calculate an equal-tail bootstrap P value.

The procedure just described is known as the restricted wild cluster, or WCR, bootstrap,
because the bootstrap DGP (5) uses restricted parameter estimates and restricted residuals.
We could instead use unrestricted estimates and residuals in step 4 and calculate bootstrap
t statistics for the hypothesis that βk = β̂k in step 5. This yields the unrestricted wild
cluster, or WCU, bootstrap.

MacKinnon and Webb (2017b) explains why the wild cluster bootstrap fails when the
number of treated clusters is small. The WCR bootstrap, which imposes the null hypothesis,
leads to severe under-rejection. In contrast, the WCU bootstrap, which does not impose

4Because v∗bg takes the same value for all observations within each group, we would not want to use the
Rademacher distribution if G were smaller than about 12; see Webb (2014), which proposes an alternative
for such cases.
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the null hypothesis, leads to severe over-rejection. When just one cluster is treated, it over-
rejects at almost the same rate as using CRVE t statistics with the t(G− 1) distribution.

MacKinnon and Webb (2018b) proposes modi�ed versions of the WCR and WCU boot-
straps for inference with few treated clusters. Rather than the auxiliary random variables
being drawn at the level at which the errors are believed to be clustered, they are drawn
at a lower level corresponding to `subclusters' of the original clusters. For example, in the
DiD model (4), we might draw GT independent values of v∗bgt . It is up to the investigator to
decide on the appropriate level of subclustering. In the limit, there is only one observation
per subcluster, and the subcluster wild bootstrap is simply the ordinary wild bootstrap.

The asymptotic validity of the ordinary wild bootstrap for the model (1) combined with
the CRVE (3) is proved in Djogbenou, MacKinnon and Nielsen (2018). Theoretical and
simulation results in MacKinnon and Webb (2018b) and simulation results in Djogbenou,
MacKinnon and Nielsen (2018) suggest that the ordinary wild bootstrap works well for equal-
sized clusters and for cluster-speci�c heteroskedasticity, even when there are few treated
clusters. However, it works less well for unequal cluster sizes and other types of heterogeneity
across clusters. In general, the restricted version works better than the unrestricted version.

2.2 Randomization Inference

Randomization inference, �rst proposed in Fisher (1935), is a procedure for performing exact
tests in the context of experiments. The idea is to compare an observed test statistic τ̂ with
an empirical distribution of test statistics τ ∗j for j = 1, . . . , S generated by re-randomizing
the assignment of treatment across experimental units. To compute each of the τ ∗j , we
use the actual outcomes while pretending that certain non-treated experimental units were
treated. If τ̂ is in the tails of the empirical distribution of the τ ∗j , then this is evidence
against the null hypothesis of no treatment e�ect.

Randomization tests are valid only when the distribution of the test statistic is invari-
ant to the realization of the re-randomizations across permutations of assigned treatments
(Lehmann and Romano, 2008). Whether this key assumption is true in the context of policy
changes such as those typically studied in the DiD literature is debatable. Any endogene-
ity in the way policies are implemented over jurisdictions and time would presumably cast
doubt on the assumption.

When treatment is randomly assigned at the individual level, the invariance of the dis-
tribution of the test statistic to re-randomization follows naturally. However, if treatment
assignment is instead at the group level, as is always the case for DiD models like (4), then
the extent of unbalancedness can determine how close the distribution is to being invariant.

It is obvious that the proportion of treated observations matters for β̂4 in (4) and its
cluster-robust standard error. Let d̄ =

(∑G1

g=1Ng

)
/N denote this proportion. When clusters

are balanced, the value of d̄ will be constant across re-randomizations. However, when
clusters are unbalanced, d̄ may vary considerably across re-randomizations. This implies
that the distributions of β̂4 may also vary substantially. Randomization inference may not
work well in such cases.

MacKinnon and Webb (2018a) studies two types of RI procedure. One uses β̂4 in (4)
as τ̂ , and the other uses the cluster-robust t statistic that corresponds to β̂4. The former
procedure, which we refer to as RI-β, is quite similar to a procedure proposed in Conley and
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Taber (2011). It is only valid, even in large samples, if re-randomizing does not change the
distribution of the β̂∗4j. The latter procedure, which we refer to as RI-t, is evidently valid
in large samples whenever the cluster-robust t statistics follow an asymptotic distribution
that is invariant to d̄ and to any other features of the individual clusters. However, as Mac-
Kinnon and Webb (2018a) shows, it is generally not valid in �nite samples when d̄ varies
across re-randomizations, especially when G1 is small. Nevertheless, the RI-t procedure
typically works much better than the RI-β procedure, especially when G1 is not too small.

When there is just one treated group, it is natural to compare τ̂ to the empirical dis-
tribution of G0 di�erent τ

∗
j statistics. However, when there are two or more treated groups

and G0 is not quite small, the number of potential τ ∗j to compare with can be very large. In
such cases, we may pick S of them at random. To avoid ties, we never include the actual τ̂
among the τ ∗j . Some RI procedures do in fact include τ̂ , however. Provided S is large, this
is inconsequential.

The randomization inference procedures discussed in MacKinnon and Webb (2018a) for
the model (4) work as follows. Here τ̂ denotes either β̂4 or its cluster-robust t statistic, and
τ ∗j denotes the corresponding quantity for the j th re-randomization.

1. Estimate the regression model and calculate τ̂ .

2. Generate a number of τ ∗j statistics, S, to compare τ̂ with.

• When G1 = 1, assign a group from the G0 control groups as the �treated� group
g∗ for each repetition, re-estimate the model using the observations from all
G groups, and calculate a new statistic, τ ∗j , indicating randomized treatment.
Repeat this process for all G0 control groups. Thus the empirical distribution of
the τ ∗j will have G0 elements.

• When G1 > 1, sequentially treat every set of G1 groups except the set actually
treated, re-estimate equation (4), and calculate a new τ ∗j . There are potentially

GCG1 − 1 sets of groups to compare with, where nCk denotes �n choose k.� When
this number is not too large, obtain all of the τ ∗j by enumeration. When it exceeds
B (picked on the basis of computational cost), choose the comparators randomly,
without replacement, from the set of potential comparators. Thus the empirical
distribution will have S = min(GCG1 − 1, B) elements.

3. Sort the vector of τ ∗j statistics.

4. Determine the location of τ̂ within the sorted vector of the τ ∗j , and compute a P value.
This may be done in more than one way, as we discuss in the next section.

In the above procedures, we need to assign a starting period for �treatment� in each
re-randomization if we are dealing with a DiD model like (4). The method used in the
simulation experiments in MacKinnon and Webb (2018a) and in Subsection 4.1 below is to
make the treatment period(s) the same for each re-randomization as for the actual sample.
Thus if, for example, G1 = 1 and treatment began in 1978, the single �treated� group in all
re-randomizations would start treatment in 1978. If G1 = 2 and treatment began in 1978
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and 1982, then, for each re-randomization, one group would begin treatment in 1978 and
the other in 1982. In our simulations, we ordered both the actually treated groups and the
controls by size. Thus if, for example, treatment began in 1978 for group 3 and in 1982 for
group 11, and N3 > N11, then treatment would begin in 1978 for the larger control group
and in 1982 for the smaller one. We also experimented with assigning treatment years at
random and found that doing so made very little di�erence.

3 Randomization Inference and Interval P Values

The most natural way to calculate an RI P value is probably to use the equivalent of equation
(6). As before, S denotes the number of repetitions, which would be G0 when G1 = 1 and
the minimum of GCG1 − 1 and B when G1 > 1, where B is a user-speci�ed target number
of replications. Then the analog of (6) is

p̂∗1 =
1

S

S∑
j=1

I
(
|τ ∗j | > |τ̂ |

)
. (7)

This makes sense if we are testing the null hypothesis that β4 = 0 and expect the τ ∗j to
be symmetrically distributed around zero. If we were instead testing the one-sided null
hypothesis that β4 ≤ 0, we would want to remove the absolute value signs.

Equation (7) is not the only way to compute an RI P value for a point null hypothesis.
A widely-used alternative is

p̂∗2 =
1

S + 1

(
1 +

S∑
j=1

I
(
|τ ∗j | > |τ̂ |

))
. (8)

Both procedures are valid, as would be any procedure that yields a number between p̂∗1 and
p̂∗2, because P values based on a �nite number of simulations are interval-identi�ed rather
than point-identi�ed.5

It is easy to see that the di�erence between p̂∗1 and p̂∗2 is O(1/S), so that they tend to
the same value as S →∞. There is evidently no problem if S is large, but the two P values
can yield quite di�erent inferences when S is small. The analogous issue should not arise
for bootstrap tests, because the investigator can always choose B (the number of bootstrap
samples, which plays the same role as S here) in such a way that equations (7) and (8) yield
the same inferences. This will happen whenever α(B + 1) is an integer, where α is the level
of the test. That is why it is common to see B = 99, B = 999, and so on.

For small values of S, the con�ict between inferences based on p̂∗1 and p̂∗2 can be sub-
stantial. Figure 1 shows analytical rejection frequencies for tests at the .05 level based on
equations (7) and (8), respectively. The tests would reject exactly 5% of the time if S
were in�nite, but the �gure is drawn for values of S between 7 and 103. In the �gure,
R denotes the number of times that t̂ is more extreme than t∗j , so that p̂∗1 = R/S and
p̂∗2 = (R + 1)/(S + 1).

It is evident that p̂∗1 always rejects more often than p̂∗2, except when S = 19, 39, 59, and
so on. Even for fairly large values of S, the di�erence between the two rejection frequencies

5The problem with P values not being point-identi�ed is discussed at length in Webb (2014).

8



Figure 1: Rejection Frequencies and Number of Simulations
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can be substantial. The �gure is drawn under the assumption that we reject whenever either
P value is equal to or less than .05. This is the only correct procedure for p̂∗2. However, for
p̂∗1 it might be more natural to reject only when p̂∗1 < .05. If that were done, the results for
p̂∗1 with S = 20, 40, 60, and so on would be identical to the results for p̂∗2 with those values
of S. The remainder of the �gure would be unchanged.

Suppose the data come from Canada, which has just ten provinces. If one province is
treated, then G1 = 1, G0 = 9, and the P value can lie in only one of nine intervals: 0 to
1/10, 1/9 to 2/10, 2/9 to 3/10, and so on. Even if R = 0, it would never be reasonable to
reject at the .01 or .05 levels.

It is possible to eliminate the interval and obtain a single P value by using a draw
from the U[0, 1] distribution. The procedure proposed in Racine and MacKinnon (2007b)
simply replaces the 1 after the large left parenthesis in (8) with such a draw. A similar
procedure, which allows for ties, is used in Young (2015). However, these procedures have
the unfortunate property that the outcome of the test depends on the realization of a single
random variable drawn by the investigator. The gap between p̂1 and p̂2 still remains. We
have simply chosen a number between the two by, in e�ect, �ipping a coin. This means that
two di�erent researchers using the same dataset will randomly obtain di�erent P values.

4 Wild Bootstrap Randomization Inference

In this section, we suggest a novel way to overcome the problem of interval P values. We
propose a procedure that we refer to as wild bootstrap randomization inference, or WBRI.
The WBRI procedure essentially combines the wild cluster bootstrap of Subsection 2.1 with
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the RI-t procedure of Subsection 2.2. We only consider RI-t, because, at least under the null
hypothesis, it seems to be better to use t statistics rather than coe�cients for randomization
inference.6

Recall the example of Canadian provinces given in the previous section, and suppose
that R = 0, so that the treated province has a more extreme outcome than any of the
others. In the strict context of randomization inference, all we can say is that the P value
is between 0, according to equation (7), and 0.10, according to equation (8). In saying this,
however, we have made no use of the actual values of t̂ and the t∗j . Only the location of
|t̂| in the sorted list a�ects either P value. If the outcome for the treated province di�ered
a lot from the outcomes for the other nine provinces, that is, if |t̂| were much larger than
any of the |t∗j |, then the evidence against the null hypothesis would seem to be quite strong.
On the other hand, if |t̂| were just slightly larger than the largest of the |t∗j |, the evidence
against the null would seem to be rather weak. But neither of the RI P values takes this
into account.

The key idea of the WBRI procedure is to replace the small number (S) of test statistics
obtained by randomization by a much larger number generated by a restricted wild cluster
bootstrap DGP like (5). However, instead of simply imposing the null hypothesis that we
are actually interested in when we generate the bootstrap samples, we impose S+1 di�erent
nulls, corresponding to the actual treatment and the S re-randomized ones.

Why should this procedure work? Provided the clusters are reasonably homogeneous and
S is not too small, the RI-t procedure seems to work very well; see MacKinnon and Webb
(2018a). But when S is small, it encounters the interval P value problem. The idea of WBRI
is to keep the good properties of RI-t for large S even when S is not large by generating a
large number of bootstrap statistics that resemble the t∗j obtained by re-randomization.

Of course, we could obtain as many bootstrap statistics t∗b as we desire simply by using
the wild cluster bootstrap. But, when G1 is small, the |t∗b | tend to be positively correlated
with |t̂|. This is the reason for the failure of the WCR bootstrap with few treated clusters;
see MacKinnon and Webb (2017b). When G1 = 1, the correlation tends to be very high,
and this often leads to extreme under-rejection.

With the WBRI procedure, the bootstrap statistics |t∗bj| that correspond to the jth re-
randomization will undoubtedly be correlated with |t̂j| when G1 is small. But only the ones
that correspond to the actual null hypothesis should be strongly correlated with |t̂|. Thus
WBRI should not encounter anything like the sort of extreme failure that WCR routinely
does when G1 is small. Of course, we do not expect that WBRI will ever work perfectly,
especially when the number of clusters is very small. But it seems plausible that it should
yield P values which are reasonably accurate and much more precise than the interval [p̂1, p̂2].
We provide evidence on this point in Section 4.1.

Formally, the WBRI procedure for generating the t∗b and t
∗
bj statistics is as follows:

1. Estimate equation (4) by OLS and calculate t̂ for the coe�cient of interest using CRVE
standard errors.

6A very di�erent approach was proposed, in the context of bootstrap tests, in Racine and MacKinnon
(2007a); we plan to investigate it in a future version of this paper.
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2. Estimate a restricted version of equation (4) with β4 = 0, and retain the restricted
estimates β̃ and residuals ε̃.

3. Construct B bootstrap samples indexed by b, say y∗b , using the restricted wild cluster
bootstrap procedure discussed in Subsection 2.1. For each b, estimate equation (4)
using y∗b and calculate a bootstrap t statistic t∗b based on CRVE standard errors.

4. For each of the S possible re-randomizations, indexed by j, construct B more bootstrap
samples in exactly the same way.7 For each b, estimate the version of equation (4)
appropriate for whatever set of groups is �treated,� and calculate a bootstrap t statistic
t∗bj. When G1 = 1, each of the re-randomizations corresponds to �treating� one of the
G0 control groups.

5. Use equation (7) to calculate a P value for t̂ based on the B×GCG1 bootstrap statistics.
These include B bootstrap statistics t∗b that correspond to the G1 actually treated
groups and are drawn from exactly the same distribution as the t statistics in the
restricted wild cluster bootstrap procedure, along withB(GCG1−1) bootstrap statistics
t∗bj in which each set of groups other than the actual one is �treated� in turn.

Since every possible set of G1 clusters is �treated� in the bootstrap samples, the number
of test statistics is B × GCG1 .

8 Unless G is quite small, this will be a large number for
G1 ≥ 2 even when B is small. We suggest choosing B so that B × GCG1 is at least 1000.

The number of possible bootstrap DGPs is only 2G if one uses the Rademacher dis-
tribution. Therefore, when G is small, one may want to enumerate the DGPs (that is,
pick every possible value from the Rademacher distribution) or use an alternative bootstrap
distribution such as the 6-point distribution suggested in Webb (2014).

In general, it makes sense to use the WBRI procedure only when the RI-t procedure
does not provide enough t∗j for the interval P value problem to be negligible. As a rule of
thumb, we suggest using WBRI when G1 = 1 and G < 500, or G1 = 2 and G < 45, or
G1 = 3 and G < 20. Code for this procedure is available from the authors.

4.1 Monte Carlo Results for WBRI

The WBRI procedure described above is designed to avoid the problem of interval P values.
Based on Figure 2, it seems to be quite e�ective at doing so. The �gure shows rejection
frequencies for three procedures (RI-t using p̂1, RI-t using p̂2, and WBRI) for 51 di�erent
experiments, each with 100,000 replications. It deals with the case in which G1 = 1, which
is when the interval P value problem is most severe.

Every cluster has 100 observations, and the number of clusters varies from 10 to 60,
which implies that the number of controls varies from 9 to 59. When G = 20, 40, and 60,
the two RI P values must yield the same outcomes. In every other case, however, p̂∗1 = R/S

7Since the null hypothesis does not depend on which observations are being treated, we could simply use
the same B bootstrap samples for every re-randomization. However, this would create dependence among
the S di�erent test statistics that would then depend on each bootstrap sample. It is surely much safer to
use B × S di�erent bootstrap samples, as we do.

8Not surprisingly, the estimated P value is the same regardless of whether the randomization occurs
within a bootstrap replication or a bootstrap occurs within a randomization.
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Figure 2: WBRI Rejection Frequencies and RI Intervals
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must reject more often than p̂∗2 = (R + 1)/(S + 1). As expected, the observed rejection
frequencies for the two RI tests look very similar to the theoretical ones in Figure 1.

In Figure 2, the WBRI rejection frequencies are almost always between the two RI
rejection frequencies and are always quite close to 5% except when G is very small. This is
what we would like to see. However, it must be remembered that the �gure deals with a very
special case in which all clusters are the same size and the error terms are homoskedastic.
The WBRI procedure cannot be expected to work any better than the RI-t procedure when
the treated clusters are smaller or larger than the untreated clusters, or when their error
terms have di�erent variances.

5 Empirical Example

In this section, we consider an empirical example from Decarolis (2014). Part of the analysis
deals with how the introduction of �rst price auctions (FPA) in Italy a�ected winning
discounts in public works procurement. From January 2000 to June 2006, the use of average
bid auctions (ABA) was required for all contracts with reserve prices below e5 million.
However, after a case of collusion in ABAs was discovered, the Municipality of Turin and
the County of Turin switched from ABAs to FPAs in early 2003. The central government
mounted a legal challenge against these reforms that essentially prevented all other public
administrations (PA) from making a similar switch.

The timing and exclusivity of the switch in Turin is exploited to estimate a regression
analogous to di�erence-in-di�erences. Each of the two treated PAs (the county and the
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municipality) is considered separately in the following model:

W.Discountist = as + bt + cXist + βFPAst + εist. (9)

The outcome of interest, W.Discountist, is the winning discount o�ered in auction i of PA s

in year t. FPA is a binary indicator equal to 1 for an FPA and 0 otherwise. The coe�cient
of interest, β, is the e�ect of using an FPA on the winning discount conditional on �xed
e�ects for PA (as), time (bt), and other covariates (Xist). Analysis is restricted to public
works auctions with reserve prices between e300,000 and e5 million, consisting of simple
work types such as roadwork construction and repair jobs.

Table 5 presents our results. We �rst recreate the �rst two columns of Table 5 in Decarolis
(2014). That paper implements a matching strategy, based on similarities in total number
of auctions held in each PA during the sample period, to de�ne control groups from other
jurisdictions for each of the two treated PAs. This results in 14 control groups for the
Municipality of Turin and 17 control groups for the County of Turin. Thus, G = 15 for the
Municipality of Turin, and G = 18 for the County of Turin, with G1 = 1 in both cases. In
the municipality regression, Turin is the largest cluster with 200 observations out of 1,262,
and the smallest cluster has 28. In the county regression, Turin is again the largest cluster
with 147 observations out of 1,355, and the smallest cluster has 27. Results in MacKinnon
and Webb (2018a) suggest that the RI tests should be conservative when the largest clusters
are treated, as is the case in both our samples.

The model above is used to estimate 95% con�dence intervals for β under two speci�ca-
tions. Both speci�cations control for year, PA, a municipality dummy, type of public work
dummies, and reserve price. The �rst speci�cation, which we call Model 1 and is called �W.
Discount (1)� in the paper, controls for �scal e�ciency, the ratio of total yearly realized
revenue to estimated revenue of the PA. The second speci�cation, which we call Model 2,
and is called �W. Discount (2)� in the paper, controls for time trends and PA-speci�c time
trends, but not �scal e�ciency. For each panel, the �rst and second rows provide esti-
mates when standard errors are clustered at the PA-Year and PA levels, while the third row
uses the method of constructing con�dence intervals proposed in Conley and Taber (2011).
Following the original paper, con�dence intervals are rounded to the nearest integer value.

In addition to reproducing the original results, we compute RI-β, RI-t, and WBRI P
values using the same two samples and two models. We do this clustering only by PA. As
expected, the RI-β P values are identical to the RI-t P values because there is only one
treated cluster; see MacKinnon and Webb (2018a) for details. The four RI P value intervals
for Model 1 contain .05, while the four RI P value intervals for Model 2 contain .10. In the
former case, this makes it impossible either to reject or not reject at the .05 level. In the
latter case, we evidently cannot reject at the .05 level, but it is impossible either to reject
or not reject at the .10 level.

The WBRI P values shown in the table are obtained with B = 700 for Panel A and
B = 600 for Panel B. This means that there are 700×15C1 = 10,500 and 600×18C1 = 10,800
bootstrap t statistics, respectively. Under Model 1, we �nd WBRI P values that are very
close to p̂∗1 and highly signi�cant. Under Model 2, we again �nd WBRI P values that are very
close to p̂∗1. However, they are greater than .05, even though the Conley-Taber con�dence
intervals do not contain 0.
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Table 1: 95% Con�dence Intervals and P values for FPA coe�cient
Model 1 Model 2

Panel A: Municipality of Turin

β̂ 12.18 6.14
PA-Year Clustering (CI) (10, 15) (4, 9)
PA Clustering (CI) (10, 14) (4, 8)
Conley-Taber (CI) (10, 16) (5, 8)
RI-β (P values) (0.000, 0.067) (0.071, 0.133)
RI-t (P value) (0.000, 0.067) (0.071, 0.133)
WBRI (P value) 0.0002 0.0769
N 1,262 1,262
G 15 15
Panel B: County of Turin

β̂ 8.71 5.69
PA-Year Clustering (CI) (7, 11) (3, 8)
PA Clustering (CI) (8, 10) (4, 7)
Conley-Taber (CI) (7, 14) (4, 8)
RI-β (P values) (0.000, 0.056) (0.058, 0.111)
RI-t (P value) (0.000, 0.056) (0.058, 0.111)
WBRI (P value) 0.0006 0.0653
N 1,355 1,355
G 18 18
Regressors

Fiscal E�ciency Yes No
PA Speci�c Time Trends No Yes

Notes: Entries of the form (0.000, 0.056) represent the P value pairs (p̂∗1, p̂
∗
2). WBRI P

values are obtained with B = 700 for Panel A and B = 600 for Panel B, ensuring that
B×GC1 > 10, 000 for both panels.

The evidence against the null hypothesis is probably even stronger than the WBRI
results suggest. In MacKinnon and Webb (2018a), we showed that RI procedures tend to
under-reject when the treated clusters are unusually large. Since the only treated cluster is
either the Municipality or the County of Turin, and each of those is the largest cluster in
its sample, we would expect the WBRI P values to be biased upwards. Thus the fact that
the WBRI test rejects at the .001 level for Model 1 and at the .10 level for Model 2 suggests
that there is quite strong evidence against the null hypothesis.

6 Conclusion

We introduce a bootstrap-based modi�cation of randomization inference which appears to
solve the problem of interval P values when there are few control groups. This procedure,
which we call WBRI for �wild bootstrap randomization inference,� is easiest to understand as
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a modi�ed version of the wild cluster bootstrap. Like the WCB, it generates a large number
of bootstrap samples and uses them to compute bootstrap test statistics. However, unlike
the WCB, only some of the bootstrap test statistics are testing the actual null hypothesis.
Most of them are testing �ctional null hypotheses obtained by re-randomizing the treatment.
If there are S possible re-randomizations (when only one group is treated, S would equal
G0 = G − 1), then B/(S + 1) of the bootstrap test statistics are testing the actual null
hypothesis and BS/(S + 1) of them are testing �ctional null hypotheses.

The WBRI procedure can be used to generate as many t∗ statistics as desired by making
B large enough. Thus it can solve the problem of interval P values. However, it shares some
of the properties of the RI-t procedure, which performs conventional randomization inference
based on cluster-robust t statistics; see MacKinnon and Webb (2018a). In particular, like
RI-t, WBRI can be expected to over-reject (or under-reject) when the treated clusters are
smaller (or larger) than the control clusters and G1 is very small. Thus we cannot expect it
to yield reliable inferences in every case.
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