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Abstract

Can securities be settled on a blockchain and, if so, what are the gains relative to existing

settlement systems? We consider a blockchain that ensures delivery-vs-payment by linking

transfers of assets with payments and operates via a Proof-of-Work protocol. The main problem

is to overcome settlement fails where participants fork the chain to get rid of trading losses. To

deter forking, the blockchain needs to restrict block size and block time in order to generate

sufficient transaction fees which finance costly mining. We show that large enough trading

volume, sufficiently strong preferences for fast settlement and limited trade size and risk are

necessary conditions for blockchain-based settlement to be feasible. Despite mining being a

deadweight cost, our estimates based on the market for US corporate debt show that gains from

moving to faster and more flexible settlement are in the range of 1-4 bps relative to existing

legacy settlement systems.
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1 Introduction

A principal risk in securities markets is settlement risk where the seller of a security fails to deliver

the security while receiving payment or where the buyer of a security fails to deliver payment while

receiving the security. To deal with such risk, securities settlement systems have been put in place

in many markets to ensure a delivery versus payment (DvP) mechanism where the settlement of

the cash and the securities leg in a trade are intrinsically linked. These systems are typically orga-

nized around a specialized third-party called Central Securities Depository (CSD) which transfers

legal ownerships of securities against payment. Still, many other intermediaries such as brokers,

custodians and payment agents are involved in facilitating the clearing and settlement of a trade.

Having many intermediaries involved in the settlement process is time- and cost-intensive, and

current practices are commonly viewed as rather inefficient.1 Settlement cycles in many fragmented

securities markets tend to be fairly long and fixed at particular time intervals such as T+2 or T+3

to coordinate actions among intermediaries.2 Similarly, intermediaries operate back office systems

that are incompatible with other financial market infrastructure. This leads to duplication of costs

for record-keeping and often involves substantial costs for reconciling such records.3

Many practitioners believe that blockchain or distributed ledger technology (DLT) has the potential

to radically transform securities settlement. The key innovation is to have a shared database of

securities ownership that can be updated without relying on multiple, specialized intermediaries

or a third-party infrastructure.4 Cutting out intermediaries could substantially reduce post-trade

processing costs.5 Some infrastructure could be made redundant altogether by employing smart

contracts to contain settlement risk. Such contracts are built to automatically provide DvP in the

1For example, see the discussion in Benos et al. (2017).
2Some transactions can take even longer to settle. For example, the post-trade cycle for syndicated loans can be

unpredictable and frequently stretch to three weeks due to legal complications.
3As summarized by Benos et al. (2017), “revenue from settlement, custody and collateral management amounted

to $40-45 billion in 2013, which represented approximately 13% of the total trade value chain (from execution to

settlement).” Broadridge (2015) estimates that the financial industry spends roughly $17bn to $24bn per year in

core post-trade processing, reference data, reconciliations, trade expense management, client life-cycle management,

corporate actions, tax and regulatory reporting.
4In Section 2 below we provide a more detailed discussion of how blockchain technology applies to securities

settlement systems.
5Mainelli and Milne (2016) estimate a cost saving of at least 50% for security transactions. Santander (2015)

estimates a potential annual cost reduction of $20 billion in the banking industry.
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absence of a central authority (see Wall and Malm (2016)). Blockchain technology could speed up

settlement, both by getting rid of a fragmented post-trade infrastructure and by implementing a

faster settlement cycle. Finally, a blockchain could offer the opportunity for market participants to

choose how fast a transaction settles. According to FINRA (2017), “... the adoption of DLT may

not necessarily lead to implementation of real-time settlement, [but] it has the potential to make

settlement time more a feature of the actual market needs of the parties instead of being based

on operational constraints.” Consequently, using a blockchain for settling securities could allow

for flexible settlement times creating value beyond what can be offered by traditional settlement

systems especially when transactions are time critical.

Under what condition is it feasible to settle securities on a blockchain and what are the gains relative

to using the settlement infrastructure that is currently in place? To answer these questions, we build

a model of a blockchain for securities settlement and study its design. The blockchain we study has

two distinctive features. First, we assume that the blockchain handles ownership transfers of both

securities and payment. This enables a DvP mechanism and, thus, the blockchain has the potential

to directly rule out settlement risk. Second, we assume that the blockchain is permissionless.

There are no designated, third parties that are in charge of updating the information stored on the

blockchain.6

The blockchain in our paper is thus a record-keeping system that keeps track of securities ownership

as well as payments related to securities trades. For securities trades to be settled, the transaction

information (transfer of ownership and payment) needs to be recorded on the blockchain. To this

end, the investors involved in the trade communicate this information to a peer-to-peer network

that is charged with updating the blockchain.

The updating of records is based on a proof of work (PoW) protocol. A group of transaction

validators – called miners – is tasked with solving a computationally intensive problem. Whoever

solves the problem first obtains a reward and is allowed to update the blockchain. Such competition

helps to protect the integrity of the blockchain. After a securities transaction has taken place and

been communicated to the network, an investor can still undo it by creating a fork on the chain

6Alternatively, a blockchain could be permissioned where some trusted parties have been designated to update and

manage the information stored. Not surprisingly, this model has been favoured by existing financial intermediaries.

Other start-ups have worked on a permissionless blockchain such as CoinSpark and Colu based on colored coins

technology in the bitcoin network and Lykke who is working on an integrated, secure global marketplace for the

exchange of different financial assets.
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which is an alternative history of records. If the investor trying to fork in fact wins the competition,

he can convince the entire network that the transaction has not been conducted. To avoid such

settlement fails, the blockchain system needs to offer large rewards to make the mining competition

sufficiently hard.

The key issue here is that mining is a public good. Once there is a sufficient amount of mining

activities, settlement fails can be prevented independent of the total number of transactions, making

settlement a free resource. Hence, blockchain-based settlement systems need to make settlement a

scarce resource in order for investors to pledge transaction fees that generate rewards for mining.

A blockchain can generate fees by limiting the speed at which it is updated. This can be achieved

by restricting the block size (how many transactions can be included in each new record) and the

block time (how frequently new records are incorporated). When investors have a desire to settle

early, congestion on the blockchain can exploit their willingness to pay for early settlement. In

essence, congestion creates competition for fast settlement, making the blockchain a club good.

Congestion, however, creates two types of costs for investors. First, investors have to pledge

transaction fees that have to be sufficiently high to discourage incentives to fork the chain. Second,

settlement lags arise as settlement becomes a scarce resource. The system, thus, needs to balance

transaction fees and settlement speed while ensuring that the blockchain is tamper-proof. When

settlement is too costly or too slow, investors will choose not to conduct a transaction. Hence, the

feasibility of a trustless blockchain depends on whether the system can rule out settlement fails in

a cost-effective manner.

A trustless blockchain tends to be more viable for an asset market with a large volume of small

transactions. This insight is again related to the public good character of settling trades on a

blockchain. The benefit for revoking a trade is related to the individual transaction size, while

the cost of doing so depends on the mining reward which is related to the aggregate transaction

volume. Larger trades tend to have larger incentives to cause settlement fails; larger volume raises

the potential for the blockchain to generate mining rewards. In addition, the incentive to fork the

chain increases with the trade exposure to post-trade price movements. Thus, assets with lower

price risk are more conducive to blockchain-based settlement. Finally, a blockchain is more viable

for time-critical transactions because investors are willing to pay a higher fee for timely settlement.

This enables the blockchain to raise more mining rewards.
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The optimal design of a permissionless blockchain chooses a block time and block size to maximize

the expected net trade surplus. We first derive a constraint that summarizes the incentives for any

investors not to fork and cause a settlement fail. This constraint becomes tighter as congestion

for settlement decreases. Consequently, one cannot set arbitrarily large block sizes to speed up

settlement. Interestingly, one cannot set an arbitrarily low block time either. A shorter block

time implies that the total number of blocks needed to be support settlement over a time interval

increases. Total rewards have to be split over more blocks reducing the reward per block and, hence,

mining competition. This introduces a trade-off between faster block time and smaller block size.

Overall, we show that it is optimal to choose the block time and block size that jointly minimize

the time to settle all transactions over a trade period, while still generating sufficient fees to rule

out settlement fails.

We then calibrate our model to the US corporate debt market to provide an estimate of the gains

from blockchain-based settlement. Assuming that intentional forking incurs a small fixed cost, we

find that trades can be settled quite cost-effectively on a permissionless blockchain. For a block time

of 5 minutes, the optimal block size would optimally lead to a throughput rate of 2.6 transactions

per second. This implies an average settlement time of 148 minutes and fees of roughly 0.34 bps

per trade.

Interestingly, these results could be improved further by lengthening block time and, simultaneously,

increasing block size to satisfy the condition that there are no settlement fails. We find that a block

time equal to about 27 minutes is optimal together with a very large block size. This would be a vast

improvement relative to the existing settlement regime which has a settlement cycle of T +2. Using

our calibration, we find that the gains from moving to faster settlement fall in the neighborhood

of about 1-4 bps: investors would still prefer a permissionless blockchain even if one subsidized a

legacy settlement system by this amount.7

To the best of our knowledge, our work is the first paper that explicitly models the distinctive

technological features of a blockchain for asset settlement and investigates its feasibility and op-

timal design both qualitatively and quantitatively. It is still uncertain whether and in what form

this technology will be adopted to reform securities settlement systems. For instance, Pinna and

Ruttenberg (2016) envisage different potential future scenarios. At one extreme, DLT could be fully

implemented via a permissionless blockchain; at the other extreme, the existing core players could

7Our result, of course, depends on the calibrated utility gains from faster settlement of trades.
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simply adopt the database features of a distributed ledger technology to improve internal efficiency,

while still relying on known intermediaries to update the database. It is reasonable to conclude

that different systems could be adopted for different environments depending on specific factors

such as market structure, characteristics of participants and assets and the regulatory framework.

We have chosen to look at a permissionless blockchain based on PoW as it is currently the most well

understood implementation of the technology. Notwithstanding, we extend our analysis to point out

that neither the trade-offs nor our conclusion change radically under different assumptions. Using

alternative protocols that do not rely on sunk resources still give rise to the problem of forking

while incurring a range of other potential issues for trusted record-keeping. Similarly, designating

trusted parties such as brokers to maintain and update a blockchain will still, at least qualitatively,

feature the same trade-offs.

The academic literature on blockchain while growing rapidly is fairly small and mostly focused

on computer science.8 Research in this area has concentrated on the incentives of miners in a

blockchain (see for example Eyal and Sirer (2014) or Sapirshtein et al. (2016)) and technological

aspects such as scalability (see for example Croman et al. (2016) or Eyal et al. (2016)). A main

limitation of this literature is that it does not model the underlying transactions which determine

both the value of the system and the users’ incentives to tamper with the system. Modeling the

value of trades (and their settlement) for investors is necessary to derive their willingness to pay

fees for settlement and their incentives to intentionally fork the chain to cause a settlement fail.

Using actual data from a specific asset market makes it then possible to estimate the gains for

investors to move to blockchain-based settlement.

The economics and finance literature on blockchain is also very thin. Most contributions are of

empirical nature and focus on cryptocurrencies such as Bitcoin.9 For example, Huberman et al.

(2017) and Easley et al. (2017) study mining activities and transaction fees in the Bitcoin network.

Two exceptions are Cong et al. (2017) who model the formation of decentralized consensus on a

blockchain and Biais et al. (2017) who provide a game-theoretical analysis of strategic mining and

how it influences consensus about blockchain information.

Our own work on cryptocurrency (Chiu and Koeppl (2017)) is also related to this paper. It shares

8The Bitcoin system popularizing the idea of DLT in a financial context was first proposed by Nakamoto (2008).
9Harvey (2016) provides an overview of different issues related to Bitcoin and cryptofinance. Aune et al. (2017)

discuss information leakage when trading in distributed ledgers.
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the idea that any blockchain analysis needs to consider the incentives of participants to alter the

ledger to their advantage. Indeed, many essential features of the blockchain (e.g. its consensus

protocol, mining, reward scheme) are precisely introduced to ensure the immutability of the ledger.

Hence, both papers develop incentive constraints – albeit different ones –that the optimal design

of a blockchain has to respect and that, therefore, limit the benefits of using the technology.

The key difference of this paper to Chiu and Koeppl (2017) is that the latter studies double-spending

in a blockchain for goods trading. A blockchain for securities trading is fundamentally different

from a cryptocurrency system for goods trading for several reasons. First, in a securities settlement

system, both securities and cash are digital assets recorded in digital ledgers. Hence DvP can be

ensured automatically by a smart contract as discussed in Section 2. This is not possible for goods

trading as the ownership of goods that are traded is typically not recorded on the blockchain. To

ensure DvP there, settlement needs to be delayed until a transaction has been confirmed sufficiently

often in the blockchain. This introduces a trade-off between a verification lag and higher mining

rewards that is absent with blockchain-based securities settlement. Second, the incentive problem

in a goods trading environment is often asymmetric. Buyers have an incentive to cheat by “double

spending”, while merchants are typically more trustworthy. In contrast, an asset transaction is

usually subject to a two-sided incentive problem as both the buyer and the seller can have an

incentive to default via a settlement fail. Third, the price of financial assets tends to fluctuate more

than that of goods, with larger price movement over shorter horizons. As a result, the incentive

to revoke a financial transaction are higher and, hence, settlement speed is more critical. All these

factors play important roles in our model causing the analysis to be fundamentally different from

our earlier work.

The paper proceeds as follows. Section 2 briefly reviews blockchain technology. In Section 3, we

introduce the trading environment, while in Section 4 we model how financial trades are settled

on a permissionless blockchain without trust. Section 5 and Section 6 study the optimal design

of a permissionless blockchain qualitatively and quantitatively. Our paper concludes by presenting

some extensions and showing that our insights are more broadly applicable (Section 7 and 8).
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2 A Brief Review of Blockchain Technology

It is useful to first review the basic idea of how to use blockchain technology for settling security

trades. A securities settlement system facilitates the transfer of legal ownership of financial assets

among investors. Traditionally, this function has been performed by a trusted third-party. This

party maintains a centralized ledger which records the ownership of securities and the transfer

thereof by crediting and debiting buyers and sellers’ accounts after every transaction.

Distributed ledger technology (DLT) – often referred to simply as blockchain – allows for the verifi-

cation, updating and storage of the record of transaction histories without the use of a designated

third-party. It relies on a single ledger that is distributed among many different parties, but that

is updated without having a dedicated central administrator. There are two basic versions of DLT.

The first one is trustless where anyone can access and potentially update the ledger. Consequently,

it is often referred to as a permissionless blockchain. In the other version, some institutions or

individuals are entrusted with direct access to the blockchain and with updating it. Hence, the

expression used commonly is blockchain with trust or permissioned blockchain.

What is a blockchain and what problem does it solve?

The key problem for keeping digital records such as ownership is time stamping that ensures that a

transaction has been conducted at a particular time in the past. This is achieved via a blockchain.

Transactions are grouped into blocks at particular times and consecutively chained together over

time to form a blockchain. Hence, the blockchain contains the entire history of past transactions

that can be used to create a ledger to verify asset ownership.

To ensure that this record of ownership is accurate, each block is built upon the previous one.

Hence, to change a past block, one needs to change all blocks that have been created since that

particular block. If this becomes more costly as the chain increases, older blocks are more secure and

one can trust the information stored in the block. Distributing the blockchain among participants

provides a decentralized dataset architecture that permits the storage and sharing of transaction

records without the need of a third, central party.

Traditional payment and settlement systems rely on a trusted third party, such as a central bank

or other specialized entities such as central security depositories or custodians to manage a single,

centralized ledger. Such systems have to rely on settlement lags to verify and consolidate informa-
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tion from many parties that are involved in an asset trade. With DLT, this information can be

shared directly making costly third-party intermediation unnecessary and allowing to consolidate

trade reporting and trade reconciliation that is often duplicated and incompatible across different

participants in a securities transaction.

How can a permissionless blockchain create a trusted record of ownership?

A permissionless blockchain allows a peer-to-peer network to collectively manage a digital ledger

even when there is no central authority and when participants potentially have conflicting interests.

To do so, the blockchain relies on a decentralized network of validators to maintain and update

copies of the digital ledger. But since the system is permissionless, anyone can be a validator

updating the blockchain. Having no a priori trust or even anonymous validators, this raises the key

issue that all new information incorporated in the blockchain is accurate and that all participants

agree with it. How does a permissionless blockchain then achieve consensus among its participants?

First of all, to reach a consensus in a network, validators need to compete for the right to append a

new block to the chain. This competition can take different forms. In the most common consensus

protocol, Proof-of-Work (PoW) this process is called mining and involves solving a computationally

difficult problem (aka the proof of work). The winner of this mining competition has the right to

update the chain with a new block. This ensures that there is agreement within the peers of the

network about new blocks being added to the blockchain.

The second issue is that the system needs to prevent users from tampering with the blockchain

by proposing fake transactions in the mining process. Each owner of the digital balances relies on

a private-public key pair to protect the ownership. Cryptography ensures that only private key

holders can move the balances recorded on the ledger, using their public key to prove ownership.

Hence, a dishonest user cannot spend other users’ balances without compromising the associated

private keys.

Still, a dishonest user can potentially eliminate transactions that have been initiated either by

himself or by other users. A user might have an incentive to do so when he wants to revoke his

own past transaction that has already been agreed upon and broadcasted to the network. To do

so, the dishonest user needs to create an alternative history of transactions which involves winning

the mining competition against honest miners. If such an attack succeeds, the cheater can undo

the transaction by convincing the entire network of an alternative history where the transaction
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has never occurred.

Hence, the third issue is to defend the system against such attacks. With a PoW protocol, this is

automatic since it is difficult and costly to win competition. Since the probability of winning is

proportional to the fraction of computational power owned by a miner, sufficient mining activities

help safeguard the blockchain against these attacks. Of course, mining is costly, so that honest

mining activities need to be properly incentivized through rewards. These rewards can either

be seignorage in a cryptocurrency system such as Bitcoin or, more generally, with transaction

fees being paid to the winner of the mining competition. While there are many other consensus

protocols, PoW is the only really tested one shown to be successful in the form of the original

Bitcoin blockchain in the context of permissionless blockchains.

What is different in a permissioned blockchain?

In a permissioned blockchain with trust, only a set of trusted validators with known identities has

access to the blockchain and can update it. As discussed above, in a permissionless blockchain,

the consensus protocol and the reward scheme need to be designed properly to prevent users from

tampering with the blockchain. In contrast, in a permissioned system, ordinary users cannot

tamper with the blockchain directly, but validators still need to behave honestly which can either

be achieved through economic incentives or legal enforcement.

The comparison between the two systems thus depends on the degree of commitment and en-

forcement. If users’ incentives were not an issue, then there would be little need to consider a

permission-based system or to find a tamper-proof consensus protocol. Similarly, with trusted

validators, the optimal design of a blockchain still needs to consider the validators’ incentives to

tamper with the blockchain. Hence, whether DLT can reap significant advantages relative to exist-

ing, centralized securities settlement systems will depend on the costs of providing such incentives

or a tamper-proof consensus protocol.

How could blockchain technology improve current settlement arrangements?

Current post-trade settlement arrangements that rely on a designated third party tend to be slow

and inefficient. This is mainly related to the nature of dispersed information in the trading process

and the costs of reconciling this information.10 Traditional settlement systems are typically forced

10For a detailed overview of these costs see CPSS (2017).
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to impose relatively long settlement cycle (typically T+2 or T+3) and fixed fees for settlement. In

contrast, blockchain technology can reduce information costs by providing a common, public ledger

which can be accessed and shared among all participants. This allows a blockchain-based system to

also offer flexibility in settlement times and costs. It can introduce time-varying settlement times

that depend on actual needs of markets and participants instead of being based on technological

constraints. As participants choose how fast to settle, they can either save costs by accepting longer

lags or ensure additional benefits by settling faster for a higher fee.

A second, technological advantage is that – unlike traditional settlement systems – a blockchain

does not require intermediaries to ensure Delivery-vs-Payment. In a blockchain-based system, this

can be ensured by a smart contract which is a self-enforcing, autonomous program without the

support of any intermediaries.11 Trades involving multiple legs such as a transfer of security and

a cash payment can then be executed either in their entirety or not at all. In database systems,

this is referred to as an atomic transaction which is an indivisible and irreducible series of database

operations such that either all occur, or none occur.

Furthermore, blockchain-based securities settlement could improve the functioning of markets that

are too thin to warrant formal settlement arrangements. Examples are markets like private equity

where transactions are few and infrequent or cross-border trading where there are no common

record-keeping systems in place. These markets are often dominated by financial institutions that

provide expensive services that substitute for settlement systems. A viable threat from settling on

a permissionless blockchain can reduce market power and thus can provide indirect costs savings

for market participants.12

3 Trading Environment

We model a single trading period where investors meet bilaterally and negotiate the terms of trading

an asset. The trading period is the interval [0, 1], with trades being negotiated at time t = 0. Trades

need to be confirmed and settled by transferring ownership of the asset and making a payment at

some later time T ∈ [0, 1].

11See Wall and Malm (2016).
12Similarly, new infrastructures could be built for assets that so far were not tracked or for markets that were too

fragmented to warrant a settlement infrastructure such as diamonds or art work.
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There is a measureM of risk-neutral sellers who are endowed with one unit of an indivisible asset.

Each asset delivers a dividend denoted by δ. At t = 0, sellers have a marginal valuation of the

asset given by u`. There is also a measureM of buyers who do not own an asset, but have a higher

valuation uh > u` than sellers at t = 0. This gives an incentive to trade. We assume that theseM

sellers and buyers are matched bilaterally to trade at t = 0.13 In addition, these investors value a

numeraire good linearly that is used for payments. Once a trade has been settled at T ∈ [0, 1], the

dividends of the asset and the payment are consumed. We assume that there is no discounting.

After transaction is agreed, the investors’ valuation of the asset is subject to a random shock.

Specifically, the valuation of the buyer and the seller can reverse according to an exponentially

distributed random shock with an arrival rate λ. When this shock materializes, the trade surplus

turns from positive to negative. This gives rise to a preference for early settlement as a transaction

is more time-critical when λ is high. Furthermore, the dividend is subject to a random shock that is

also exponentially distributed with an arrival rate ν. Conditional on receiving a shock, the shock is

distributed symmetrically across E(δ) with extreme values given by δ̄ = E(δ)+εδ and δ = E(δ)−εδ.

This dividend shock will give investors an incentive to strategically default on trades negotiated at

t = 0.

In a bilateral trade, the buyer agrees to pay p units of the numeraire good in exchange for the asset.

Suppose the transaction is settled at time T and is subject to a transaction cost τ that is shared

equally among the buyer and seller. The expected surplus from trading for the buyer is given by

Sb =
[
e−λTuh + (1− e−λT )u`

]
E(δ)− p− τ

2
. (1)

The buyer has a high (low) valuation if the trade is settled before (after) the valuation shock hits.

Similarly, the seller’s surplus is given by

Ss = p−
[
e−λTu` + (1− e−λT )uh

]
E(δ)− τ

2
. (2)

Note that the costs of a delayed settlement arise from the valuation shock and that – due to risk

neutrality – only the expected dividend E(δ) matters. Assuming that the surplus is split equally

between the buyer and the seller, we have the following result.

13We later extend the framework to incorporate trading frictions that give a role for liquidity provision and broker

intermediation. For now only the total number of trades M matters.
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Lemma 1. The transaction price is

p =
uh + u`

2
E(δ), (3)

and, given a settlement time T , the expected surplus from trade is

S = Sb + Ss =
(

2e−λT − 1
)
V0 − τ, (4)

where V0 = (uh − u`)E(δ).

The price at which the asset is traded is thus independent of the settlement time T , while the total

surplus decreases when settlement is delayed. This introduces a trade-off between faster settlement

and transaction costs τ . Investors are willing to pay a positive fee τ to shorten the settlement delay

T , since transactions are time critical.

4 Settlement on a Permissionless Blockchain without Trust

Suppose there is no centralized or intermediated arrangement to settle trades. Instead, assets and

payments are recorded on a public ledger in the form of a blockchain. The blockchain is updated

over time in a distributed fashion by competing miners who record the investors’ instructions to

transfer assets and payments to one another. The authenticity of these transfer instructions is

ensured by using cryptography and delivery-vs-payment (DvP) can be guaranteed by executing

an atomic transaction. The main threat to the security of the blockchain is then what we call a

forking attack : after a transaction has been agreed upon and sent to miners, either the seller or

the buyer attempts to alter the blockchain so that the original transaction is inconsistent with the

public ledger. Being successful amounts to a default on the original transaction which we call a

settlement fail.14

4.1 Blockchain for Payments and Asset Holdings

The trading period is divided into N̄ consecutive discrete subperiods, n = 1, ..., N̄ , so that each

subperiod has length ∆ = 1/N̄ . There are publicly observable balances of assets and numeraire

14For example, an investor can unilaterally default on a trade by giving ownership of the asset or the payment back

to himself at a different account in the ledger. This can make it impossible to reconcile the original trade instructions

with the ledger and is similar to a double spending attack in a cryptocurrency system.
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goods denoted by an(i) ∈ {0, 1} and mn(i) ∈ IR+ at the start of subperiod n owned by investor i.

Due to anonymity, an investor is allowed to hold multiple balances. We use Sn = {an(i),mn(i)}

to denote the entire public record of these balances, called the public state. We take as given the

initial public state S0 and assume that the initial balances of the numeraire good are large enough

to finance asset trading and transaction fees.

In a distributed network, trades are settled by validating that they are feasible and by updating

the public state through a process called mining. After a trade at t = 0, the seller owning entry

i and the buyer owning entry j jointly broadcast a transaction message about the terms of trade.

We denote this message by (Ωa(i, j),Ωm(i, j), τ) ∈ {0, 1} × IR+ × IR+ which specifies that an asset

from entry i is to be transferred to entry j against a payment Ωm from entry j to i involving a

transaction fee τ .

In every subperiod, miners compete to update the public state. Updates are in the form of a block

where miners group transaction messages together, verify that the transfers specified in messages

are feasible and earn the right to propose a block upon winning a competition. We denote the

block for subperiod n by Bn = {(Ωa(i, j),Ωm(i, j), τ)}. A message can be incorporated into block

n if it is feasible,

0 ≤ Ωa(i, j) ≤ an(i) (5)

and

0 ≤ Ωm(i, j) ≤ mn(j). (6)

These restrictions make sure that entry i (j) has sufficient assets (numeraire goods) to transfer.

A trade is settled in subperiod n if the associated message is incorporated in block n and, conse-

quently, when the public state has been updated according to

an+1(i) = an(i) +
∑
j

[Ωa(j, i)− Ωa(i, j)] (7)

mn+1(i) = mn(i) +
∑
j

[Ωm(i, j)− Ωm(j, i)] (8)

to reflect the change in ownership of the asset and the numeraire good. The sequence of blocks

B = {Bn}N̄n=1 is publicly observable and generates a sequence of public states S = {Sn}N̄n=1 given

S0 by the updating rule specified above. We call this sequence of blocks a blockchain.15

15The Bitcoin blockchain stores only the sequence of transactions and not the state, S. However, one can easily

generate the entire state from the history of transactions. The Ethereum blockchain includes both the state and the

transactions in its blocks.
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4.2 Mining

There are M miners who compete solving a Proof-of-Work problem for each of the N̄ subperiods.

The miner who wins the competition in a subperiod can propose the block to update the blockchain.

Investing computing power q, the probability that a miner solves the problem within a time interval

t is given by an exponential distribution with parameter µ

F (t) = 1− e−µt (9)

where 1/µ = D/q is the expected time to solve the problem. Aggregating over all M miners, the

first solution among all miners, is also an exponential random variable with parameter
∑M

i=1 µi.

The expected time needed to complete the proof-of-work is thus given by

D∑M
i=1 qi

. (10)

The parameter D captures the difficulty of the PoW and can be adjusted appropriately so that the

expected time for a solution is equal to the frequency at which a block is generated. For simplicity,

we assume for the rest of the analysis that exactly one block will be mined per subperiod.16

Any particular miner j will be the first one to solve the PoW and propose a new block with

probability

φj =
qj∑M
i=1 qi

. (11)

The winner of the block receives R units of the numeraire good. An individual miner’s maximization

problem is then given by

max
qj

φjR− qj (12)

where we have normalized the cost of computing power to be 1. The FOC is given by∑M
i=1 qi − qj

(
∑

i 6=j qi + qj)2
R = 1. (13)

Imposing symmetry across the M miners, qi = Q, we obtain the following result.

Lemma 2. The expected profit for a miner is

Π =
1

M2
R (14)

16Since investors and miners are both risk neutral, the distribution of arrival times of a solution to the PoW is

irrelevant for the remainder of our analysis.
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and the total computing cost incurred by the mining community is

MQ =
M − 1

M
R. (15)

Note that, as M →∞, the expected profit converges to zero and the total computing cost converges

to R.17 Competition dissipates the rent from mining. We assume that the reward R is financed by

transaction fees collected from trades and that the winners of the N̄ blocks share the total reward

equally across the trade period so that the reward per block remains constant across all blocks.

4.3 Settlement Fails through Forking

In a securities settlement system, the transfer of the asset and the payment are linked and jointly

recorded on the blockchain. In an atomic transaction, it is infeasible for one side to undo one of the

transfers unilaterally. This means that a trade automatically involves delivery-vs-payment (DvP)

so that one cannot steal the security or the payment. Notwithstanding, the buyer or seller can

still eliminate the transaction by creating a fork. In practice, this involves reassigning balances or

assets to a different entry so as to invalidate the original transaction. If such forking is successful

before the original transaction has been included in the blockchain, the transaction will be declared

infeasible, which effectively amounts to an investor strategically defaulting on the trade. In other

words, one needs to avoid intended forking altogether to ensure that there are no settlement fails

on the blockchain.

In our framework, a buyer has an incentive to default if the price is higher than the value of the

security, while a seller has an incentive to do so when his value of the security is larger than the

price received in the trade. To ensure that the blockchain has no settlement fails, we need to focus

on the worst possible scenario where the incentives to default are highest. The buyer’s maximum

payoff from a default is

Vb = p− u`δ ≥ 0 (16)

while a seller’s maximum payoff from a default is

Vs = uhδ̄ − p ≥ 0, (17)

with V = max{Vb, Vs}. For simplicity, we assume here that all transaction fees are still being paid

with forking.

17Later on, we show that setting M →∞ is indeed optimal.
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4.4 Secret Mining

To create a fork, an investor needs to invalidate a transaction by including a message into a block

that causes the original message to be infeasible given the public state.18 Hence, a dishonest

investor needs to win the mining game against honest miners just once. We call such an attempt

secret mining. Depending on the precise details of the blockchain and the features of the securities

market, secret mining may be less efficient or more costly than honest mining. We introduce a

parameter α ≥ 1 to capture that the variable costs of secret mining are potentially higher than

honest mining.19 Furthermore, we allow a secret miner to be subject to a fixed cost Γ < V which

can represent the short-run cost of installing and adjusting hardware, the expected punishment if

detected, or the potential loss of relationship with trading partners.

Since we want to exclude settlement fails, we look at a dishonest investor that has the largest

incentives to fork the blockchain. He solves

max
q0

(
q0

MQ+ q0

)
(V +R)− αq0 − Γ. (18)

There is an extra return V from winning a block and creating a fork. The investor still has to

compete against all the honest miners taking their computational power of MQ as given and facing

additional costs of mining (α,Γ). His optimal investment in secret mining is given by

q0 = MQ

(√
(V +R)

αMQ
− 1

)
. (19)

which implies the following result.

Proposition 3. As M →∞, there are no settlement fails on any trade if

V ≤ Γ + 2
√
RαΓ +R (α− 1) . (20)

The exposure V is the private reward for an investor to fork and, thereby, default on the trade.

If the private reward becomes too big, secret mining is profitable and there will be settlement

18For example, the investor can change his asset holdings or his holdings for the numeraire good at the relevant

entry by sending holdings to another entry he controls.
19One can show that this assumption is equivalent to assuming that the efficiency of a secret miner is lower than

that of honest miners. Specifically, assume that a dishonest investor can win the mining game only with probability

φ(q0) =
θq0

MQ+ θq0
.

Hence, the efficiency of secret mining increases with θ. For M →∞, we obtain the same results with θ = 1/α.
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fails with blockchain-based settlement. Similarly, when secret mining becomes cheaper, it is more

difficult to avoid default. Importantly, increasing the block reward R can counter secret mining. A

larger reward fosters competition among miners and, thus, makes forking less attractive as miners

increase their investment. This will be the key channel for designing the blockchain to rule out

settlement fails.

4.5 Block Size and Block Time

We call the time interval ∆ = 1/N̄ between two consecutive updates on the blockchain block time.

As ∆ increases, the blocks are updated less frequently. The block size B limits the total number

of transactions included in any block. Given the block size, transaction messages sent to miners

can be ranked in terms of the transaction fees τ and partitioned into blocks that contain at most

B transactions. The first block B1 consists of the B transactions that pay the highest fees and is

incorporated as the first update on the blockchain at time ∆. The second block B2 includes the

next B transactions and is added at time 2∆, and so on.

Given a block size B, the number of blocks needed to settle all transactions is thus given by

N = ceiling

[
M
B

]
(21)

where ceiling[x] the smallest integer greater than or equal to x. The total time spent on settlement

is T = ∆N . In the analysis below, we treat M/B as an integer for simplicity.20 Also, we assume

that all transactions can be settled in the interval [0, 1], i.e., that T ≤ 1 or, equivalently, that

N̄ ≥ N .

5 System Design of Permissionless Blockchain

5.1 Transaction fees

With their messages, investors announce transaction fees for validation. There will be a diminishing

sequence of threshold fees τ1 ≥ τ2 ≥ ... ≥ τN which give the minimum fee τn required for validation

in block n. In other words, a transaction offering a fee τ will be validated in block n′ ≤ n if and

20In the numerical exercise, we consider the general case where M/B can take non-integer values so that the last

block is only partially filled.
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only if τ ≥ τn. For transaction fees to be optimal, we require that no investor can be better off

by changing his transaction fee. Since all transactions are identical, this implies that the surplus

to be the same across all transactions. Otherwise, some investors be better off by changing their

transaction fees. This implies that transaction fees are described by the first order difference

equation

τ(n− 1)− τ(n) = 2
(
e−λ∆(n−1) − e−λ∆n

)
V0 (22)

for all n = 2, . . . , N − 1 with the boundary condition τ(N) = 0.

Restricting block size makes early settlement a scarce resource for which investors have to compete

by posting positive fees. These fees decrease with later blocks as settlement is delayed. In the last

block, N , there is no incentive to post any transaction fees anymore as settlement is delayed to a

maximum.21

Condition (22) then implies that

τ(n) = 2V0

(
ρn − ρN

)
, (23)

where ρ = e−λ∆ ∈ (0, 1) is akin to a discount factor across blocks. Differentiating, we obtain

dτ(n)

dρ
= 2V0ρ

n−1
(
n−NρN−n

)
. (24)

Hence, we have the following result.

Lemma 4. When ρ is sufficiently close to 1, τ(n) increases with time criticality λ and block time

∆.

Investors are willing to pay higher fees when transactions are more urgent and when the time delay

between blocks increases. Aggregating transaction fees, we obtain that the total reward financed

by transaction fees is given by the expression in the following lemma.

Lemma 5. The total reward for mining is given by

N̄R = 2V0

[
B

(
e−λ∆

1− e−λ∆

)(
1− e−λ∆N

)
−Me−λ∆N

]
. (25)

21In the numerical exercise, if N is not an integer, the last block N is only partially filled, but still features zero

transaction fees.
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The total mining reward depends on the block size B according to a function of the form

f(B|ρ) = B

(
ρ

1− ρ

)
(1− ρ

M
B )−Mρ

M
B (26)

The function f is positive, bounded, continuous and is equal to 0 for B = 0 and B =M. Hence,

there are two opposing effects of block size on revenue. Holding fees constant, as the block size

increases more revenue is generated since more trades can be settled in earlier blocks at a higher

transaction fee. As the block size increases, however, the fee investors are willing to pay decreases.

The intuition is that investors only pay fees when early settlement is scarce. Reducing the block

size creates a congestion effect so that investors need to compete for early settlement by posting

larger fees. For B → 0, the first effect dominates while for B →M the second effect does.

5.2 Equilibrium without Settlement Fails

Given the design parameters (B,∆) of the settlement system, an equilibrium is defined as a fee

schedule τ(n) such that (i) the fee schedule satisfies the first-order difference equation (22), (ii)

there are no settlement fails, i.e. equation (20) is satisfied and (iii) the surplus is positive for all

trades.

By setting a block time ∆, the settlement system determines the total number of blocks N̄ in a

trading period. The revenue per block is given by

R = 2V0
f(B|ρ)

N̄
. (27)

Using this result in constraint (20) to ensure that there are no settlement fails, we obtain

V ≤ Γ + 2

√
2V0

(
f(B|ρ)

N̄

)
αΓ + 2V0

(
f(B|ρ)

N̄

)
(α− 1). (28)

Whether or not this constraint can be satisfied – and, hence, whether an equilibrium without

settlement fails exists – depends on two factors. First, the maximum default exposure V cannot be

too large relative to the ex-ante surplus V0. Second, secret mining cannot be too cheap. Ultimately,

the requirement that there are no settlement fails puts limits on the minimum block reward that

is necessary to avoid settlement fails, which in turn depends on the block size and block time. We

will discuss this issue in more depth in Section 6 below.

Proposition 6. For any parameters (α,Γ) and ex-ante surplus V0, an equilibrium without settle-

ment fails exists only if the maximum default exposure V is not too large.
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5.3 Optimal Block Size and Block Time

For characterising how to set block size and block time optimally, we use the expected net surplus

as our objective function

W(B) =
N∑
n=1

B (2ρn − 1)V0 −
N∑
n=1

Bτ(n). (29)

This function consists of the gains from trade less mining costs which are equal to the total transac-

tion fees as we look at the case where M →∞ so that all mining revenue is spent on computational

investments. The optimal design of a permissionless blockchain then maximizes the expected net

surplus W(B) subject to the constraint (28). We can rewrite the objective function as

W(B) =M
(
2ρN − 1

)
V0 =M

(
2e−λ∆N − 1

)
V0. (30)

Hence, the optimal block size and block time minimizes the total settlement lag ∆N where the

number of blocks N =M/B is inversely related to block size. Note that it is infeasible to set block

time to 0 and block size to M whenever the fixed costs of secret mining Γ are sufficiently low as

this would generate no revenue and, thus, would violate the constraint (28).

This gives us the following trade-offs for setting block size and block time. Reducing the block

size delays settlement of time-critical trades, thus reducing welfare. At the same time, however,

reducing the block size creates congestion which is necessary for investors to pay transaction fees

to compete for scarce early settlement. Lower block sizes help raise rewards to finance mining

activities, relaxing the constraint (28).

A shorter block time increases the discount factor ρ for settlement and thus raises the expected

net surplus W(B). However, shortening block time has an ambiguous effect on the constraint

(28). First, the function f(ρ|B) that defines total rewards for a given block size is non-monotone

in ρ. Second, since N̄ = 1/∆, a shorter block time leads to more blocks N̄ over which the total

revenue needs to be distributed. There is thus a cost for lowering block time. This implies that one

cannot set block time arbitrarily low.22 Given the discreteness of block size, we cannot characterize

analytically how to jointly set the optimal block size and block time and resort to numerical exercises

in the next section. However, we have the following partial result on comparative statics.

22We interpret here our time interval [0, 1] as fixed. In reality, this corresponds to the operating time of the

settlement system with trades arriving throughout the interval. If one could dynamically adjust block time in

response to trading demand, we could interpret BN̄ = B
∆
≥ M as the required capacity of the blockchain in a

particular time interval. One can show that a faster block time can then always be supported with lower block sizes.
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Proposition 7. The optimal block size and block time are set to minimize the total settlement lag

∆N that is consistent with no settlement fails.

Given ∆ (B), the optimal block size (block time) increases (decreases) with the number of trades

M and the trade surplus V0, but decreases (increases) with the incentives to secretely mine (i.e.

lower costs of secret mining (α,Γ) and a larger default exposure εδ).

The intuition for these results is straightforward. First, a larger trade volume implies higher

revenue for the settlement system that can be used to incentivize honest miners with larger rewards.

Similarly, a larger trade surplus increases the willingness to pay for earlier settlement, raising

rewards for honest mining. Hence, one can increase the block size or have a faster block time to

speed up settlement. Second, whenever the threat of secret mining increases, one needs to create

more congestion through smaller block sizes and slower block times. This is the case when secret

mining becomes less costly and when the maximum gain V from a settlement fail increases.

6 Quantitative Results

6.1 Optimal Block Size

We now continue our analysis with a quantitative illustration of a permissionless blockchain. Our

objective is to see (i) whether settlement on a permissioned blockchain is feasible for some financial

markets and (ii) how such a system compares with existing legacy systems where transactions are

settled only within a few business days. To do so, we calibrate our model to the US market for

corporate debt using aggregate statistics from the TRACE reporting system.

In our benchmark calibration, a trading period is set to eight hours and we first keep the block

time fixed at five minutes (i.e. ∆ = (12 · 8)−1) to focus on the effects of varying the block size.23

Guided by the statistics from TRACE (see Mizrach (2015)), we set the total number of trades to

M = 45000 and the individual trade size to E(δ) = 1 which we interpret to be in million dollars.24

The maximum default exposure is assumed to be 3%, i.e. εδ = 0.03 · E(δ), within a trading day.25

23The average block time is about 10 minutes for Bitcoin and about 12-15 seconds for Ethereum.
24The daily average number of trades was about 45,000 in 2015. During the period from 2007 to 2013, the average

daily transaction size was $1.2mn for the 1,000 most actively traded and $0.6 mn for less actively traded bonds.
25The extreme values of 2-year, 5-year and 10-year treasury bonds in 2012 imply deviations of respectively 0.21%,
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Following Duffie, Garleanu and Pedersen (2007), we set uh− u` = 0.01 to capture the surplus from

trade given our daily frequency. Furthermore, the preference shock on average arrives once every

six months (λ = 0.0056). This translates into about 250 trades being affected by the valuation

shock every day. Finally, we assume that a secret miner faces the same computational costs as a

professional miner (α = 1), but is subject to a fixed cost Γ = 0.01 · E(δ). For the benchmark, this

gives a value of $10,000.

Table 6.1: Benchmark Parameter Values

N̄ ∆ M E(δ) uh u` λ εδ α Γ

96 0.0104 45000 1 1.005 1.995 0.0056 0.03 1 0.01

Figure 6.1 reports the optimal block size (B), along with the average settlement time for a trade,(∑N
n=1Bn∆

)
/M, and the average transaction fee per trade,

(∑N
n=1Bτ(n)

)
/M. For the bench-

mark case, we obtain an optimal block size of 774 transactions. Hence, the blockchain supports

about 2.6 transactions per second.26 The implied average settlement time per trade is 148 minutes,

with the average fee per trade being equal to $34 or roughly 0.34 basis points of the average trade

size of $1mn.

We next look at the effects of increasing transaction volume, time criticality and the maximum

default exposure. The first row of Figure 6.1 shows that larger trade volume (M) allows the

blockchain to increase block size (see Proposition 7). The reason is that more trades imply a larger

total of transaction fees. Hence, less congestion is needed to support sufficient rewards in order to

discourage secret mining. In our benchmark, this also leads to a shorter average settlement time

and less transaction fees.

This is important as a permissionless blockchain is thus scalable from an economics point of view.

Mining is a public good for validating individual transactions: once there is a sufficient amount of

mining activities – or, equivalently, transaction fees – secret mining can be prevented independent

of the total number of transactions. This is because the benefit for an investor to create a fork is

1. 35% and 3.39%. We assume that the volatility of corporate bond prices is close to the upper bound of this range.
26This is in the range of current blockchain implementations. Bitcoin – limited by its block size – has a throughput

limit of about 7 transaction per second and Ethereum currently seems to be able to handle about 25 transactions per

second. Also, note that transactions in our model are not spaced out over the entire trading period. Thus, one can

think of the benchmark throughput as peak rates.
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Figure 6.1: Optimal block size, implied average settlement times and fees
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related to the individual transaction size, while the cost of doing so depends on the mining reward

which is related to the aggregate transaction volume. Consequently, a permissionless blockchain

tends to be more efficient for settling a large volume of small transactions.

The second row in Figure 6.1 shows the effects when trades become more time critical, i.e., when λ

increases. Investors then have a larger value for settling trades early. According to Lemma 4, this

increases the transaction fees investors are willing to pay for a given block size and, thus, allows the

system to increase block size to speed up the average settlement time. There are then two opposing

effects on the average transaction fees. On the one hand, given a block size, higher λ increases the

investors’ willingness to pay high fees to speed up settlement. On the other hand, whenever the

block size increases, congestion is lower so that investors need to compete less for fast settlement.

This explains why λ has a non-monotonic impact, but increasing trend on the average transaction

fee as shown in the right panel of the figure.

Our last comparative statics exercise looks at how the maximum default exposure matters for the

design of blockchain-based settlement. As εδ increases, higher mining activities are necessary to

counter increased incentives for secret mining. As implied by Proposition 7, the system now needs

to reduce block size to create more congestion in order to raise the rewards for honest mining.

6.2 Optimal Block Time

Figure 6.2 shows the effects of shortening block time ∆ from 5 to 4 minutes, i.e., we now set

∆ = 0.0083. This also increases the total number of blocks available within an 8 hour trading

period to 120. As discussed above, the total reward raised by transaction fees is now spread out

over more blocks. In addition, according to Lemma 4, a shorter block time tends to reduce investors’

incentives to pay a high fee to compete for an earlier settlement. The incentives to fork, however,

remain the same for every block. To ensure that there are no settlement fails, the optimal system

needs to restrict block size to generate extra revenue. The optimal block size given a block time

of 4 minutes is once again the largest one that satisfies constraint (28). Even though some trades

settle faster, average settlement time actually increases here despite having more frequent blocks.

What is then the optimal block time for our calibration? Table 6.2 reports the optimal block

size and time together with the implied transaction fees and settlement times. Surprisingly, for our

benchmark it is optimal to choose a fairly long block time which allows the system to increase block
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Figure 6.2: Effects of shorter block time ∆
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size. This cuts both the average settlement time and the transaction fees by about 1/5 relative

to when block time is five minutes. The total number of blocks per trading period also reduces

from 96 to about 18. The implied total revenue from settlement fees is about $270,000 per trading

period.27

When trades become more time critical, investors are willing to pay more in order to settle faster.

This allows the system to speed up settlement with faster block times keeping similar block sizes.

Finally, as the default exposure becomes less extreme, block time can be shortened further as there

are less incentives to fork. Interestingly, however, it is also optimal to restrict block size more.

Table 6.2: Optimal System Design

Block size Block time Avg fee Avg settlement time

(thousand) (min) ($) (min)

Benchmark 44.31 27.25 6.18 26.93

λ =0.0111 44.41 19.25 8.75 19.04

εδ =0.01 42.25 6.25 1.35 5.89

6.3 Feasibility of Blockchain

In the benchmark exercise, we calibrate the model to the market for corporate debt and show that

an optimally designed permissionless blockchain can provide a viable settlement system for this

market. We ask now for what characteristics of assets, markets and investors is a permissionless

blockchain a feasible option.

Figure 6.3 illustrates how the feasibility of a permissionless blockchain depends on some key charac-

teristics. Specifically, we plot the minimum trade volume that is required for ruling out settlement

fails for a permissionless blockchain using three different values for how time critical trades are: the

preference shock arrives on average quarterly (λ = 0.0111), bi-annually (λ = 0.0056) or annually

27The optimal block time is derived under the assumption that the length of the trading period, ∆N̄ = 1, is fixed.

If it were adjustable, it would be optimal to set the minimum feasible block time necessary to settle all transactions

that exclusively take place at time t = 0. To fully study the trade-off in setting the length of the trading period,

however, one should modify the model to allow transactions to arrive sequentially over time. This extension is beyond

the scope of this paper and thus is left for future research.
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(λ = 0.0028). Settlement without fails in a permissionless blockchain is feasible for the region above

the curves shown in each of the figures. Note that we once again fix block time at the benchmark

value except for the last figure, but vary block size to make settlement possible.
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Figure 6.3: Feasibility of blockchain-based settlement

In general, a high enough trade volumeM makes settlement on a permissionless blockchain system

feasible. This is a direct consequence of the public good nature of mining with a PoW protocol.

More transactions mean more revenue ceteris paribus that can finance rewards for miners. Similarly,

as trades become more time critical (higher λ), the investors’ willingsness to pay transaction fees

for earlier settlement increases, thus raising revenue for mining.

The feasibility region in each subfigure depends then on how some other variable influences the

constraint (28). More extreme default exposures cause settlement fails to become more attractive

and, hence, require larger revenues for mining. The opposite is the case when the costs of secret

mining are large relative to the trade size (larger Γ/E(δ)). The gains from trade uh − u` have a

U-shaped effect. When uh − u` is small, investors have low incentives to pay high fees, tightening

the constraint. When uh−u` is very high, the incentives to default eventually increase, once again

tightening the constraint. Consequently, using a permission-based blockchain is more viable for
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intermediate values of uh − u`.

The most counterintuitive result is that shortening block time potentially interferes with blockchain-

based settlement. As shown in the last panel of Figure 6.3, there is a minimum block time so that

such settlement is feasible. This is for two reasons. First, the rewards per block are becoming

increasingly small as block time falls. And second, investors are less willing to pay to speed up

settlement. Hence, shorter block times require either a larger market or more time ciritcal trades.

6.4 Blockchain vs. Legacy Settlement System

We now compare the performance of a permissionless blockchain to a conventional centralized set-

tlement system. In a centralized system, a trusted third party maintains and updates a centralized

ledger. Hence, a costly PoW protocol is not required. Furthermore, the centralized system imposes

a fixed settlement lag, currently T + 2 for corporate bonds, and a fixed transaction fee due to

technological and institutional constraints. To the contrary, a blockchain-based settlement is more

flexible along both dimensions.

Table 6.3 compares the efficiency of a legacy settlement system relative to that of a blockchain.

Specifically, we compute the transaction fees (as a fraction of the transaction value in basis points)

that a representative investor is willing to pay at t = 0 for choosing the centralized system over

a permissionless blockchain. When the fee reported in the table is negative, the investor would

switch to a blockchain based system even when settling in a centralized system is free. In that

case, a subsidy is needed to induce investors to use the legacy system. Our assessment depends of

course on the calibrated gains from faster settlement (λ) and the costs associated with mining in

the PoW protocol so that there are no settlement fails (M and εδ).

The three cases shown in the table vary these parameters. For the benchmark cases (in bold), we

obtain that investors are willing to pay a fee in the neighbourhood of 2 bps (or about $200 given the

normalized trade size of $1mn) to move from costless T+2 settlement to a blockchain-based system.

The advantage of blockchain-based settlement diminishes as settlement time Tcen in the centralized

system falls and naturally disappears when settlement is close to immediate (Tcen → 0).28 Once

again, larger trading volume, higher time criticality, and lower default exposure make settlement

28One should interpret these results as upper bounds. Delaying settlement can have also advantages for investors

and centralized settlement systems often provide other services.
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Table 6.3: Legacy system vs. Blockchain (equivalent fees in bps)

Case I: εδ = 3%, M = 45000

λ\Tcen 0 0.1 0.5 1 2

0.0111 0.69 0.47 -0.41 -1.51 -3.68

0.0056 0.68 0.57 0.13 -0.42 -1.52

0.0037 0.68 0.61 0.31 -0.05 -0.79

Case II: εδ = 3%, M = 100000

λ\Tcen 0 0.1 0.5 1 2

0.0111 0.32 0.10 -0.78 -1.88 -4.05

0.0056 0.31 0.20 -0.24 -0.79 -1.89

0.0037 0.31 0.23 0.06 -0.43 -1.16

Case III: λ = 0.0056, M = 45000

εδ\Tcen 0 0.1 0.5 1 2

1% 0.03 -0.08 -0.52 -1.07 -2.17

2% 0.25 0.14 -0.30 -0.85 -1.95

3% 0.68 0.57 0.13 - 0.42 - 1.52
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on a blockchain more attractive.

7 Extensions

In this section, we consider several extensions of the basic model. We first look at the optimal

degree of mining and then study a slightly altered setup that allows for heterogenous investors or

trades. Finally, we briefly look at the case of a permissioned blockchain with trust as well as the

role of brokers for blockchain-based settlement.

7.1 Optimal Number of Miners

In the benchmark, we assume M →∞. Here, we show that competitive mining is indeed optimal

in a blockchain that is based on a PoW protocol. For any given number of miners M , the constraint

to rule out settlement fails is given by

V ≤ Γ + 2

√(
M − 1

M

)
RαΓ +

(
α

(
M − 1

M

)
− 1

)
R. (31)

The total mining cost is M−1
M R which is a deadweight loss financed by transaction fees. Consider

now increasing the number of miners, but keeping mining costs constant by lowering the reward

R correspondingly. This relaxes the constraint without increasing the deadweight cost associated

with the PoW protocol. Hence, one can increase block size and, thus, achieve faster and cheaper

settlement. This shows that it is optimal to have M → ∞, or equivalently, for mining to be as

competitive as possible.

7.2 Heterogeneous Investors

We now consider a more general case where agents are heterogeneous with respect to their liquidity

shock λ. Specifically, there are I types of investors with preference parameters given by λ1 > λ2 >

... > λI . Denote the fraction of type i by πi so that the number of investors of type i isMi = πiM.

Note that all investors have the same V and V0 so that the constraint (28) is the same for all i.

The trade surplus for type i

Si(n) =
(

2e−λi∆n − 1
)
V0 − τ (32)
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is increasing in i. Hence, investors with less time critical trades have higher surplus. Lemma 4

implies that, for ρ sufficiently close to 1, type i chooses to validate earlier than type j > i. One

can then define thresholds ni, n̄i such that type i chooses to settle between the ni-th and the n̄i-th

blocks. Transaction fees are defined iteratively by

τ(n) = 2
(
ρni − ρ

ni+1

i

)
V0 + τ(ni+1) (33)

for n ∈ {ni, ..., n̄i} with τ(nI+1) = 0.
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Figure 7.1: Heterogeneous Investors

Table 7.1: Impact of Heterogeneous Investors

Avg. settlement time Avg. settlement fee Median Surplus

(min) ($) ($)

Case I 153 33.89 9881

Case II 165 34.11 9880

Case III 180 33.71 9878

We use a numerical example to illustrate the effects of heterogeneous preferences on the optimal

block size given the block time is 5 minutes. We set I = 9 and look at three different cases.

Case 1 is the benchmark case where all investors are homogeneous with λi = 0.0056 for all i. In
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case 2, investors have heterogeneous preferences such that λi ∈ [0.0044, 0.0067]. In case 3, the

range of preference heterogeneity increases further to λi ∈ [0.0028, 0.0083]. Figure 7.1 depicts

the equilibrium surplus and transaction fees of investors settling in different blocks. Interestingly,

as heterogeneity increases, the optimal block size decreases. Investors with preferences for fast

settlement sort into early blocks even though at the expense of larger transaction fees. Investors

with less time-critical trades choose to delay settlement. Not surprisingly, as investors’ preferences

become more heterogeneous, transaction fees become more responsive to settlement time. That

is, impatient investors need to bear a larger fraction of the total mining cost than more patient

investors. Looking at the median investor who does not change across the three cases, we find that

his average settlement time increases, but will small variations in fees and overall surplus.

7.3 Heterogeneous Transaction Sizes

Investors can have different transaction sizes. To model this, we assume that the expected payoff

of the assets traded takes the form E(δi) = E(δ)(1 + ξi). Note that a larger transaction size leads

to higher prices and higher trade surplus V0. Hence, investors with larger transaction sizes have an

incentive to settle earlier and, hence, pay higher transaction fees.

We again look at three cases with different degrees of heterogeneous transaction sizes: (i) the

benchmark case where ξi = 0 for all i, (ii) ξi ∈ [−0.1, 0.1] and (iii) ξi ∈ [−0.15, 0.15]. The maximum

exposure V increases with ξi so that investors with larger transaction sizes have a larger incentive

to secretly mine. Hence, holding the block reward R constant, the constraint that rules out more

settlement fails tightens with larger transaction sizes. This implies that one needs to increase the

block reward R to ensure that there are no settlement fails.

Even though some investors are willing to pay higher transaction fees, Figure 7.2 shows that the

block size has to decrease with more heterogeneous transaction sizes in order to generate sufficient

rewards for mining. This once again arises from the public good character of mining. Only the

largest transaction size drives how much mining is necessary to avoid forking by investors. While

all other transactions benefit from mining, they would only require a smaller reward fraction to

safeguard against secret mining.

To compare with the homogeneous case, we can look at a median investor having ξi = 0. This
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investor now pays higher transaction fees and the average settlement of his trade is pushed back.29

Hence, his expected trade surplus declines.
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Figure 7.2: Heterogeneous Trades

Table 7.2: Impact of Heterogeneous Trades

Settlement time Settlement fee Median Surplus

(min) ($) ($)

Case I 153 33.89 9881

Case II 200 44.03 9862

Case III 228 49.84 9851

7.4 Intermediation by Brokers

Brokers provide not just clearing functions, but also improve clients’ access to markets and provide

trade financing. Hence, if blockchain-based settlement is not compatible with broker intermediation,

then the gain from moving to a blockchain will be reduced. In this section, we consider the extreme

29Note that a similar situation arises if assets had different risk characteristics εδ,i, but the transaction size would

be constant for all investors, i.e., E(δi) = 1. This again tightens constraint (28) with the most risky transaction

determining necessary block rewards and block size.
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case where brokers can intermediate trades when settlement is centralized, but cannot intermediate

trades at all when a permissionless blockchain is used for settlement. Specifically, we introduce

brokers that improve liquidity in the market by mitigating search frictions and providing trade

financing. Our goal is again to compare a blockchain system without brokers and a legacy system

with brokers.

Suppose investors value the dividends with different marginal utility u at time 0: u = uh with

probability κ and u = u` otherwise, where uh > u` ≥ 0. Due to preference shocks and different

asset holdings, there are then four investor types denoted by ho, lo, hn, ln. Their measures are sκ,

s(1 − κ), (1 − s)κ and (1 − s)(1 − κ), respectively. The lo types are potential sellers and the hn

types are potential buyers. All other investors are inactive. At time 0, asset sellers and buyers

are randomly matched in pairs to negotiate a trade. The number of matches is determined by a

matching function

M = χmin{s(1− κ), (1− s)κ}, (34)

where χ < 1 captures matching efficiency. The unconditional probability of a buyer finding a seller

to trade with is then given by

χmin{s(1− κ)

(1− s)κ
, 1}. (35)

To pay for a transaction, we assume that buyers need to carry the numeraire good in advance.

When settling on a legacy system, investors can use brokers that provide two services. First, a

buyer trading through a broker can have better access to markets. We capture this by assuming

the matching efficiency is larger, χb = 1 > χ, when a broker is used. Second, brokers can help

buyers save on the costs of carrying the numeraire good by allowing buyers to trade on margin.

Since only a fraction of a broker’s clients will have a trading opportunity, each buyer only needs to

carry m < p units of the numeraire good. The rest can be borrowed from the broker and will be

repaid at the end of the trading period.

Extending our benchmark calibration, we follow Duffie, Garleanu and Pedersen (2007) to set s = 0.8

so that 80% of investors hold a position. We choose κ = 0.9920 to get an annual turnover of about

50% as reported by Edwards, Harris, and Piwowar (2004). The brokers margin requirement m is

set so that all potential trades can be financed, or

m(1− s) = s(1− κ)p (36)
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implying that
m

p
=
s(1− κ)

1− s
= 3.2%. (37)

Borrowing costs are set equal to 5% per annum.

Using our benchmark calibration, Table 7.3 compares a legacy system with brokers and a permis-

sionless blockchain without brokers. In the first row, we look at the case where χ = 1 so that

brokers do not improve matching efficiency, but allow for margin trading. Here, investors are still

willing to switch to a blockchain-based system even when fees for margin investment and settlement

are zero.

Table 7.3: Legacy System w/ Brokers vs. Blockchain w/o Brokers

χ\Tcen 0 0.1 0.5 1 2

1.00 2.00 1.88 1.44 0.88 - 0.22

0.99 2.98 2.88 2.43 1.87 0.77

0.90 11.88 11.77 11.32 10.77 9.66

0.50 51.41 51.29 50.85 50.29 49.19

As brokers start to also have an advantage by matching buyers and sellers, staying in the legacy

systems becomes quickly much more attractive. This shows that for blockchain-based settlement

to be effective, it needs to accommodate broker services with our estimates indicating how much

such services are worth to investors.

7.5 Permissioned Blockchain with Trust

We briefly look at a permissioned blockchain where designated third parties (“validators”) are put

in charge for updating ownership records. In financial markets, traditional intermediaries such

as brokers, dealers or banks perform trade related services beyond settlement and, thus, can be

seen as the natural set of validators that have the right to update the blockchain. Hence, the

incentives of these intermediaries to maintain their reputation substitutes for the PoW protocol of

a permissionless blockchain.

To capture these facts, we develop a stylized setting where NB brokers intermediate all trades, but
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are also the validators of the permissioned blockchain. When a broker intermediates for a client

who buys an asset for p, the broker’s maximum exposure is given by

p− p(δ), (38)

as he has to send p to the seller, but the securities obtained have only a value of p(δ) after a shock.

The expression above is thus the maximum short-fall of the broker in case a client defaults on the

trade. Equivalently, the extreme exposure on the sell-side is given by

p(δ̄)− p. (39)

These exposures can arise due to margin buying by clients or securities lending to clients for their

trades. Importantly, since brokers intermediate a large number of transactions, they can have an

unbalanced position and their exposure against either the buy or the sell side can aggregate into

large positions. Given this exposure, brokers thus may also have an incentive to create a settlement

fail in a permission-based blockchain either on their clients’ behalf or to get rid of their own exposure

against their clients. For our model, we have that p(δ) = u`δ and p(δ̄) = uhδ̄ when a broker fully

internalizes the incentives of his clients.

Assume now that the broker has a fraction 1/NB of the B transactions in the block and that they

are all either buy-side or sell-side transactions. If the broker has the right to propose a block,

he can invalidate all transactions of his clients in a block so that the maximum exposure of the

permissioned blockchain would be given by

B

NB
max{Vs, Vb} =

B

NB
V . (40)

The cost for a broker of causing a fork is the potential loss of the charter value from being a

validator which is proportional to the expected revenue per broker R/NB. For simplicity, suppose

that each broker/validator proposes a block in every subperiod after which it is randomly decided

which proposal is used to update the blockchain. Hence, the probability of getting a block in the

chain for a broker is 1/NB. Similar to equation (28) in the permissionless case, this gives us a

constraint to rule out settlement fails

1

NB

B

NB
V ≤ γ R

rNB
(41)

where γ is the probability of losing one’s charter value after causing a fork and r is an interest rate
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to derive the net present value of remaining a validator.30

The block size once again plays a role in controlling how binding this constraint will be. A smaller

block size decreases the potential gain from forking while increasing the revenue R from settlement

and, hence, the charter value of being a validator. Figure 7.3 depicts the effects of the number of

brokers on block size, the average settlement time and average transaction fees for our benchmark

parameters and an annual interest rate of r = 5%. As the number of brokers NB increases, the

maximum exposure and the probability for creating a settlement fail falls, thereby reducing the

expected gain from cheating. As a result, the system can increase block size and reduce transaction

fees. The average settlement time is thus shorter. Naturally, as the detection probability γ drops,

the block size needs to be restricted further to limit exposure and to raise more transaction fees in

order to incentivize validators.
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Figure 7.3: Optimal permissioned system

In conclusion, the trade-offs in blockchains with and without trust are similar. Even in a permission-

based system – unless the validators are perfectly trustworthy – the optimal design of the system

still depends on the validators’ incentives to tamper with the blockchain. A key advantage for the

permissioned system, however, is that no computational resources are wasted through a socially

30More generally, one can think of the constraint taking the form

P(NB)
B

NB
max{p− p(δ), p(δ̄)− p} ≤ L(R,NB).

The function L is a general loss function increasing in block rewards and decreasing in the number of validators.

The probability of creating a fork P(NB) is likely to depend on the exact specification of the consensus protocol for

updating the blockchain, but will be decreasing in the number of validators. For example, in a threshold signature

scheme, it might be harder to form a dominating collusion when NB is large.
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costly mining process. Any transaction fees are merely a transfer from investors to validators

and do not affect overall welfare. Notwithstanding, how efficient such a system can be depends

crucially on how costly it is to rule out settlement fails. This is likely to depend on the precise

consensus protocol for updating the blockchain, the identities of validators, as well as the ability of

participants to monitor the validation process.31

8 Discussion and Conclusion

This paper studies the feasibility and design of a permissioned blockchain for securities settlement.

We have focused exclusively on PoW for its consensus protocol. Notwithstanding, the trade-offs

involved are not specific to that particular protocol. In any distributed ledger, a set of participants

has the delegated authority to process transactions and update the blockchain. These validators,

however, sometimes have an incentive to revoke trades by altering the records on the blockchain. To

ensure that the blockchain is tamper-proof, the system needs to make dishonest actions sufficiently

costly. With PoW, this is based on computational costs. In other protocols like Proof-of-Stake

(PoS), it is the opportunity cost of holding collateral. Still in other protocols based on voting it

would be the cost of compromising validators to achieve a threshold agreement.

Consequently, what is common to all protocols is that honest behaviour needs to be properly incen-

tivized through rewards which are financed by transaction fees collected from investors. Therefore,

any blockchain-based settlement system – whether permissionless or permissioned – needs to con-

gest settlement so that users are willing to pay transaction fees. This is precisely what our paper

has focused on – settlement on a blockchain needs to be a club good.

It is still an open question whether alternative, potentially cheaper protocols can fully replicate the

benefits offered by the original idea of having costly mining to ensure consensus on a distributed

ledger (see for example BitFury Group (2015)). It is beyond the scope of this paper to investigate

this topic, but we briefly discuss the possibility of a PoS protocol in the appendix.

For policy makers and regulators, three key themes emerge form our analysis. First, to ensure DvP,

it is important to link digital ledgers for asset ownership and payments together to support atomic

31For example, in a system where a central bank works as a validating notary, the probability of brokers manipu-

lating the blockchain can be seen as very small. Similarly, if extreme penalties can be enforced, then validators have

no incentives to cheat.
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trades. This could give an explicit role for government who could provide a digital currency that

could be used with securities settlement systems.32 Second, the feasibility of using a blockchain for

settlement depends on a sufficient volume of transactions, high enough costs for tampering with

the blockchain (possibly in the form of fines) and a limited default exposure. Here, regulation

and supervision could play a role to ensure such conditions. Finally, in case of a permissionless

blockchain, coordination to adjust its design might prove difficult. Here, a government can help to

coordinate the different participants to reach agreement.

32Currently, such systems tend to rely on large-value payment systems for payment which are often government or

central bank run.
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A Appendix – Proofs and Derivations

A.1 Proof of Proposition 3

Profits for secret mining are given by
√

V+R
αMQ − 1√
V+R
αMQ

 (V +R)− αMQ

(√
V +R

αMQ
− 1

)
− Γ. (A.1)

These profits have to be negative for there to be no incentives to create a fork. Rewriting, we

obtain

αMQ

(√
V +R

αMQ
− 1

)2

≤ Γ. (A.2)

Using MQ = R as M →∞, we obtain

V ≤ Γ + 2
√
RαΓ +R(α− 1), (A.3)

which completes the proof.

A.2 Proof of Lemma 5

The total reward is given by

N̄∑
i=1

R =
N∑
n=1

Bτ(n) (A.4)

=
N∑
n=1

B(τ(n)− τ(N)) (A.5)

= 2V0

N∑
n=1

B
(
e−λ∆n − e−λ∆N

)
(A.6)

= 2V0

[
B

(
e−λ∆

1− e−λ∆

)(
1− e−λ∆N

)
−Me−λ∆N

]
. (A.7)

A.3 Proof of Proposition 7

Note that V is a constant and that the RHS of constraint (28) is a continuous function of B. Since

the expected surplus from trade W(B) is increasing in B, the optimal block size B∗ is the largest

one that satisfies the constraint (28). Furthermore, at B∗, the RHS of the constraint must be

decreasing in B. Otherwise, a larger B is feasible and increases surplus.
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The comparative statics results follow straight from the constraint (28). A change in εδ only

influences the maximum exposure V . This implies that an increase in V tightens the constraint

and requires an increase in the function f(B|ρ) which one can only achieve by reducing the block

size B to generate more revenue. Similarly, increasing the surplus from a trade, V0, allows a further

increase in B. Any changes in the parameters for secret mining, (α,Γ), have similar effects.

The same arguments can be applied to derive the effects on the optimal block time.
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B Additional Material – For Online Publication Only

B.1 System Comparison with Heterogeneous Types

Table B.1 compares the blockchain with the legacy system when the degree of time-criticality

λ is heterogeneous, while Table B.2 reports the case with heterogeneous trade size E(δ). Not

surprisingly, investors with more time critical trades have a larger benefit from moving to flexible

settlement times on a blockchain. When some trades have a larger default exposure, blockchain-

based settlement becomes less desirable for the median investor as the costs for avoiding settlement

fails increases.

Table B.1: Legacy Systems vs. Blockchain – Heterogeneous Investors

λi\Tcen 0 0.1 0.5 1 2

0.0333 1.52 0.86 - 1.77 - 5.00 - 11.31

0.0111 0.88 0.66 - 0.22 - 1.32 - 3.49

0.0056 0.57 0.46 0.02 - 0.53 - 1.63

0.0028 0.34 0.28 0.06 - 0.21 - 0.76

0.0014 0.19 0.16 0.05 - 0.09 - 0.36

Table B.2: Legacy Systems vs. Blockchain – Heterogeneous Trades

ξi\Tcen 0 0.1 0.5 1 2

10% 0.90 0.78 0.29 -0.32 -1.52

5% 0.89 0.77 0.31 -0.27 -1.42

0% 0.87 0.76 0.32 -0.23 -1.33

-5% 0.84 0.74 0.32 -0.20 -1.25

-10% 0.81 0.71 0.31 -0.19 -1.17
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B.2 Proof of Stake Protocol

We assume that the right for updating the blockchain is allocated randomly across people. The

probability that one can update the chain is proportional to the balances pledged as collateral by

a user. Suppose the opportunity cost of each unit of balances is r which might capture the interest

rate over the pledging period. An individual validator chooses the collateral balance kj to solve

max
kj

φjR− rkj , (B.1)

where

φj =
kj∑M
i=1 ki

. (B.2)

The total balance pledged is thus

MK =
M − 1

rM
R. (B.3)

Similarly, a dishonest investor chooses the collateral the collateral balance k0 to solve

max

(
k0

MK + k0

)
(V +R)− rαk0 − Γ. (B.4)

Hence the optimal investment in secret mining is given by

k0 = MK

(√
(V +R)

rαMK
− 1

)
. (B.5)

The decision problems of honest and dishonest investors are thus equivalent to those under the PoW

protocol. However, a Proof-of-Stake (PoS) protocol as described above can potentially improve the

efficiency of the system for two reasons. First, while computational investment MQ by miners

under the PoW protocol is a deadweight loss, the cost of collateral rMK might be less costly from

a social point of view. For example, if validators need to pledge cryptocurrecies issued by the

system as collateral, then the associated interest cost is simply redistributed within the system. Of

course, there might be other costs such as a misallocation of cryptocurrency among participants.

Second, the system can potentially penalize cheaters by confiscating their collateral. This can be

linked to the costs α or Γ and, thus, directly deter dishonest mining.

Even though a system based on PoS may be cheaper to mitigate incentive problems, it may still

be subject to other problems. For example, if all balances were owned initially by one issuer, this

issuer can easily propose a long fork starting from the initial block to claim all existing balances

in any future dates. As pointed out by BitFury Group (2015), in PoW protocols, this so-called
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long-range “attack is prevented by the enormous amount of computational power needed to build

the blockchain from scratch; however, this task is within the realm of possibility with proof of

stake. As the attacker is able to move coins freely in the blockchain he is building, he has a much

higher dimensionality of the search space”. Finally, PoS protocols still suffer from other, unresolved

issues. For example, it could be difficult to reach a consensus if there is a nothing-at-stake problem

or if one needs to ensure that any new participants can decide unambiguously between competing

chains. Our model is not built to address these issues.
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