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Abstract

This paper proposes two consistent model selection procedures for factor-augmented regres-
sions in finite samples. We first demonstrate that the usual cross-validation is inconsistent,
but that a generalization, leave-d-out cross-validation, selects the smallest basis for the space
spanned by the true factors. The second proposed criterion is a generalization of the bootstrap
approximation of the squared error of prediction of Shao (1996) to factor-augmented regressions.
We show that this procedure is consistent. Simulation evidence documents improvements in the
probability of selecting the smallest set of estimated factors than the usually available methods.

An illustrative empirical application that analyzes the relationship between expected stock
returns and factors extracted from a large panel of United States macroeconomic and financial
data is conducted. Our new procedures select factors that correlate heavily with interest rate
spreads and with the Fama-French factors. These factors have strong predictive power for excess
returns.

Keywords: Factor model, consistent model selection, cross-validation, bootstrap, excess re-
turns, macroeconomic and financial factors.

JEL classification: C52, C53, C55.

1 Introduction

Factor-augmented regression (FAR) models are now widely used for generating forecasts since the
seminal paper of Stock and Watson (2002) on diffusion indices. Unlike the traditional regressions,
these models allow the inclusion of a large set of macroeconomic and financial variables as predictors,
useful to span various information sets related to economic agents. Thereby, economic variables are
considered as driven by some unobservable factors which are inferred from a large panel of observed
data. Many empirical studies have been conducted using FAR. Among others, Stock and Watson
(2002) forecast the inflation rate assuming some latent factors explain the comovement in their
∗I am grateful for comments from participants at the CIREQ Time Series and Financial Econometrics conference

at Montreal (May 2015), the SCSE conference at Montreal (May 2015) and the CEA conference in Toronto (May
2015). A special thanks to Marine Carrasco, Xu Cheng, Sílvia Gonçalves, William McCausland and Benoit Perron
for useful comments and discussions.
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high dimensional macroeconomic dataset. Furthermore, Ludvigson and Ng (2007) look at the risk-
return relation in the equity market. From eight estimated factors resuming the information in their
macroeconomic and financial datasets using Bai and Ng (2002) ICp2 criterion, they identify, based
on the bayesian information criterion (BIC), three new factors termed "volatility", "risk premium"
and "real" factors that predict future excess returns.

Considerable research has been devoted to detect the number of factors capturing the infor-
mation in a large panel of potential predictors, but very few addressed the second step selection
of relevant estimated factors for a targeted dependent variable. Bai and Ng (2009) addressed this
issue and revisited forecasting with estimated factors. Based on the forecast mean squared error
(MSE) approximation, they pointed out that the standard BIC criterion does not incorporate the
factor estimation error. Consequently, they suggested a final prediction error (FPE) type criterion
with a penalty term depending on both the time series and the cross-sectional dimensions of the
panel. Nevertheless, estimating consistently the MSE does not by itself ensure the consistent model
selection. In fact, Groen and Kapetanios (2013) showed that this is true for the FPE criterion which
inconsistently estimates of the true factor space. In consequence, they provided consistent proce-
dures which minimize the log of the sum of squared residuals and a penalty depending on time and
cross-sectional dimensions. Their consistent selection methods choose the smallest set of estimated
factors that span the true factors with probability converging to one as the sample sizes grow.
But in finite sample exercises, these criteria tend to underestimate the true number of estimated
factors spanning the true factors. In particular, they found in the simulation experiments that their
suggested modified BIC behaves similarly to the standard time series set-up with non-generated
regressors using the BIC criterion by under-fitting the true model.

For finite sample improvements, cross-validation procedures have been used for a long time by
statisticians to select models with observed regressors and are considered here for factor-augmented
regression model selection. As is well known, the leave-one-out cross-validation (CV1) measures
the predictive ability of a model by testing it on a set of regressors and regressand not used in
estimation. This model selection procedure is consistent if only one set of generated regressors
spans the true factors. Indeed, the CV1 criterion breaks down into five main terms: the variability
of the future observations term (independent of candidates models), the complexity error term
(increases with model dimension), the model identifiability term (zero for models with estimated
factors spanning the true factor space), its parameter and factor estimation errors. When only one
set of generated factors spans the true model, this criterion converges to the forecast error variance
for this particular set since the identifiability component is zero and the remainder ones converge
to zero. But for the other candidate sets, it is inflated by the positive limit of the identifiability
part since they do not span the true latent factor space. These sets of estimated factors called
incorrect are therefore excluded with probability converging to one when we minimize the standard
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cross-validation criterion.
However, when many sets of estimated factors generate the true model, the CV1 model selection

procedure has a positive probability of not choosing the smallest one. The source of this problem
is not only due to the well known parameter estimation error when factors are observed but also
the factor estimation error in this criterion. The harmful effect of generated regressors is more
pronounced when the cross-sectional dimension is much smaller than the time dimension as the
factor estimation component dominates in finite sample both the complexity and the parameter
estimation ones. Our simulations show that this factor estimation error while asymptotically negli-
gible, contributes to reduce considerably the probability to select in finite samples the smallest set
of estimated factors that generate the true factor space.

In this paper, we suggest two alternative model selection procedures with better finite sample
properties that are consistent and select the smaller set of estimated factors spanning the true
model. The first is the Monte Carlo leave-d-out cross-validation suggested by Shao (1993) in the
context of observed and fixed regressors. The other method uses the bootstrap selection procedure
studied by Shao (1996) which is implemented with the two-step residual-based bootstrap method
suggested by Gonçalves and Perron (2014) when the regressors are generated.

Overall, in comparison with the existing literature, this paper focuses on two-step factor-
augmented regression models widely used by practitioner. It does not assume that all latent factors
in the large panel are relevant for a prediction purpose. Further, because our interest is the role
played by factors in predicting a given variable, we mainly study consistent selection of the esti-
mated factors and do not cover efficient model selection. In addition, the proposed selection rules
are designed in order to provide better finite sample performance. In particular, the simulations
show that the leave-one-out cross-validation often selects a larger set of estimated factors than the
smallest relevant one, while the modified BIC of Groen and Kapetanios (2013) tends to under-
parameterize for smaller sample sizes. Nevertheless, the Monte Carlo leave-d-out cross-validation
and the bootstrap selection pick with higher probability the estimated factors spanning the true
factors. To illustrate the methods, an empirical application that revisits the relationship between
macroeconomic and financial factors, and excess stock returns for the U.S. market has been con-
ducted. The factors are extracted from 147 financial series and 130 macroeconomic series. The
financial series correspond to the 147 variables in Jurado, Ludvigson, and Ng (2015). The quar-
terly macroeconomic data set is constructed following McCracken and Ng (2015) and spans the first
quarter of 1960 to the third quarter of 2014. After controlling for the consumption-wealth vari-
able (Lettau and Ludvigson, 2005), the lagged realized volatility of the future excess returns and
other factors, among the estimated factors from a large panel of U.S. macro and financial data, the
factors heavily correlated with interest rate spreads and with the Fama-French factors have strong
additional predictive power for excess returns. The out-of-sample performance for predicting excess
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returns with the new procedures is also compared to existing model selection ones.
The remainder of the paper is organized as follows. In Section 2, we present the settings and

assumptions. Section 3 addresses model selection. Section 4 reports the simulation study, and the
fifth section presents the empirical application. The last section concludes. Mathematical proofs,
figures and tables appear in the Appendix.

2 Settings and assumptions

The econometrician observes (yt, W ′t , X1t, . . . , Xit, . . . , XNt) , t = 1, · · · , T, and the goal is to
predict yT+1 using the following factor-augmented regression model

yt+1 = δ′Z0
t + εt+1, t = 1, ..., T − 1 (1)

with Z0
t =

(
F 0′
t , W

′
t

)′ such that Wt is a q−vector of observed regressors, and F 0
t , an r0−vector of

unobserved factors. The latent factors F 0
t are among the common factors Ft : r × 1 in the large

approximate factor model

Xit = λ′iFt + eit, i = 1, ..., N, t = 1, ..., T,

where λi : r × 1 are the factor loadings, and eit an idiosyncratic error term. Because the factors
F 0
t are unobserved, they are replaced by a subset F̃t (m) from the r estimated factors F̃t from X

using principal component estimation. Hence, the estimated regression takes the form

yt+1 = α (m)′ F̃t (m) + β′Wt + ut+1 (m) = δ (m)′ Ẑt (m) + ut+1 (m) (2)

where m is any of the 2r subsets of indices in {1, . . . , r} denoted M including the empty set,
where no latent factor drives y. The size of F̃t (m) is r (m) ≤ r and we assume the number of
estimated factors selected in the first step is known and equal to r. While Kleibergen and Zhan
(2015) guide against the harmful effect of under parameterizing on the true R2 and test statistics,
Kelly and Pruitt (2015) correct for forecast using irrelevant factors by suggesting a three-pass
regression filter procedure. Cheng and Hansen (2015) study forecasting using a frequentist model
averaging approach. Carrasco and Rossi (2016) also develop regularization methods for in-sample
inference and forecasting in misspecified factor models. However, none of these papers study the
consistent estimation of the true latent factors space in order to predict y based on the commonly
used ordinary least squares of FAR with principal components.

Although there is a large body of literature on selecting the number of factors that resume the
information in the factor panel dataset, including the work of Bai and Ng (2002), very few papers
have been devoted to the second-step selection. This paper is precisely interested in this second-step
selection. Fosten (2017) recently proposes consistent information criteria in cases where a subset of
the large panel has a large impact on the dependent variable. We do not allow idiosyncratic error
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in the FAR, like in Fosten (2017), as we do not impose a finite number of the large set of predictors
to predict yt+h. Further, we focus on the two-step FAR where factors affecting potentially few or
large subset of the series in X are identified and used for prediction. We denote Zt = (F ′t ,W ′t)

′ , t =
1, ..., T , the vector containing all latent factors and observed regressors, ‖M‖ = (Trace (M ′M))1/2,
the Euclidean norm, Q > 0, the positive definiteness for any square matrix Q, and C, a generic
finite constant. The following standard assumptions are made.

Assumption 1. (factor model and idiosyncratic errors)

(a) E ‖Ft‖4 ≤ C and 1
T F
′F

P−→ ΣF > 0, where F = (F1, · · · , FT )′ .

(b) ‖λi‖ ≤ C if λi are deterministic, or E ‖λi‖ ≤ C if not, and 1
NΛ′Λ P−→ ΣΛ > 0, where

Λ = (λ1, · · · , λN )′ .

(c) The eigenvalues of the r × r matrix (ΣF × ΣΛ) are distinct.

(d) E (eit) = 0, E |eit|8 ≤ C.

(e) E (eitejs) = σij,ts, |σij,ts| ≤ σij for all (t, s) and |σij,ts| ≤ τst for all (i, j), with 1
N

∑N
i,j=1 σij ≤ C,

1
T

∑T
t,s=1 τst ≤ C and 1

NT

∑
i,j,t,s=1 |σij,ts| ≤ C.

(f) E
∣∣∣ 1√

N

∑N
i=1 (eiteis − E (eiteis))

∣∣∣4 ≤ C for all (t, s).

Assumption 2. (moments and weak dependence among {zt}, {λi}, {eit} and {εt+1})

(a) E
(

1
N

∑N
i=1

∥∥∥ 1√
T

∑T
t=1 Fteit

∥∥∥2
)
≤ C, where E (Fteit) = 0 for every (i, t) .

(b) For each t, E
∥∥∥ 1√

TN

∑T
s=1

∑N
i=1 Zs (eiteis − E (eiteis))

∥∥∥2
≤ C, where Zs = (F ′s,W ′s)

′ .

(c) E
∥∥∥ 1√

TN

∑T
t=1 Zte

′
tΛ
∥∥∥2
≤ C where E (Ztλ′ieit) = 0 for all (i, t) .

(d) E
(

1
T

∑T
t=1

∥∥∥ 1√
N

∑N
i=1 λiet

∥∥∥2
)
≤ C, where E (λieit) = 0 for all (i, t) .

(e) As N, T −→ ∞, 1
TN

∑T
t=1

∑N
i=1

∑N
j=1 λiλ

′
jeitejt − Γ P−→ 0, where Γ ≡ lim

N, T−→∞
1
T

∑T
t=1 Γt > 0

and Γt ≡ Var
(

1√
N

∑N
i=1 λieit

)
.

(f) For each t and h ≥ 0, E
∣∣∣ 1√

TN

∑T
s=1

∑N
i=1 εs+h (eiteis − E (eiteis))

∣∣∣ ≤ C.
(g) E

∥∥∥ 1√
TN

∑T−h
t=1 λieitεt+1

∥∥∥2
≤ C, where E (λieitεt+1) = 0 for all (i, t) .

Assumption 3. (moments and Central Limit Theorem for the score vector)
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(a) E (εt+1|Ft) = 0, E
(
ε2
t+1|Ft

)
= σ2, E ‖Zt‖8 < C and E

(
ε8
t+1
)
< C, where

Ft = σ(yt, F ′t , W ′t , X1t, ..., XNt, yt−1, F
′
t−1, W

′
t−1, X1,t−1, ..., XN,t−1, ...)

(b) ΣZ = plim
T−→∞

1
T

∑T
t=1 ZtZ

′
t > 0.

(c) 1√
T

∑T−1
t=1 Ztεt+1

d−→ N (0, Ω), with Ω positive definite.

Assumptions 1 and 2 are the same as in Bai and Ng (2002), Gonçalves and Perron (2014)
and Cheng and Hansen (2015) in terms of factor-augmented regression specifications that allow
for weak dependence and heteroscedasticity in the idiosyncratic errors. Assumption 3 is useful for
deriving the asymptotic distribution of the estimator δ̂ of δ. It assumes that the forecast error is
conditionally homoscedastic which is rather strong. This assumption is commonly used in consistent
model selection based on cross-validation. It could be relaxed if our interest where efficient model
selection (Shao, 1997). We leave this for future research.

The principal component estimate F̃ corresponds to the eigenvectors of 1
TXX

′ associated with
the r largest eigenvalues times

√
T , using the normalization F̃ ′F̃ /T = Ir. As is well known, F̃t only

consistently estimates a rotation of Ft given by HFt, with H identifiable asymptotically under Bai
and Ng’s (2013) assumptions. Note that

H = Ṽ −1 F̃
′F

T

Λ′Λ
N

, (3)

where Ṽ contains the r largest eigenvalues of XX ′/NT , in decreasing order along the diagonal and
is a diagonal matrix with dimension r × r. As it has been argued previously, all of the estimated
factors are not necessarily relevant for prediction.

3 Model selection

The aim of this work is to provide an appropriate procedure to select the set of estimated factors
that should be used to estimate (2). In practice, we extract estimated factors F̃t which summarize
information in the large N×T matrixX. Afterwards, a subvector F̃t (m) is chosen for the prediction
of yt+1. Ludvigson and Ng (2007) select F̃t (m) of F̃t using the bayesian information criterion (BIC)
to predict excess stock returns. Because this criterion does not correct for factor estimation, Bai
and Ng (2009) suggest a modified final prediction error (FPE) with an extra penalty to proxy the
effect of factor estimation by approximating the mean squared error (MSE). However, as pointed
out by Stone (1974), we may have a consistent estimate of the MSE or a loss that does not select
the true observed regressors with probability converging to one. This is also true when the variables
are latent factors and the goal is to estimate consistently the true factor space. Conditionally on
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the information up to time t, the true conditional mean is

E (yt+1|Ft) = α′F 0
t + β′Wt, t = 1, . . . , T − 1.

In consistent model selection literature, it is common to distinguish correct and incorrect sets of
predictors. In the usual case with observed factors, Shao (1997) defines a set of regressors m as
correct if its conditional mean equals that of the true unknown model, i.e.,

α (m)′ Ft (m) + β′Wt = E (yt+1|Ft) , t = 1, . . . , T − 1.

When the smallest set of regressors that generates the true model is picked with probability going
to one, the selection procedure is said to be consistent. For FAR models with generated regressors,
Groen and Kapetanios (2013) suggest a consistent procedure based on IC type criteria, which select
F̃t (m) spanning asymptotically the true unknown factors F 0

t . Formally, F̃t (m) spans F 0
t or m is

correct if F̃t (m)−Ft (m) P−→ 0 and there is a r0×r (m) matrix A (m) such that F 0
t = A (m)Ft (m) .

By definition, Ft (m) = H0 (m)Ft, where H0 (m) is a r (m) × r sub-matrix of H0 = plim
N, T→∞

H. If

H0 is diagonal, each estimated factor will identify one and only one unobserved factor. Note that
for any m, Ft(m) is subvector of H0Ft where we avoid the subscript H0 to simplify the notation.
Further, the only subvector of Ft that will be considered in the paper is the true set of latent
factors F 0

t . Bai and Ng (2013) extensively studied conditions that help identify the factors from
the first step estimation. We define byM1, the category of estimated models with set of estimated
factors that are incorrect, and byM2, those which are correct. There is at least one correct set of
estimated factors in M which is the one with all r estimated factors. In remainder of the paper,
we will associate one set of estimated factors to the corresponding estimated model. That been
said, if we denote m0 the smallest correct set of generated regressors, a selection procedure will be
called consistent if it selects a set of generated regressors m̂ such that

P (m̂ = m0) −→ 1 as T, N →∞.

In finite sample experiments, Groen and Kapetanios (2013) information criteria tend to underesti-
mate the true number of factors. In particular, their suggested modified BIC behaves as the BIC
for time series with non-generated regressors known to under-fit the true model. In order to obtain
a finite sample improvement, this paper proposes alternative consistent selection procedures using
cross-validation and bootstrap methods.

The next subsection begins by showing why the usual "naive" leave-one-out cross-validation fails
to select the smallest correct set of estimated factors with a probability approaching one, as the
sample sizes increase. In addition, a theoretical justification of the Monte Carlo cross-validation
and the bootstrap selection procedures in this generated regressors framework is provided.
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3.1 Leave-d-out or delete-d cross-validation

This part of the paper studies the factor-augmented model selection based on cross-validation
starting with the usual leave-one-out or delete-one cross-validation. As is well known, it estimates
the predictive ability of a model by testing it on a set of regressors and regressand not used in
estimation. Thereby, the leave-one-out cross-validation minimizes the average squared distance

CV1 (m) = 1
T − 1

T−1∑
t=1

(
yt+1 − δ̂′t (m) Ẑt (m)

)2

between yt+1 and its point forecast using an estimate from the remaining time periods

δ̂t (m) =

 ∑
|j−t|≥1

Ẑj (m) Ẑj (m)′
−1 ∑

|j−t|≥1
Ẑj (m) yj+1

 .
However, by minimizing the CV1, there is a positive probability that we do not select the smallest
possible correct set of generated regressors. In Lemma 3.1, we show that this positive probability
to select a larger correct set of estimated factor is not only due to the parameter estimation error
but also to the factor estimation one in the CV1 criterion. We denote P (m), the projection matrix
associated with the space spanned by Z (m) = (F (m) , W ), with F (m) the generic limit of F̃ (m)
and µ = Z0δ, the true conditional mean vector.

Lemma 3.1. Suppose that Assumptions 1–3 hold. If for any m,

plim
T→∞

sup 1≤t≤T−1

∣∣∣∣Zt (m)′
[
Z (m)′ Z (m)

]−1
Zt (m)

∣∣∣∣ = 0,

as T, N →∞, then when m is a correct set of estimated factors,

CV1 (m) = 1
T − 1ε

′ε+ 2(r (m) + q)
T − 1 σ2 − 1

T − 1ε
′P (m) ε+ VT (m) + oP

(
1

C2
NT

)
,

where VT (m) = OP

(
1

C2
NT

)
. When m is an incorrect set of estimated factors,

CV1 (m) = σ2 + 1
T − 1µ

′(I − P (m))µ+ oP (1) .

From Lemma 3.1, for a correct set of estimated factors,

CV1 (m) = σ2 + oP (1) ,

otherwise

CV1 (m) = σ2 + 1
T − 1µ

′(I − P (m))µ+ oP (1) .

Lemma 3.1 extends Equations (3.5) and (3.6) of Shao (1993) to the case where the factors are
not observed but estimated. Contrary to that case where the regressors are observed, we have an
additional term VT (m) corresponding to the factor estimation error CV1, and P (m) is associated

8



with the space spanned by subsets of FH ′0, a rotation of the true factor space. Consider two
candidates sets m1 and m2 such that m1 is correct and m2 is incorrect. Assume plim inf

T→∞
1

T−1µ
′(I −

P (m))µ > 0 for incorrect set of estimated factors. The CV1 will prefer m1 to m2 since

plim
N,T→∞

CV1 (m1) = σ2 < σ2 + plim
T→∞

1
T − 1µ

′(I − P (m2))µ = plim
N,T→∞

CV1 (m2) .

as 1
T−1ε

′P (m) ε = oP (1) . Thus, incorrect sets of estimated factors will be excluded with probability
approaching one. Therefore, the CV1 is consistent when M2 contains only one correct set of
estimated factors. WhenM2 contains more than one correct set of estimated factors, suppose m1

and m2 are two correct set of estimated factors with sizes r (m1) and r (m2) (r (m1) < r (m2)).
The leave-one-out cross-validation selects with positive probability the unnecessary large model m2

when the factors are generated. Indeed, for m ∈M2,

CV1 (m) = 1
T − 1ε

′ε+ (r (m) + q)
T − 1 σ2 +

((r (m) + q)
T − 1 σ2 − 1

T − 1ε
′P (m) ε

)
+ VT (m) + oP

(
1

C2
NT

)

with VT (m) = OP

(
1

C2
NT

)
. The first term is independent of candidate models. The second term

captures the complexity of the model. It is the expected value of 1
T−1ε

′P (m) ε and it increases
with the model dimension. The term in parenthesis is a parameter estimation error with mean zero
while comparing two competing correct sets of estimated factors. The term VT (m) contains the
factor estimation error in the CV1 (m) which is not reflected by the term in parentheses. Because
the complexity component is inflated in finite samples not only by this parameter estimation error
but also the factor estimation one, we fail to pick accurately the smallest correct set of estimated
factors. In the usual case with observed factors, Shao (1993) already showed that the leave-one-out
cross-validation has a positive probability to select a larger model than the consistent one because
of the presence of the parameter estimation error. Hence, the consistent model selection crucially
depends on the ability to capture the complexity term useful to penalize the over-fitting.

When the factor estimation error in the CV1 is such that N = o(T ), then VT (m) = OP
(

1
N

)
and

dominates both the complexity term and the parameter estimation error. More precisely, comparing
two competing models inM2 amounts to the comparison of their factor estimation errors in CV1

instead of the model complexities since

CV1 (m) = 1
T − 1ε

′ε+ VT (m) + oP

( 1
N

)
.

We analyze through a simulation study how the factor estimation error VT , which is random,
contributes to worsen the probability of selecting a consistent model.

We consider the same data generating process (DGP) as the first DGP in the simulation sec-
tion, where yt+1 = 1 + F1t + 0.5F2t + εt+1, with εt+1 ∼ N(0, 1) and F 0 = (F1, F2) ⊂ F =
(F1, F2, F3, F4). Given the specification for the latent factors and the factor loadings, the PC1
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condition for identifying restrictions provided by Bai and Ng (2013) is asymptotically satisfied and
makes possible to identify estimated factors. Hence, we extract four estimated factors and we ex-
pect to pick consistently the first two among the 24 = 16 possibilities. The line "with parameter
and factor estimation errors" on Figure 1 reports the frequency of selecting a larger set of estimated
factors while minimizing the CV1 criterion which includes the estimation errors.

Figure 1: Frequencies of selecting a larger set of estimated factors minimizing the CV1 criterion
without errors, with the parameter estimation error and both the parameter and the factor esti-
mation errors over 10,000 simulations

N
50 100 150 200 250

F
re

qu
en

ci
es

 fo
r 

T
=1

00

-0.1

0

0.1

0.2

0.3

0.4

0.5

N
50 100 150 200 250

F
re

qu
en

ci
es

 fo
r 

T
=2

00

-0.1

0

0.1

0.2

0.3

0.4

0.5

Without errors
With parameter estimation error
With parameter and factor estimation errors

Note: This table reports the frequencies of selecting a larger set of estimated factors than the
one that contains the first two factors. The line "without errors" represents the frequencies while
minimizing the complexity component and the identifiability one plus 1

T−1ε
′ε. The line "with pa-

rameter estimation error" corresponds to the frequency when the parameter estimation error is
added. The line "with parameter and factor estimation errors" relates to the "naive" leave-one-out
cross-validation which includes both the parameter and the factor estimation errors.

Given the different sample sizes, it turns out that the leave-one-out cross-validation selects very
often a larger model. To understand how each component in the CV1 contributes to this over-
fitting, we will minimize the sum of the complexity and the identifiability terms plus the forecast
error in the leave-one-out cross-validation criterion which is

CV11 (m) = 1
T − 1ε

′ε+ (r (m) + q)
T − 1 σ2 + 1

T − 1µ
′(I − P (m))µ

where we omit the parameter and the factor estimation errors. The second and the third terms
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Figure 2: Average parameter estimation error and factor estimation error in the CV1 criterion for
selected model over 10,000 simulations
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Note: This figure shows the average minimum parameter and factor estimation errors in the leave-
one-out cross-validation criterion as N and T vary over the simulations. See also note for Figure
1.

are those important for consistent model selection. The corresponding line "without errors" on
Figure 1 shows that we never over-fit through the 10, 000 simulations. Afterwards, we incorporate
the parameter estimation error by minimizing

CV12 (m) = 1
T − 1ε

′ε+ (r (m) + q)
T − 1 σ2 + 1

T − 1µ
′(I−P (m))µ+

((r (m) + q)
T − 1 σ2 − 1

T − 1ε
′P (m) ε

)
.

Once the parameter estimation error is included, the frequency of selecting a larger set increases.
Moreover, when we include both the parameter and the factor estimation errors corresponding to
the CV1, that frequency increases more (see, Figure 1). The results show that this factor estimation
error while asymptotically negligible, also increases this probability given the different sample sizes.
In addition, an increase in the cross-sectional dimension implies a decrease in the factor estimation
error (see, Figure 2) which is followed by a drop of the probabilities of over-parametrization.

The sum of the complexity and the identifiability term in the CV1, helpful to achieve the
consistent selection of the estimated factors, corresponds to the conditional mean of the infeasible
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in-sample squared error

LT (m) = 1
T − 1 (µ̂ (m)− µ)′ (µ̂ (m)− µ) = 1

T − 1ε
′P (m) ε+ 1

T − 1µ
′ (I − P (m))µ,

with µ̂t (m) = P (m) y.
To avoid the selection of larger models, Shao (1993) suggests in observed regressors set-up, a

modification of the CV1 using a smaller construction sample to estimate δ by deleting d� 1 periods
for validation. This consists in splitting the T − 1 time observations into κ = (T − 1)− d randomly
drawn observations that are used for parameter estimation and d remaining ones that are used for
evaluation, while repeating this process b times with b going to infinity. We extend it to FAR and
provide conditions for its validity.

Given b random draws of d indexes s in {1, . . . , T − 1} called validation samples, for each draw
s = {s (1) , · · · , s (d)}, we define

ys =


ys(1)
ys(2)
...

ys(d)

 , Ẑs (m) =


F̃ ′s(1) (m) W ′s(1)
F̃ ′s(2) (m) W ′s(2)

...
...

F̃ ′s(d) (m) W ′s(d)

 .

The corresponding construction sample is indexed by sc = {1, . . . , T − 1} \ s, with ysc the com-
plement of ys in y and Ẑsc the complement of Ẑs in Ẑ. We denote ỹs (m) = Ẑs (m) δ̂sc (m) ,
δ̂sc =

(
Ẑsc (m)′ Ẑsc (m)

)−1
Ẑsc (m)′ ysc . The Monte Carlo leave-d-out cross-validation estimated

model is obtained by minimizing

CVd (m) = 1
d · b

∑
s∈R
‖ys − ỹs (m)‖2 ,

where R represents a collection of b subsets of size d randomly drawn from {1, . . . , T − 1} . This
procedure generalizes the leave-one-out cross-validation because when d = 1, s = {t} , sc =
{1, . . . , t− 1, t+ 1, . . . , T − 1} and R = {{1} , . . . , {T − 1}}, with CVd (m) = CV1 (m) . Using a
smaller construction sample, the next theorem shows that for correct sets of estimated factors,

CVd (m) = 1
d · b

∑
s∈R

∑
t∈s

ε2
t+1 + r (m) + q

κ
σ2 + oP

(1
κ

)
and for incorrect sets of estimated factors,

CVd (m) = σ2 + 1
T − 1µ

′(I − P (m))µ+ oP (1) .

Hence, for correct sets of estimated factors m1 and m2 such that r (m1) < r (m2),

P (CVd (m1)− CVd (m2) < 0) = P (r (m2)− r (m1) > 0 + oP (1)) = 1 + o (1) .

Thus, m1 will be preferred to m2. To prove the validity of this procedure, we made some additional
assumptions.
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Assumption 4.

(a) plim inf
T→∞

1
T−1µ

′(I − P (m))µ > 0 for any m ∈M1.

(b) plim
T→∞

sup1≤t≤T−1

∣∣∣∣Zt (m)′
[
Z (m)′ Z (m)

]−1
Zt (m)

∣∣∣∣ = 0 for all m.

(c) plim
T→∞

sups∈R
∥∥∥1
dZ
′
sZs − 1

κZ
′
scZsc

∥∥∥ = 0 where κ = T − 1− d.

(d) E (eiteju) = σij,tu with 1√
T ·κ

∑
t ∈ sc

∑T
u=1

1
N

∑
i,j |σij,tu| ≤ C for all s.

(e) 1
κE
(∑

t ∈ sc

∥∥∥ 1√
N
∑N

i=1 λiet
∥∥∥4
)
≤ C for all (i, t) and all s.

(f) 1
dZ
′
s (m)Zs (m) P−→ ΣZ (m) > 0 for all m and all s.

Assumption 4 (a) is an identifiability assumption in order to distinguish a correct set of esti-
mated factors from an incorrect one. Groen and Kapetanios (2013) also made this assumption. By
Assumption 4 (b), for any estimated model, the diagonal elements of the projection matrix vanish
asymptotically. This regularity condition can be seen as a form of a stationarity assumption for
regressors in the different sub-model, which is typical in cross-validation literature. Assumption 4
(c) argues that the average difference between the Fisher information matrix of the validation and
the construction samples are close as N,T →∞. Assumption 4 (d) complements Assumption 1 (e)
as when sc = {1, . . . , T − 1} , 1√

T ·κ
∑
t ∈ sc

∑T
u=1

1
N

∑
i,j |σij,tu| = 1

TN

∑T
t,u,i,j |σij,tu| ≤ C. Assump-

tion 4 (e) and Assumption 4 (d) strengthen Assumption 2 (d) and Assumption 3 (b), respectively.
They are used for proving Lemma 7.2. Next theorem proves the consistency of the Monte Carlo
leave-d-out cross-validation for FAR.

Theorem 1. Suppose that Assumptions 1–4 hold. Suppose further that κ
C2

NT
→ 0, T 2

κ2b → 0 and κ,
d→∞, when b, T, N →∞. Then

P (m̂ = m0)→ 1,

where m̂ = arg minmCVd (m) , ifM contains at least one correct set of estimated factors.

The proof of Theorem 1 is given in Appendix. This result is an extension of Shao (1993) to
the case with generated regressors. Given the rate conditions, κ, d → ∞ such that κ

T−1 → 0
and d

T−1 → 1. It follows from Theorem 3.1 that the consistency of the Monte Carlo leave-d-out
cross-validation relies on κ much smaller than d. One could consider κ = min {T, N}3/4 and
d = (T − 1)−κ as they are consistent with the conditions in Theorem 1. In particular, Shao (1993)
suggests for the observed regressors framework κ = T 3/4. This difference is due to the presence of
the factor estimation error which should converge faster to zero relative to the complexity term.
An extreme case where this condition is not satisfied is the leave-one-out cross-validation where
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κ = (T − 1) − 1 and d = 1. Next paragraph studies an alternative selection procedure using the
bootstrap methods.

3.2 Bootstrap rule for model selection

It follows from the previous subsection that the improvement in the Monte Carlo leave-d-out cross-
validation relies in its ability to capture the complexity and the identifiability component in the
conditional mean of the infeasible in-sample squared error LT . This is obtained by making the
complexity component vanishes at a slower rate than the parameter and factor estimation errors.
An alternative way to achieve the same purpose is using a bootstrap approach.

The suggested bootstrap model selection procedure generalizes the result of Shao (1996) to
the factor-augmented regressions context where we have generated regressors. We define Γ̂κ (m), a
bootstrap estimator of the prediction error mean conditionally to Z which is σ2 + E (LT (m) |Z) ,
based on the two-step residual procedure proposed by Gonçalves and Perron (2014) for FAR. In
the case with observed regressors, Shao (1996) considers

Γ̂κ (m) = E∗
( 1
T − 1

∥∥∥y − Z (m) δ̂∗d (m)
∥∥∥2
)
,

where δ̂∗κ (m) = (Z (m)Z (m))−1 Z (m) y∗ is the bootstrap estimator of δ using a residual bootstrap
scheme. E∗ represents the expectation in the bootstrap world which is conditional on the data.
While fixing Z∗ (m) = Z (m) , the bootstrap version of y is given by y∗ = Z (m) δ̂+ ε∗, with ε∗ the
i.i.d. resampled version of ε̂ multiplied by

√
T−1
κ

1√
1− r+q

T−1

, where κ→∞ such that κ
T−1 → 0. When

κ = T − 1, we obtain to the usual residual bootstrap. In fact, the factor
√

T−1
κ ensures δ̂∗d (m) to

converge to δ at a slower rate
√
κ useful for consistent model selection rather than the usual

√
T .

As for the leave-d-out cross-validation, κ = o (T ) such that κ
T−1 → 0 and d

T−1 → 1. If κ=O(T ),
we have similarly to the leave-one-out cross-validation, a naive estimator of LT up to the constant
σ2 which does not choose the smallest model inM2 with probability going to one. In our set-up,
to mimic the estimation of F by F̃ from X, F̃ ∗ is extracted from the bootstrap sample X∗ and
Ẑ∗ =

(
F̃ ∗, W

)
.Subsets of F̃ ∗ are denoted by F̃ ∗ (m). We also define Ẑ∗ (m) =

(
F̃ ∗ (m) , W

)
and

Γ̂κ (m) = E∗
( 1
T − 1

∥∥∥y − Ẑ∗ (m) δ̂∗κ (m)
∥∥∥2
)
,

where

δ̂∗κ (m) =
(
Ẑ∗′ (m) Ẑ∗ (m)

)−1
Ẑ∗′ (m) y∗ (m) (4)

with Ẑ∗ (m) and y∗ (m) the bootstrap analog of Ẑ (m) and y (m), respectively, obtained through
the following algorithm.

Algorithm
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A) Estimate F̃ and Λ̃ from X.

B) For each m:

1. Compute δ̂ (m) by regressing y on Ẑ (m) .

2. Generate B bootstrap samples such that X∗it = F̃ ′t λ̃i + e∗it, y
∗ (m) = Ẑ (m) δ̂ (m) + ε∗

where {e∗it} and
{
ε∗t+1

}
are re-sampled residual based respectively on {êit} and {ε̂t+1} ,

with ε̂t+1 = ε̂t+1 (M) and M is the residual when all the estimated factors are used.

(a) {e∗it} are obtained by multiplying {êit} i.i.d.(0, 1) external draws ηit for i = 1, . . . , N
and t = 1, . . . , T.

(b)
{
ε∗t+1

}
t=1,...,T−1 are i.i.d. draws of

√T−1
κ

1√
1− r+q

T−1

(
ε̂t+1 (M)− ε̂ (M)

)
t=1,...,T−1

.

3. For each bootstrap sample, extract F̃ ∗ from X∗ and estimate δ̂∗κ (m) based on Ẑ∗ (m) =(
F̃ ∗ (m) ,W

)
and y∗ (m) using (3.4) .

C) Obtain m̂ as the model that minimizes the average of Γ̂jκ (m) = 1
T−1

∥∥∥y − Ẑ∗j (m) δ̂∗jκ (m)
∥∥∥2

over the B samples indexed by j, where

Γ̂κ (m) =
B∑
j=1

Γ̂jκ (m) .

By multiplying the second-step i.i.d. bootstrap residuals by
√
T−1√
κ
, we obtain Γ̂κ (m) = ε′ε

T−1 +
(r(m)+q)

κ σ2+oP
(

1
κ

)
form inM2 and Γ̂κ (m) = σ2+ 1

T−1µ
′ (I − P (m))µ+oP (1) form inM1, which

achieves a consistent selection. The next theorem proves the validity of the described bootstrap
scheme.

Theorem 2. Suppose that Assumptions 1–3 hold. Suppose further that Assumptions 6-8 of Gonçalves
and Perron (2014) and E∗ |ηit|4 ≤ C <∞ hold. If N, T −→∞ and κ −→∞ such that κ

C2
NT
−→ 0

then
√
κ
(
δ̂∗κ (m)− Φ∗0 (m) δ̂ (m)

)
→d∗ N

(
0, Σδ∗(m)

)
for any m with Σδ∗(m) = σ2 [Φ∗0 (m) ΣZ (m) Φ∗′0 (m)]−1 and ΣZ (m) = plimT→∞

1
T Z (m)′ Z (m) .

From Theorem 2, it follows that δ̂∗κ (m) converges to the limit of Φ∗0 (m) δ̂ (m) at a lower rate
√
κ = o

(√
T
)
. The proof in Appendix shows that our bootstrap scheme satisfies the high level

conditions provided by Gonçalves and Perron (2014). This result allows us to use our new bootstrap
scheme for the following optimality results.

Theorem 3. Suppose that Assumptions 1–3 and Assumption 4 (a) complemented by Assumptions
6-8 of Gonçalves and Perron (2014) hold. Suppose further that κ → ∞ such that κ

C2
NT
→ 0 as T,
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N →∞ and E∗ |ηit|4 ≤ C <∞. Then ifM2 is not empty, it holds that

lim
N, T→∞

P (m̂ = m0) = 1

where m̂ = arg minm Γ̂κ (m) .

This bootstrap result is the analog of Theorem 1. The following section compares the different
procedures through a simulation study.

4 Simulation experiment

To investigate the finite sample properties of the proposed model selection methods, Monte Carlo
simulations are conducted. We consider the following model

yt+1 = α′F 0
t + α0 + εt+1,

where α0 = 1, F 0
t ⊂ Ft ∼ i.i.d.N (0, I4) and εt+1 ∼ i.i.d.N (0, 1). Three data generating process

(DGP) are used.

• For DGP1, r0 = 2, F 0
t = (Ft,1, Ft,2)′ and α = (1, 1/2)′.

• For DGP2, r0 = 3, F 0
t = (Ft,1, Ft,2, Ft,3)′ and α = (1, 1/2, − 1)′.

• For DGP3, r0 = 4, F 0
t = (Ft,1, Ft,2, Ft,3, Ft,4)′ and α = (1, 1/2, − 1, 2)′.

There are 4 factors, but only DGP 3 uses them all. DGP 1 and 2 only use a subset of them
to generate the variable of interest yt+1. The panel factor model is a matrix of dimension N × T ,
with elements

Xit = λ′iFt + eit,

where λ1i ∼ 12U [0, 1] , λ2i ∼ 8U [0, 1] , λ3i ∼ 4U [0, 1] and λ4i ∼ U [0, 1]. The factor loadings are la-
belled in decreasing order of importance to explain the dynamics of the panel Xit. The specification
for the unobserved factors and the factor loadings satisfies asymptotically PC1 identifying restric-
tions provided by Bai and Ng (2013). Indeed, plim

T→∞
1
T F
′F = I4 and plim

N→∞
1
NΛ′Λ is diagonal with

distinct entries, and make possible to identify estimated factors as N, T →∞ go to infinity. As in
Djogbenou, Gonçalves, and Perron (2015), eit ∼ N

(
0, σ2

i

)
with σ2

i ∼ U [.5, 1.5]. We consider 1000
replications, for bootstrap and Monte Carlo, 399 simulations and for sample sizes T ∈ {100, 200},
N ∈ {50, 100, 150, 200, 250}. The construction data size for the CVd and for the bootstrap is
κ = (min {T,N})3/4. The first step bootstrap residual are obtained by the wild bootstrap using
i.i.d. normal with mean 0 and variance 1 external draws.
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We compare the ability of the proposed procedures to select consistently the true model to the
leave-one-out cross-validation

CV1 (m) = 1
T − 1

T−1∑
t=1

(
yt+1 − δ̂′t (m) F̃t (m)− α̂0

)2

and the modified bayesian information criteria (BICM) suggested by Groen and Kapetanios (2013)

BICM (m) = T

2 ln
(
σ̂2 (m)

)
+ r (m) ln (T )

(
1 + T

N

)
,

where σ̂2 (m) = 1
T−1−r(m)

∥∥∥y − F̃ (m) δ̂ (m)− α̂0
∥∥∥2
, is made by considering subsets of the first four

principal component estimated factors.
Table 1 present the average number of selected estimated factors whereas Tables 2–4 show

the frequencies of selecting the consistent set of estimated factors over the 24 = 16 possibilities
including the case of no factor. Except for the largest estimated model, where the average number
of estimated factors tends to be close to four, the CV1 tends to overestimate the true number of
factors. The BICM very often selects a smaller set of estimated factors than the true one. The
leave-d-out cross-validation and the bootstrap procedure select in average a number of factor close
to the true number.

The suggested procedures offer a higher frequency of selecting factor estimates that span the
true model for DGP 1 and 2. In particular, when N = 100 and T = 200, for DGP 1, the frequency
of selecting the first two estimated factors is 68.30 using the modified BIC and 64.20 using the leave-
one-out cross-validation. The bootstrap selection method increases the frequency of the CV1 by
27.5 points of percentage and the CVd increases it by 29.2 points of percentage. These frequencies
increase with the sample sizes. In general, the leave-one-out cross-validation very often selects a
larger model than the true one and the modified BIC tends to pick smaller subset of the consistent
model. As DGP 3 corresponds to the largest model, CV1 unsurprisingly performs well.

5 Empirical application

This section revisits the factor analysis of excess risk premia of Ludvigson and Ng (2007). The data
set contains 147 quarterly financial series and 130 quarterly macroeconomic series from the first
quarter of 1960 to the third quarter of 2014. The variables in the financial dataset are constructed
using Jurado, Ludvigson, and Ng (2015) financial dataset and variables from Kenneth R. French
website as described in the Supplemental Appendix 1. The quarterly macro data are downloaded
from the St. Louis Federal Reserve website and correspond to the monthly series constructed by
McCracken and Ng (2015). Some of the quarterly data are also constructed based on McCracken
and Ng (2015) data as explained in the Supplemental Appendix. We examine how economic

1We gratefully thank Sydney C. Ludvigson who provided us their data set.
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information summarized through a few numbers of estimated factors from real economic activities
data and those related to financial markets can explain the future excess returns using various
selection procedures. Recently, Gonçalves, McCracken, and Perron (2017) also study the predictive
ability of estimated factors from the macroeconomic data provided by McCracken and Ng (2015)
to forecast excess returns to the S&P 500 Composite Index. They detect the interest rate factor
as the strongest predictor of the equity premium. Indeed, as argued by Ludvigson and Ng (2007),
restricting attention to a few sets of observed factors may not span all information related to
financial market participants. Unlike Gonçalves, McCracken, and Perron (2017), they considered
both financial and macroeconomic data. Using the BIC, they found three new estimated factors
termed "volatility", "risk premium" and "real" factors that have predictive power for the market
excess returns after controlling for usual observed factors.

Following Ludvigson and Ng (2007), we define mt+1 as the continuously compounded one-
quarter-ahead excess returns in period t +1 obtained by computing the log return on the Center
for Research in Security Prices (CRSP) value-weighted price index for NYSE, AMEX and NAS-
DAQ minus the three-month Treasury bill rate. The factor-augmented regression model used by
Ludvigson and Ng (2007) takes the form,

mt+1 = α′1Ft + α′2Gt + β′Wt + εt+1.

The variables Ft and Gt are latent and represent respectively the macroeconomic and the financial
factors. The vector Wt contains commonly used observable predictors that may help predict excess
returns and the constant. The observed predictors are essentially those studied by Ludvigson and
Ng (2007). We have the dividend price ratio (d-p) introduced by Campbell and Shiller (1989),
the relative T-bill (RREL) from Campbell (1991) and the consumption-wealth variable suggested
by Lettau and Ludvigson (2001). In addition, the lagged realized volatility is computed over each
quarter (see, Ludvigson and Ng (2007)) and included. The factors are estimated by F̃t and G̃t

using principal components based respectively on the macro factor panel model

X1it = λ′iFt + e1it

and the financial factor panel model

X2it = γ′iGt + e2it.

Like Ludvigson and Ng (2007), we use the ICp2 information criterion of Bai and Ng (2002)
and select six estimated factors from each set that summarize 54.87% of the information in our
macroeconomic series and 83.64% of the financial information. Despite the imperfection of naming
an estimated factor, it turns to be interesting as it helps us understand the economic message
revealed by the data. Figures in the Supplemental Appendix represent the marginal R2 of each
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variables to each estimated factor, obtained by regressing each estimated factor on the variables.
In the panel, similarly to McCracken and Ng (2015), F̃1 is revealed as a real factor because

variables related to production and labor market are highly correlated to it. The third factors F̃3

represents an interest rate spread factor. The estimated financial factors G̃2 and G̃3 are market risk
factors. The market excess returns and the High Minus Low Fama-French factors have a marginal
R2 greater than 0.7 with G̃2 whereas the the Small Minus Big Fama-French factor and Cochrane-
Piazzesi factor have the highest correlation to G̃3. The estimated factor G̃4 is dominated by oil
industry portfolio return and G̃6 is mostly related to utility industry portfolio return.

The next two subsections study the in-sample and out-of-sample excess returns prediction while
picking consistently the estimated factors in the second step.

5.1 In-sample prediction of excess returns

The estimated regression takes the form

mt+1 = α′1 (m) F̃t (m) + α′2 (m) G̃t (m) + β′Zt + ut+1 (m)

for m = 1, . . . , 2r including the possibility that no factor is selected, with r the number of selected
factors in the first step. The selected model and the estimated regression results are reported in
Table 5.

The Monte Carlo cross-validation and the bootstrap selection procedures select smaller set of
generated regressors than the leave-one-out cross-validation. On the other hand, BICM selects the
model with no financial or macro factor. Our cross-validation method selects three factors: the
third macro factor

(
F̃3t
)
, the second financial factor

(
G̃2t

)
and the third financial factor

(
G̃3t

)
.

Investors care about the spread between interest rates and effective federal funds rate motivating
interventions by the Federal Reserve to impulse economic expansion. Estimated risk factors also
play an important role in predicting the equity premium associated to U.S. stock market as in
Ludvigson and Ng (2007). We can deduce that the important estimated factors which investors in
the U.S. financial market should care about are interest rate spread factor

(
F̃3t
)
, and market risk

factors
(
G̃2t

)
and

(
G̃3t

)
. These factors are significant and simultaneously picked by the leave-d-out

cross-validation and bootstrap model selection approach. We also study the joint significativity of
the estimated factors using the Fisher test. The constrained model is the one estimated with only
observed regressors and the volatility factor, whereas the unconstrained model is m̂j , j = 1, · · · , 4.
The estimated models m̂1, m̂2, m̂3 and m̂4 correspond respectively to those selected by the CV1,
the BICM, the CVd and the Γ̂κ. The F -test statistic is always greater than the 5% critical value,
implying additional significant information in the unconstrained model for the different procedures
except the BICM where no factor is selected.
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5.2 Out-of-sample prediction of excess returns

This subsection studies how the new procedures behave in out-of-sample forecasting. Parameters
and factors are estimated recursively with an initial sample of data from 1960:1 through 2004:4.
The forecasts are generated for each subsample based on the model selected over that subsample
by each criterion. The forecast sample corresponds to the period 2005:1-2014:3. This forecasts
are obtained by regressing the dependent variable from 1960:2-2005:1 on the independent variables
from 1960:1-2004:12. The used estimated factors are extracted from the large data set covering
1960:1 to 2004:4. From this estimated factors, a subset is selected using each of the four criteria.
This procedure is repeated by expanding data sample each quarter, re-estimating the factors and
selecting a new set of factors to forecast next quarter’s excess returns. The number of estimated
factors that summarizes information in X1 and X2 are selected using Bai and Ng (2002) criterion
from the first estimation sample and maintained in each recursion.

We compare the different sets of model by computing the MSE relative to the benchmark which
only contains the constant. The alternative model contains generated regressors selected using
the CV1, the BICM, the CVd or the Γ̂κ. Hence, we compute MSEu/MSEr the out-of-sample
mean squared error of each unconstrained model relative to MOD0, where no factor is present.
The forecast error is smaller in the bootstrap selection procedure as we obtain MSEu/MSEr =
0.8552 for Γ̂κ, MSEu/MSEr = 0.9800 for the CVd, MSEu/MSEr = 1.3168 for the CV1 and
MSEu/MSEr = 1.0000 for the BICM. Another method of gauging the out-of-sample is to test
the equal predictive ability of out-of-sample forecasts as considered by Gonçalves, McCracken, and
Perron (2017). Because in each recursion, a new number of estimated factors is selected, there are
no available critical values for such a situation. Figure 3 indicates how the number of selected factors
varies while the estimation sample changes. During the forecast exercise, while the BICM never
selects an estimated factor, the leave-one-out cross-validation always chooses a larger model than
our proposed methods. As is argued in the previous sections, the new consistent model selection
approaches prevent against too much under-fitting and over-fitting.

6 Conclusion

This paper suggests and provides conditions for the validity of two consistent model selection
procedures for the factor-augmented regression models. It is the Monte Carlo leave-d-out cross-
validation and the bootstrap selection approach. In finite samples, the simulations document
improvement in the probability of selecting the smallest set of estimated factors that span the true
model comparatively to other existing methods. The procedures in this paper have been used to
select estimated factors for in-sample and out-of-sample predictions of one-quarter-ahead excess
stock returns on U. S. market. The in-sample analysis reveals that the estimated factor highly
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correlated to interest rate spreads and the generated regressor highly correlated to the Fama-French
factors drive the underlying unobserved factors, and strongly predict the excess returns. Moreover,
the out-of-sample forecasts lead to a smaller forecast error using our suggested procedures. For
future research, an important extension of the results in this paper is to allow the inclusion of the
non linear factors and the possibility of interaction between the factors.

7 Appendix: Proofs of results in Section 3, Simulation Results
and Empirical Application Details

7.1 Proofs of results in Section 3

Denote P̃ (m) = Z̃ (m)
(
Z̃ (m)′ Z̃ (m)

)−1
Z̃ (m)′ and CNT = min

{√
N,
√
T
}
. We state the follow-

ing two auxiliary results.

Lemma 7.1. Under Assumptions 1–3,

1
T − 1µ

′P̃ (m)µ = µ′P (m)µ+OP

(
1

C2
NT

)
and

1
T − 1ε

′P̃ (m) ε = ε′P (m) ε+OP

(
1

C2
NT

)
for any m ∈M.

Lemma 7.2. Under Assumptions 1–4, as b, T, N →∞,
1
b

∑
s ∈ R

∑
t ∈ sc

∥∥∥F̃t −HFt∥∥∥4
= OP

(
κ

T

)
+OP

(
κ

N2

)
.

We now present the proofs of the auxiliary results followed by those of the main results.

Proof of Lemma 7.1. We have the following decomposition

1
T − 1µ

′P̃ (m)µ = δ′
( 1
T − 1Z

0′Z̃ (m)
)( 1

T − 1Z (m)′ Z (m)
)−1 ( 1

T − 1 Z̃ (m)′ Z0
)
δ

+δ′
( 1
T − 1Z

0′Z̃ (m)
)[( 1

T − 1 Z̃ (m)′ Z̃ (m)
)−1
−
( 1
T − 1Z (m)′ Z (m)

)−1
]

×
( 1
T − 1 Z̃ (m)′ Z0

)
δ

≡ 1
T − 1µ

′P (m)µ+ L1T (m) + L2T (m) + L3T (m) ,

where we use Z̃ (m) = Z (m) +
(
Z̃ (m)− Z (m)

)
obtain

L1T (m) = δ′
( 1
T − 1Z

0′
[
Z̃ (m)− Z (m)

])( 1
T − 1Z (m)′ Z (m)

)−1 ( 1
T − 1

[
Z̃ (m)− Z (m)

]′
Z0
)
δ,

L2T (m) = 2δ′
( 1
T − 1Z

0′Z (m)
)( 1

T − 1Z (m)′ Z (m)
)−1 ( 1

T − 1
[
Z̃ (m)− Z (m)

]′
Z0
)
δ
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and

L3T (m) = δ′
( 1
T − 1Z

0′Z̃ (m)
)[( 1

T − 1 Z̃ (m)′ Z̃ (m)
)−1
−
( 1
T − 1Z (m)′ Z (m)

)−1
]( 1

T − 1 Z̃ (m)′ Z0
)
δ.

To find the order of L1T (m) , it will be sufficient to study 1
T−1Z

′
[
F̃ (m)− F (m)

]
as
(

1
T−1Z (m)′ Z (m)

)−1
=

OP (1) using Assumption 3 (b). From Gonçalves and Perron (2014, Lemma A.2), 1
T−1F

′
[
F̃ − FH ′

]
=

OP

(
1

C2
NT

)
and 1

T−1W
′
[
F̃ − FH ′

]
= OP

(
1

C2
NT

)
, and it follows that 1

T−1Z
′
[
F̃ (m)− F (m)

]
=

OP

(
1

C2
NT

)
. Indeed, from their proof of Lemma A.2 (b),

1
T − 1F

′
[
F̃ − FH ′

]
= (bf1 + bf2 + bf3 + bf4) Ṽ −1, (5)

where bf1 = OP
(

1
CNTT 1/2

)
, bf2 = OP

(
1

N1/2T 1/2

)
, bf3 = OP

(
1

N1/2T 1/2

)
, bf4 = OP

(
1
N

)
+OP

(
1

N1/2T 1/2

)
and Ṽ −1 = OP (1). Hence, 1

T−1F
′
[
F̃ − FH ′

]
= OP

(
1

C2
NT

)
, similarly 1

T−1W
′
[
F̃ − FH ′

]
=

OP

(
1

C2
NT

)
, thus L1T (m) = OP

(
1

C4
NT

)
for any m. Since 1

T−1Z
0′Z (m) = OP (1) , using sim-

ilar arguments as in the proof of L1T , we have L2T (m) = OP

(
1

C2
NT

)
, for any m. To finish,

L3T (m) = OP

(
1

C2
NT

)
as

( 1
T − 1 Z̃ (m)′ Z̃ (m)

)−1
−
( 1
T − 1Z (m)′ Z (m)

)−1
= OP

(
1

C2
NT

)
.

Indeed,
(

1
T−1 Z̃ (m)′ Z̃ (m)

)−1
−
(

1
T−1Z (m)′ Z (m)

)−1
, for any m, can be decomposed as( 1

T − 1 Z̃ (m)′ Z̃ (m)
)−1

(A01(m) +A02(m))
( 1
T − 1Z (m)′ Z (m)

)−1
,

which is OP
(

1
C2

NT

)
, since A01(m) = 1

T−1

(
Z (m)− Z̃ (m)

)′
Z̃ (m) = OP

(
1

C2
NT

)
and A02(m) =

1
T−1Z (m)′

(
Z (m)− Z̃ (m)

)
= OP

(
1

C2
NT

)
, using Gonçalves and Perron (2014, Lemma A.2). Using

the order in probability of L1T (m), L2T (m) and L3T (m), we conclude that 1
T−1µ

′P̃ (m)µ =
1

T−1µ
′P (m)µ+OP

(
1

C2
NT

)
. The proof of the second part of Lemma 7.1 follows identical steps.

Proof of Lemma 7.2. The proof uses the following identity

F̃t −HFt = Ṽ −1 (A1t +A2t +A3t +A4t)

A1t = 1
T

T∑
u=1

F̃uγut, A2t = 1
T

T∑
u=1

F̃uζut, A3t = 1
T

T∑
u=1

F̃uηut, A4t = 1
T

T∑
u=1

F̃uξut

where γut = E
(

1
N

∑N
i=1 eiueit

)
, ζut = 1

N

∑N
i=1

(
eiueit − E

(
1
N
∑N

i=1 eiueit
))
, ηut = 1

N

∑N
i=1 λ

′
iFueit,
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and ξut = 1
N

∑N
i=1 λ

′
iFteiu. By the c-r inequality,

1
b

∑
s ∈ R

∑
t ∈ sc

∥∥∥F̃t −HFt∥∥∥4
≤ 43

∥∥∥Ṽ −1
∥∥∥4 1
b

∑
s ∈ R

( ∑
t ∈ sc

‖A1t‖4 +
∑
t ∈ sc

‖A2t‖4 +
∑
t ∈ sc

‖A3t‖4 +
∑
t ∈ sc

‖A4t‖4
)
.

Using the Cauchy-Schwartz inequality, we have

1
b

∑
s ∈ R

∑
t∈ sc

‖A1t‖4 = 1
b

∑
s ∈ R

∑
t ∈ sc

∥∥∥∥∥ 1
T

T∑
u=1

F̃uγut

∥∥∥∥∥
4

≤ κ

T

(
1
T

T∑
s=1

∥∥∥F̃u∥∥∥2
)2

1
b

∑
s∈ R

[
1√
κ · T

∑
t ∈ sc

T∑
u=1

γ2
ut

]2

In addition, 1
T

∑T
s=1

∥∥∥F̃s∥∥∥2
= OP (1) and 1√

T ·κ
∑
t ∈ sc

∑T
u=1 γ

2
ut ≤ C for any s ∈ R (because

1√
T ·κ

∑
t ∈ sc

∑T
u=1 γ

2
ut ≤ C using the proof of Bai and Ng (2002, Lemma 1 (i))). In consequence,

1
b

∑
s ∈ R

∑
t ∈ sc

‖A1t‖4 = OP

(
κ

T

)
. (6)

By repeated application of Cauchy-Schwarz inequality,

1
b

∑
s ∈ R

∑
t ∈ sc

‖A2t‖4 = 1
b

∑
s ∈ R

∑
t ∈ sc

∥∥∥∥∥ 1
T

T∑
u=1

F̃uζut

∥∥∥∥∥
4

≤

 1
T 2

T∑
u=1

T∑
u1=1

(
F̃ ′uF̃u1

)2
 1

T 2

T∑
u=1

T∑
u1=1

( ∑
t ∈ sc

ζ2
utζ

2
u1t

) .
Hence,

1
b

∑
s ∈ R

T∑
t=1
‖A2t‖4 ≤

 1
T

T∑
u1=1

∥∥∥F̃u1

∥∥∥2
2 1

b

∑
s ∈ R

1
T 2

T∑
u1=1

T∑
u=1

( ∑
t ∈ sc

ζ2
u1tζ

2
ut

) ,
where 1

T

∑T
s=1

∥∥∥F̃s∥∥∥2
= OP (1) and E

[
1
b
∑

s ∈ R
1

T2
∑T

u1=1
∑T

u=1
(∑

t ∈ sc ζ2
u1tζ

2
ut
)]

= O
((√

κ
N

)2
)
.

Indeed,

E

1
b

∑
s ∈ R

1
T 2

T∑
u1=1

T∑
u=1

( ∑
t ∈ sc

ζ2
u1tζ

2
ut

) ≤ 1
b

∑
s ∈ R

1
T 2

T∑
u1=1

T∑
u=1

∑
t ∈ sc

[
E
(
ζ4
u1t

)] 1
2
[
E
(
ζ4
ut

)] 1
2

≤ κ

[
max
u,t

E
(
ζ4
ut

)]
= O

(
κ

N2

)
,

since maxu,t E
(
ζ4
ut

)
= O

(
1
N2

)
by Assumption 1 (e). Thus,

1
b

∑
s ∈ R

∑
t ∈ sc

‖A2t‖4 = OP

(
κ

N2

)
. (7)

Thirdly, as 1
b·κ
∑
s ∈ R

∑
t ∈ sc

∥∥∥ 1
N1/2 Λet

∥∥∥4
= OP (1) by Assumption 4 (e), we can write

1
b

∑
s ∈ R

∑
t ∈ sc

‖A3t‖4 = 1
b

∑
s ∈ R

∑
t ∈ sc

∥∥∥∥∥ 1
T

1
N

T∑
u=1

F̃uF
′
uΛet

∥∥∥∥∥
4

≤ 1
b

∑
s ∈ R

∑
t ∈ sc

∥∥∥∥ 1
N

Λet
∥∥∥∥4
∥∥∥∥∥ 1
T

T∑
u=1

F̃uF
′
u

∥∥∥∥∥
4

,

which implies that 1
b

∑
s ∈ R

∑
t ∈ sc ‖A3t‖4 is bounded by

κ

N2

1
b

∑
s ∈ R

1
κ

∑
t ∈ sc

∥∥∥∥∥ 1√
N

N∑
i=1

λiet

∥∥∥∥∥
4( 1

T

T∑
u=1

∥∥∥F̃u∥∥∥2
)2(

1
T

T∑
u=1
‖Fu‖2

)2

= OP

(
κ

N2

)
,
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since 1
T

∑T
s=1

∥∥∥F̃s∥∥∥2
= OP (1) , 1

T

∑T
s=1 ‖Fs‖

2 = OP (1). Hence,

1
b

∑
s ∈ R

∑
t ∈ sc

‖A3t‖4 = OP

(
κ

N2

)
(8)

The proof that
1
b

∑
s ∈ R

∑
t ∈ sc

‖A4t‖4 = OP

(
κ

N2

)
(9)

uses 1
T

∑T
u=1

∥∥∥F̃u∥∥∥2
= OP (1) , 1

b·κ
∑
s ∈ R

∑
t ∈ sc ‖Ft‖4 = OP (1) , 1

T

∑T
u=1

∥∥∥ 1√
N

Λ′eu
∥∥∥2

= OP (1) and
the bound of 1

b

∑
s ∈ R

∑
t ∈ sc ‖A4t‖4 by

1
b

∑
s ∈ R

∑
t ∈ sc

‖Ft‖4
[

1
T

T∑
u=1

∥∥∥F̃u∥∥∥ ∥∥∥∥ 1
N

Λ′eu
∥∥∥∥
]4

≤ κ

N2
1
b · κ

∑
s ∈ R

∑
t ∈ sc

‖Ft‖4
(

1
T

T∑
u=1

∥∥∥F̃u∥∥∥2
)2(

1
T

T∑
u=1

∥∥∥∥ 1√
N

Λ′eu
∥∥∥∥2
)2

.

Finally, from Equations (7.1),(6), (7), (8) and (9), 1
b

∑
s ∈ R

∑
t ∈ sc

∥∥∥F̃t −HFt∥∥∥4
= OP

(
κ
T

)
+

OP
(
κ
N2

)
.

Proof of Lemma 3.1. To prove Lemma 3.1, we will first need to show that

max
1≤t≤T−1

∥∥∥∥Ẑ ′t (m)
(
Ẑ ′ (m) Ẑ (m)

)−1
Ẑt (m)

∥∥∥∥− max
1≤t≤T−1

∥∥∥Zt (m)′
(
Z ′ (m)Z (m)

)−1
Zt (m)

∥∥∥ = oP (1) .

We have the following decomposition

Ẑ ′t (m)
(
Ẑ ′ (m) Ẑ (m)

)−1
Ẑt (m)

= 1
T − 1 Ẑ

′
t (m)

[( 1
T − 1 Ẑ

′ (m) Ẑ (m)
)−1
−
( 1
T − 1Z

′ (m)Z (m)
)−1

]
Ẑt (m)

+ 1
T − 1

(
Ẑt (m)− Zt (m)

)′ ( 1
T − 1Z

′ (m)Z (m)
)−1 (

Ẑt (m)− Zt (m)
)

+ 2
T − 1Zt (m)′

( 1
T − 1Z

′ (m)Z (m)
)−1 (

Ẑt (m)− Zt (m)
)

+Zt (m)′
(
Z ′ (m)Z (m)

)−1
Zt (m) .

Hence, we can write

max
1≤t≤T−1

∥∥∥∥Ẑ ′t (m)
(
Ẑ ′ (m) Ẑ (m)

)−1
Ẑt (m)

∥∥∥∥
≤ 1

T − 1 max
1≤t≤T−1

∥∥∥Ẑt (m)
∥∥∥2
∥∥∥∥∥
( 1
T − 1 Ẑ

′ (m) Ẑ (m)
)−1
−
( 1
T − 1Z

′ (m)Z (m)
)−1

∥∥∥∥∥
+ 1
T − 1 max

1≤t≤T−1

∥∥∥Ẑt (m)− Zt (m)
∥∥∥2
∥∥∥∥∥
( 1
T − 1Z

′ (m)Z (m)
)−1

∥∥∥∥∥
+ 2
T − 1 max

1≤t≤T−1
‖Zt (m)‖

∥∥∥∥∥
( 1
T − 1Z

′ (m)Z (m)
)−1

∥∥∥∥∥ max
1≤t≤T−1

∥∥∥Ẑt (m)− Zt (m)
∥∥∥

+ max
1≤t≤T−1

∥∥∥Zt (m)′
(
Z ′ (m)Z (m)

)−1
Zt (m)

∥∥∥ .
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From that bound, it follows that∣∣∣∣ max
1≤t≤T−1

∥∥∥∥Ẑ ′t (m)
(
Ẑ ′ (m) Ẑ (m)

)−1
Ẑt (m)

∥∥∥∥− max
1≤t≤T−1

∥∥∥Zt (m)′
(
Z ′ (m)Z (m)

)−1
Zt (m)

∥∥∥∣∣∣∣
is lower than A1 (m) +A2 (m) +A3 (m) where

A1 (m) = 1
T − 1 max

1≤t≤T−1

∥∥∥Ẑt (m)
∥∥∥2
∥∥∥∥∥
( 1
T − 1 Ẑ

′ (m) Ẑ (m)
)−1
−
( 1
T − 1Z

′ (m)Z (m)
)−1

∥∥∥∥∥ ,
A2 (m) = 1

T − 1 max
1≤t≤T−1

∥∥∥Ẑt (m)− Zt (m)
∥∥∥2
∥∥∥∥∥
( 1
T − 1Z

′ (m)Z (m)
)−1

∥∥∥∥∥
and

A3 (m) = 2
T − 1 max

1≤t≤T−1
‖Zt (m)‖

∥∥∥∥∥
( 1
T − 1Z

′ (m)Z (m)
)−1

∥∥∥∥∥ max
1≤t≤T−1

∥∥∥Ẑt (m)− Zt (m)
∥∥∥ .

Since 1
T−1 max1≤t≤T−1

∥∥∥Ẑt (m)
∥∥∥2
≤ 1

T−1
∑T−1
t=1

∥∥∥Ẑt (m)
∥∥∥2

= OP (1) and
(

1
T−1 Ẑ

′ (m) Ẑ (m)
)−1
−(

1
T−1Z

′ (m)Z (m)
)−1

= OP

(
1

C2
NT

)
, we obtain that A1 (m) = OP

(
1

C2
NT

)
. Because, we have the

bound
1

T − 1 max
1≤t≤T−1

∥∥∥Ẑt (m)− Zt (m)
∥∥∥2
≤ 1
T − 1

T−1∑
t=1

∥∥∥Ẑt (m)− Zt (m)
∥∥∥2
, (10)

which is lower than 1
T−1

∑T−1
t=1

∥∥∥Ẑt (M)− Zt (M)
∥∥∥2

= OP

(
1

C2
NT

)
(using Bai and Ng (2002, Theorem

1) with M denoting the set with all estimated factors), A2 (m) = OP

(
1

C2
NT

)
. From Bai (2003,

Proposition 2), max1≤t≤T−1
∥∥∥Ẑt (m)− Zt (m)

∥∥∥ = OP
(

1
T 1/2

)
+OP

(
T 1/2

N1/2

)
, it follows that A3 (m) =

OP
(

1
T

)
+ OP

(
1

N1/2

)
as max1≤t≤T−1

∥∥∥Ẑt (m)
∥∥∥ = OP

(
T 1/2

)
(since 1

T−1 max1≤t≤T−1
∥∥∥Ẑt (m)

∥∥∥2
=

OP (1)). From the bounds of A1 (m), A2 (m) and A3 (m), we deduce∣∣∣∣ max
1≤t≤T−1

∥∥∥∥Ẑ ′t (m)
(
Ẑ ′ (m) Ẑ (m)

)−1
Ẑt (m)

∥∥∥∥− max
1≤t≤T−1

∥∥∥Zt (m)′
(
Z ′ (m)Z (m)

)−1
Zt (m)

∥∥∥∣∣∣∣ = oP (1) .
(11)

This implies that

max
1≤t≤T−1

∥∥∥∥Ẑ ′t (m)
(
Ẑ ′ (m) Ẑ (m)

)−1
Ẑt (m)

∥∥∥∥ = oP (1) , (12)

as max1≤t≤T−1
∥∥∥Zt (m)′ (Z ′ (m)Z (m))−1 Zt (m)

∥∥∥ = oP (1) given Assumption 4 (b).
The remaining part of the proof goes similarly as the proof of Shao (1993, Equation 3.4). Noting

that, CV1 (m) = 1
T−1

∑T−1
t=1

(
1− Ẑ ′t (m)

(
Ẑ ′ (m) Ẑ (m)

)−1
Ẑt (m)

)−2
ε̂2
t+1 (see, Shao (1993)), we

rely on Taylor expansion to have that for any m,
(

1− Ẑ ′t (m)
(
Ẑ ′ (m) Ẑ (m)

)−1
Ẑt (m)

)−2
is equal

to

1 + 2Ẑ ′t (m)
(
Ẑ ′ (m) Ẑ (m)

)−1
Ẑt (m) +OP

[(
Ẑ ′t (m)

(
Ẑ ′ (m) Ẑ (m)

)−1
Ẑt (m)

)2
]
. (13)
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Hence CV1 (m) = A4 (m) + 2A5 (m) + oP (A5 (m)) , where

A4 (m) = 1
T − 1

T−1∑
t=1

ε̂2
t+1 (m) and A5 (m) = 1

T − 1

T−1∑
t=1

Ẑ ′t (m)
(
Ẑ ′ (m) Ẑ (m)

)−1
Ẑt (m) ε̂2

t+1 (m) ,

since max1≤t≤T−1

∥∥∥∥Ẑ ′t (m)
(
Ẑ ′ (m) Ẑ (m)

)−1
Ẑt (m)

∥∥∥∥ = oP (1) . We next study A4 (m) and A5 (m).

Given the decomposition ε̂ (m) = ε+ µ− µ̃ (m) where µ = F 0α +Wβ and µ̃ (m) = P̃ (m)µ+
P̃ (m) ε, we have A4 (m) = 1

T−1ε
′ε+ L̃T (m)− 2r1T (m) , with

L̃T (m) = 1
T − 1µ

′
(
I − P̃ (m)

)
µ+ 1

T − 1ε
′P̃ (m) ε. (14)

and

r1T (m) = 1
T − 1 (µ̃ (m)− µ)′ ε = 1

T

[
P̃ (m) ε−

(
I − P̃ (m)

)
µ
]′
ε = 1

T − 1ε
′P̃ (m) ε− 1

T − 1µ
′
(
I − P̃ (m)

)
ε.

(15)
From the definition of A4 (m) , L̃T (m) and r1T (m), we find

A4 (m) = 1
T − 1ε

′ε− 1
T − 1ε

′P̃ (m) ε+ 1
T − 1µ

′
(
I − P̃ (m)

)
µ+ 2 1

T − 1µ
′
(
I − P̃ (m)

)
ε. (16)

Under our Assumptions 1–3, for any m,

1
T − 1ε

′P̃ (m) ε = 1
T − 1ε

′P (m) ε+OP

(
1

C2
NT

)
,

1
T − 1µ

′
(
I − P̃ (m)

)
µ = µ′ (I − P (m))µ+OP

(
1

C2
NT

)
,

and
1

T − 1µ
′
(
I − P̃ (m)

)
ε = 1

T − 1µ
′ (I − P (m)) ε+OP

(
1

C2
NT

)
given Lemma 7.1. Hence, it follows that

A4 (m) = 1
T − 1ε

′ε− 1
T − 1ε

′P (m) ε+ 1
T − 1µ

′ (I − P (m))µ+2 1
T − 1µ

′ (I − P (m)) ε+OP

(
1

C2
NT

)
.

To complete the study of A4 (m) and A5 (m), we now consider the case where m ∈ M1 and the
case where m ∈M2. Let start with the first case. For any m ∈M1,

A4 (m) = 1
T − 1ε

′ε+ 1
T − 1µ

′ (I − P (m))µ+ oP (1) (17)

since 1
T−1ε

′P (m) ε = oP (1) and 1
T−1µ

′ (I − P (m)) ε = oP (1) (see, Groen and Kapetanios (2013,
Proof of Theorem 1)). Moreover, we have

|A5 (m)| ≤ max
1≤t≤T−1

{∣∣∣∣Ẑ ′t (m)
(
Ẑ ′ (m) Ẑ (m)

)−1
Ẑt (m)

∣∣∣∣} 1
T − 1

T−1∑
t=1

ε̂2
t+1 (m) , (18)

implying A5 (m) = oP (1), as the first term in the right hand side of (18) is oP (1) given Assumption 4
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(b) and the second term is equal to A4 (m) , which is OP (1). Hence, for m ∈M1,

CV1 (m) = 1
T − 1ε

′ε+ 1
T − 1µ

′ (I − P (m))µ+ oP (1) = σ2 + 1
T − 1µ

′ (I − P (m))µ+ oP (1) .

We now turn our attention to the second case. Because µ′ (I − P (m))µ = 0, µ′ (I − P (m)) ε =
0 for m ∈M2,

A4 (m) = 1
T − 1ε

′ε− 1
T − 1ε

′P (m) ε+OP

(
1

C2
NT

)
. (19)

Further, A5 (m) = (r(m)+q)
T−1 σ2 + oP

(
1

T−1

)
for m ∈M2. Indeed, as

A5 (m) = 1
T − 1Trace

[( 1
T − 1 Ẑ

′ (m) Ẑ (m)
)−1 1

T − 1

T−1∑
t=1

Ẑt (m) Ẑ ′t (m) ε̂2
t+1 (m)

]

and 1
T−1 Ẑ

′ (m) Ẑ ′ (m) = ΣZ (m) + oP (1), it holds that

A5 (m) = 1
T − 1Trace

[(
ΣZ (m)−1 + oP (1)

) (
σ2ΣZ (m) + oP (1)

)]
= (r (m) + q)

T − 1 σ2 +oP
( 1
T − 1

)
.

In consequence, for m ∈M2

CV1 (m) = 1
T − 1ε

′ε+ 2(r (m) + q)
T − 1 σ2 − 1

T − 1ε
′P (m) ε+OP

(
1

C2
NT

)
+ oP

(
1

C2
NT

)

= 1
T − 1ε

′ε+ 2(r (m) + q)
T − 1 σ2 − 1

T − 1ε
′P (m) ε+OP

(
1

C2
NT

)
.

Because, in the usual case where the factors are observed, CV1 (m) = 1
T−1ε

′ε + 2 (r(m)+q)
T−1 σ2 −

1
T−1ε

′P (m) ε + oP
(

1
T

)
for m ∈ M2 (see, Shao (1993)). In consequence, we denote VT (m) =

CV1 (m)−
(

1
T−1ε

′ε+ 2 (r(m)+q)
T−1 σ2 − 1

T−1ε
′P (m) ε

)
= OP

(
1

C2
NT

)
the additional terms due the factor

estimation when m ∈M2.

Proof of Theorem 1. We have the following decomposition

CVd (m) = 1
d× b

∑
s∈R

∥∥∥(ys − Psc (m) ysc) +
(
Psc (m)− P̃sc (m)

)
ysc

∥∥∥2

≡ B1 (m) +B2 (m) +B3 (m)

where

B1 (m) = 1
d× b

∑
s∈R

∥∥∥(Psc (m)− P̃sc (m)
)
ysc

∥∥∥2
,

B2 (m) = 2 1
d× b

∑
s∈R

(ys − Psc (m) ysc)′
(
Psc (m)− P̃sc (m)

)
ysc ,

B3 (m) = 1
d× b

∑
s∈R
‖(ys − Psc (m) ysc)‖2 ,

with Psc (m) = Zs (m)
(
Zsc (m)′ Zsc (m)

)−1
Zsc (m)′ and P̃sc (m) = Ẑs (m)

(
Ẑsc (m)′ Ẑsc (m)

)−1
Ẑsc (m)′ .
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The proofs will be done into two parts. The first shows that B1 (m) = oP
(

1
κ

)
and B2 (m) = oP

(
1
κ

)
,

while the second studies B3 (m) and concludes.
Part 1: Using a decomposition of

(
Psc (m)− P̃sc (m)

)
ysc and the c-r inequality, we obtain that

B1 (m) is lower than

4 1
d× b

∑
s∈R
‖B11s (m)‖2︸ ︷︷ ︸

B11(m)

+4 1
d× b

∑
s∈R
‖B12s (m)‖2︸ ︷︷ ︸

B12(m)

+4 1
d× b

∑
s∈R
‖B13s (m)‖2︸ ︷︷ ︸

B13(m)

+4 1
d× b

∑
s∈R
‖B14s (m)‖2︸ ︷︷ ︸

B14(m)

.

with

B11s (m) =
(
Ẑs (m)

[(
Z ′sc (m)Zsc (m)

)−1 −
(
Ẑ ′sc (m) Ẑsc (m)

)−1
]
Ẑ ′sc (m)

)
ysc ,

B12s (m) =
((
Zs (m)− Ẑs (m)

) [(
Z ′sc (m)Zsc (m)

)−1
] (
Ẑsc (m)− Zsc (m)

))
ysc ,

B13s (m) =
[
Zs (m)

(
Z ′sc (m)Zsc (m)

)−1
(
Zsc (m)− Ẑsc (m)

)]
ysc

and

B14s (m) =
[(
Zs (m)− Ẑs (m)

) (
Z ′sc (m)Zsc (m)

)−1
Zsc (m)

]
ysc .

Starting with B11 (m) , we have that for any m,

B11 (m) ≤ 1
d× b

∑
s∈R

∥∥∥Ẑs (m)
∥∥∥2
∥∥∥∥(Z ′sc (m)Zsc (m)

)−1 −
(
Ẑ ′sc (m) Ẑsc (m)

)−1
∥∥∥∥2 ∥∥∥Ẑ ′sc (m) ysc

∥∥∥2
.

Using the fact that
∥∥∥Ẑs (m)

∥∥∥ ≤ ∥∥∥Ẑ (m)
∥∥∥ and the Cauchy-Schwarz inequality, it follows that

B11 (m) ≤ 1
d

∥∥∥Ẑ (m)
∥∥∥2
1
b

∑
s∈R

∥∥∥∥∥
(1
κ
Z ′sc (m)Zsc (m)

)−1
−
(1
κ
Ẑ ′sc (m) Ẑsc (m)

)−1
∥∥∥∥∥

4 1
b

∑
s∈R

∥∥∥∥1
κ
Ẑ ′sc (m) ysc

∥∥∥∥4
1/2

.

Because 1
d

∥∥∥Ẑ (m)
∥∥∥2

= OP (1), to find the order of B11 (m), we next show that

B111 (m) = 1
b

∑
s∈R

∥∥∥∥∥
(1
κ
Z ′sc (m)Zsc (m)

)−1
−
(1
κ
Ẑ ′sc (m) Ẑsc (m)

)−1
∥∥∥∥∥

4

= oP

( 1
κ2

)
and

B112 (m) = 1
b

∑
s∈R

∥∥∥∥1
κ
Ẑ ′sc (m) ysc

∥∥∥∥4
= OP (1) .

To bound B111 (m), we first write that
(

1
κZ
′
sc (m)Zsc (m)

)−1
−
(

1
κ Ẑ
′
sc (m) Ẑsc (m)

)−1
is equal to

B1111s (m) +B1112s (m) where

B1111s (m) =
(1
κ
Z ′sc (m)Zsc (m)

)−1 (1
κ
Ẑ ′sc (m)

(
Ẑsc (m)− Zsc (m)

))(1
κ
Ẑ ′sc (m) Ẑsc (m)

)−1

and

B1112s (m) =
(1
κ
Z ′sc (m)Zsc (m)

)−1 (1
κ

(
Ẑsc (m)− Zsc (m)

)′
Zsc (m)

)(1
κ
Ẑ ′sc (m) Ẑsc (m)

)−1
.
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Hence by the c-r inequality, ‖B111 (m)‖ is bounded by 23
(

1
b

∑
s∈R ‖B1111s (m)‖4 + 1

b

∑
s∈R ‖B1112s (m)‖4

)
.

In particular,
1
b

∑
s∈R
‖B1111s (m)‖4 ≤ 23

∥∥∥(ΣZ (m))−1
∥∥∥8 1
b · κ4

∑
s∈R

∥∥∥Ẑ ′sc (m)
(
Ẑsc (m)− Zsc (m)

)∥∥∥4
(1 + oP (1))

and
1
b

∑
s∈R
‖B1112s (m)‖4 ≤ 23

∥∥∥(ΣZ (m))−1
∥∥∥8 1
b · κ4

∑
s∈R

∥∥∥∥(Ẑsc (m)− Zsc (m)
)′
Zsc (m)

∥∥∥∥4
(1 + oP (1))

since
(

1
κZ
′
sc (m)Zsc (m)

)−1
= (ΣZ (m))−1 + oP (1) given Assumption 4 (c) and (f). Combining the

arguments in Lemma 7.2 and Gonçalves and Perron (2014, Lemma A2 (b)-(c)), we can show that

1
b

∑
s∈R

∥∥∥∥1
κ

(
Ẑsc (m)− Zsc (m)

)′
Zsc (m)

∥∥∥∥4
= oP

( 1
κ2

)
and

1
b

∑
s∈R

∥∥∥∥1
κ
Ẑ ′sc (m)

(
Ẑsc (m)− Zsc (m)

)∥∥∥∥4
= oP

( 1
κ2

)
.

Thus, B111 (m) = oP
(

1
κ2

)
. Further, by Cauchy-Scharwz inequality and Jensen inequality, we have

B112 (m) = 1
b

∑
s∈R

∥∥∥∥1
κ
Ẑ ′sc (m) ysc

∥∥∥∥4
≤
(

1
bκ

∑
s∈R

∑
t ∈ sc

∥∥∥Ẑt (m)
∥∥∥8
)1/2( 1

bκ

∑
s∈R

∑
t ∈ sc

‖yt‖8
)1/2

= OP (1) ,

(20)
since 1

bκ

∑
s∈R

∑
t ∈ sc ‖yt‖8 = OP (1) from Assumption 3 and 1

bκ

∑
s∈R

∑
t ∈ sc

∥∥∥Ẑt (m)
∥∥∥8

= OP (1).

Using 1
d

∥∥∥Ẑ (m)
∥∥∥2

= Op (1) , B111 (m) = oP
(

1
κ2

)
and B112 (m) = OP (1), we find for any m that

B11 (m) = oP

(1
κ

)
. (21)

We now look atB12 (m) . Since
∥∥∥Zs (m)− Ẑs (m)

∥∥∥ ≤ ∥∥∥Z (m)− Ẑ (m)
∥∥∥ and ( 1

Tc
Z ′sc (m)Zsc (m)

)−1
=

(ΣZ (m))−1 + op (1) , it follows that

B12 (m) ≤ 1
d

∥∥∥Z (m)− Ẑ (m)
∥∥∥2 ∥∥∥(ΣZ (m))−1

∥∥∥2
(1 + op (1)) 1

b

∑
s∈R

∥∥∥∥1
κ

(
Ẑsc (m)− Zsc (m)

)′
ysc

∥∥∥∥2
.

As 1
b

∑
s∈R

∑
t ∈ sc

∥∥∥Ẑt (m)− Zt (m)
∥∥∥4

= oP (1) from Lemma 7.2, we deduce

1
b

∑
s∈R

∥∥∥∥(Ẑsc (m)− Zsc (m)
)′
ysc

∥∥∥∥2
≤
(

1
κ · b

∑
s∈R

∑
t ∈ sc

∥∥∥Ẑt (m)− Zt (m)
∥∥∥4
)1/2( 1

κ · b
∑
s∈R

∑
t ∈ sc

‖yt+1‖4
)1/2

is oP
(

1
κ1/2

)
. Hence, using 1

d

∥∥∥Z (m)− Ẑ (m)
∥∥∥2

= Op

(
1

C2
NT

)
, for any m, we obtain

B12 (m) = Op

(
1

C2
NTκ

1/2

)
. (22)
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For B13 (m) , we have for any m, the bound

B13 (m) ≤ 1
d

∑
s∈R
‖Zs (m)‖2

∥∥∥∥∥
(1
κ
Z ′sc (m)Zsc (m)

)−1
∥∥∥∥∥

2 1
b

∥∥∥∥1
κ

(
Zsc (m)− Ẑsc (m)

)′
ysc

∥∥∥∥2

Since for any m, 1
d ‖Zs (m)‖2 ≤ 1

d ‖Z (m)‖2 = OP (1) ,
(

1
κZ
′
sc (m)Zsc (m)

)−1
= ΣZ (m)+oP (1) and

1
b

∑
s∈R

∥∥∥∥ 1
κ

(
Zsc (m)− Ẑsc (m)

)′
ysc

∥∥∥∥2
= oP

(
1
κ

)
(using the same arguments as in Lemma 7.2 and

Gonçalves and Perron (2014, Lemma A2 (c)), it follows that

B13 (m) = oP

(1
κ

)
. (23)

To finish, we have that

B14 (m) = Op

(
1

C2
NT

)
, (24)

using the bound

B14 (m) ≤ 1
d

∥∥∥Z (m)− Ẑ (m)
∥∥∥2 ∥∥∥(ΣZ (m))−1

∥∥∥2
(1 + op (1)) 1

d · b
∑
s∈R

∥∥∥∥1
κ
Zsc (m)′ ysc

∥∥∥∥2
,

where 1
d

∥∥∥Z (m)− Ẑ (m)
∥∥∥2

= OP

(
1

C2
NT

)
and

1
b

∑
s∈R

∥∥∥∥1
κ
Zsc (m)′ ysc

∥∥∥∥2
≤
(

1
b · κ

∑
s∈R

∑
t ∈ sc

‖Zt (m)‖4
)1/2( 1

b · κ
∑
s∈R

∑
t ∈ sc

‖yt+1‖4
)1/2

= OP (1) .

Finally, from Equations (21), (22), (23) and (24), we conclude that B1 (m) = oP
(

1
κ

)
, for any

m. By similar arguments, we can also prove that B2 (m) = oP
(

1
κ

)
.

Part 2:
We first show in this part that

B3 (m) = 1
d · b

∑
s∈R
‖(ys − Psc (m) ysc)‖2 = 1

d · b
∑
s∈R

∥∥∥(Id −Qs (m))−1
(
ys − Zs (m) δ̃ (m)

)∥∥∥2

with Qs (m) = Zs (m) (Z ′ (m)Z (m))−1 Z ′s (m) and δ̃ (m) , the OLS estimator by regressing ys on
Zs (m) . We use the following identity

ys − Psc (m) ysc = (Id −Qs (m))−1 [ys −Qs (m) ys − (Id −Qs (m))Psc (m) ysc ] .
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Because

(Id −Qs (m))Psc (m)

= Psc (m)− Zs (m)
(
Z ′ (m)Z (m)

)−1
Z ′s (m)Zs (m)

(
Zsc (m)′ Zsc (m)

)−1
Zsc (m)′

= Psc (m)− Zs (m)
(
Z ′ (m)Z (m)

)−1 ×
[
Z ′ (m)Z (m)− Zsc (m)′ Zsc (m)

] (
Zsc (m)′ Zsc (m)

)−1
Zsc (m)′

= Psc (m)− Psc (m)− Zs (m)
(
Z ′ (m)Z (m)

)−1
Zsc (m)′ = −Zs (m)

(
Z ′ (m)Z (m)

)−1
Zsc (m)′ ,

it follows that (Id −Qs (m)) (ys − Psc (m) ysc) is equal to

ys − Zs (m)
(
Z ′ (m)Z (m)

)−1
Zs (m) ys + Zs (m)

(
Z ′ (m)Z (m)

)−1
Zsc (m)′ ysc

= ys − Zs (m)
(
Z ′ (m)Z (m)

)−1
Z (m) y

= ys − Zs (m) δ̃ (m) .

Thus ys − ỹs (m) = ys − Psc (m) ysc = (Id −Qs (m))−1
(
ys − Zs (m) δ̃ (m)

)
and

B3 (m) = 1
d · b

∑
s∈R

∥∥∥(Id −Qs (m))−1
(
ys − Zs (m) δ̃ (m)

)∥∥∥2
.

Because Zs (m) can be treated as non generated regressors and δ̃ (m) the associated estimator, we
next apply Shao (1993, Theorem 2). Hence for m ∈M1,

B3 (m) = 1
d · b

∑
s∈R
‖εs‖2 + 1

T − 1δ
′Z0′

(
I − Z (m)

(
Z ′ (m)Z (m)

)−1
Z ′ (m)

)
Z0δ+ oP (1) +RT (m) ,

(25)
where RT (m) ≥ 0 and m ∈M2,

B3 (m) = 1
d · b

∑
s∈R
‖εs‖2 + r (m) + q

κ
σ2 + oP

(1
κ

)
. (26)

Finally, using B1(m) = oP
(

1
κ

)
and B2(m) = oP

(
1
κ

)
, we deduce that

CVd (m) = B3 (m) + oP

(1
κ

)
.

Furthermore, the result follows from Shao (1993, Theorem 2).

Proof of Theorem 2. The proof follows similarly as the one of Djogbenou, Gonçalves, and Perron
(2015, Theorem 3.1) by showing that the high level conditions of Gonçalves and Perron (2014) are
satisfied. We use the identity

√
κ
(
δ̂∗d (m)− Φ∗−1

0 (m) δ̂ (m)
)

=
( 1
T − 1 Ẑ

∗′ (m) Ẑ∗ (m)
)−1

[A∗ (m) +B∗ (m)− C∗ (m)] (27)

whereA∗ (m) = Φ∗0 (m)
√
κ 1
T−1

∑T−1
t=1 Ẑt (m) ε∗t+1, B

∗ (m) =
√
κ 1
T−1

∑T−1
t=1

(
F̃ ∗t (m)−H∗0 (m) F̃t (m)

)
ε∗t+1

and C∗ (m) =
√
κ 1
T−1

∑T−1
t=1 Ẑ∗t (m)

(
F̃ ∗t (m)−H∗0 (m) F̃t (m)

)′
(H∗0 (m))−1′ α̂ (m) where plim

N,T→∞
Φ∗ (m) =
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Φ∗0 (m) and plim
N,T→∞

H∗ (m) = H∗0 (m) are diagonal. Note that in the bootstrap world Φ∗0 is diago-

nal (see Gonçalves and Perron (2014)) and H∗0 (m) is an r (m) × r (m) squared submatrix of H∗0 .
Note also that given this fact, we treat F̃ ∗t (m) as estimating H∗0 (m) F̃t (m) . Hence, we can use
the properties of H∗0 as a diagonal and nonsingular matrix in order to identify the rotation matrix
associated with subvectors F̃ ∗t (m) of F̃ ∗t . We will establish the result in three steps proving that
A∗ (m) converges in distribution whereas B∗ (m) and C∗ (m) converge in probability to zero.
Part 1: One can write that

B∗ (m) =
√
κ

T − 1

T−1∑
t=1

(
F̃ ∗t (m)−H∗0 (m) F̃t (m)

)
ε∗t+1 = 1√

T − 1

T−1∑
t=1

(
F̃ ∗t (m)−H∗0 (m) F̃t (m)

)
ξ∗t+1

(28)
with ξ∗t+1 = 1√

1− r+q
T−1

(
ε̂t+1 − ε̂

)
. Given Gonçalves and Perron (2014, Lemma B2), B∗ (m) =

OP
(

1
CNT

)
as long as B∗ = 1√

T−1
∑T−1
t=1

(
F̃ ∗t −H∗0 F̃t

)
ξ∗t+1 = OP

(
1

CNT

)
if their Conditions A∗−D∗

are verified with ξ∗t+1 replacing ε∗t+1. Indeed, A∗ and B∗ are satisfied since e∗it relies on the wild
bootstrap and we only need to check Conditions C∗ and D∗. Starting with Condition C∗ (a) , since
e∗it and ε∗s+1 are independent and e∗it is independent across (i, t),

1
T

T∑
t=1

E∗
∣∣∣∣∣ 1√
TN

T−1∑
s=1

N∑
i=1

ξ∗s+1 (e∗ite∗is − E (e∗ite∗is))
∣∣∣∣∣
2

= 1
T

T∑
t=1

1
T

T−1∑
s=1

E∗
(
ξ∗2s+1

) 1
N

N∑
i=1

ẽ2
itẽ

2
isVar∗ (ηitηis)

≤ C

(
1

T − 1− r − q

T−1∑
l=1

ε̂2
l+1

)
1
NT

N∑
i=1

T∑
t=1

ẽ4
it,

where the first equality uses the fact that Cov∗
(
e∗ite
∗
is, e

∗
jte
∗
jl

)
= 0 for i 6= j or s 6= l, and the

inequality uses the fact that E∗
(
ε∗2s+h

)
= 1

1− r+q
T−1

(
1

T−1
∑T−1
t=1 ε̂2

t+1 − ε̂
2) ≤ 1

T−1−r−q
∑T−1
t=1 ε̂2

t+1.and

that Var∗ (ηitηis) is bounded under the assumptions of Theorem 2. Since 1
NT

∑N
i=1

∑T
t=1 ẽ

4
it = OP (1)

and 1
T−1−r−q

∑T−1
t=1 ε̂2

t+1 = OP (1) under Assumptions 1–3 (see, Gonçalves and Perron (2014)), the
result follows. We now verify Condition C∗(b). We have

E∗
∥∥∥∥∥ 1√

TN

T−1∑
t=1

N∑
i=1

λ̃ie
∗
itξ
∗
t+h

∥∥∥∥∥
2

= 1
TN

[
T−1∑
t=1

E∗
(
ξ∗2t+1

)( N∑
i=1

λ̃′iλ̃iE∗
(
e∗2it

))]

≤
(

1
T − 1− r − q

T−1∑
s=1

ε̂2
s+1

)(
1
N

N∑
i=1

∥∥∥λ̃i∥∥∥4
)1/2(

1
NT

N∑
i=1

T−1∑
t=1

ẽ4
it

)1/2

where the first equality uses the fact that E∗
(
e∗ite
∗
js

)
= 0 whenever i 6= j or t 6= s, and the third

equality the fact that E∗
(
ε∗2t+1

)
≤ 1

T−1−r−q
∑T−1
s=1 ε̂

2
s+1 and

(
1
T

∑T−1
t=1 ẽ2

it

)2
≤ 1

T

∑T−1
t=1 ẽ4

it. The result,
that C∗(b) holds, follows since each term of the last inequality is OP (1) (see, Gonçalves and Perron
(2014)). To prove Condition C∗(c), We follow closely the proof in Gonçalves and Perron (2014)

and it will be sufficient to show that 1
T−1

T−1∑
t=1

ξ∗4t+1 = Op∗(1) in probability. Using the definition of
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E∗
(
ξ∗4t+1

)
and the c-r inequality,

E∗
(

1
T − 1

T−1∑
t=1

ξ∗4t+1

)
= E∗

(
ξ∗4t+1

)
= T − 1

(T − 1− r − q)2

T−1∑
s=1

(
ε̂s+1 − ε̂

)4

≤ 23 (T − 1)2

(T − 1− r − q)2
1

T − 1

T−1∑
s=1

ε̂4
s+1 + 23 (T − 1)2

(T − 1− r − q)2 ε̂
4
.

Because 1
T−1

∑T−1
t=1 ε̂4

t+1 = OP (1) and 1
T−1

∑T−1
t=1 ε̂t+1 = OP (1) under Assumptions 1–3, E∗

(
1

T−1
∑T−1
t=1 ε∗4t+1

)
=

OP (1) and C∗ (c) follows. For Condition D∗(a), we have E∗
(
ξ∗t+1

)
= T−1

T−1−r−q
1

T−1
∑T−1
s=1

(
ε̂s+1 − ε̂

)
=

0 and
1
T

T−1∑
t=1

E∗
(
ξ∗2t+1

)
= T − 1

T
E∗
(
ξ∗2t+1

)
≤ T − 1

T

1
T − 1− r − q

T−1∑
s=1

ε̂2
s+1 = OP (1) .

To finish, we also verify Condition D∗(b). To show that condition, which is 1√
T

∑T−1
t=1 Ẑtξ

∗
t+1

d∗−→
N (0, Ω∗), we rely on Lyapunov Theorem by proving that the required conditions are satisfied. Not-
ing Ψ∗t ≡ Ω∗−

1
2 Ẑtξ

∗
t+1 and Ω∗ = plim

N,T→∞
E∗
(

1
T

∑T−1
t=1 ẐtẐ

′
tξ
∗2
t+1

)
, we can write Ω∗−

1
2 1√

T

∑T−1
t=1 Ẑtξ

∗
t+1 =

1√
T

∑T−1
t=1 Ψ∗t , where Ψ∗t are conditionally independent for t = 1, . . . , T−1, with E∗ (Ψ∗t ) = Ω∗−

1
2 ẐtE∗

(
ξ∗t+1

)
=

0 and

plim
N,T→∞

Var∗
(

1√
T

T∑
t=1

Ψ∗t

)
= Ω∗−

1
2

(
plim

N,T→∞
E∗
(

1
T

T−1∑
t=1

ẐtẐ
′
tξ
∗2
t+1

))
Ω∗−

1
2 = Iq+r.

It only remains to show that for some 1 < s < 2, ΥT ≡ 1
T d

∑T−1
t=1 E∗ ‖Ψ∗t ‖

2s = oP (1). Using the
bound

ΥT = 1
T s

T−1∑
t=1

E∗
(∥∥∥Ω∗− 1

2 Ẑtξ
∗
t+1

∥∥∥2
)s
≤
∥∥∥Ω∗− 1

2

∥∥∥2s 1
T s−1

1
T

T−1∑
t=1

∥∥∥Ẑt∥∥∥2s
E∗
∥∥ξ∗t+1

∥∥2s

and the fact that E∗
∥∥ξ∗t+1

∥∥2s = (T−1)s−1

(T−1−r−q)s

∑T−1
t=1

(
ε̂t+1 − ε̂

)2s
, we obtain

ΥT ≤
∥∥∥Ω∗− 1

2

∥∥∥2s
(

1
(T − 1− r − q)s

T−1∑
t=1

(
ε̂t+1 − ε̂

)2s
)

1
T

T−1∑
t=1

∥∥∥Ẑt∥∥∥2s
. (29)

To find the order in probability of ΥT , we note 1
T

∑T−1
t=1

∥∥∥Ẑt∥∥∥2s
≤
(

1
T

∑T−1
t=1

∥∥∥Ẑt∥∥∥4
)s/2

= OP (1) , as

1
T

∑T−1
t=1

∥∥∥Ẑt∥∥∥4
is OP (1). In addition, by an application of a c− r inequality, we have

1
(T − 1− r − q)s

T−1∑
t=1

(
ε̂t+1 − ε̂

)2s
≤ 22s−1 T − 1

(T − 1− r − q)s

(
1

T − 1

T−1∑
t=1

ε̂2s
t+1 + ε̂

2s
)

= OP

( 1
T s−1

)

where 1
T−1

∑T−1
t=1 ε̂2s

t+1 ≤
(

1
T

∑T−1
t=1 ε̂4

t+1

)s/2
= OP (1) and ε̂ = OP (1) . Hence, we deduce from (29)

that ΥT = OP
(

1
T s−1

)
= oP (1) since s > 1. Thus 1√

T

∑T−1
t=1 Ẑtξ

∗
t+1

d∗−→ N (0, Ω∗).
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Part 2: By Gonçalves and Perron (2014, Lemma B4),

1√
T

T−1∑
t=1

Ẑ∗ (m)
(
F̃ ∗t (m)−H∗0 (m) F̃t (m)

)′
(H∗0 (m))−1′ α̂ (m) = OP

(√
T

N

)

for any m, as it does not involve the residual bootstrap for the time series dimension. Hence, we
have any m that

C∗ (m) =
√
κ

1
T − 1

T−1∑
t=1

Ẑ∗ (m)
(
F̃ ∗t (m)−H∗0 (m) F̃t (m)

)′
(H∗0 (m))−1′ α̂(m) = OP

(√
κ

N

T

T − 1

)
= oP (1) .

Part 3: By similar steps to condition D∗ (b), Ω∗ (m)−
1
2 A∗ (m) d∗−→ N

(
0, Ir(m)+q

)
where

Ω∗ (m)−
1
2 A∗ (m) = Ω∗ (m)−

1
2 Φ∗0 (m)

√
κ

1
T − 1

T−1∑
t=1

Ẑt (m) ε∗t+1 = Ω∗ (m)−
1
2 Φ∗0 (m) 1√

T − 1

T−1∑
t=1

Ẑt (m) ξ∗t+1,

(30)
with Ω∗ (m) = V ar∗

(
Φ∗0 (m) 1√

T−1
∑T−1
t=1 Ẑt (m) ξ∗t+1

)
and Ψ∗t (m) ≡ Ω∗−

1
2 (m) Ẑt (m) ξ∗t+1. Finally,

A∗ (m) P−→ N

(
0, σ2Φ∗0 (m)

(
plim

N,T→∞

1
T − 1Z (m)′ Z (m)

)
Φ∗0 (m)′

)
.

Indeed, Ω∗ (m) = Φ∗0 (m)
(

1
T−1−(r+q)

∑T−1
t=1 Ẑt (m) Ẑt (m)′

(
ε̂t+1 − ε̂

)2
)

Φ∗0 (m)′ with

1
T − 1− (r + q)

T−1∑
t=1

Ẑt (m) Ẑt (m)′
(
ε̂t+1 − ε̂

)2
= 1
T − 1− (r + q)

T−1∑
t=1

Ẑt (m) Ẑt (m)′ ε̂2
t+1 + oP (1)

and 1
T−1−(r+q)

∑T−1
t=1 Ẑt (m) Ẑt (m)′ ε̂2

t+1 an estimate of σ2 plim
N,T→∞

1
T−1Z (m)′ Z (m) given Assump-

tion 3. Hence, we have that Ω∗ (m) P−→ σ2Φ∗0 (m)
(

plim
N,T→∞

1
T−1Z (m)′ Z (m)

)
Φ∗0 (m)′ .

From Part 1, Part 2 and Part 3, and the fact that

1
T − 1

T−1∑
t=1

Ẑ∗t (m) Ẑ∗t (m) = Φ∗0 (m)
[
plim 1

T − 1Z (m)′ Z (m)
]

Φ∗0 (m)′ + op∗ (1)

and
√
κ
(
δ̂∗κ (m)− Φ∗0 (m)−1 δ̂ (m)

)
=
( 1
T − 1 Ẑ

∗′ (m) Ẑ∗ (m)
)−1

[A∗ (m) + op∗ (1)] ,

by the asymptotic equivalence Lemma,

√
κ
(
δ̂∗κ (m)− Φ∗0 (m)−1′ δ̂ (m)

)
d∗−→ N

0,Φ∗0 (m)−1′
[

plim
N,T→∞

1
T − 1Z (m)′ Z (m)

]−1

Φ∗0 (m)−1

 .

Proof of Theorem 3. We start by recalling that Ft (m) is a generic limit of the candidate set of
estimated factors F̃t (m). The proof begins showing first that if there is an r0× r (m) matrix Q (m)
such that F 0

t = Q (m)Ft (m) and no set of estimated factors such that the r0× r (m̌) matrix Q (m̌)
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such that F 0
t = Q (m̌)Ft (m̌) , then P

(
Γ̂κ (m) < Γ̂κ (m̌)

)
−→ 1 as T, N → ∞. Second, we show

that if it exists an r0 × r (m) matrix Q (m) such that F 0
t = Q (m)Ft (m) and an r0 × r (m̌) matrix

Q (m̌) such that F 0
t = Q (m)Ft (m) , with r (m) < r (m̌) , then P

(
Γ̂κ (m) < Γ̂κ (m̌)

)
−→ 1. The

first part corresponds to the case where only one set of estimated factor belongs toM2. However,
in the second situation, our bootstrap selection rule picks the smaller set of estimated factor in
M2.
Part 1: We observe that for any m,

Γ̂κ (m) = E∗
( 1
T − 1

∥∥∥(y− Ẑ (m) δ̂ (m)
)

+
(
Ẑ (m) δ̂ (m)− Ẑ∗ (m) δ̂∗κ (m)

)∥∥∥2
)
≡ D1(m)+D2(m)+D3(m),

where

D1(m) = 1
T − 1

∥∥∥y − Ẑ (m) δ̂ (m)
∥∥∥2

(31)

D2(m) = E∗
( 1
T − 1

∥∥∥Ẑ (m) δ̂ (m)− Ẑ∗ (m) δ̂∗κ (m)
∥∥∥2
)

and

D3(m) = 2 1
T − 1

(
y − Ẑ (m) δ̂ (m)

)′
E∗
(
Ẑ (m) δ̂ (m)− Ẑ∗ (m) δ̂∗κ (m)

)
.

Using the decomposition Ẑ∗ (m) δ̂∗κ (m)− Ẑ (m) δ̂ (m) as

Ẑ∗ (m)
(
δ̂∗κ (m)− Φ∗−1′

0 (m) δ̂ (m)
)

+
(
Ẑ∗ (m)− Ẑ (m) Φ∗0 (m)′

)
Φ∗−1′

0 (m) δ̂ (m) ,

where Φ∗0 (m) is an (r (m) + q) × (r (m) + q) submatrix of Φ∗0 = diag (±1) the limit in probability
of Φ∗ conditionally on the sample (see, Gonçalves and Perron (2014)), we can write that D2(m) =
D21(m) +D22(m) + 2D23(m), with

D21(m) = E∗
((
δ̂∗κ (m)− Φ∗−1′

0 (m) δ̂ (m)
)′ 1
T − 1 Ẑ

∗′ (m) Ẑ∗ (m)
(
δ̂∗κ (m)− Φ∗−1′

0 (m) δ̂ (m)
))

,

D22(m) = E∗
(
δ̂′ (m) Φ∗−1

0 (m) 1
T − 1

(
Ẑ∗ (m)− Ẑ (m) Φ∗0 (m)′

)′ (
Ẑ∗ (m)− Ẑ (m) Φ∗0 (m)′

)
Φ∗−1′

0 (m) δ̂ (m)
)

and

D23(m) = 1
T − 1E∗

(
δ̂′ (m) Φ∗−1

0 (m)
(
Ẑ∗ (m)− Ẑ (m) Φ∗0 (m)′

)′
Ẑ (m)

(
δ̂∗κ (m)− Φ∗−1′

0 (m) δ̂ (m)
))

.

Starting with D21(m), we can show that

D21(m) = Trace
(

E∗
( 1
T − 1 Ẑ

∗′ (m) Ẑ∗ (m)
(
δ̂∗κ (m)− Φ∗−1′

0 (m) δ̂ (m)
))(

δ̂∗κ (m)− Φ∗−1′
0 (m) δ̂ (m)

)′)
= 1

κ
Trace

((
Φ∗0 (m) ΣZ (m) Φ∗′0 (m)

)
Avar∗

(√
κ
(
δ̂∗κ (m)− Φ∗−1′

0 (m) δ̂ (m)
)))

+ oP

(1
κ

)
.

Since Theorem 2 implies that as
√
κ
N → 0,

√
κ
(
δ̂∗κ (m)− Φ∗−1′

0 (m) δ̂ (m)
)

d∗−→ N
(
0, σ2Φ∗−1′

0 (m) ΣZ (m)−1 Φ∗−1
0 (m)

)
,
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if m is inM2, we deduce that

plim
N,T→∞

Avar∗
(√

κ
(
δ̂∗κ (m)− Φ∗−1′

0 (m) δ̂ (m)
))

= σ2Φ∗−1′
0 (m) ΣZ (m)−1 Φ∗−1

0 (m) .

Thereby, for any set m of estimated factor inM2,

D21(m) = σ2

κ
Trace

(
Φ∗0 (m) ΣZ (m) Φ∗′0 (m) Φ∗−1′

0 (m) ΣZ (m)−1 Φ∗−1
0 (m)

)
+oP

(1
κ

)
= σ2 (r (m) + q)

κ
+oP

(1
κ

)
.

For D22, we use the fact that

D22(m) = δ̂ (m)′Φ∗−1
0 (m) E∗

[ 1
T − 1

(
Ẑ∗ (m)− Ẑ (m) Φ∗0 (m)

)′ (
Ẑ∗ (m)− Ẑ (m) Φ∗0 (m)

)]
Φ∗−1′

0 (m) δ̂ (m)
(32)

and E∗
(

1
T−1

(
Ẑ∗ (m)− Ẑ (m) Φ∗0 (m)

)′ (
Ẑ∗ (m)− Ẑ (m) Φ∗0 (m)

))
is a submatrix of

D221 = 1
T − 1

T−1∑
t=1

E∗
(
F̃ ∗t −H∗0 F̃t

) (
F̃ ∗t −H∗0 F̃t

)′
. (33)

Because, we treat F̃ ∗t as estimating H∗0 F̃t, we can use the step of the proof of Gonçalves and Perron
(2014, Lemma 3.1), and have that

‖D221‖ ≤
1
T

T∑
t=1

E∗
∥∥∥F̃ ∗t −H∗0 F̃t∥∥∥2

≤ C 4
T

T∑
t=1

(
E∗ ‖A∗1t‖

2 + E∗ ‖A∗2t‖
2 + E∗ ‖A∗3t‖

2 + E∗ ‖A∗4t‖
2
)
,

where

A∗1t = 1
T

T∑
s=1

F̃ ∗s γ
∗
st, A

∗
2t = 1

T

T∑
s=1

F̃ ∗s ζ
∗
st, A

∗
3t = 1

T

T∑
s=1

F̃ ∗s η
∗
st, A

∗
4t = 1

T

T∑
s=1

F̃ ∗s ξ
∗
st,

with γ∗st = E∗
(

1
N

∑N
i=1 e

∗
ise
∗
it

)
, ζ∗st = 1

N

∑N
i=1

(
e∗ise

∗
it − E∗

(
1
N

∑N
i=1 e

∗
ise
∗
it

))
, η∗st = 1

N

∑N
i=1 λ̃

′
iF̃se

∗
it,

and ξ∗st = 1
N

∑N
i=1 λ̃

′
iF̃te

∗
is. Note that, we ignore

∥∥∥V ∗−1
0

∥∥∥ , with V ∗0 the limit of the matrix containing
the first r eigenvalues of X∗X∗′/ (NT ) in decreasing order, as it is bounded. Consequently, we
find the order in probability of ‖D221‖ deriving those of 1

T

∑T
t=1 E∗ ‖A∗1t‖

2 , 1
T

∑T
t=1 E∗ ‖A∗2t‖

2 ,
1
T

∑T
t=1 E∗ ‖A∗3t‖

2 and 1
T

∑T
t=1 E∗ ‖A∗4t‖

2 .

First, by the Cauchy-Schwarz inequality, it follows that

1
T

T∑
t=1

E∗ ‖A∗1t‖
2 ≤ 1

T
E∗
((

1
T

T∑
s=1

∥∥∥F̃ ∗s ∥∥∥2
)(

1
T

T∑
s=1

T∑
t=1
‖γ∗st‖

2
))

= r

T
E∗
(

1
T

T∑
s=1

T∑
t=1
‖γ∗st‖

2
)

= OP

( 1
T

)
(34)

using 1
T

∑T
s=1

∥∥∥F̃ ∗s ∥∥∥2
= Trace

(
1
T

∑T
s=1 F̃

∗
s F̃
∗′
s

)
= Trace (Ir) = r and the fact that the high level

condition A∗ (b) : 1
T

∑T
s=1

∑T
t=1 ‖γ∗st‖

2 = OP (1) of Gonçalves and Perron (2014) follows under our
assumptions. Second, we also have by an application of the Cauchy-Schwartz inequality that

1
T

T∑
t=1

E∗ ‖A∗2t‖
2 ≤ E∗

((
1
T

T∑
s=1

∥∥∥F̃ ∗s ∥∥∥2
)(

1
T 2

T∑
s=1

T∑
t=1

ζ∗2st

))
≤ r · E∗

(
1
T 2

T∑
s=1

T∑
t=1

ζ∗2st

)
= OP

( 1
N

)
(35)
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given condition A∗ (c) of Gonçalves and Perron (2014). Thirdly, using the same arguments as
Gonçalves and Perron (2014),

1
T

T∑
t=1

E∗ ‖A∗3t‖
2 ≤ E∗

∥∥∥∥∥ 1
T

T∑
s=1

F̃ ∗s F̃
′
s

∥∥∥∥∥
2

1
T 2

T∑
s=1

∥∥∥∥ 1
N

Λ̃′e∗t
∥∥∥∥2
 ≤ r·E∗( 1

T 2

T∑
s=1

∥∥∥∥ 1
N

Λ̃′e∗t
∥∥∥∥2
)

= OP

( 1
N

)
.

(36)
Similarly,

1
T

T∑
t=1

E∗ ‖A∗4t‖
2 = OP

( 1
N

)
, (37)

and we can deduce from (34), (35), (36) and (37) that, ‖D221‖ = OP
(
C−2
NT

)
. From (32), we deduce

that D22(m) = OP
(
C−2
NT

)
. Finally, we can write by an application of Cauchy-Schwartz inequality

that |D23(m)| ≤
√
D21(m)

√
D22(m) = OP

(
1√
κ

)
OP

(
C−1
NT

)
= OP

(
1√

κCNT

)
. Given the bound for

D21(m), D22(m) and D23(m), it follows that,

D2(m) = σ2 (r (m) + q)
κ

+OP

( 1√
κCNT

)
. (38)

We also have that

D3(m) = −2
T − 1

(
y − Ẑ (m) δ̂ (m)

)′
Ẑ (m) Φ∗′0 (m) (1 + oP (1))E∗

(
δ̂∗d (m)

)
+oP

( 1
T − 1

)
= oP

( 1
T − 1

)
,

(39)
as
(
y − Ẑ (m) δ̂ (m)

)′
Ẑ (m) = 0.

We now turn our attention to D1(m). Denoting M̃ (m) = IT−1 − P̃ (m) and M (m) = IT−1 −
P (m) , we have that from Lemma 7.1 that

1
T − 1y

′M̃ (m) y = 1
T − 1y

′M (m) y +OP

(
1

C2
NT

)
,

1
T − 1ε

′M (m) ε = 1
T − 1ε

′ε+OP

(
1

C2
NT

)
.

Therefore, D1(m) = 1
T−1y

′M (m) y +OP

(
1

C2
NT

)
, which is equal to

1
T − 1ε

′M (m) ε+ 1
T − 1δ

′Z0′M (m)Z0δ + 2 1
T − 1δ

′Z0′M (m) ε+OP

(
1

C2
NT

)
.

Using 1
T−1δ

′Z0′M (m) ε = oP (1) (see, Groen and Kapetanios (2013)), we consequently deduce that

D1(m) = 1
T − 1ε

′ε+ 1
T − 1δ

′Z0′M (m)Z0δ +OP

(
1

C2
NT

)
. (40)

From (38), (39) and (40), it follows that

Γ̂κ (m) = 1
T − 1ε

′ε+ 1
T − 1δ

′Z0′M (m)Z0δ + 1
T − 1δ

′Z0′M (m) ε+ σ2 (r (m) + q)
κ

+ oP

(1
κ

)
.

Given the assumptions that there exists matrix Q (m) such that F 0
t = Q (m)Ft (m) and no matrix
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Q (m̌) such that F 0
t = Q (m̌)Ft (m̌) , it follows that M (m)Z0 = 0 and M (m̌)Z0 6= 0. Therefore,

Γ̂κ (m) = 1
T − 1ε

′ε+ σ2 (r (m) + q)
κ

+ oP

(1
κ

)
= 1
T − 1ε

′ε+ oP

(1
κ

)
.

and

Γ̂κ
(
m′
)

= 1
T − 1ε

′ε+ 1
T − 1δ

′Z0′M
(
m′
)
Z0δ + oP (1) = σ2 + 1

T − 1δ
′Z0′M

(
m′
)
Z0δ + oP (1)

as 1
T−1δ

′Z0′M (m)Z0δ = 1
T−1δ

′Z0′M (m) ε = 0, 1
T−1δ

′Z0′M (m̌) ε = oP (1) . Since

plim inf
N,T→∞

1
T − 1δ

′Z0′M (m̌)Z0δ > 0,

if M (m̌)Z0 6= 0 given Assumption 4 (a), we have that

P
(
Γ̂κ (m) < Γ̂κ (m̌)

)
= P

(
σ2 < σ2 + 1

T − 1δ
′Z0′M

(
m′
)
Z0δ + oP (1)

)
−→ 1. (41)

Part 2: In this part of our proof, we show that if it exists a matrix Q (m) such that F 0
t =

Q (m)Ft (m) and a matrixQ (m̌) such that F 0
t = Q (m)Ft (m) , with r (m) < r (m̌) then P

(
Γ̂κ (m) < Γ̂κ (m̌)

)
converges to 1. In this case,

Γ̂κ (m) = 1
T − 1ε

′ε+ σ2 (r (m) + q)
κ

+ oP

(1
κ

)
and Γ̂κ (m̌) = 1

T − 1ε
′ε+ σ2 (r (m̌) + q)

κ
+ oP

(1
κ

)
.

Hence,

P
(
Γ̂κ (m̌)− Γ̂κ (m) > 0

)
= P

(
σ2 (r (m̌)− r (m)) > o+ oP (1) > 0

)
= 1 + o (1) . (42)

From (41) and (42), we have the proof of Theorem 3.

7.2 Simulation Results

Table 1: Average number of selected estimated factors

CV1 BICM CVd Γ̂κ
True latent factors T = 100 200 100 200 100 200 100 200
(Ft,1, Ft,2) N = 100 2.34 2.38 1.55 1.68 2.05 2.00 2.16 2.03

N = 200 2.32 2.40 1.73 1.87 2.05 2.08 2.14 2.14
(Ft,1, Ft,2, Ft,3) N = 100 3.10 3.17 2.54 2.63 2.92 2.93 3.01 2.96

N = 200 3.10 3.16 2.67 2.81 2.95 3.01 3.01 3.03
(Ft,1, Ft,2, Ft,3, Ft,4) N = 100 3.89 3.95 3.45 3.60 3.82 3.89 3.86 3.91

N = 200 3.90 3.96 3.57 3.73 3.83 3.93 3.88 3.94
Note: This table reports the average number of selected estimated factors over 1000 simulations.
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Table 2: Frequencies for DGP 1 in percentage (there are 24 = 16 different possibilities)

CV1 BICM CVd Γ̂κ
T = 100 200 100 200 100 200 100 200

Selected estimated factors N = 100 N = 100 N = 100 N = 100
F̃t,1 01.80 00.50 43.90 31.50 06.00 03.20 03.20 02.70
F̃t,2 00.00 00.00 00.80 00.20 00.00 00.00 00.00 00.00(
F̃t,1, F̃t,3

)
00.30 00.10 00.00 00.00 00.30 00.10 00.60 00.00(

F̃t,1, F̃t,4
)

00.40 00.10 00.00 00.00 00.30 00.00 00.30 00.00(
F̃t,1, F̃t,2

)F
64.90 64.20 55.30 68.30 83.10 93.40 77.70 91.70(

F̃t,2, F̃t,4
)

00.10 00.00 00.00 00.00 00.10 0.00 00.10 0.00(
F̃t,1, F̃t,2, F̃t,3

)
17.50 18.80 00.00 00.00 05.90 02.40 09.20 04.70(

F̃t,1, F̃t,2, F̃t,4
)

11.20 12.50 00.00 00.00 03.90 00.90 07.40 00.90(
F̃t,1, F̃t,3, F̃t,4

)
00.10 00.00 00.00 00.00 00.10 00.00 00.10 00.00(

F̃t,1, F̃t,2, F̃t,3, F̃t,4
)

03.70 03.80 00.00 00.00 00.30 00.00 01.40 00.00
Selected estimated factors N = 200 N = 200 N = 200 N = 200
F̃t,1 01.60 00.20 27.30 12.70 04.50 0.60 03.00 00.40
F̃t,2 0.00 00.00 00.10 00.00 00.00 00.00 00.00 00.00(
F̃t,1, F̃t,3

)
00.30 00.00 00.00 00.00 00.00 00.00 00.00 00.00(

F̃t,1, F̃t,4
)

00.10 00.00 00.00 00.00 00.00 00.00 00.00 00.00(
F̃t,1, F̃t,2

)F
67.70 63.50 72.50 87.30 85.70 90.80 80.70 85.40(

F̃t,1, F̃t,2, F̃t,3
)

15.70 19.70 00.00 00.00 05.60 06.40 08.80 09.60(
F̃t,1, F̃t,2, F̃t,4

)
11.80 13.10 00.10 00.00 04.10 02.10 06.80 04.10(

F̃t,1, F̃t,3, F̃t,4
)

00.00 00.00 00.00 00.00 00.00 00.00 00.10 00.00(
F̃t,1, F̃t,2, F̃t,3, F̃t,4

)
02.80 03.50 00.00 00.00 00.10 00.10 00.60 00.50

Note: The table reports the frequency of selecting each subset. F indicates the consistent set.
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Table 3: Frequencies for DGP 2 in percentage (there are 24 = 16 different possibilities)

CV1 BICM CVd Γ̂κ
T = 100 200 100 200 100 200 100 200

Selected estimated factors N = 100 N = 100 N = 100 N = 100
F̃t,3 00.00 00.00 00.10 00.00 00.00 00.00 00.00 00.00(
F̃t1, F̃t,3

)
05.20 02.20 44.50 36.40 12.10 07.50 08.30 05.90(

F̃t2, F̃t,3
)

00.10 00.00 01.10 00.20 00.40 00.00 00.20 00.00(
F̃t,1, F̃t,2, F̃t,3

)F
77.70 77.30 54.30 63.40 82.70 91.60 81.30 92.10(

F̃t,1, F̃t,3, F̃t,4
)

00.00 01.10 00.00 00.00 00.40 00.00 01.00 00.00(
F̃t,1, F̃t,2, F̃t,4

)
01.80 00.00 00.00 00.00 00.00 00.00 00.00 00.00(

F̃t,2, F̃t,3, F̃t,4
)

00.10 00.00 00.00 00.00 00.10 00.00 00.10 00.00(
F̃t,1, F̃t,2, F̃t,3, F̃t,4

)
15.10 19.40 00.00 00.00 04.30 00.90 09.10 02.00

Selected estimated factors N = 200 N = 200 N = 200 N = 200
F̃t,3 00.00 00.00 00.10 00.00 00.00 00.00 00.00 00.00(
F̃t1, F̃t,3

)
03.50 01.20 32.80 19.10 09.00 02.80 05.60 02.50(

F̃t2, F̃t,3
)

00.00 00.00 00.60 00.10 00.00 00.00 00.00 00.00(
F̃t,1, F̃t,2, F̃t,3

)F
82.10 81.50 66.40 80.80 86.60 93.60 87.10 92.20(

F̃t,1, F̃t,3, F̃t,4
)

01.00 00.50 00.00 00.00 00.40 00.10 00.40 00.20(
F̃t,1, F̃t,2, F̃t,3, F̃t,4

)
13.40 16.80 00.10 00.00 04.00 03.50 06.90 05.10

Note: See note for Table 2.
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Table 4: Frequencies for DGP 3 in percentage (there are 24 = 16 different possibilities)

CV1 BICM CVd Γ̂κ
T= 100 130 100 130 100 130 100 130

Selected estimated factors N = 100 N = 100 N = 100 N = 100(
F̃t,1, F̃t,4

)
00.00 00.00 01.60 00.20 00.00 00.00 00.00 00.00(

F̃t,2, F̃t,4
)

00.00 00.00 00.30 00.00 00.00 00.00 00.00 00.00(
F̃t,3, F̃t,4

)
00.00 00.00 01.30 00.00 00.00 00.00 00.00 00.00(

F̃t,1, F̃t,2, F̃t,4
)

00.10 00.00 01.00 00.10 00.10 00.00 00.10 00.00(
F̃t,1, F̃t,3, F̃t,4

)
10.30 04.60 45.00 38.80 17.80 11.00 13.40 09.30(

F̃t,2, F̃t,3, F̃t,4
)

00.40 00.00 02.40 00.60 00.50 00.10 00.50 00.10(
F̃t,1, F̃t,2, F̃t,3, F̃t,4

)F
89.20 95.40 48.40 60.30 81.60 88.90 86.00 90.60

Selected estimated factors N = 200 N = 200 N = 200 N = 200(
F̃t,1, F̃t,4

)
00.00 00.00 00.40 00.00 00.00 00.00 00.00 00.00(

F̃t,3, F̃t,4
)

00.00 00.00 00.50 00.00 00.00 00.00 00.00 00.00(
F̃t,1, F̃t,2, F̃t,4

)
00.10 00.00 00.80 00.00 00.30 00.00 00.10 00.00(

F̃t,1, F̃t,3, F̃t,4
)

09.20 03.80 38.20 27.20 15.80 06.90 11.60 05.60(
F̃t,2, F̃t,3, F̃t,4

)
00.30 00.00 02.00 00.00 00.60 00.00 00.40 00.00(

F̃t,1, F̃t,2, F̃t,3, F̃t,4
)F

90.40 96.20 58.10 72.80 83.30 93.10 87.90 94.40
Note: See note for Table 2.

7.3 Empirical Application Details

We present here the empirical results.

Table 5: Variation explained by estimated macro in X1 and financial factors in X2

Macro factors
(
F̃
)

Financial factors
(
G̃
)

N◦ Percentage (%) Cumulative (%) Percentage (%) Cumulative (%)
1 24.06 24.06 71.56 71.56
2 9.52 33.58 4.10 75.66
3 8.04 41.62 3.62 79.28
4 5.87 47.49 1.72 81.00
5 4.13 51.62 1.47 82.47
6 3.25 54.87 1.17 83.64

Note: The percentage of variation explained by each estimated factors is measured by the associated
eigenvalue relative to the sum of the overall eigenvalues.
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Table 6: Estimation results for mt+1 = α′1 (m) F̃t (m) + α′2 (m) G̃t (m) + βZt + ut+1 (m)

Regressors CV1 BICM CVd Γ̂κ
constant 10.90FF 6.75 11.96FF 10.21FF

(t− stat) (2.65) (1.52) (3.03) (2.27)
CAYt 21.05F 29.01FF 21.90F 23.17F
(t− stat) (1.70) (2.43) (1.79) (2.02)
RRELt 0.50F −0.33F 0.05 −0.17
(t− stat) (1.59) (−1.76) (0.22) (0.19)
d− pt 1.86FF 1.06 2.00FF 1.75FF

(t− stat) (2.69) (1.44) (2.98) (3.03)
V OLt 0.15F 0.05 0.12 0.16
(t− stat) (1.83) (0.47) (1.16) (0.83)
F̃1t −0.72FF

(t− stat) (−2.05)
F̃3t 1.34FF 1.01FF 0.97FF

(t− stat) (3.63) (3.08) (2.53)
F̃4t −0.66FF

(t− stat) (−2.38)
G̃2t 0.59FF 0.64FF 0.63FF

(t− stat) (2.02) (2.69) (2.44)
G̃3t 0.49FF 0.59FF 0.61FF

(t− stat) (2.01) (2.01) (2.51)
G̃4t −0.72FF −0.71FF

(t− stat) (−2.41) (−2.37)
G̃6t −0.55FF 0.55FF

(t− stat) (−2.13) (1.98)
R2 0.219 0.048 0.143 0.19
F − test 6.25 7.41 7.08
F − cv 2.05 3.04 2.26

Note: The estimated coefficients are reported. The student test statistic are presented into
parenthesis. FF indicates the significant coefficients at 5% whereas those significant at 10% are
indicated by F. MOD0 represents estimation results with usual factors that are not estimated from
our economics data. These regressors are the consumption-wealth ratio (CAY), the relative T-bill
(RREL), the dividend price ratio (d-p) and the sample volatility (VOL) of one-quarter-ahead excess
returns. The other columns show estimates by selecting generated regressors and those in MOD0.
We tested whether the additional estimated factors are jointly significant. The Fisher test statistic
corresponds to the difference between the sum squared residuals of MOD0 and m̂j , j = 1, 2, 3 and
4, divided by the sum squared residuals of MOD0 and corrected by the degrees of freedom. The
critical values are based on the asymptotic result that the statistic follows a Fisher distribution
with the number of additional parameters r (m̂j) and (T − 6)− r (m̂j) as degree of freedom.
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Figure 3: Number of selected factors
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Note: This figure reports the number of selected factors over the forecast sample 2005-Q1 to 2014-
Q3. These numbers of estimated factors correspond to the number of estimated factors picked
using the different methods.
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