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Abstract

We study asymptotic inference based on cluster-robust variance estimators for regression
models with clustered errors, focusing on the wild cluster bootstrap and the ordinary wild boot-
strap. We state conditions under which both asymptotic and bootstrap tests and confidence
intervals will be asymptotically valid. These conditions put limits on the rates at which the
cluster sizes can increase as the number of clusters tends to infinity. To include power in the
analysis, we allow the data to be generated under sequences of local alternatives. Under a some-
what stronger set of conditions, we also derive formal Edgeworth expansions for the asymptotic
and bootstrap test statistics. Simulation experiments illustrate the theoretical results, and the
Edgeworth expansions explain the overrejection of the asymptotic test and shed light on the
choice of auxiliary distribution for the wild bootstrap.

Keywords: Clustered data, cluster-robust variance estimator, CRVE, Edgeworth expansion,
inference, wild bootstrap, wild cluster bootstrap.

JEL Codes: C15, C21, C23.

1 Introduction

Many applications of the linear regression model in economics and other fields involve error terms
that are correlated within clusters. In such cases, it is very common to use a cluster-robust vari-
ance estimator (CRVE) to calculate t-statistics and Wald statistics, because neglecting the cluster
structure can lead to severely biased standard errors and large size distortions (Moulton, 1986).
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Although CRVE-based t-statistics work well in many cases, this approach can fail (sometimes dis-
astrously) when the number of clusters is small, cluster sizes vary a lot, or the variable(s) of interest
take non-zero values for only a few clusters; see Cameron and Miller (2015) for a recent survey.

The wild cluster bootstrap (WCB) was proposed in Cameron, Gelbach, and Miller (2008) as
a way to obtain more accurate inferences in finite samples than using cluster-robust t-statistics.
Although it typically does provide more accurate inferences, it too can fail in certain cases; see
MacKinnon and Webb (2017b). Interestingly, MacKinnon and Webb (2018) provides simulation
evidence which shows that the ordinary wild bootstrap (WB) seems to work better than the wild
cluster bootstrap in some of those cases. A formal treatment of the conditions under which the
WCB (and the WB in a cluster context), yields asymptotically valid inferences is clearly needed.

In this paper, we provide an asymptotic analysis of cluster-robust inference with particular
emphasis on the WCB and the WB. In particular, we first establish the asymptotic distribution
of the least squares estimator and associated cluster-robust t-statistic when the error terms are
clustered. We then establish the asymptotic validity of the WCB and the WB. All our results are
given under simple primitive assumptions and rate conditions on the heterogeneity of cluster sizes,
allow for heteroskedasticity of unknown form, and do not restrict dependence within clusters.

To assess the accuracy of the bootstrap relative to the asymptotic normal approximation, we
derive one- and two-term formal Edgeworth expansions under somewhat stronger assumptions.
These expansions explain the overrejection of the asymptotic test found in simulations. We apply
the expansions to discuss the choice of auxiliary distribution and give conditions under which the
wild cluster bootstrap may provide an asymptotic refinement.

We are not aware of any previous work on the asymptotic validity of wild bootstrap methods for
clustered errors. Conditions for asymptotic validity of CRVE-based inference are given by White
(1984, Chapter 6), Liang and Zeger (1986), Hansen (2007), Carter, Schnepel, and Steigerwald
(2017), and Hansen and Lee (2017), among others. All but the last two of these assume that
clusters are equal-sized. Hansen and Lee (2017) derives a law of large numbers and a central
limit theorem for clustered samples under conditions that are very similar to ours and apply their
results to several different estimation problems, including regression, but do not consider bootstrap
inference. Carter et al. (2017) considers linear regression with a cluster structure and studies the
effects of heterogeneity across clusters, but it makes much stronger assumptions than we do.

An obvious alternative to the wild cluster bootstrap is the pairs cluster bootstrap, in which the
bootstrap samples are constructed by resampling (X, y,) pairs. Several variants of this procedure
were studied in Cameron, Gelbach, and Miller (2008) using simulation methods. In almost all
cases, the pairs cluster bootstrap produced less reliable inferences than the wild cluster bootstrap;
for additional simulation evidence, see MacKinnon and Webb (2017a). This might have been
expected, because the ordinary pairs bootstrap generally yields less reliable inferences in regression
models with heteroskedastic errors than does the ordinary wild bootstrap; see, among others, Mac-
Kinnon (2002) and Davidson and Flachaire (2008).

Simulation evidence from previous studies is not the only reason for not studying the pairs
cluster bootstrap here. The fundamental problem with the pairs cluster bootstrap is that, unlike
the WB or the WCB, it does not condition on X, which makes it unattractive for two reasons.
First, when cluster sizes are not equal across clusters, the sample size will vary across the bootstrap
samples. Second, when any of the regressors is a dummy variable that varies at the cluster level,
the numbers of treated clusters and treated observations will vary across the bootstrap samples.
Indeed, when there are few treated clusters in the actual sample, there may be none at all in some
of the bootstrap samples, which would cause the X "X matrix to be singular.

The remainder of the paper is organized as follows. In Section 2, we present the model that we
study and the associated asymptotic theory. In Section 3, we demonstrate the asymptotic (first-



order) validity of both the wild cluster bootstrap and the ordinary wild bootstrap. In Section 4,
we present the results of some simulation studies. In Section 5, we discuss higher-order asymptotic
theory, and Section 6 concludes. The proofs are relegated to the appendices.

2 The Model and Asymptotic Theory

Consider a linear regression model with clustered errors written as

Y1 Xi uy
Y2 X2 us

y=| . |=XB+u=| . |B+| . |, (1)
Yyac XG uag

where each cluster, indexed by g, has N, observations. The total number of observations in the
entire sample is N = Zngl Ny, and the N x k matrix of covariates X contains k linearly independent
columns. The vector B is a k X 1 vector of unknown parameters. The variance matrix €2 of wu,
conditional on X, is block-diagonal with N, x N, block variance matrices

Qg:E(ugu;—|Xg), g=1,...,G. (2)

When Ny = 1 for all g, the model (1) reduces to the well-known linear regression model with
heteroskedasticity of unknown form. Hence, as a special case, our results cover that model as well.
As usual, the OLS estimator of 8 is

B=(X"X)"'XTy. 3)

Letting Qv = N"!XTX and T'y = N2 Z?:l XgTQng = N2X"QX, the variance matrix of
B, conditional on X, is given by

G
Vv =(XTX)! <Z X;ngg> (XTX)™! = Qy'TNQY. (4)
g=1

We then define the cluster-robust estimator of Vy, i.e. the CRVE, as
V=QyTQy, (5)

where I'= N72Y°% | X a,40] X,.

When Ny = 1for all g, so that G = N, the estimator V reduces to the familiar heteroskedasticity-
consistent covariance matrix estimator (HCCME) of Eicker (1963) and White (1980); see also Arel-
lano (1987). Several variations of the CRVE have been proposed to reduce its finite-sample bias, in
the same way that variations of the HCCME (e.g., MacKinnon and White, 1985) can reduce its bias;
see, among others, Kauermann and Carroll (2001), Bell and McCaffrey (2002), Imbens and Kolesér
(2016), and Pustejovsky and Tipton (2018). However, since our focus is on bootstrap inference, we
maintain the version of the CRVE given in (5), which is simple to compute and analyze.

It is easy to see that V is singular whenever k > G, because the rank of V cannot exceed G.
This occurs, for example, whenever there are cluster fixed effects. In that case, the dimension of the
square matrix X | X increases with, and must always exceed, G. Moreover, the diagonal block of
I' that corresponds to the fixed effects is a zero matrix, because the vector 4, must be orthogonal
to the fixed effect for cluster g. This may (but typically does not) cause Vy to have zero diagonal



elements for the coefficients of the fixed effects. However, the presence of cluster fixed effects does
not prevent us from using (5) to make inferences about the remaining elements of 3.

A readily implemented solution with cluster fixed effects is to project all other regressors off them
so that y and X are expressed as deviations from cluster means; see Pustejovsky and Tipton (2018).
Let D, be an N, x G matrix with the ¢'" column equal to a vector of 1s and all other elements equal
to 0, and let D be the N x G matrix formed by stacking the D,. Then Mp = Iy -D(D'"D)"'D"
is the projection matrix that takes deviations from cluster means, and we can redefine y as Mpy
and X as MpX so as to partial out the fixed effects. Whenever a model originally involves fixed
effects, we will assume that our conditions hold for the model involving the transformed data.

We let By denote the true value of 8 and restrict our attention to the cluster-robust t-statistic

_ a' (B - Bo)
Va'Va

for testing the null hypothesis Hp: a'8 = a'By with a'a = 1 (a normalization that rules out
degenerate cases but is much stronger than needed) against a one-sided or two-sided alternative.
We next derive the asymptotic limit theory for t,. To obtain those results, we need the following

conditions, where, for any matrix M, |[M|| = (Tr(M ™M ))1/ ? denotes the Euclidean norm.

ta

(6)

Assumption 1. The sequence {X ; u,} is independent across g and satisfies, for all g € N, that
E(uy|X) =0 and E(ugugT|X) = g, where £ is positive definite. In addition, for some A > 0,

sup EHXiTguigHH)‘ < 0.
i,g€N

Assumption 2. The regressor matrix X satisfies Qn £, Q, where Q is finite and positive
definite, and

sup B[ Xg]** < oo,

1,g€N
where A is the same as in Assumption 1. Furthermore, there exists a non-random sequence {uy}
and a non-random, finite scalar v, > 0 such that uy — oo and ya' Vya £, Vg-

Assumption 3. For A defined in Assumption 1 and uy defined in Assumption 2,

44X

N,
G — oo and pi* sup Wg — 0.

geN

Assumption 1 imposes the conditions that {X ;— ug} is independent across clusters, with finite
4 + X\ moments, and that u, has zero conditional mean and constant, but possibly heterogeneous,
conditional variance matrix. Conditions like the first part of Assumption 2 are standard in asymp-
totic theory for linear regressions.

Because of the clustered errors in model (1), the order of magnitude of B — By depends in a
complicated way on the regressors, the relative cluster sizes, the intra-cluster correlation structure,
and interactions among these. This is captured in the second part of Assumption 2, where it
is assumed that the conditional variance of aTB, multiplied by a non-random sequence {un},
converges to a finite, non-zero limit. An important consequence of the studentization in our results
is that the rate uy does not need to be known, but only needs to exist.

Assumption 3 first requires the number of clusters G to diverge, which obviously implies that the
total number of observations N = Z?:l N, also diverges. The second condition of Assumption 3
restricts the extent of heterogeneity of cluster sizes N, that is allowed. This restriction is related



to the order of magnitude of the variance of aTB , i.e. the magnitude of @’ Viva as represented by
(the inverse of) the sequence py, and to the moment condition in Assumption 1. Thus, uy can be
interpreted as the rate at which information accumulates.

To analyze the role of i, we investigate two extreme cases, with all other cases lying in between:
(i) 924 is diagonal with no intra-cluster correlation at all and (ii) €2, is a dense matrix with constant
correlations, and the regressors are correlated. In case (i), it straightforwardly holds that

Vx| = Op(N~') and py = N. (7)

Thus, in particular, B clearly converges at rate O p(N~1/2) because Vy is the conditional variance
matrix of B under Assumption 1. On the other hand, in case (ii) we find that

Ng
B(X, Q,X,) = E( > XiEQg,injg> = O(Ny), (®)

ij=1
where €, ;; is the (i,)"™ element of Q, and X, is the i*! row of X . It follows that

[Vl = Op(N~"supNy) and py = N/sup N, (9)
g€N geN

—-1/2

Therefore, in case (ii), B converges at rate Op (N SUPgen Ng1 / 2). In general, it follows from (7)

and (9) that, under Assumptions 1 and 2,

N,
G — oo and sup -2 — 0 (10)
geN

is sufficient for consistency of B in model (1).

Clearly, (7) implies a stronger condition in Assumption 3 than (9). Specifically, in case (ii),
where the €, are dense, Assumption 3 is implied by (10), which is very simple and very weak. Thus,
when there is a high degree of intra-cluster correlation, so that the effective cluster size (as measured
by the amount of independent information contained in a cluster) is smaller than the actual cluster
size (Ng), more heterogeneity in N is allowed by the second condition of Assumption 3.

Because the exponent on py in Assumption 3 is decreasing in A, the condition is stronger when
fewer moments are assumed to exist, i.e. when A is lower, cf. Assumption 1. Thus, a sufficient
condition for Assumption 3 that does not depend on A is

N,
G — oo and ,u?f Supﬁg — 0. (11)

geN
Alternatively, in view of (7) and (9), we can find a sufficient condition for Assumption 3 that does
not depend on iy, namely,

24
G — oo and supNy = 0(N6+2A). (12)
geN

The exponent in (12) is increasing in A, and a sufficient condition that does not depend on either

A or uy is that
G — oo and supNy = o(N'/3). (13)

geN

The second condition of Assumption 3, or either of the sufficient conditions in (11)—(13), allow
a variety of types of cluster-size heterogeneity. For example, the N, can be fixed constants as
G — o0, or the N, can diverge as in, e.g., N, = ¢,N®, where ¢, and « are fixed constants. The



former case, with the IV, being fixed constants, could be considered a prototypical case. When this
holds, then B is in fact Op(Gfl/ 2); see also Assumption 5 in Section 5.

Because puny — oo, the second condition of Assumption 3 rules out the possibility that one
cluster is proportional to the entire sample. However, it does allow one cluster, say g = 1, to be
quite dominant, in the sense that N; = N satisfies the second condition of Assumption 3 for some
a < 1. Specifically, allowing any intra-cluster correlation structure, including independence, (13)
shows that any o < 1/3 satisfies Assumption 3. However, in case (ii) above, where the €2, are
dense, more heterogeneity of cluster sizes is allowed, and any « < 1 satisfies (11). In that case, we
note from (9) that the rate of convergence of B can become very slow when « is close to one.

The possibility that the rate of convergence depends on a correlation structure is certainly
not new. For example, Hansen (2007) showed that, if both the time-series and cross-sectional
dimensions in a panel setting diverge, then, in our notation, ,3 is either v/ N-convergent or v/G-con-
vergent depending on whether the degree of intra-cluster (time-series) correlation is strong or weak.
Gongalves (2011) extended Hansen (2007) to panels with both serial and cross-sectional dependence
and found that the rate of convergence depended on a parameter, denoted p, characterizing the
degree of cross-sectional dependence.

Our first result in Theorem 2.1 below has several precursors in the literature, although these
are all obtained under assumptions that are very different from ours. In particular, White (1984,
Chapter 6) assumes equal-sized, homogeneous (same variance) clusters, and Hansen (2007) assumes
equal-sized, heterogeneous clusters. Thus, both these papers assume that N, = N/G for all g, which
trivially satisfies our Assumption 3. More recently, Carter, Schnepel, and Steigerwald (2017) obtains
a result similar to our Theorem 2.1 that allows clusters to be heterogeneous. However, they impose
a moment assumption that restricts intra-cluster dependence and rules out, e.g., the random effects
model (which is used as their simulation DGP) and even some models with homoskedastic errors
that are uncorrelated within clusters. Moreover, they impose very high-level assumptions to restrict
cluster-size heterogeneity, and in general it is not clear how to verify, or derive sufficient primitive
conditions for, those assumptions. In contrast, our assumptions are primitive and straightforward
to interpret. Also very recently (indeed after the first draft of the present paper was written),
Hansen and Lee (2017) derives a law of large numbers and a central limit theorem for clustered
samples under conditions that are very similar to ours. They apply their results to several different
estimation problems, including regression, but do not consider bootstrap inference.

Since we do not restrict the dependence within each cluster and wish to allow any structure
for the intra-cluster variance matrices, £2,, we cannot normalize [3’ — Bg in the usual way to obtain
an asymptotic distribution. Instead, we consider asymptotic limit theory for the studentized (self-
normalized) quantities (aTVNa)*1/2aT(,é - Bo), (aTVNa)*laTVa, and t,. See, e.g., Hansen
(2007, Theorem 2) or Carter et al. (2017) for related arguments.

In order to analyze the asymptotic local power of asymptotic and bootstrap tests based on the
cluster-robust ¢-statistic (6), we derive our results under the sequence of local alternatives,

a' (By — Bo) = (a' Vya)'/%, (14)

which is often referred to as “Pitman drift” Under (14), the DGP is characterized by a drifting
sequence of true values of the parameter vector B indexed by G with drift parameter . When
0 = 0, there is no drift, the null hypothesis Hy is true, and the DGP is given by 8 = By. In a more
conventional setting, without clustering, the factor that multiplies § would be N~1/2.

The following result establishes the asymptotic normality of B and t,.

Theorem 2.1. Suppose that Assumptions 1-3 are satisfied and the true value of B is given by (14).



It then holds that

T3 _
‘(’aT(f/Na?jjz 45 N(0, 1), (15)
v
ZTVN(; Py, (16)
to -4 N(5,1). (17)

When the null hypothesis Hy is true, the following is an immediate consequence of Theorem 2.1.

Corollary 2.1. Under the assumptions of Theorem 2.1 and Hy, it holds that t, 4, N(0,1).

The result in Corollary 2.1 justifies the use of critical values and P values from a normal
approximation to perform t-tests and construct confidence intervals. However, based on results in
Bester, Conley, and Hansen (2011), it will often be more accurate to use the ¢(G — 1) distribution;
see also Cameron and Miller (2015) for a discussion of this issue.

An important consequence of the results in Theorem 2.1 and Corollary 2.1 is that the relevant
notion of sample size in models that have a cluster structure is generally not the number of ob-
servations, N. This is seen clearly in the rate of convergence of the estimator in (15), which is

(a"Vya)'/?, or equivalently ,u]_vl/ ?instead of N~1/2; see also the discussion around (9).

The proof of Theorem 2.1 may be found in Appendix B. In this proof, we make use of the scalars
2g = Va 1/2 M%QN *1aTQ]_V1X gT uy, which are indexed by cluster, and show that Zgzl Zg converges
in distribution. This makes it clear that, in an important sense, GG rather than N is the relevant
notion of sample size. Moreover, because we are summing over clusters, the clusters cannot be too
heterogeneous. In particular, the information cannot be concentrated in one cluster (or a finite
number of clusters), which is the reason why Assumption 3 imposes a restriction on supy Ng.

Theorem 2.1, specifically (17), gives the asymptotic local power of the cluster-robust t-test as
a function of §. For example, for an a-level test against a two-sided alternative, the probability of
rejecting the null hypothesis when the DGP is (14) is given by the asymptotic local power function

1—®(21,a/2—6)+®(—21,a/2—5), (18)

where ®(z) denotes the cumulative distribution function of the standard normal distribution, and
21_q 2 satisfies ®(21_,/2) = 1 — /2. The asymptotic local power function (18) may seem to be
too simple. However, the power of the t¢-test (or, equivalently, the asymptotic efficiency of the
estimator) implicitly depends on G, the N,, X, and € via the quantity (a' Vna)'/? that appears
n (14). The interpretation of & implicitly changes whenever (a' Vya)/? changes.

Recalling the definition of Vi in (4), we see that individual cluster sizes, N;, impact the power
of the test in a way that depends heavily on the intra-cluster variance matrices, €24, and is also
confounded with the influence of the regressors X. In general, the effects of the Ny, the 2, and the
regressors on the power of the t-test cannot be disentangled. They interact in a very complicated
manner, so that the total number of observations cannot be relied upon as a notion of sample size.
MacKinnon (2016) provides simulation evidence which illustrates this point.

3 Asymptotic Validity of the Wild (Cluster) Bootstrap

In this section, we consider the asymptotic validity of inference based on the wild cluster bootstrap
(WCB) as an alternative to the asymptotic inference justified in Theorem 2.1. We consider two



versions of the WCB. One of them (WCU) uses unrestricted estimates in the bootstrap data-
generating process, and the other (WCR) uses estimates that satisfy the restriction Hy. The latter
is the version proposed in Cameron, Gelbach, and Miller (2008). However, that paper provides no
theoretical justification for the properties of the WCR bootstrap, nor any conditions under which
it is valid or expected to work well.

The key feature of the wild cluster bootstrap DGP is the way in which the bootstrap error
terms are generated. Let v],v3,...,v5 denote IID realizations of an auxiliary random variable v*
with zero mean and unit variance. The bootstrap error vectors uy, for g =1,..., G, are obtained
by multiplying the residual vector @, (unrestricted) or @, (restricted), for each cluster g, by the
same draw vy from the auxiliary distribution.

This may be contrasted with the ordinary wild bootstrap (WB) DGP, which we also analyze
below. The WB was designed for regression models with independent, heteroskedastic errors but
has recently been suggested for the model (1) by MacKinnon and Webb (2018). For the WB,
the bootstrap error vectors ug, for ¢ = 1,...,G, are obtained by multiplying each residual ;4
(unrestricted, WU) or i, (restricted, WR), by a draw v}, from the auxiliary distribution.

3.1 Wild Cluster Bootstrap

We next describe the algorithm needed to implement the WCU and WCR bootstraps for testing
the hypothesis Hg in some detail." We then prove the asymptotic validity of both versions. To
describe the bootstrap algorithm and the properties of the bootstrap procedures, we introduce the

notation i, and B, which will be taken to represent either restricted or unrestricted quantities,
depending on which of WCR or WCU is being considered.

Wild Cluster Bootstrap Algorithm (WCU and WCR).

1. Estimate model (1) by OLS regression of ¥y on X to obtain 8 and V defined in (3) and
(5), respectively. For WCR, additionally re-estimate model (1) subject to the restriction
a' B =a'py so as to obtain restricted estimates 8 and restricted residuals @.

2. Calculate the cluster-robust t-statistic, ¢,, for Ho: a'8 = a' By, given in (6).
3. For each of B bootstrap replications, indexed by b,

(a) generate a new set of bootstrap errors given by u*®, where the subvector corresponding
to cluster ¢ is equal to u;b = U;b’ilg, and v;‘b denotes independent realizations of the
random variable v* with zero mean and unit variance;

(b) generate the bootstrap dependent variables according to y** = XB +u;

(¢) obtain the bootstrap estimate 8** = (X T X)X Ty*®, the bootstrap residuals @*, and

the bootstrap variance matrix estimate

G

7 kb T - T kb AxbT T -1

V* = (XTX) 1<ZXgugug Xg>(X X)
g=1

(d) calculate the bootstrap t-statistic

T/ A%b ..
a' (B —p)

A /aT V*ba
"'With the WCU bootstrap, a slight modification of this algorithm can be used to construct studentized bootstrap

confidence intervals by calculating lower-tail and upper-tail quantiles of the ¢:° instead of P values; see Davidson and
MacKinnon (2004, Section 5.3). This is the principal reason for considering WCU.

*b __
t, =




4. Depending on whether the alternative hypothesis is H: a'8 < a'Bo, Hr: a'8 > a' By, or
Hy: a'B # a' By, compute one of the following bootstrap P values:

B

B B
A 1 . AL 1 . . 1 i
P = —Z]I(tab <ts), Pr=-= Z]I(tab >t,), or P&= *Zﬂ(ﬁaﬂ > [ta]),
Big Bz B =

where I(-) denotes the indicator function. If the alternative hypothesis is Ho, then the sym-
metric P value P§ could be replaced by the equal-tail P value, which is simply 2 min(Ff, Pg).

Our next result demonstrates the validity of the WCB. Let the cumulative distribution function
(CDF) of t, under Hy be denoted Py(t, < z). As usual, let P* denote the probability measure
induced by the bootstrap (WCB or WB, as appropriate) conditional on a given sample, and let E*
and Var® denote the corresponding expectation and variance conditional on a given sample.

Theorem 3.1. Suppose Assumptions 1-3 are satisfied with A > 0, that the true value of B is given
by (14), and that E*[v*|**t* < oo with \ as given in Assumption 1. Then, for any e > 0,

P(sup P*(t; <x)— Py(ty < x)‘ > 6) — 0.
z€eR

When the null hypothesis Hy is true, that is, when 6 = 0 in (14), Theorem 3.1 implies that
P values computed in step 4 of the WCU and WCR algorithms are asymptotically valid, as are
studentized bootstrap confidence intervals. More generally, Theorem 3.1 shows that, under the
sequence of local alternatives (14), the bootstrap distribution P*(t} < x) coincides with that of the
original t-statistic under the null hypothesis Ho, Py(t, < ), in Corollary 2.1. This implies that the
WCB test has the same asymptotic local power function (18) as the asymptotic test based on t,.

3.2 Ordinary Wild Bootstrap

We next describe the algorithm for the ordinary (non-cluster) WU and WR, bootstraps, and we
then prove the asymptotic validity of both versions in the context of the clustered model (1).

Wild Bootstrap Algorithm (WU and WR).

All steps are identical to the corresponding steps in the WCU and WCR algorithms, except for
step 3.(a), which is replaced by the following:

3. (a) generate a new set of bootstrap errors given by u*’, where uzg = v;"é’ﬁig and v;“; denotes

independent realizations of the random variable v* with zero mean and unit variance.

Note that, although this algorithm relies on the WB to generate the bootstrap errors, u;,, and
hence the bootstrap data, the WB test statistic is still computed using the CRVE based on the
bootstrap data, i.e. using V'*.

Theorem 3.2. Suppose that Assumptions 1-3 with X > 0 are satisfied, that the true value of B is
given by (14), and that E*|v*|*** < 0o with A as given in Assumption 1. Then, for any e > 0,

P(sup P*(t; <x) — Py(ty < x)‘ > e) — 0.
z€eR
Like Theorem 3.1, this result implies that P values computed using the ordinary WB algorithms,
WU and WR, as well as studentized bootstrap confidence intervals based on WU, are asymptotically
valid. Moreover, since Theorem 3.2 is obtained under the sequence of local alternatives (14), it
implies that the asymptotic local power functions of tests based on the WB coincide with those



based on either the cluster-robust t-statistic (6) or the WCB. In other words, perhaps somewhat
surprisingly, there is no loss of asymptotic efficiency or power from imposing independence within
clusters in the bootstrap DGP.

Although the result in Theorem 3.2 is identical to that in Theorem 3.1 on the surface, the
underlying theory differs in important ways. In particular, the WB is unable to replicate the
intra-cluster correlation structure in €2, because the WB multiplies each residual by independent
draws of the auxiliary random variable v*, so that the WB bootstrap DGP has independent (but
possibly heteroskedastic) errors, even within clusters. In consequence, the WB estimator a [3’* has
a different asymptotic variance matrix (conditional on the original sample) than that of the original
sample t-statistic and that of the WCB estimator (conditional on the original sample); cf. (15) and
(B.15) in Appendix B. However, the fact that a' B* has the “wrong” variance does not invalidate
the WB, because t is studentized appropriately and thus has the correct asymptotic distribution.

Furthermore, because the normalization of a'8* under the WB is in fact of order N1/2 (see
(B.15) and (B.19) in Appendix B), the distribution of ¢} for the WB will in general approach
the asymptotic N(0,1) distribution more rapidly than the distribution of ¢,. This rules out the
possibility of asymptotic refinements for the WB. On the other hand, asymptotic refinements are
possible for the WCB, and we investigate them in Section 5. In practice, these issues might well
make it more difficult for the WB than for the WCB to mimic the distribution of ¢, when ppy is
small, e.g. when G is small or the cluster sizes are heterogeneous and the §2, are dense. We study
the finite-sample performance of WB and WCB in the next section.

4 Simulation Experiments

In this section, we use Monte Carlo experiments to investigate the finite-sample performance of
the procedures studied in Sections 2 and 3. Initially, we focus on cases in which cluster sizes
vary, but not to an extreme extent. Later, we consider cases in which the rate condition given in
Assumption 3 is either violated or close to being violated.
Most of our experiments are based on the DGP

Yg = b1+ Paxg + ugy, E(ugu;—) =Qy g=1,...,G, (19)
where €2, is an Ny, x N, matrix with every element on the principal diagonal equal to 1 and
every off-diagonal element equal to p. Thus the error terms are equicorrelated with correlation
coefficient p. In some of our simulations, the error terms are normally distributed.? In others, they
are generated by a normal mixture model with skewness of 1 and excess kurtosis of 3, in order to
avoid the possibly excessive symmetry of normal errors.® We obtained very similar results using
both methods. The null hypothesis is that S2 = 0; this is equivalent to setting a = [0 l]T. Every
experiment has 100, 000 replications.

Since we have to impose conditions like Assumption 3 on the cluster sizes, we expect inference to
be harder when cluster sizes are not all the same; see MacKinnon and Webb (2017b) for evidence on
this point. In order to allow cluster sizes to vary systematically, we initially allocate N observations
among G clusters using the equation

N ex G
N, = p(v9/G) | forg=1,...,G—1, (20)
g9 G .
i1 exp(vi/G)
2Specifically, uig = (1—p)*/%e;y+p'/%e,, where £;, and e, are mutually independent i.i.d. N(0,1) random variables.

3Let Um,ig = (1—p1)"2em.iq —|—p}/26m,g, m = 1,2, where all component random variables are i.i.d. N(0, 1), so that
both v1,;4 and vs,;4 are N(0, 1) with intra-cluster correlation pi. Then w4 equals 1 + o1v1,54 with probability p and
p2 + 02v2,54 With probability 1 —p. To obtain the desired moments and correlations for g, in particular intra-cluster
correlation p = 0.1, we used p = 0.1967, u1 = 0.7693, pu2 = —0.1884, o1 = 1.5734, 02 = 0.6770, and p1 = 0.2556.
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Figure 1: Rejection frequencies for continuous regressor, G = 20, N = 4000, p = 0.10
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where v > 0, [-] denotes the integer part of the argument, and Ng = N — Zfz_ll Ngy. When v =0
and N/G is an integer, Ny = N/G for all g. As 7 increases, cluster sizes become more unequal.

In the first set of experiments, the regressor is lognormally distributed and correlated within
each cluster but uncorrelated across them, with correlation coefficient (before taking the logarithm)
of p,, and the error terms are generated by the normal mixture model described above.* Figure 1
shows rejection frequencies for five tests at the .05 level when G = 20, N = 4000, and p = 0.1. In
panel a), where v = 0, all clusters have 200 observations. In panel b), where v = 3, which is quite
a large value, cluster sizes vary from 33 to 598. The horizontal axis shows p,, which varies from
0.0 to 1.0 by increments of 0.1. We focus on p, because past work, going back at least to Moulton
(1986), has shown that the value of p, is very important. When p, = 1, the elements of x, are
constant within each cluster.

Throughout, we compare bootstrap rejection frequencies with ones for the cluster-robust ¢-test
as implemented in STATA. In particular, we use critical values taken from the ¢(G — 1) distribution
instead of the standard normal, as advocated by Bester, Conley, and Hansen (2011), and the CRVE
is the one in (5) multiplied by the factor G(N —1)/((G — 1)(N — k)). Without this factor, or if we
had used the standard normal distribution instead of the (G — 1) distribution, the overrejection
that is evident in Figure 1 would have been even more severe. For all the bootstrap tests, we
report symmetric P values based on B = 399 bootstrap samples, where the v* are drawn from the
Rademacher distribution. For the WCR bootstrap test, we also report results using the two-point
Mammen (1993) auxiliary distribution, which are labelled WCR-M in the figures.

Both the cluster-robust t-test and the WCU bootstrap test always overreject, and they do so
more severely as p, increases. In contrast, the WCR bootstrap works very well in all cases, although
it tends to underreject slightly for larger values of p,. However, when the Mammen distribution
is used instead of the Rademacher, the WCR bootstrap underrejects quite severely. The reasons
for the poor performance of this variant of the WCR bootstrap are analyzed in Section 5.2 using
higher-order asymptotic theory. The two ordinary wild bootstraps (WR and WU) perform almost
perfectly when p, = 0, overreject somewhat for moderate values of p,, but then improve as p,
approaches 1. For p, = 1, WR actually outperforms WCR in both panels of Figure 1.

Since our focus is on the bootstrap, the only non-bootstrap procedure for which we report

4We also ran some experiments in which the regressor was normally distributed. Most procedures worked a bit
better, but the relations among them were largely unchanged.
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Figure 2: Rejection frequencies for treatment dummy, G = 20, N = 4000, p = 0.10

Rej. rate

0.60+

0.404

Rej. rate

0.60+

0.404 *

0.204 0.204

0.104 0.10+4

0,055k \ 0.05

0.014 0.01-

1:,:/ \‘\“c ) B o
000777 T T T T T T T T T T T 111G 000-¢ T T T T T T 1 G1
12345678 910111213141516171819 0111213141516 171819
a)y=0 =3

results is the test implemented in STATA. It is apparent in Figure 1 that rejection frequencies
for that test are extremely sensitive to the value of p,. In an actual empirical application, its
performance could have been predicted by computing the feasible version of the “effective number
of clusters” proposed in Carter, Schnepel, and Steigerwald (2017) and called G*4. For example, in
panel a) of Figure 1, the average value of G*4 declines from 7.59 to 4.23 as p, increases from 0.0
to 1.0. In panel b), it declines from 5.93 to 3.64. Thus the value of G*4 correctly predicts that the
usual test will perform better in panel a) than in panel b), especially when p, is small, and that
its performance will deteriorate sharply as p, increases.

In the next two experiments, a typical element of the test regressor in (19) is a dummy variable
that equals 1 for some clusters and 0 for others; it can be thought of as a cluster-level treatment
dummy. Many applications of cluster-robust inference involve this type of variable, and it is well-
known that inference can be problematical when the number of treated, or untreated, clusters is
small; see MacKinnon and Webb (2017a,b). We only study the pure treatment model here, but
difference-in-differences (DiD) regressions are similar. In the DiD context, there are additional
regressors, and the treatment variable is typically equal to 1 only for some observations within the
treated clusters. When there are few treated clusters, exactly the same problems for inference arise.

Figure 2 shows rejection frequencies for the same five tests when the regressor is a treatment
dummy that equals 1 for G; out of G = 20 clusters with N = 4000. Once again, the error terms
are drawn from a normal mixture model. In panel a), the clusters are equal in size, with N, = 200.
The vertical axis has been subjected to a square root transformation so that both very large and
very small rejection frequencies can be shown on the same graph. This is essential, because the
cluster-robust t-tests and the WCU bootstrap both reject more than 60% of the time when G; = 1
and G1 = 19, and the WCR bootstrap never rejects in the same cases. A more complete analysis
and explanation of these extreme overrejections and underrejections in the “few treated clusters”
case is given in MacKinnon and Webb (2017b, Section 6). However, all the bootstrap methods
except WCR-M work very well for 4 < G < 16.

Perhaps surprisingly, the ordinary wild bootstrap works very much better than the wild cluster
bootstrap for small and large values of G;. This result is predicted in MacKinnon and Webb (2018)
for cases in which all clusters are the same size. Since all methods tend to work relatively well when
clusters are the same size and G is not too small, we need to investigate other cases.

In panel b) of Figure 2, rejection frequencies are shown for a case in which v = 3 and clusters
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Figure 3: Rejection frequencies as G changes, v = 3, p = 0.10
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are treated from smallest to largest.” Although there are a few exceptions for particular methods
and particular values of G, all methods clearly work less well when v = 3 than when v = 0. The
ordinary wild bootstrap works very much worse than before, underrejecting for small values of G
and overrejecting for large ones, as predicted by MacKinnon and Webb (2018). WCU generally
overrejects more severely than before. WCR underrejects more severely for small values of Gy
and less severely for G; = 19, and it actually overrejects for 10 < G < 18. WCR-M performs
surprisingly well for G; = 2 and G = 3, but it underrejects very severely for large values of G7j.

The situation depicted in panel b) of Figure 2 is rather extreme. In practice, it is unlikely that
only the very smallest or very largest clusters would be treated. Thus, with highly variable cluster
sizes and, say, just 3 or 4 treated clusters out of 20, we would expect all methods to perform better
than they do in panel b) but not as well as they do in panel a).

In the next two experiments, we vary the number of clusters G and the sample size together.
The results are shown in Figure 3. In panel a), the regressor is continuous, as in Figure 1. We fix
pz at 0.7 (which is one of the worst values for the ordinary wild bootstrap tests) and vary G from
10 to 100 by 10 and then from 120 to 200 by 20. The value of v is 3, so cluster sizes change as
G, and therefore N, increase. However, the way in which they vary is essentially the same as G
increases. The largest sample size is N = 40, 000.

There are four striking results in panel a) of Figure 3. The first is that all the bootstrap tests
reject far less often than the t-test. The second is that WCR performs very much better than
WCU. This probably reflects the fact that the bootstrap DGP is estimated more efficiently when
the model is estimated subject to restrictions; see Davidson and MacKinnon (1999). In particular,
the unrestricted residuals may be worse estimators of the error terms than the restricted ones,
especially for high-leverage observations where the regressor happens to be particularly large. The
third result is that the Mammen version of WCR underrejects severely when G is small, but the
underrejection essentially disappears by the time G = 200. The final result is that the two ordinary
wild bootstrap tests perform very similarly, with WR, always overrejecting a bit less than WU. It
also looks as if WR and WU are improving less rapidly than WCU as G increases.

In panel b) of Figure 3, we consider what happens as G increases when the regressor is a

SIf the error terms had been symmetric, treating the G smallest clusters would have been equivalent to treating
the Go = G — G largest ones. Since the asymmetry here seems to have a very modest impact, it is safe to look at,
say, the results for G; = 18 and use them to infer the results for treating the two largest clusters.

13



Figure 4: Rejection frequencies for four tests, continuous regressor with one big cluster
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treatment dummy. As in panel b) of Figure 2, v = 3. The fraction of treated clusters is held
constant, with G1/G = 0.2, and the rejection frequencies for G = 20 correspond to the ones for
G1 = 4 in panel b) of Figure 2. As the results of Section 3 suggest, all methods improve steadily as G
increases. However, the two wild cluster bootstrap methods that use the Rademacher distribution
evidently improve faster than WCR-M and the two ordinary wild bootstrap methods. For G > 30,
the best methods are clearly WCR and WCU. These results are consistent with those in panel a),
although WCR no longer seems to have a clear advantage over WCU.

In Figure 3, the largest cluster constitutes 27.5% of the sample for G = 10 but only 1.8% for
G = 200. In the next set of experiments, we investigate cases where one large cluster dominates all
the others, because this is a situation that is ruled out by the second condition of Assumption 3.
The regressor is lognormally distributed and correlated within clusters with p, = 0.8, and the error
terms are normally distributed with p = 0.1. We set N = 200(G — 1) and N; = 1000(NN/2000)*
for « < 1 and then divide the remaining observations as evenly as possible among the remaining
clusters. The values of G are 11,21,...,101 and 121,141,...,201. When o = 1, exactly half the
observations are always in the first cluster. When «a < 1, this is still true for G = 11, but the
fraction of observations in the first cluster declines steadily as G increases. For example, when
a=0.9, N;/N =0.371, and when a = 0.5, N;/N = 0.112.

The four panels of Figure 4 show rejection frequencies for CRVE t-tests and three bootstrap
tests for various values of a. Since our experimental design violates the rate condition given in
Assumption 3 when a = 1, it is not surprising that the rejection frequency for the CRVE t-test,
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Figure 5: Simulated power for continuous regressor, v =0, p = 0.1
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in panel a), increases steadily with G. This is also true when a = 0.95. There appears to be no
systematic change in rejection frequencies when o = 0.9, but for smaller values they clearly drop
as (G increases. However, even for the smallest values of o, G would evidently have to be very large
for t-tests to yield reliable inferences.

Panel b) shows rejection frequencies for the WCR, bootstrap for the same set of experiments.
These are much smaller than the ones for the CRVE t-test in panel a). They still increase with G
when o = 1, but they eventually start to decrease for a = 0.95 and a = 0.9, and they decrease
rapidly for smaller values of . In quite a few cases, the procedure actually underrejects slightly.

In contrast, we see from panel ¢) that rejection frequencies for the WCU bootstrap are quite
high when G = 11, but they decrease with G for all values of « except @ = 1. Overall, this
procedure always works at least somewhat better than the CRVE t-test, especially for larger values
of G. Finally, we see from panel d) that the ordinary wild bootstrap (WR in this case, but WU is
very similar) works quite well when G is small, but it then overrejects more severely as G increases,
except for the smallest values of @ where WR clearly improves as G increases.

Up to this point, we have only studied test size. Figure 5 investigates the power of alternative
tests for the continuous regressor (lognormal) case. The horizontal axis shows the true value of /3,
for tests of B3 = 0. All clusters have 200 observations. In the left panel, there are 10 clusters, and in
the right panel there are 20. For both values of GG, using the t(G—1) distribution leads to substantial
overrejection under the null hypothesis and therefore to apparently high (but meaningless) power.
Interestingly, however, WCU overrejects just as severely under the null but has noticeably less
power for large values of Bo. WCR performs extremely well under the null and therefore has
meaningful power. WCR-M is severely lacking in power for G = 10, much more so than the extent
of its underrejection under the null would suggest, and even for G = 20 it has slightly lower power.

Figure 6 investigates power for the treatment dummy case. In the left panel, G = 10 and
G1 = 2, and in the right panel, G = 20 and G; =4. In both cases, WCU is seriously lacking
in power for large values of B2, even though it overrejects very substantially under the null. In
contrast, even though WCR, underrejects severely under the null when G = 10, it has more power
than any of the other bootstrap tests for large values of 2. Once again, WCR-M is grossly lacking
in power for G = 10 but performs quite well for G = 20. In the latter case, it actually has more
power than WCU for large values of 39, although it still has less power than WR and WCR.
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Figure 6: Simulated power for treatment dummy, v =0, p = 0.1
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Figure 7: Rejection frequencies with heteroskedastic errors, G = 20, N = 4000, p = 0.10
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Overall, these results favor the WCR bootstrap using the Rademacher distribution, even in
cases where it underrejects under the null, as in the left panel of Figure 6. However, the fact that
all the tests seem to be converging to similar power functions as G increases from 10 to 20, which
continues (in results that are not reported) as G increases from 20 to 40, suggests that asymptotic
theory probably provides a good guide to the power of all tests provided G is not too small.

In all the experiments reported so far, the error terms are homoskedastic. Simulation results in
MacKinnon and Webb (2018) suggest that, when error variances differ across clusters, several pro-
cedures, including the asymptotic test and the WCB, can be less reliable than in the homoskedastic
case. Those results were for difference-in-differences regressions. Here we investigate the effects of
heteroskedasticity in the model (19) with a lognormal regressor. The error terms in that equation
are now multiplied by (1 + cm?g)l/ 2 where ¢ is a constant that we specify. When ¢ = 0, the errors
are homoskedastic, as before, and as ¢ increases the errors are increasingly heteroskedastic.

The left panel of Figure 7 is comparable to the left panel of Figure 1. In both cases, there are
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Figure 8: Rejection frequencies with heterogeneous regressor, G = 20, N = 4000, v =0, p = 0.10
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20 clusters, each with 200 observations. However, in Figure 7, the value of ¢ is 1, which implies
that there is substantial heteroskedasticity. Even when p, = 0, so that the heteroskedasticity is
solely at the individual level, all procedures perform a bit less well in Figure 7 than in Figure 1. As
Py increases, so that more and more of the heteroskedasticity is at the cluster level, the differences
between the two figures become much more striking. For larger values of p,, the conventional
procedure based on t(19) critical values overrejects much more severely than it did before. So
does the WCU bootstrap, although it now performs better relative to the conventional procedure.
Instead of underrejecting for large values of p,, the WCR bootstrap now overrejects for both the
Mammen and Rademacher distributions. The only procedures that perform about the same as
before are the two ordinary wild bootstraps, WR and WU. They both work extremely well for
pe = 0 and p, = 1, but they overreject slightly for intermediate values.

The right panel of Figure 7 shows rejection frequencies as a function of ¢ for p, = 0.7. Note that
the horizontal axis has been subjected to a cube root transformation, because rejection frequencies
are most sensitive to the value of ¢ when it is very small. Even a small amount of heteroskedasticity
that varies at the cluster level evidently has a noticeable effect on rejection frequencies. On the
other hand, the difference between ¢ = 1 (the case in the left panel) and ¢ = 10 is quite small.

In all the experiments with a continuous regressor reported so far, the regressor was lognormally
distributed, with the same distribution for all clusters. In Figure 8, we relax this assumption by
allowing for heterogeneity across clusters. We introduce a parameter d > —1 which is used to
generate the elements x;4 of the vector x4 in eq. (19) according to

vig =exp((14 422wy, (21)
where the w4 are distributed as N(0, 1), independent across clusters but with correlation p, between
wig and wjg in the same cluster. The DGP in eq. (21) causes both the variance and the higher
moments of the x;, to decrease with g for d < 0 and to increase with g for d > 0. There is no effect
on the first cluster, and the effect is largest for the G** one. Even for relatively small values of d,
there is substantial heterogeneity across clusters. In practice, we would be surprised to encounter
heterogeneity as extreme as that for the larger values of d in the left panel of the figure.

The left panel of Figure 8 shows rejection frequencies as functions of d when p, = 0.7, and
the right panel shows them as functions of p, when d = 0.5. Not surprisingly, the effects of both
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parameters depend strongly on the value of the other. The value of d has very little effect for d < 0.
In contrast, as d increases above 0, the t-test and the WCU bootstrap overreject more and more
severely, and the two restricted wild cluster bootstraps underreject slightly more. The ordinary
wild bootstrap tests (both WR and WU) overreject slightly for negative and small positive values
of d, but they also start to underreject as d becomes relatively large.

In the right panel of Figure 8, we see that the effect of p, is much stronger for WCU when
d = 0.5 than it is when d = 0 (the latter situation is depicted in the left panel of Figure 1). For
large values of p,, WCU actually overrejects quite a lot more severely than the t-test. On the other
hand, for this particular value of d, WR works remarkably well for all values of p,, while WU is
moderately sensitive to the value of p,.

The results in Figure 8 suggest that heterogeneity in the regressors across clusters can signif-
icantly affect the performance of some of the methods we consider. The least affected methods
are the two ordinary wild bootstrap procedures and the WCR using the Rademacher auxiliary
distribution, which seem quite robust to heterogeneity of the type considered here.

5 Higher-Order Asymptotic Theory

In this section, we first derive formal Edgeworth expansions of the CDFs of the sample t-statistic and
the WCB t-statistic. We apply these expansions to investigate the impact of the choice of auxiliary
distribution in the WCB and to study whether the WCB can yield an asymptotic refinement over
the normal approximation under Hp; that is, whether the difference between P*(t! < z) and
Py(ts < z) in Theorem 3.1 can be made smaller than op(1), uniformly in x.

5.1 Formal Edgeworth Expansions

For the higher-order theory, the analysis will be exclusively under the null hypothesis, so that P
and Py are the same, and to simplify notation we use only the former. Furthermore, we strengthen
Assumptions 2 and 3 as follows.

Assumption 4. The regressor matrix X is non-random and satisfies Qn — Q, where @Q is finite
and positive definite.

Assumption 5. The number of clusters G — oo, and the cluster sizes satisfy supgey Ny < 0.

In Assumption 4, we assume that the regressor X is non-random, which is necessary to keep
the theory tractable. Furthermore, Assumption 4 implies that Assumption 1 reduces to:

Assumption 6. The errors {u,} are independent across g and satisfy, for all g € N, that E(u,) = 0,
E(ugu;) = Q, where £} is positive definite, and sup; ey E|ujg|** < 0o for some A > 0.

Although Assumption 6 is implied by Assumptions 1 and 4, we include it here for ease of refer-
ence. In what follows, we shall also make use of Assumption 6 for a higher value of A than previously
(where only A > 0 was assumed), i.e. a stronger moment condition relative to Assumption 1.

We note that, under Assumption 5, the rates uy, N, and G are asymptotically proportional.
This must be the case because, as N — oo, no cluster can have more than N;*** = sup ey Ny < 00
observations. Therefore, eventually, G must be proportional to N. The rate of convergence of 3
can be described in terms of (the square-root of) any of the three rates. That is, for some positive,
finite constants cq, co, and cg,

BN e, S e o es, VA(B - B0)=0p(1), and BIf -Gl =0 (22)
UN
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see also Theorem 2.1 and (B.8). Many summations that will be encountered in the higher-order
theory contain G terms, and, to avoid an asymptotic factor of proportionality, it will be important
to use v/G as the rate of convergence of B. Consequently, all expansions will be in terms of powers
of v/G. This once more emphasizes the important role of G, and not N, as the most relevant notion
of sample size in the context of cluster-robust inference.

We consider both one- and two-term Edgeworth expansions. Following, e.g., Hall (1992, Ch. 2),
the formal m-term Edgeworth expansion (m = 1,2) of the CDF of ¢, is given, uniformly in z, by

Pt < ) +ZG 2q;(a)¢(x) +o(G?), (23)

where ® and ¢ are the standard normal CDF and probability density function (PDF), respectively,
and ¢; and ¢o are even and odd functions, respectively. For the bootstrap, the formal expansion is

P*(t: < z) )+ ZG 112G (x)(x) + op(G~™?), (24)

where §; and §o are even and odd functions, respectively. The bootstrap is said to provide an
asymptotm reﬁnement if the first or both of the higher-order terms of the CDFs of ¢, and t) agree,
e., if 41 (z) £, ¢1(z) uniformly in = and possibly also ¢a(x) £, g2(z) uniformly in z.
Furthermore, for two-sided symmetric tests, we have the formal two-term (m = 2) expansion

P(lta] < 2) = P(t, < ©) — P(t, < —2) = 20(x) — 1 +2G ' (2)é(a) + o(G™"), x>0, (25)

because ¢ and g; are even functions, while g2 is an odd function, and similarly for the bootstrap

counterpart. Thus, ¢; plays no role in two-term Edgeworth expansmns for two-sided symmetric

tests, where the bootstrap provides an asymptotic refinement if ga(z) £, ¢2(x) uniformly in z.
To find the functions ¢; and §;, for j = 1,2, we first write the sample ¢-statistic as

2

-~ o 1/
1 & GTQNl%(X;Ugu;Xg)QNla TQNl\FXTug
=G 2 Z

a'Vya (aTVya)~1/2

and then we use the decomposition i, = u, — Xg(B — Bo) to rewrite

1 & - , 28 G
ta_<GgZ_1Wg ZZ G;wz) \fGZWg, (26)

where we have defined

W, = (a"Vya) 2T Qy WXgTug, and (27)
_ VG 41
Z, = (a'Vya) Y247 Q 1WXJX9QN1NXTu. (28)

We define W and Zj entirely analogously, simply replacing the error vector ug with its bootstrap
analog uy and replacing Vi with V.

We note from (26) that Z,, and specifically the term G~1 Z 1 22 261 Zg;:l WyZ,, arise
from the estimation of the asymptotic variance using residuals @ rather than errors w, and thus
reflect the bias in this estimation.
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Theorem 5.1. Suppose Assumptions j—6 are satisfied with X\ = 2m and that Hy is true. Then the
formal m-term Edgeworth expansions of the CDF of t, are given by (23) for m = 1,2, while that
of |ta| is given by (25) for m = 2 with

1
q(zr) = E’YN(QZL‘Q +1) and

1 1 1
q2(x) = —5(27]2\, — TIN + 2Ton)T — ﬂ(lﬁﬁv — 2N — 671y — 6733) (2% — 32) — Efy?v(x‘r’ — 1023 4 152),
where yy = G S0 B(WY), &y = G0 E(Wy), and
€] €] €] €]
TN =G Y E(WgWg,Z2) — 4G~ Y E(W.2 W, Zy,), Ton =Y EWyZy), msnv =Y E(Z}).
g1,92,93=1 g1,92=1 g=1 g=1

If, in addition, E*|v*|**2™ < oo, then the formal Edgeworth expansions of the CDFs of t and
|tz| are given by the same expressions as those of t,, but with §; instead of q;; see also (24). The
functions {; are obtained from q; by replacing the population mean E(-) by the bootstrap analog
E*(-) and replacing Wy and Zy by W, and Zj, respectively.

Validity of the formal Edgeworth expansions given in Theorem 5.1 requires further regularity
conditions. In particular, for the validity of the Edgeworth expansion of the CDF of ¢, in (23),
a sufficient condition would be “Cramér’s condition” on the characteristic function of u; see, e.g.,
Hall (1992, Thm. 2.2). This condition is satisfied if the distribution of w is sufficiently smooth
(has a nondegenerate absolutely continuous component). A similar condition would be required on
the characteristic function of the wild bootstrap auxiliary random variables vy. In the bootstrap
literature there are two common approaches. In one approach, the Cramér condition is imposed,
which is theoretically appealing but rules out all commonly applied discrete distributions for vy.
See, for example, Liu (1988) or Kline and Santos (2012). Another approach, see e.g. Mammen
(1993), is to continue the analysis without discussing Cramér’s condition further, and instead
focus on using the formal Edgeworth expansions to theoretically explain the overrejection of the
asymptotic test and superiority of the bootstrap in finite samples, and also shed light on the choice
of the distribution of the auxiliary random variables, vy. We follow the latter approach.

To assess the accuracy of our Edgeworth expansions, we plot in panel a) of Figure 9 the empirical
CDFs of [tq] for 20, 40, and 80 clusters together with the corresponding two-term Edgeworth
expansions, which are given in (25) and Theorem 5.1. The setup is the same as that in panel b)
of Figure 3, since the treatment regressor can reasonably be argued to satisfy Assumption 4. The
standard normal CDF is also included for reference. As a benchmark, we plot in panel b) of Figure 9
the same empirical CDFs together with the CDFs of the £(19), ¢(39), and #(79) distributions, which
are commonly used for inference, as was also the case in Figure 3.

Comparing panels a) and b) of Figure 9, it is clear that the Edgeworth CDFs provide a very sub-
stantial improvement over both the reference normal approximation and the t-distribution CDFs.
Following the 0.95 percentile horizontally across panel b), we note that the ¢-distribution CDFs are
very far from the empirical CDFs of |t,|, leading to the severe overrejection of the asymptotic test
documented in Figure 3. On the other hand, the Edgeworth CDFs track the empirical CDFs of |¢,]|
extremely closely, except for G = 20 in the very tail of the distribution. Again, following the 0.95
percentile horizontally across panel a), the Edgeworth CDFs can perfectly explain the overrejection
of the asymptotic test for G = 40 and G = 80, and almost for G = 20.
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Figure 9: Edgeworth expansions of two-sided test, treatment dummy, v =3, p = 0.10, G; = G/5
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5.2 Refinements and Choice of Auxiliary Distribution
Given our formal expansions in Theorem 5.1, the second-order bootstrap error in estimating
P(t, < x) is given, uniformly in z, by
1
Pty <x) = P(ta < w) = G_Wg(%v —n)(22% + 1)é(x) + op(G~1/?).

The next theorem gives an expansion of 45 — vy, and hence conditions under which the formal
Edgeworth expansions for the sample t-statistic and the bootstrap t-statistic agree up to o p(G_l/ 2).

To distinguish between the restricted and unrestricted versions of the WCB, we let A take the
values R or U depending on whether the restricted or unrestricted version is considered. We define

- VG 1
Zy(4) = (@' Vya) e’ Q' " X X My (A)Qy - X Tu, A€ {U.R}, (29)

where My(A) = I, — Qy'a(a’Qy'a) 'aI(A = R) and I(A = R) equals one if and only if the
restricted estimator is considered. Note that Z,(U) = Z,, which was defined in (28).

Theorem 5.2. Suppose Assumptions 4—6 are satisfied with X\ = 2, that E*|v*|® < oo, and that Hy
is true. Then it holds that

An — A8 = v (B (0*%) = 1) + Op(G™Y/2),
If, in addition, we assume A > 2 then
An = v = v (B (0*2) = 1) + GTV2E* (v*3)wy (A) Zy + Op(GTY),
where Zy —% N(0,1) and wy(A), A € {U, R}, is defined in (B.39).

The leading term in the expansion of 4 — vy in Theorem 5.2 is v (E*(v*3) —1). The theorem
thus establishes a second-order asymptotic refinement of the WCB when this leading term is zero.
This is stated as a corollary.
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Corollary 5.1. Under the conditions of Theorem 5.2, it holds that ¢, (z) £, q1(x) uniformly in x
if and only if either (i) E(uf’g) = 0 for all i,g or (ii) E*(v*3) = 1. Under either of these two
circumstances,
sup |P*(t; < @) = Pty < 2)| = 0p(G7'/?).
z€eR
Theorem 5.2 and Corollary 5.1 show that the WCB achieves a second-order refinement under
either of two circumstances. The first is when the errors have third moment equal to zero, where
it follows easily that vy = 0. The second is when the distribution of the auxiliary random variable
v* has third moment equal to one. This resembles the results found for the wild bootstrap by Wu
(1986), Liu (1988), and Mammen (1993). Indeed, our results specialize to their results in the special
case with N, = 1 for all g. We next give some further results on the second term in the Edgeworth
expansions, and subsequently we return to a discussion of the choice of auxiliary distribution.
The following theorem gives expansions of {y — &y and 7jN — TjN, and hence, together with
Theorem 5.2, conditions under which the formal Edgeworth expansions of the sample t-statistic
and the bootstrap t-statistic agree up to op(G~1).

Theorem 5.3. Suppose Assumptions 4—6 are satisfied with X\ = 4, that E*|v*|® < oo, and that Hy
is true. Then it holds that

EN—£N=§N(E*(U*4)—1)+Op(1) and ij—TjN:Op(l)fOTj:LQ,&

Theorem 5.3 establishes that &y — &n 50 only if the auxiliary random variable has fourth
moment equal to one, i.e. only if E*(v**) = 1, which is satisfied only by the Rademacher distribution.

With the formal expansions in Theorems 5.1-5.3, and noting that Theorem 5.2 implies that
3% =3 = Y3 (B*(v*3) — 1) (E*(v*3) +1) + Op(G~/?), the third-order bootstrap error in estimating
P(t, <z)is

P*(t; <x)— Pty <z) = éG71/2 (’yN (E*(v**) — 1) + G71/2E*(v*3)wN(A)ZN)(2$2 + 1)p(x)
S GTR(E )~ 1) (B 0) + 1) + 208~ 30)6(a)
+ %G‘lﬁv (E*(0™) — 1) (& — 32) + 0p(G), (30)

uniformly in x. Similarly, the third-order bootstrap error for two-sided symmetric tests, i.e. the
error in estimating P(|t,| < x), is given, uniformly in z, by

PH(|tf] < x) — P(Jta] < 2) = — %G_lﬁv (E*(v**) — 1) (E*(v*®) + 1) (2° + 223 — 32)¢(x)
+ éG_lgN(E*(v*“) —1)(2® — 3z) + op(G7Y). (31)

Thus, in combination with the earlier results, Theorem 5.3 establishes conditions for a third-order
asymptotic refinement of the WCB. We state these in two corollaries.

Corollary 5.2. Under the conditions of Theorem 5.3, it holds that Ga(x) £, q2(x) uniformly in x
if and only if E(u?g) =0 for all i,g and E*(v**) = 1. In that case,

sup [P (|t;] < ) = P(jtal < x)‘ = op(G7Y).
xre
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Figure 10: Bootstrap errors and aux. distributions, treatment dummy, v =3, p = 0.10, G; = G/5
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Corollary 5.2 establishes an asymptotic refinement of the two—81ded symmetric test if only if the
errors have third moment equal to zero (to ensure that 4 — yn i 0) and the auxiliary random
variable, v*, has fourth moment equal to one (to ensure that &y — &y N 0). Since the latter
condition imphes that the third moment of v* is zero, Corollary 5.2 thus shows that only the
Rademacher auxiliary distribution has the potential to achieve an asymptotic refinement for the
two-sided symmetric test.

Corollary 5.3. Under the conditions of Theorem 5.3, it holds that G'/2(gy(z) — qi(x)) 50
uniformly in x and () £, q2(z) uniformly in x if and only ifE(ug’g) =0 for alli,g, E*(v*3) =0,
and E*(v**) = 1. In that case,

sup |P*(t; <z)— P(ty < :c)‘ =op(G7h).
z€R

For the one-sided case in Corollary 5.3, we note that a third-order asymptotlc refinement of the
WCB in the one-sided case is achieved under the additional condition that v* has third moment
equal to zero. This condition is required to eliminate the term of order G='/2 in the expansion
of 45 — v, and hence to make G (z) — ¢i(x) of order op(G~1/?) uniformly in z. Thus, as in
Corollary 5.2, the result in Corollary 5.3 shows that only the Rademacher auxiliary distribution
has the potential to achieve a third-order asymptotic refinement in the one-sided case.

The above analysis, specifically the result in Corollary 5.1, shows theoretical conditions under
which a v* with E*(v*3) = 1 should be preferred; see also Wu (1986), Liu (1988), and Mammen
(1993). However, there is a good deal of simulation evidence that, for the ordinary wild bootstrap
without clustering, using such a v* often does not, in fact, work particularly well; see, e.g., Davidson,
Monticini, and Peel (2007) and Davidson and Flachaire (2008). This evidence is also supported by
our simulation results in Section 4, where we compare the Rademacher and Mammen distributions.
Furthermore, the expansion in Theorem 5.2 and the results in Corollaries 5.2 and 5.3 suggest that
a v* with E*(v*3) = 0 and E*(v**) = 1, i.e. the Rademacher distribution, may be preferred.

In Figure 10, we plot the bootstrap errors, i.e. the right-hand sides of (30) and (31), for two
common choices of auxiliary distribution, namely, the Rademacher and Mammen (1993) distribu-
tions. We ignore the op-terms on the right-hand sides, and the random variable Zy is set equal
to its expectation, which is zero. As in Figure 9, the setup is the same as that in panel b) of
Figure 3. In particular, therefore, the errors are skewed, suggesting that the Mammen distribution
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may have an advantage in this case. As discussed in the previous paragraph, the Rademacher and
Mammen distributions trade off the relative importance of the third and fourth moments, in the
sense that the Mammen distribution satisfies E*(v*®) = 1 and the Rademacher distribution satisfies
E*(v**) = 1; c.f. Theorems 5.2 and 5.3.

For both the one-sided test in panel a) of Figure 10 and the two-sided test in panel b), the
Rademacher auxiliary distribution has very much smaller bootstrap error than the Mammen dis-
tribution. This may be surprising, because the errors are skewed, which should favor the Mammen
distribution. It appears that, even though the bootstrap error with the Mammen distribution
vanishes at rate O(G~!), while that with the Rademacher distribution vanishes at rate O(G~1/2),
the skewness correction is much less important than the kurtosis correction, which results in the
superiority of the Rademacher auxiliary distribution in this case.

Comparing Figures 9 and 10, we note that, if the bootstrap errors are very small (or zero as with
a refinement), then the bootstrap achieves the same rejection frequency as the Edgeworth CDFs
in Figure 9. Thus, the very small bootstrap errors for the Rademacher distribution in panel b) of
Figure 10 explain the superior finite-sample size of the (restricted) bootstrap tests based on the
Rademacher distribution in panel b) of Figure 3, especially for G > 30. In contrast, the bootstrap
errors with the Mammen distribution in panel b) of Figure 10 are negative and quite large for x < 2,
meaning there is not enough mass in that part of the distribution, and hence too much mass in the
right tail, leading to negative size distortion (underrejection) as found in panel b) of Figure 3.

6 Conclusion

In this paper, we have provided a formal analysis of the asymptotic properties of CRVE t-tests, the
wild cluster bootstrap, and the ordinary wild bootstrap for linear regression models with clustered
errors. The analysis makes quite weak assumptions about how the number of clusters and their
sizes change as the sample size increases. This requires that, in the key results of the paper, we use a
self-normalizing rate of convergence that depends on the structure of the regressors and the variance
matrix of the error terms. It would be impossible to obtain conventional rates of convergence for
the least squares estimator B without making much stronger assumptions.

The principal results of the paper are grouped into three sets. First, Theorem 2.1 provides a
theoretical foundation for asymptotic inference based on cluster-robust ¢-tests and cluster-robust
confidence intervals. It differs from previous work in that it uses primitive assumptions which are
straightforward to interpret. Second, Theorems 3.1 and 3.2 provide a similar foundation for the wild
cluster bootstrap (WCB) and ordinary wild bootstrap (WB), respectively, in both their restricted
and unrestricted versions. Third, Theorems 5.1-5.3 provide higher-order asymptotic theory that
we use to shed light on the choice of auxiliary distribution in the WCB and to give conditions
under which the WCB may attain a higher-order asymptotic refinement. Simulation evidence and
higher-order theory suggest that the restricted WCB using the Rademacher auxiliary distribution
is generally the best choice.

Appendix A: Preliminary Lemmas

To prove our main results, we use the following preliminary lemmas. Throughout, C' denotes a
generic finite constant, which may take different values in different places.

Lemma A.1. Let {wy} be an independent sequence of random variables with mean zero satisfying
SUP en Elw,|? < 0o for some 6 > 1. Then Zngl wy = Op(Gma{1/6.1/2}),
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Proof. First suppose 1 < @ < 2. Let € > 0 be arbitrary and choose K such that K9 = 2¢~1 sup, E|w,°.
By Markov’s inequality and the von Bahr-Esseen inequality,

G G 0 G ) .
P(Z“’g > KGl/G) < EPVELY] < 2 %=1 Blw| < 2supgen Efwy| =

= K'G  —  K'G K?

If 0 > 2, then we apply the same proof setting § = 2. O
Lemma A.2. Let Assumptions 1 and 2 be satisfied. Then,

sup Ng_GEHXgTugHG =0(1) for1 <0 <4+ A,
supN €E||XTX 19 =0(1) for1 <0 <2+ \/2.
geN

Proof. By the triangle and ¢, inequalities, for 8 > 1,

T [4
Bl Xy ug|” =

lg

Ng
<E(ZHX uzgu) NS BIXTulf. (AL)
=1

By Assumption 1, sup; gen E||Xi—gu7;g||0 < C when 6 < 4 4 A, in which case (A.1) implies that
EHX;ugH‘9 < CNg. It follows that supgey Ng*HEHXgTugHe < C for § < 4+ A, which proves the
first result. The second result follows in the same way after replacing u, by X, in (A.1), noting
that HXigXigHg < || X44]|%, and applying the uniform moment condition in Assumption 2. O

Lemma A.3. Let W, and Z4 be given by (27) and (28), and also let

1/2 TQ 1\/>

1 & , G
e > Van(A) with Vg (A) = (a' Vva)~ ~— X, X My(A )QNINX; wp,.

(A.2)
If Assumptions /-6 are satisfied then,

sup E]Wg|9 =0(1), sup E]Zg(A)|9 = O(G‘9/2), sup E]Vgh(A)]" =0(1),
geN geN g,h€N

for1 <0 <4+ Xand A€ {U,R}.

Proof. We first note that, under Assumptions 4-6 and using (22) and Lemma A.2,

0 T 0/2 110G
sup E|W,|? < (a"Vva) 2| QN NO

sup BJ| X ug|? = O(1).
geN geN

Second, My(A) has the useful properties that 8 — By = MN(A)(B — Bo) and i, = uy —
X,Mn(A)(B — Bo), so that Z,(A) = (aTVNa)_I/QaTQ;%X;Xg(B — Bo); see (29). Then,

B 3 Go/2 . _
sup E|Z,(A)|” < (a"Viva) Q! I sup | X X, I°ENIB — oll” = O(G~"7),
geN geN

using again Assumptions 4-6, (22), and Lemma A.2. Finally, by the same arguments,

B 3 G30/2
sup BV ()" < (a7 Via) 2| QI S sup 1 X] X, || M(A)” sup B X | = O(1).
g,heN geN heN
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Lemma A.4. Let Wy, and Z, be given by (27) and (28), and further define Sy = G~/ Z?:l Wy,
Un =G Y258 (W2 —1), and Ty = Y5, Zy(Zy — 2W,).
(i) If Assumptions 4—6 are satisfied then
E(Sy) =0, E(S}) =1, E(S})=G""2w, E(Sy)=3+G (v —3&n),
E(SnUN) =,  E(SRUn) = G2(én — &),
E(SyTy) = O(G™Y?), E(S}Ty) = 1in — 27on + O(G™Y),
where YN, En, &an, TIN, and Ton are defined in Theorem 5.1.
(ii) If, in addition, Assumption 6 is satisfied with A\ = 2, then it also holds that
E(SYUN) = 3yn + O(G™Y),  E(SxUn) = G2(493% + 6(En — &on)) + O(G™/?),
E(SxUR) = O(G™1?),  E(SRUR) =29} +év — v + O(G ™),
E(S3Tv) = O(G™Y?), E(SyTy) = 67y — 67an + 33n5 + O(G™Y),
where T3n s defined in Theorem 5.1.
(iii) If, in addition, Assumption 6 is satisfied with X\ = 4, then it also holds that
E(SRUR) = O(G™Y?),  E(SNUR) = 1297 +3(6n — &an) + O(G™Y).
Proof. Part (i): Clearly, because I/Vg is mean zero and independent of W}, for h # g, it easily follows

that E(Sy) = 0, B(S3) = G0 E(W2) = 1, and BE(S}) = G320 E(W)) = G™1/2y.
For the fourth moment we find

G
E(S;l\/) =G’E Z W91W92W93W94>7
91,92,93,94=1

where, because E(W,) = 0, none of the summation indexes g1,. .., gs can be different from all the
remaining indexes, i.e. the indexes must either all be equal or be equal in pairs. It follows that

G G

E(Sy) =G 2 E(W)) +3G72 > (EW])(EW,)
g=1 91,92=1,91#92
G G
=G NN +3G72 Y EW2)EWZ) -3G Y (EW))? =G "¢y +3-3G 6.
91»92:1 g:1

Next, for the cross-moments, we similarly find that E(SyUy) = G~} Zle E(W7) =y~ and

G
E(SJQVUN) = G_3/2E( Z Wo W, (W925 - 1))7

91,92,93=1

where we note that the summation indexes must satisfy g; = go. Consequently,

G G
B(S3UN) = G2 Y B2 (W2 1)) + G2 Y (B2 )(EWE, ~ 1)
g=1 91,92=1,91792
G G G
=GN BWEW2 - 1))+ G323 (BEW2)(EWS — 1) — G2 (EW2)(EW?Z - 1))
g=1 g1,92=1 g=1

= Gy (BOV) - BOVE) - Gy (B BV = 6 (ey — av).

g=1 g=1
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The result for E(SyTy) follows directly from (A.2) and Lemma A.3. For E(S%Tx) we find that

G
(SNTN Z EW W ZQ) 71 Z E(W91W92W93Zg3),

92“gs
91,92,93=1 g1,92,93=1

where the first term is part of 7. For the second term, we note from (A.2) that the summation
is non-zero if e1ther g1 = g3 (or identically g2 = g3) or if g1 = g2. In the first case, the contribu-
tion is —4G~1 3¢ (WQQ1 Wy, Zg,), which is the remaining part of 7. In the second case, the
contribution is

91,92

G G
-2G7" > (EW;)(EWQQZQQ) —2G*12E(W§ = —2G71 Z EW2 (EWy,Zg,) +O(G™1),
91,92=1,91#92 g=1 g1,92=1

which equals —27oy + O(G™ 1) and where the O(G™!) term is due to Lemma A.3.

Part (i1): Because we now assume A = 2, six moments of u;4, and hence of W, and Z,, exist,
which implies that the required cross-moments of Sy, Uy, and Txn exist. Thus, similarly to the
previous moments, we find

G
E(S?VUN) = G_QE( Z W91W92Wg3(W2 - )):

91,92,93,94=1
where none of the summation indexes g1, ..., g3 can be different from all the remaining indexes. It
follows that
G G
E(S3Uy) = Z EW)) + G~ Z EWS)EW,, —1)+3G7> > (EW;)(EW))
g9=1 91,92=1,91792 91,92=1,91792

G
=0(G™ +3G72 Z E(W2)E(W,,) —3G %Y (EW;)(EW?) = 3yn + O(G™1),
g1,92=1 g=1
where the O(G™!) terms are due to Lemma A.3. Next, we find in the same way that E(S3Un)
contains five summation indexes, out of which the four associated with an Sy cannot be different
from all the remaining indexes, i.e. those indexes must either be all equal, equal in pairs, or equal
in one triplet. In the first case, Lemma A.3 easily shows that the contribution is O(G~3/2). Thus,

G
E(S?VUN) = G_5/2E( Z W91W92W93Wg4 (Wgz5 - 1))
91,92,93,94,95=1
G G
=4G77 Y B(W (Wa, = Wy,)) + 6672 3~ E(Wg Wi, (Wg, — 1))
91,92=1,917#92 91,92=1,917#92

G
+3GTEN B(WA WL (We — 1)) + O(G*2).
91,92,93=1
G17g27#93

When a term has only one summation, then it is O(G_g/ 2) by Lemma A.3 because of the normal-
ization by G~5/2. Tt follows that the first and second terms of E(S§Uy) are

G
AGTS2 ST (BWE)(B(WE) — B(Wy,)) + O(G™3/%) = 4G™124% + 0(G*),
g1,92=1
G
6G752 N (EWR)(E(W,) —E(W2)) + O(G™3/2) = 6G712(&y — 1) + O(G™3/3).

g1,92=1
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The third term of E(S4Ux) is

G G
3G9 N (EW2)(EWR)(EWZ — 1) - 3G2 Y (EW2)?(EWZ — 1)
91,92,93=1 g=1
G G
—3G7% N (EW2)HEWE 1) -6G7% > (EW2)(EWE)(EW2 - 1),
91,92=1,917#92 g1,92=1,917#g2

of which the first term is zero, the next two are O(G~3/2) by Lemma A.3, and the final term is

G
—6G° N (EW2)(EWZ)(EWZ — 1)+ 0(G™/?) = =6G2(&n — 1) + O(G™*?)

g1,92=1

by the same arguments as above.

Next, E(SyU%) contains three summation indexes, of which the index associated with Sy
cannot be different from the other two, and the result follows immediately from Lemma A.3.
Finally, E(S3U%) contains four summation indexes, where the two indexes associated with an Sy
cannot be different from all the other indexes. Hence,

G
BSRUR) =GE( Y W W - DOV - 1)
91,92,93,94=1
=G2 Z E(WZ (W2, —1)(W, — 1)) +2G 2 Z E(Wy, We, (W7 — 1)(WZ, = 1)).
91,92,93=1 91,92=1,917#92
Again using Lemma A.3 and noting the normalization by G2, the second term on the right-hand

side is 2G 2 Zgl go 1(EW51)(EW932) + O(G™Y) = 244 + O(G™1). The first term of E(S3U%) has
either go = g3, in which case the contribution is

G G
G2 Y (EW)(EW,,) —2E(W2)+1)+ G >Y EWHW, —1)*) =é&v —1+0(G™Y),
91,92=1,917#g2 g=1

or it has go # g3, in which case the contribution is

G G
G2 (EW)(EW, — )(EW, —1)+2G7% > (EW, —EW;)(EW], — 1),
91,92,93=1 91,92=1,917#92
91792793

where the second term is O(G~!) by Lemma A.3 and the first term is

G
G~ Z (EWZ)(EWy, — 1)(EW,, - Y (EWZ)(EW] — 1)(EW] —1)
91,92,93=1 g=1
G G
-G Y (EWZ)(EWZ —1)*—2G7% Y (EW.)EW, —1)(EW,, —1)
g1,92=1,917#92 91,92=1,917#92
G
= -G Y EW)EW, -1?+0(G ") =-G" 12 (EWz, — 1)+ 0(G™),
g1,92=1

which equals 1 — & + O(G™1).
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For the cross-moments with T, we use (A.2), let Vg, = Vg, (U), and find that

G G
E(S?VTN):G_7/2 Z E(Wngngnge%%e%)—QG_5/2 Z E(Wg, W, W, Wy, Vgugs ),

91,---,96 91,--,95

where the subscripts gi,...,95 on both sides must be equal at least in pairs. This eliminates
three summations in both terms, and the result then follows easily from Lemma A.3. Next,
E(S%Tn) also contains two terms, which we investigate in turn. By (A.2) the first term is given
by G4 Zg,...,m:l E(Wy, -+ - Wy, Vgr95Vgrgs ), Where the subscripts g1, ..., ge must be equal in three
pairs, two triplets, or one pair and one quadruplet. In the latter two cases there are at most three
summations, so the contribution is O(G~!) by Lemma A.3. This leaves the contribution

3G ! Z EW2 EW922)(EV2 +6G_4 Z EW2 W92W93V9492V9493)

9493
g1,--94=1 g1,---,94=1
917’5927@3 917'5927593

=3G7" Z (EWZ)(EWZ)(EVZ,,) +6G~* Z (EW2)VE(Wgo We, Viigo Viags) + O(G™1)

9493
g1,--,94=1 g1,--,94=1
G
_3G QZ EV;J2192 +6G_3 Z E(W91Wg2‘/9391‘/9392)+0(G_1)

g1,92=1 91,92,93=1

G G
=3 E(Z2)+6G" > E(Wy,Wy,Z2)+0(G™),
g=1 91,92,93=1
using Lemma A.3. The first term on the right-hand side is 373y, and the second is six times the
first part of 71y. Similarly, the second term of E(SxTy) is —2G 3 ZQGLW’%:l E(Wy, - Wy Visge )

where the subscripts g¢1,...,g9¢ must be equal in three pairs since otherwise the contribution is
O(G™') by Lemma A.3. This leaves

—6G_3Z (EW2)(EW2) (EWg, Vasgs) 24G—3Z (EW2)E(W2, W, Vgs)
g1,92,93=1 g1,92,93=1
g1 7592 #93 g1 #gz #93

= —6G3 Z EW7 ) (EWS,)(EWg,Vy,g,) — 24G° Z EW2 ) E(Wg, Wy, Viags) + O(G™)

91,92,93=1 g1,92,93=1
G G
= —6Y E(W,Z,) —24G~" Y E(W;Wy,Z,)+0(G),
g=1 g1,92=1

using Lemma A.3. The first term on the right-hand side is —6mn and the second is six times the
second part of 7.

Part (iii): Since A = 4, eight moments of wu;4, and hence of W, must exist, which implies
that the required cross-moments of Sy and Uy exist. First, E(S3.U%) contains five summation
indexes, where again those associated with an Sy cannot be different from all other indexes, and
if an index from a Uy is different from all the other indexes, then it follows by Lemma A.3 that
the contribution is O(G~1/2). This leaves at most two summations, so the result is O(G~1/2) by
Lemma A.3.

Next, we find that E(S%,U%) contains six summation indexes, of which the four indexes associ-
ated with an S cannot be different from all the other indexes. Furthermore, terms with only one
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or two summations are O(G~!) by Lemma A.3 because of the normalization by G 3. Thus,

G
E(S4U2) = G ST W Wy Wy, Wy, (W2 — 1) (W2 — 1))
g1 792793794:!]5,96_1

= 12673 Z (EW.)EW)EWS) +3G7° Z (EW2)(EWL)EW, —1)%)

g1,92,93=1 g1,92,93=1
917’5927593 91792793
G
+8G™3 Z EW2)EWS)EWS —1)+3G7% > (EW.)(EW.)(EW, —1)(EW,, —
91,92,93=1 91,92,93,94=1
91792793 9179279379

The first three terms of E(Sﬁ,UJQV) are

12673 Z EW2)EW)EWE)+0(G™) = 1273 + O(G™),

91,92,93=1

3G~ 32 (EW2)EW)EWE —1)?) +0(G™") =3(Ev — 1) + O(G™1),
91,92,93=1
8G 3 Z EW2)EWL)EWS —1)+0(G™) =0(G™).
91,92,93=1

For the final term of E(SxU%), we first note that if the summation index g4 is unrestricted then
the contribution is zero. Thus, the final term of E(SYU%) is

—-3G7° Z (EW, ) (EW)(EW, —1)> —6G° Z (EW. ) (EW,)(EW, —1)(EW,, — 1),
91,92,93=1 91,92,93=1
91792793 91792793

where the second term is O(G~!) because when g3 is unrestricted the contribution is zero and when
gs is restricted there are only two summations remaining. This leaves the contribution

—3G73 Z (EW2)EW)(EW,, —1)* = -3G° Z (EW2)EW)EW,, —1)*+0(G™),
91,92,93=1 91,92,93=1
917#927#93
which equals —3(&n — 1) + O(G™1). O

Appendix B: Proofs of Main Results
B.1 Proof of Theorem 2.1
Proof of (15). The left-hand side of (15) is

G G
(aTVNa)*l/QaTQ]—Vlel Z XgTug — U;1/2,U}V/2CLTQ71N71 Z XgT’U/g(l + OP(].))
g9=1 g=1
by Assumption 2 and Slutsky’s Theorem. Thus, we need to prove that

G
v 2 PaT QT ZXgTugi>N(0,1). (B.1)
g:l
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We define zy = vg 1 2,u}\{2N laTQ'X gT ug, which, by Assumption 1 is an independent sequence
with mean zero and conditional variance given by E(z}|X) = v;luNN*QaTQle;QngQfla.
By Assumption 2, Zg’;l E(zg\X) N 1, and because {E(23|X)} is uniformly integrable by the uni-
form moment bound in Assumption 2, it follows from Vitali’s Convergence Theorem (or Lebesgue’s
Dominated Convergence Theorem) that also 25:1 E(zg) — 1. Then (B.1) follows from the Lya-

punov Central Limit Theorem for heterogeneous, independent random variables if, for some £ > 0,
it holds that 25:1 E|z,/**¢ — 0 (Lyapunov’s condition). We find that

G G

1 14+£/2 _ _9_
SRz [P < op 2y aTQ PN T E S B X w2
g=1 g=1

G
< Cu]l\;LS/QN_Q_f Z N;+§ < C’u}\;rgm]\f_l_g sug Ngl+§ — 0, (B.2)
g=1 9¢€

where the second inequality is due to positive definiteness of Q (Assumption 2) and Lemma A.2
(with 8 = £ + 2), and the convergence is due to Assumption 3 setting & = 2 + A.

Proof of (16). We start with the decomposition

A,

a'Va
a'Vya

~1=(a"Vya)'a" (V- Vy)a=v, ' una’ (AlN — Aoy — Agy + A3N>a(1 +op(1)),

where we used Assumption 2 and
1 e T, T R PR 1
Ay = N2Q > X, ugu, X,Q70 - N2Q > X, 9,X,Q7,
g=1 g=1

1,8 A -
Ao = QS X3 B XX,
g=1
1 & 5 3
Ay = Q7 DX X (B BN)(B - B) X X,Q 7.
g=1

Thus, we need to show that uya' A,na P50 for m = 1,2,3. To prove the result for m = 1,
let wy = 22 — E(22) such that, by the law of iterated expectations, Ele wy = viluya" Aiya.

g g
Clearly E(Z§:1 wy) = 0, and we prove convergence in mean-square,
G G G G G
Var (Z wg> = Z Var(wg) = Z Var(zg) = Z E(z;l) - Z(Ezg)z,
g=1 g=1 g=1 g=1 g=1

where the first equality follows from independence across clusters. The Lyapunov condition (B.2)
with & = 2 shows that chzl E(zﬁ) — 0, and hence also Engl(Ezg)Q — 0 by Jensen’s inequality,
which proves the result for m = 1.
Next, we analyze the case m = 2, where, using the fact that (8 — BN)TXgTXngla is a scalar,
we find that .
N 1 _ _
pna' Asya = pun(B — ﬁN)Tﬁ Y X,/ X,Q 'aa’ QX uy.
g=1
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We first note that |8 — Bl = Op(||[Viv|[//2) = Op(N =2 sup,ey Ng'?); see (9). Then,

G
Y X,/ X,Q 'aa’ QX uy
g=1

G

B < Q7P Y B X, X, X, u
g=1

G Ny
<Q7UEY Y Bl Xi X X s
g=11i,j=1

; (B.3)

where, by the Cauchy-Schwarz inequality and Assumptions 1 and 2,
T T T 2y1/2 T 2y1/2
EHXigXinggung < (EHngXlgH ) (EHngung ) <C,

so that the left-hand side of (B.3) is Op(NN supgey Ny). It follows that
lunva” Asnal| = Op (MNN73/2 sup NE/Q) =op(1)
geN

under Assumption 3; see also (11).
Finally, the proof for m = 3 is similar to that for m = 2, but simpler. We find the bound

1 B R G
lunva’ Asyal| < N llQ P8 = B IP Y 11X, X1,
g=1

where Z?:l 1X, X4l = Op(zg;:l NZ) = Op(N supyey Ny) by Lemma A.2. It follows that

luva” Azna| = Op (MNN_2 sup N;) =op(1).
geN
Proof of (17). We use (14) to decompose the t-statistic (6) as

T —1/2
_(e Ya T —1/2 T (3 _
e (e (oo )

and the result then follows directly from (15), (16), and Slutsky’s Theorem.

B.2 Proof of Theorem 3.1

We first give the bootstrap analogs of Theorem 2.1, which establish the asymptotic normality of
the WCB estimator and t-statistic. That is, for all z € R and for all € > 0,

* aT(B*—B) P
P ((GTVNG)I/Q < :U) — ®(z), (B.4)

. a'V*a P
P <’M1 >e> R (B.5)
P < z) L ®(2) (B.6)

From Corollary 2.1 and (B.6) it follows that

Py(ty < z) — ®(z) and P*(t* < 2) - ®(z),
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respectively. The desired result then follows by application of the triangle inequality and Polya’s
Theorem, given that ®(z) is everywhere continuous.

We thus need to prove (B.4)—(B.6), and we do so following the same outline as in the proof
of Theorem 2.1. Under the WCB probability measure, we let I' = N2 25:1 X ;’ ﬁgﬁ;—Xg and

V = QJ_\,lf‘Q]_\,1 denote the bootstrap true values (i.e., the values generating the bootstrap data).
First note that, by identical steps to those in the proof of Theorem 2.1, it holds that, under (14),

s .
W —0p(1) and 2V Py (B.7)

It follows from (B.7) that a' (8 —By) = Op(,u]_\,l). However, a more readily applicable consequence
of (9), (B.7), and Assumption 2 is that

I8~ Bl = Op(N~2sup Ny%) and (aTVa)™ = Op(un). (B3)
g€

Proof of (B.4). We define z; = (aTVa)_l/QaTQleN_lX;uZ so that (a"Va)~2a’ (B*—f) =
2521 zy, and show that, for all z € R,

P*(;:z; < x) P,y o). (B.9)

In view of (B.7), this suffices to prove (B 4). To show (B.9), we apply the Lyapunov Central Limit
Theorem. Since E*(z;) = 0 and Z 1 E*(2;%) = 1 (because E*(v}) = 0 and E*(v}?) = 1 for
all g), this only requires verifying that the Lyapunov condition holds under the WCB probability
measure for some & > 0 with P-probability converging to one; that is, we need to show that
ZG E*[25]**¢ 0.

We ﬁrst find that, because H N = Z 1 [1 X 7 X,4||? is a non-negative random variable, Hy =
Op(E(Hy)), and similarly for }° g:l ||XgTug||9, and it then follows from Lemma A.2 that

G G
SIX) X, = Op(Nsup Ng~1) and 3 [ X, uy|” = Op(Nsup NJ ) (B.10)
=1 geN g—1 geN

for 1 <0 <4+ Xand 1 <6 <2+ \/2, respectively. We then find, because E*|vg]9 is a finite
constant that does not depend on g and using the decomposition i, = u, — X,(8 — Bn) together
with the ¢, inequality,

G G G
E*ZHXT SIf =BT Y IX gy’ < 071X, g
=1 g:l g:l
G G
T 0 T 013 0 0—
< Y IXugl” +C 1K X |18 = Bl = Op(Nsup Nj~1), - (B11)
g:l g:l g

where the last equality in (B.11) is due to (B.8) and (B.10). It then holds that

G G 1+¢£
.. N
ZE*‘ZZ|2+£ < (aTVa)flff/QHQXrlHQJF&N*Q%E*Z ‘|)(T *||2+£ Op (“N+£/2 sup Nﬁ—s—é)
g=1 9=t
(B.12)

by (B.8) and (B.11). The right-hand side of (B.12) is op(1) by Assumption 3 setting £ = A/2 > 0.
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Proof of (B.5). We note that X;—ﬁ; = X;— ;—X;Xg (B* — B), which implies the decomposition
(@a'Va)la™ (V' —=V)a=(a"Va)™! T(BlN By — B3l + B3N>

where

Q

1 . 1, o«
Biy = QN Z XgT“g“gT*X—ng\fl(Ug2 -1),
g=1

1 & s
By = Q;&m 2 Xy uy(B = B)! Xy X,Qy', and
Biy =Qy N2 ZXTX (B = BB - B) Xy X,Qy".

Using this decomposition, it suffices to prove that, for any € > 0, P* (|(aTVa) la" B’ val > ¢€) £,
0 for m = 1,2,3. The proofs for each term roughly follow those for the corresponding term in the
proof of (16).

For m = 1, use ity = u, — X (8 — By) to write By = Bl y — Blyy — Bigy + Bjyy with

G
Biiy =Qy Ng > XJ“QU;XQQEI(U;Q — 1),
g=1
G .
By = QN Ng Z XgTug(/67 — BN)TX;XgQ]_Vl(U;Q — 1), and
g=1

G
Blox = Qi 3 X[ Xy(8 — Bn)(B — B) X[ X, Q3 (05— 1)
g=1

We first note that |a' Biyya| < (a' Bj ya)/?(a’ Bi;ya)'/? by the Cauchy-Schwarz inequal-
ity, so it suffices to prove the result for j = 1 and j = 3. Because E*(’U;Q) = 1 we find that

E*((a"Va)'a TBlea) = 0 for j = 1,2,3. For j = 1 we find that (a'Va)'a'Biya =
Zg 1 214, Where z{; = (a WVa)la"Qy'N- 2XTuguTXgQN (v *2 _ 1), and we prove convergence
in mean-square. Thus, by independence of 21 (under the WCB probabllity measure),

G

G G
Var*(Z zi‘g> = ZVar*(zlg Z E*( Zlg ) < E*(( ;2 - 1)2)(aTVa)_2||QjV1H4N_4 Z ||XgTuH4,

g=1 g=1 g=1

which is Op(u};N ™3 sup,en N3) by (B.8), (B.10), Assumption 2, and because E*((v}? —1)?) is a
constant that does not depend on g. The result for j = 1 then follows from Assumption 3; see also
(11). For j = 3 we prove convergence in Li-norm, which implies convergence in probability. Thus,

E'|(a"Va)"'a' Bigyal < |Qy'[*(a’Va)™!

G
w2 || 2 X Xo(B—Br)(B—Bu) X X, B0 1,
g:
where E*|v;? — 1| is a finite constant that does not depend on g, Q|12 = Op(1) by Assumption 2,
and (a"Va)~' = Op(uy) by (B.8). We also find, by Minkowski’s inequality,
G .o .
S X, X4(B-Bn)(B-Bn)

g=1

G
<118 - B> D 11X, X,|* = Op (sup N2),
g=1 geN
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where we used (B.8) and (B.10). It follows that

E*|(a"Va) 'a'Bjsya|l = Op (,uNN_2 sup N;) =op(1)
geN

by Assumption 3; see also (11). This proves the result for j = 3 and hence for m = 1.
To prove the result for m = 2, we first apply the Cauchy-Schwarz inequality to obtain the bound

T 1 & T T 2 s TyT 1,12 12
-1 * Q* 2 —
|a’ BQNa’ < N2 (2:1(0‘ QN Xg ug) ) (Z:l ((5 _ﬁ) Xg XgQN a’) )
9= 9=
., G /2 , G 1/2
< 0PI - A 1T wl?) (1% Xl (B.13)
g=1 g=1
Here, E*||3* — 8|12 = Op(|V||) = Op(N ! sup,en Ny ), so for any ¢ > 0, by Chebyshev’s inequality,

P*(||B* - B|| > ¢V/ANTY2 sup N2y <¢NT! sup N,E*||B* = B|> = COp(1) = 0p(1)  (B.14)
ge ge

by choosing ¢ sufficiently small; cf. (B.8). It now follows from (B.13) and (B.14), together with
(B.8), (B.10), and (B.11), that

P (|@Va)y"a Bival > ¢t un N sup Nj/2) = COp(1) = 0p(1)
g

3/2

by choosing ¢ sufficiently small. Because py N ~%/2 supyey Vg’ © — 0 under Assumption 3 (see also

-3/2

(11)), it follows that, for any € > 0, we can choose N large enough that (=1 uy N SUp ey N§/2 <

€, which proves the result for m = 2.
Finally, the proof for m = 3 is similar to, but simpler than, that for m = 2. We use the bound

(a"Va)"'a' Biyal < (a"Va) Q418" — BII” QZHXTX 1%,

so that, as for m = 2,
P*(|(a"Va) 'a" Biya| > ("' un N2 sup NZ) = COp(1) = op(1)
geN
and py N2 SUPgeN Ng2 — 0 under Assumption 3.
Proof of (B.6). Follows immediately by (B.4), (B.5), and Slutsky’s Theorem.

B.3 Proof of Theorem 3.2

We first define some notation. Let Q denote the matrix obtained by setting the off-diagonal
elements of Q to zero, Ty = N2X QX and Vy = Q]_Vlf‘NQX,l; cf. (2), (4), and Assumption 2.
Notice that, except in very special cases, Vi # Vy. We also let V = Qj\,lfQR,l and T' =

Z 1 ZNQ X Tu 4 Xig denote the bootstrap true values under the WB probability measure
(note that these are not calculated under the WB algorithm, but serve only as useful constructions
for the proof of Theorem 3.2).
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The WB analogs of (B.4)—(B.6), which establish the asymptotic normality of the WB estimator
and t-statistic, are as follows: for all x € R and for all € > 0,

* aT(B* - ﬁ) P
P (W < :c) — ®(x), (B.15)

. a' V*a P
P QGTVNG 1l s e> R (B.16)
P < z) L5 ®(a). (B.17)

From Corollary 2.1 and (B.17) it follows that
Py(te < ) — ®(z) and P*(t: < z) 2> ®(a), (B.18)

respectively. The desired result then follows by application of the triangle inequality and Polya’s
Theorem, given that ®(z) is everywhere continuous.

We note that (B.15)—(B.17) in fact hold without Assumption 3, but instead imposing only the
weaker condition in (10). This will be evident from the proofs given subsequently. However, this is
only a theoretical curiosity because the use of Corollary 2.1 in (B.18) requires Assumption 3.

Before proving (B.15)—-(B.17), we note that

) _
(@ Vya) ! = Op(N), and 2 Y% P,y (B.19)
a'Vya

where the first statement follows directly from Assumption 2 and (7). To prove the second statement
in (B.19) we use the decomposition

aT(V — VN)a —a' (ClN — Con — C;—N + CgN)a

where

G Ny

Ciy= 2 ZZX - zg‘X))Xng&17

g=1i=1
G Ny
Con :QN N2 ZZX Uig B ﬁN)TX ngQNa and

g=11i=1
G Ny

QZZX Xig(B— Br)(B — BN)T Xip X1sQ

g=1i=1
and show that (a' Vya)™la'C,na Ly 0form=1,...,3 Equivalently, since (a'Vya)™' =
Op(N), we show that Na'C,,ya L0 for m = 1,...,3.

To prove the result for m = 1, for any conforming vector, b, let w;q = bTXiTg(u?g—E(u?g]X))Xigb,
which is independent across g conditional on X . By the law of iterated expectations,

G Ng 2 G Ny 2 Ny
E((ZZ%) ) = ZE((Z%> ) < ZN > E(w},) < C’NsupNg,
g=1i=1 g=1 i=1 g=1 i=1

using the ¢, inequality and Assumptions 1 and 2. It follows by Assumption 2 and (10) that
_ 1/2
INa"Ciya| = Op(N 1/2 SUDgeN Ng/ ) =op(1).
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For m = 2, we apply the bound

G Ng
[Na" Caval < NIQRIPIS ~ Bl D 3 10 Xl X |
g=11i=1
G Ny 1/2 , G Ng 1/2
T
< NI - Al (S S 1K Xl (33 1wl
g=11i=1 g=11i=1

= Op(]\f_l/2 supN1/2) =op(1),
geN g

using the Cauchy-Schwarz inequality, (B.8), Q;\,l = Op(1), (10), and Assumptions 1 and 2. Finally,
we turn to m = 3, where, by an identical argument, we obtain

G Ny

1
[Na'Csnal < NIQYIPIB — By I+ Zzuxgxwzop(zv sgpzv) = op(1).
g=11=1 g

Proof of (B.15). We now have (a' Vya)~/?a T(B* —B)=(a"Va) 2 (1+op(1))a’ Q! NI X Tu*
by (B.19). Under the WB probability measure, u;; is heteroskedastic, but 1ndependent across both

iand g. Let 2, = (a"Va) 20T Qy' N1 X u jg, with E*(2;) = 0 and 25, YN E*(232) = 1.

The result follows by application of the Lyapunov Central Limit Theorem to Zg 1 Zl 1 l*g, which
requires verifying the Lyapunov condition that, for some & > 0, Z 1 ZNg E*]zy]”g L.

By the ¢, inequality,

G N, G Ny
SN B P < 2t ZZE*|Z [P+ 2D D B[,
g=1i=1 g=1li=1 ==t

where 27;, = (aTVa)*l/QaTQ]_VlN*IXTngv and 23;, = (a WVa) ' 2aTQy' N 1X£Xz»g(,3 — BN)viy
We first obtain the bound

G Ny G Ny

K| % Ty —1-— — —2— *
YD ER T < (@ Va) T RQG PN T Y T B X i v |7
g=1i=1 g=1i=1

Since Hy = Zg 1 ZNg E*| X ulgv
and we find that

7o|I?T¢ is a non-negative random variable, Hy = Op(E(Hy)),

G Ny G Ny
Hy) =Y > BE(IXpuigviy|*76) < O Bl X guigl**,
g=1i=1 g=1i=1

which is O(N) by Assumption 1 for £ < 2+ A. It follows, using also (B.19), that

G Ny

DD BT = 0p(NTH?) = 0p(1) (B.20)

g=11i=1
by choosing 0 < £ <24 A. Next, by (B.8) and (B.19),

ol x ol x . L _ _ . 2+¢€
B |25t < BJog (@ Va) 2 aT Q' NTIXG X0 (B — Br)|

= Op(N'*e/2N=5-3¢/2 sup N |X 0 X
ge
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As in (B.10), 3 HXZ-TgXigHQJr£ = Op(N) by Assumption 2 with 0 < § < \/2, so that

9

G
2 iE*!zé‘igP“ = Op (N2 €sup Ny +%) 35X X 7 = Op (31 “sup NG %),
g=11:=1 g=11=1 ge

which is = op(1) by (10), and this proves (B.15).

Proof of (B.16). In light of the two results in (B.19), the result (B.5) follows if, for any € > 0,
P((a"Va)ta"V*a — 1| > ¢) 5 0. To prove this, we apply the decomposition

A

a' (V' =V)a=a (DIN + D3y — Diy — D3 + D4N)

where

T2 —1/, %2
DlN = 2 ZZX 'LL XngN (v;(g - 1)7
g=1i=1
G Ny
1
D;y = N2 Z Z Xlgulguw Jjg sz*gng’
9= IZ#J 1

D§N N N2 ZXT o ,3 ﬁ)TXTX QN, and

Diy = NNzZXTX (B = B)(B" - B) Xy X,Qy'.

It suffices to prove that, for any ¢ > 0, P*(\(aTVNa)_laTD;"nNM > €) £, 0, in probability, for
m =1,...,4. Equivalently, by (B.19), we can replace (a' Vya)~! by either (' Va)™! or by N.

To prove the result for m = 1, we use ;g = uig — Xig(8 — Bn) to decompose Dy = D7y —
Diyy — Dijy + Di3y, where

G Ny

Diy = N N2 ZZXTuzgungngN ( -1),
g=11i=1

G Ny

Diyy = N Ng ZZX Uig :3 IBN)TX;X%'QQNI(Ug — 1), and
g=11=1

G Ny

Diyy = NNQZZXTXW/B BN)(B — Bn) T X XigQy' (vi7 — 1),

g=11i=1

First note that |a” D%,y a| < (a” D* ya)/?(a” D*;ya)'/? by the Cauchy-Schwarz inequality, so it
suffices to prove the result for j = 1 and j = 3. Because E*(v *2) = 1 we find that E*(NaTD* a) =

0for j=1,2,3. For j=1, (a"Va)'a TDi‘lNa = Zg 1 Zl 12119 1, and we prove convergence
in mean-square. By independence of zhg across i and ¢ (under the WB probability measure),

G Ny G Ny G Ny G Ny
Var*(ZZzhg ) = ZZV&r leg ZZE* leg ZZ (E*( leg =op(1) (B.21)

g=1i=1 g=11i=1 g=1i=1 g=1i=1
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using the Lyapunov condition (B.20) for £ = 2 and Jensen’s inequality, which proves the result for
7 =1. For j = 3 we prove convergence in Lj-norm. Thus,

G N,
B |NaT Diyval < NIQY P | 3030 X0 Xig (B — Bn)(B — Br) X X[ 71032 1]
g=11i=1
G N,
< Op(N- supN)ZZHX igH2=0p(N*1su§Ng)=op(1)
g=1i=1 g€

as above, using that HXZ-TQXZ-QHG is a non-negative random variable, so that, by Assumption 2,

G Ny G Ny

.
>3 UK Xl = 0 (32 Y BIXG X ) = 0p() (B.22)
g=1i=1 g=1i=1

for 6 < 24 \/2; see also (B.10). This proves the result for j = 3 and hence for m = 1.
For m = 2, we again decompose D3y = D3, + D3y + D;;—N + D35, where

G Ng
D3y = N2 Z Z ngulgujg jg N zg ]g’
g=li#j=1
G Ng
* T T -1 *
D3y = 22 Z X g Uig ﬁ BN) X, X g szgng, and
g=li#j=1
G Ng
* T T
D23N: QZ Z X XZQ ,6 ,BN)(,B IBN) X XJQ N zg jg?
g=li#j=1

and by the Cauchy-Schwarz inequality we only need to prove the result for D;‘j N Wwith 7 =1 and
J = 3. For j = 1, we use independence of vj, across both i and g and prove convergence in
mean-square. Hence,

G Ny

E* (NGTD21NCL) < ||QN H4N2 Z Z X Ung | X “Jg||2 (B.23)
g=li#j=1

where the summation on the right-hand side is a non-negative random variable with mean

G Ny G Ny 1/2
>3 B(IXul X ul?) <303 (BIXTul) (BIXult) .
g=li#j=1 g=1i#j=1

which is Op (N supgyey Ny) by Assumption 1. It then follows from (B.23), using also Assump-
tion 2 and Markov’s inequality, that, for any ¢ > 0, P*(|Na' D}, ya| > ("' N~1/2 SUPgen N;/Q) =

Op(1) = op(1). This proves the result for j = 1 because N~Y2sup, .y N N by (10). For
geN-*Yg
7 = 3 we also prove convergence in mean-square and find

G Ny

E*(Na'Djya)’ < Q3 H4N2||B BN D0 13X Xl 11X, X1
g=li#j=1
G Ny

2
<lQy H4N2H’3 ,BNH4(22 HX igH2) = OP(N supN2> = op(1),

g=1i=1 geN
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where we used (B.8) together with Assumption 2 and (B.22). The last equality follows from (10).
For m = 3, we apply the Cauchy-Schwarz inequality as in (B.13) and find

|Na" Djyal < N(§ :
g=1

/2, G 1/2
- 2 A% 4 Z1 32
(a'Qy' X, u) ) (Z (B*-B)" X, X,QN'a) ) : (B.24)
g=1
The term inside the first large parentheses in (B.24) is a non-negative random variable with mean
(under the WB probability measure)

G G Ny
— 2 — .. — >
E*) (a'Qy' X, ul)” =D a' Q' Xji;, XiyQy'a = N?a'Va = Op(N) (B.25)
g=1 g=1i=1

by (B.19) and (7). The term inside the second large parentheses in (B.24) is

(B.26)
usingA(B.l(?). By an identical argument to that in (B.14), under the WB probability measure,
P*(||8* — B|| > ¢"'N~1/2) = op(1). Combining (B.24), (B.25), and (B.26),

P(INa" Diyal >IN sup NyT%) = COp(1) = 0r (1),
g

where N—1/2 SUDgeN Ng1 20 by (10), which proves the result for m = 3. Finally, by very similar
arguments, we find for m = 4 that

G
* - 1 Q% a2
[Na' Diyal < NIQNI* 53 2 I1X) X,[1*18” — AI,
g=1
which satisfies

P*(\NaTDZNa] > INTL sup Ng) =(O0p(1) =op(1),
1<g<G

and the result for m = 4 follows because N~ sup;<,<5 Ny — 0 by (10).

Proof of (B.17). Follows immediately by (B.15), (B.16), and Slutsky’s Theorem.

B.4 Proof of Theorem 5.1
Following Ch. 2 of Hall (1992), in particular Theorems 2.1 and 2.2, we consider Taylor-series

approximants, f’;, to t’g and define the approximate cumulant functions
TN (te) = E(ta), (B.27)
Moy (ta) = B(&) — (E(a))?, (B.28)
Mon (ta) = E(F) - SE()E() + 2(E(7,))*, (B.29)
M (ta) = E(fy) — 4E(5)E (L) — 3(E(17))? + 12E(72) (E(f))® — 6(E(f))" (B.30)
Then
1
q1(x) = —(k1 + 6/‘13($2 —1)) and (B.31)
1 1 1
q2(x) = —5(@ + k) — ﬂ(m + 4k1k3) (23 — 32) — Eﬁg(xf’ —102% 4 152), (B.32)
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where k1 and k3 are the coefficients of the terms of order O(G_I/ 2) in an asymptotic expansion
of II1n(ts) and IIgn(t,), respectively, while ko and k4 are the coefficients of the terms of order
O(G™!) in an asymptotic expansion of Tloy(t,) and Iy (,), respectively. We analogously define
the corresponding bootstrap cumulants ﬁj Nn(tr) for 7 = 1,...,4, replacing the population mean
E(-) by the bootstrap analog E*(-), and deduce #;, and hence §; and §o, in the same way as ;.
The remainder of the proof is divided into three parts. First, we derive the Taylor-series
approximants, f’;, to powers of the sample t-statistic. Then we use these approximants to find
expansions of the cumulants I,y (t,) as needed to determine the coefficients x;, for j =1,...,4. In
the final part, we derive the corresponding results for (both versions of) the bootstrap t-statistic.

Taylor-series approximants to t¥. From (26) we find that ¢, is
te = Sy(1+ G Y2(Uy + GH2Ty)) V2,
where Ty =Ty + 1o N and

Sy = fZWg_op()

G
Tin =—2) WyZy=0p(1), Toy =
g=1 g=1
The orders of magnitude in (B.34) and (B.35) are derived as follows. First, Sy and Uy are both
sums of independent summands with mean zero, so that (B.34) follows by Lemmas A.1 and A.3 with
6 = 2. Next, expanding Z, as in (A.2) and applying Lemma A.3, (B.35) follows straightforwardly.
By second-order Taylor-series expansion of (1 4 )~/ around z = 0, we find

-1/2

(B.33)

a
Z_: Op(1), (B.34)

G a\

= Op(1). (B.35)

(1 +GV2(Uy + G_1/2TN)) =1- G_I/Q%UN + G_l( - %TN + %UJQ\[) +O0p(G3/2).
From (B.33) and the orders in (B.34)—(B.35), we then obtain the approximation
ta = Sy + GV (— LSwUN) + G (= g ST + %SNU?V) +Op(G32). (B.36)
Finally, each of the Taylor-series approximants, £, is found by taking the relevant power of (B.36)

and eliminating terms that are at most Op(G~3/?).

Expansions of cumulants II;y(¢,). Taking expectations of £ as defined above, and using (B.36)
and Lemma A.4, we find

- 1
E(fa) = —5Gn + O(G™2), E(f) = 1+ G712} — muv + 2mav) + O(G ),

E(f;) = %G‘Ww +O0(G™%), E(fy) =3+ G 1 (289] — 26y — 12nix + 12may — 6735) + O(G~

Inserting these expressions into (B.27)-(B.30), we obtain the cumulants
1 7
iy (ta) = =5 G2 + O(GT2), Thay(ta) =1+ G (ZWQV — TN+ 2mn ) + O(G2),

H3N(ta) = —2G71/2’)/N + O(GiS/Z), H4N(ta) G~ (12’}/N - 25]\7 - 67‘1]\[ 67’3]\[) + O(G )

We finally conclude that
1

7
K1=—5IN, HK2= 17]2\7 —TIN + 27N, K3 = —29N, k4= 129X — 26y — 671y — 673N

In view of the moment conditions in Lemma A.4, we note that 1, k2, k3 exist under the conditions
of the one-term expansion (m = 1) of Theorem 5.1, while x4 exists under the conditions of the
two-term expansion (m = 2). Thus, we find the results of Theorem 5.1 from (B.31) and (B.32).
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Expansions for bootstrap ¢-statistic. This proof is identical to that for the sample t-statistic,
replacing the population mean E(-) by the bootstrap analog E*(-) and replacing W, and Z; by Wy
and Zg, respectively.

B.5 Proof of Theorem 5.2

First we find that

Q

G 3
ZE* W*3 Z a'Vya) 3/2E*( TQJ_leXgTuZ)-

However, u} = i,0}, where v} is a scalar and E*(v};*) = E*(v*?) is constant, so that

9 g

o e Lo, Te _ f -
Yy = E*(v 3)5 > (a'Va) 3/2( QN ) =E*(v;*)(yw + Bin + Ban + Bsy + Ban),
g=1
where
Bin = (a™Vi a)_3/21§:(< O 1£XT ) ( o 1—XT )3)
1N N Gg_l )
G 3 3
T —3/2 17 T T 17 T
Boy = (a' Vya) GZ(( X i,) — (aTQy X, ))
T, \—3/2 T —3/2y L St VGV
Boy = ((@TVa) ™" (aTVya) ™) 5 3 (a7 Q3 5 X ws)
" 1< G 3 G 3
— (T —-3/2 _ (T —3/2y L TA-1 VS »T- ' (TA-1 VG T
Byy = ((a' Va) (a' Vya) )ng:1<(a Qy N X, ug) (a Qxy i X, )),
and we analyze each term By, for ¢ =1,...,4, in turn.

First note that Bjy = G™1 Zgzl(Wg?’ — E(W;’)), where W;’ = E(Wg?’) is an independent, mean-
zero sequence with finite second moments by Lemma A.3 since we have assumed A = 2 in Assump-
tion 6. It follows from Lemma A.1 that By = Op(G_1/2). When A > 2 is assumed, we apply the
Lyapunov Central Limit Theorem to 214 = G_l/Q(Wg’ - E(Wg)) jointly with other terms below.

To analyze Bay, we use the decomposition ity = ug — XQ(B — Bo) and find

Bon = 3Ba1n — 3Boan — Basn,

where

G
By = (a' Vya) 3/2GZ 0T QY Xy (a7 QY X X (B~ B0) )QZéZWgZ§<A>

a1 G
Bay = (a' Vya) B/ZEZ(QTQNITXT ) a'Qy liXTX (B—Bo) = ZWQ
g=1
G
a1 G
Bosy = (a' Vya) 3/252(aTQN1—XTX (B — 50) 223
g=1

It follows directly from Lemma A.3 that E|Byy| = O(G™') and E|Basy| = O(G=%/?) so that
Boin = Op(G™1) and Basny = Op(G~3/2). Next, we write Booy = G~ Y5 (W2 — EW2) Z,(A) +
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Gt Z?ZI(EWQQ)Zg(A), where the second moment of the first term is O(G~2) using (A.2) and
Lemma A.3 because (W2 — EW7) has mean zero. Letting 29, = —3G12 S (EWR)Vig(A), it
follows from (A.2) that G'/2Byy = 25:1 Zog + Op(G~1/?), where we again apply the Lyapunov
Central Limit Theorem to 2y, jointly with other terms below.

For the analysis of B3y, we first find, by Taylor-series expansion,

(@a"Va)™? — (a"Vya)™?? = —g(aTVNa)*E)/QaT(V — Vn)a(14+0p(G™Y)),

which implies

G

1 3 ..
Bin = —%(aTVNa,)_S/Qa 3 ( "Qy 1—XT ) (a"Vya)la" (V — Viy)a(l +0p(G™Y)).
g=1
(B.37)
Next, we note from the analysis of Biy above that
(@ Via) 261 S (aT@¥ Y X, ) = Biy = 0p(@ ). (B3)

g=1

Then, using iy = uy — XQ(B — Bo), we find that

(a'Vya)ta" (V - Vy)a = (a' Vya)~ N2 Z ( TQ]_\,ngTilg)2 - E((aTQ]_VngTug)Z))

= B31n — 2B3an + Bssn

with
G
Bsiy = (a' Vva)~ EZ( 17GXTX o(B— 50) ZZ2
G G
Bsan = (a VN(I EZ 17XT TQ 17XTX (B—ﬂO)ZéZIWng(A),
g=1 g=
B = (a Ty, a) i(( 1—GXT ) ( Qy 17X—r ))ZIZ(WZ_E(W2))
33N = N G = G g g/

It follows directly from Lemma A.3 that E|B3in| = O(G™1), so that B3jny = Op(G™1). For Bsay
we find, using (A.2) and Lemma A.3, that

G
E(B?2>2N) =G Z E(W91W92V91g3 (A)thzsm (A)) - O(sz),

915---,94

because the subscripts ¢i1,...,94 must be equal at least in pairs. This implies that By =
Op(G™1). Combining (B.37), (B.38), and the bounds on Bsjy, B3an, we have shown that Bsy =
—(3/2)ynBssn+O0p(G~1). Finally, W7 —E(W?) is an independent, mean-zero sequence with finite
second moment by Lemma A.3, such that Lemma A.1 implies that Bysy = Op(G_l/Q). Thus, we
will apply the Lyapunov Central Limit Theorem to z3, = —(3/2)ynG ™" (W7 —E(W7)) jointly
with other terms below.
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For By we find, by the same analysis as for B3y and using the above results, that
3

Biy = — 5(a"Vva)a’(V — Vi)a(1 + Op(G™"))
G
1 G T ) e 3
X a Zl ((CLTQNlNX;Ug) — (GTQNlﬁ.XgT’U,g) )
g:
3 — —
= - 5(331N — 2B3on + Basn)(1+ Op(G™1))Bay = Op(G™1).

Finally, collecting the above results we have shown that

G
GY*(Biy + Ban + Ban + Ban) = Z 24+ Op(G™Y/2),
g=1
where 2, = 214 + 294 + 234 With

G
_ _ 3
z1g = GTVAWE-E(W?)), 29 =—3G2D (EW?)Vig(A), 239 = —5ING V2(W2-E(W?)),
h=1

see (A.2). We apply the Lyapunov Central Limit Theorem to Z 1 2¢. Clearly, z, depends only
on u, and is independent across g with zero mean and variance, apart from smaller-order terms,

G G
= Z B(:2) = Z (BWe) = (BW)?) +9G1 3 (BW2)(EW2) (EZy, (A) Zy, (A))
= 91,92=1
G
o e 12 (BEW)) = (BOV)?) =661 3 (EW) Z4,(A)) (EW,)
91,92=1

— 3G Z (EOWD) = B(W)EWD)) + 97w G XG: (EW2 Zy,(A))(EW2), (B.39)
g=1 91,92=1

which is finite by Lemma A.3 because Assumption 6 is satisfied with A = 2. To verify Lyapunov’s
condition we find, using the c,-inequality, that 25:1 E|zg [>T < 3149 Z?:l Zngl E|zj4>T0. Here,
using again the c¢,-inequality,

G G G
Z EIZ19|2+5 < 9lHIG1-6/2 Z E|Wg’6+36 4+ olHdG—1-0/2 Z |E(W§)|2+5 0,
= g=1 g=1

by Lemma A.3 choosing 0 < § < (A — 2)/3, which is possible because for this result we have
assumed A > 2. By an identical argument, Zg 1 E]z]g]2+5 — 0 for j = 2,3, and it follows that

Wy ZG 1%g —)N(O 1).
B.6 Proof of Theorem 5.3

First, as in the proof of Theorem 5.2, we find that

. 1.E& .
En = E*(v*‘l)a Y (a"Va)? ( "Qy 17XT ) = E*(v*)(&v + Cin + Can + Csn + Cun),
g=1

where C;y, for i = 1,...,4, are given by the same expressions as B;y, for i = 1,...,4, replacing the
powers —3/2 and 3 in B;y by —2 and 4, respectively. Consequently, the proofs that C;y = op(1),
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fori=1,...,4, are nearly identical to those for the corresponding B;y in the proof of Theorem 5.2,
although the proofs here are simpler because only op(1) is needed, and not a more refined limit as
in Theorem 5.2. Hence, the proofs for Cjn, for i = 1,...,4, are omitted.

Next, using E*(vgz) = 1 for all g, the proofs for 7;y — 7jn, for j = 1,2,3, follow in exactly
the same way, but are simpler because fewer moments are involved and only op(1) is needed. We
therefore omit these proofs.
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