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Abstract

We consider estimation and inference in fractionally integrated time series models driven by
shocks which can display conditional and unconditional heteroskedasticity of unknown form. Al-
though the standard conditional sum-of-squares (CSS) estimator remains consistent and asymp-
totically normal in such cases, unconditional heteroskedasticity inflates its variance matrix by
a scalar quantity, λ > 1, thereby inducing a loss in efficiency relative to the unconditionally
homoskedastic case, λ = 1. We propose an adaptive version of the CSS estimator, based on
non-parametric kernel-based estimation of the unconditional variance process. This eliminates
the factor λ from the variance matrix, thereby delivering the same asymptotic efficiency as that
attained by the standard CSS estimator in the unconditionally homoskedastic case and, hence,
asymptotic efficiency under Gaussianity. The asymptotic variance matrices of both the stan-
dard and adaptive CSS estimators depend on any conditional heteroskedasticity and/or weak
parametric autocorrelation present in the shocks. Consequently, asymptotically pivotal inference
can be achieved through the development of confidence regions or hypothesis tests using either
heteroskedasticity robust standard errors and/or a wild bootstrap. Monte Carlo simulations and
empirical applications are included to illustrate the practical usefulness of the methods proposed.

Keywords: adaptive estimation; conditional sum-of-squares; fractional integration; heteroskedas-
ticity; quasi-maximum likelihood estimation; wild bootstrap.

1 Introduction

Long memory models have proved highly effective in a wide range of fields of application includ-
ing finance, economics, internet modeling, hydrology, climate studies, linguistics, opinion polling
and DNA sequencing to name but a few; see, for example, the survey article by Samorodnitsky
(2007) and the references therein. We contribute to the long memory literature in this paper by
developing efficient methods of inference for the long and/or short memory parameters of univari-
ate fractionally integrated time series models driven by shocks which display permanent changes
in their unconditional volatility over time, often referred to as non-stationary volatility. We also
allow for the presence of weak dependence (conditional heteroskedasticity and/or weak parametric
autocorrelation) in the shocks.

Non-stationary volatility appears to be a relevant data phenomenon in a range of applied subject
areas. For example, Sensier and van Dijk (2004) report that a large variety of both real and nominal
economic and financial variables reject the null of constant unconditional variance. Many empirical
studies also report a substantial decline, often referred to as the Great Moderation, in the uncondi-
tional volatility of the shocks driving macroeconomic series in the twenty years or so leading up to
the Great Recession that started in late 2007, with a subsequent sharp increase again in volatility
observed after 2007; see, inter alia, McConnell and Perez-Quiros (2000), Stock and Watson (2012),
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and the references therein. In a recent paper in the climate change literature, Chang et al. (2016)
analyse time series data on global temperature anomaly distributions and find that not only is the
global mean temperature increasing, but that the variability of temperature anomalies around the
mean anomaly is decreasing over time. In a number of fields, including climate data (for an example
see the land and ocean climate change data set from 1850 to the present day available from the
Berkeley Earth website http://berkeleyearth.org/land-and-ocean-data/#section-0-7) and opin-
ion poll data (see, for example, Pickup and Johnston, 2008), improvements in data measurement
over time have also effected reductions in the degree of volatility seen in the data.

Hualde and Robinson (2011) demonstrate the global consistency and asymptotic normality of
the conditional quasi-maximum likelihood (QML) estimator — equivalently the conditional sum-of-
squares (CSS) estimator — in parametric univariate fractional time series models for an arbitrarily
large set of admissible values of the long memory parameter (see also Nielsen, 2015). They do so in
the context of a fractional model driven by conditionally homoskedastic innovations. The estimator
is asymptotically efficient when the innovations are Gaussian. Their results solve a long-standing
problem arising from the non-uniform convergence of the objective function when the range of
values the long memory parameter may take is large. In a recent paper, Cavaliere, Nielsen and
Taylor (2017, henceforth CNT) demonstrate that the QML estimator retains its global consistency
and asymptotic normality properties in cases where the innovations display non-stationary volatility
and/or conditional heteroskedasticity. CNT show, however, that (other things equal) non-stationary
volatility inflates the limiting covariance matrix of the QML estimator by a scalar quantity λ > 1
relative to the unconditionally homoskedastic case, thereby implying a loss in asymptotic efficiency.
CNT show that, as a result, standard hypothesis tests based on the QML estimate lose asymp-
totic efficiency relative to the unconditionally homoskedastic case when non-stationary volatility is
present.

In light of the findings of CNT, the contribution of this paper is to develop two-step estimation
and inference methods for fractional time series models which non-parametrically adapt to uncondi-
tional heteroskedasticity of unknown form, thereby recovering the efficiency losses that occur with
standard methods. In the first step the unconditional variance process is estimated using a kernel-
based non-parametric regression on the squares of the residuals which obtain on fitting the model
using the standard QML estimator. In the second step, the sum of squares criterion which is min-
imised to deliver the standard QML estimator is scaled by the estimated volatility process, and is
then subsequently minimised. We will refer to this estimator as an adaptive CSS [ACSS] estimator.
Adaptive inference based on an estimate of the unconditional variance was proposed in the context
of inference on the parameters of finite-order unconditionally heteroskedastic but conditionally ho-
moskedastic autoregressive models by Xu and Phillips (2008). It has also been used in the context
of testing for ARCH effects in unconditionally heteroskedastic autoregressive models by Patilea and
Räıssi (2014), and for the adaptive estimation of VAR models in Patilea and Räıssi (2012, 2013).
More relevant to this paper, Harris and Kew (2017) extend the score-based tests developed in Robin-
son (1994) for homoskedastic errors, to develop tests on the value of the long memory parameter in
the context of an unconditionally heteroskedastic but conditionally homoskedastic ARFIMA model,
using an adaptive estimate of the unconditional volatility process. More generally, the use adaptive
estimators and tests designed to account for non-parametric heteroskedasticity in time series models
have been widely used in the literature; see among others, Carroll (1982), Robinson (1987), Harvey
and Robinson (1988), Hansen (1995), Xu and Phillips (2011) and Xu and Yang (2015).

Under suitable conditions, we demonstrate that our proposed ACSS estimator is asymptotically
equivalent to an infeasible estimator obtained by minimising the sum of squares criterion when
divided by the true (unknown) volatility process. As a consequence, the estimator is asymptoti-
cally efficient under Gaussianity. We further demonstrate the global consistency of the adaptive
estimator and show that it attains the same limiting distribution as that which would be attained
by the standard QML estimator under unconditional homoskedasticity, other things being equal.
A key consequence of this result is that while there is no loss of asymptotic efficiency from using
the ACSS estimator rather than the standard QML estimator in the conditionally homoskedastic
case, efficiency gains relative to the QML estimator will be obtained where the innovations display
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non-stationary volatility (with a limiting relative efficiency given by λ). Although the limiting dis-
tribution of the ACSS estimator does not depend on any non-stationary volatility present in the
shocks, our results show that it does, like the standard QML estimator, depend on any conditional
heteroskedasticity and/or weak dependence present. Interval estimation for (functions of) the long
run and/or short run parameters of the fractional time series model based on the ACSS estimator
must therefore either be based on the use of heteroskedasticity robust standard errors or by using
an asymptotically valid bootstrap method. We investigate both approaches, and for the latter we
propose a wild bootstrap implementation of the ACSS estimator and show that this is asymptot-
ically valid. We also develop associated heteroskedasticity-robust t and Wald statistics for testing
hypotheses on these parameters. We demonstrate that these have standard limiting null distribu-
tions under our assumptions and may also be validly bootstrapped. The finite sample performance
of our proposed methods are explored using Monte Carlo simulation.

In an important related literature, Baillie, Chung, and Tieslau (1996), Ling and Li (1997), Li,
Ling, and McAleer (2002) and Ling (2003), among others, consider efficient maximum likelihood
estimation of an ARFIMA model in the presence of parametric GARCH models under Gaussianity,
in each case assuming unconditional homoskedasticity. The aim of these authors is different from
ours here which is to develop adaptive methods of inference valid under general forms of both
conditional and unconditional heteroskedasticity without requiring the practitioner to specify a
parametric model for either form of heteroskedasticity. As our results show, adaptive methods can
deliver asymptotically efficient inference under unconditional heteroskedasticity. To develop efficient
inference in the presence of conditional heteroskedasticity, a parametric model would have to be
fitted, similarly to the approach adopted in the papers cited above. This will only be asymptotically
efficient if the correct parametric model for the conditional heteroskedasticity is chosen and has the
potential to behave very poorly where a misspecified model is chosen.

The remainder of the paper is structured as follows. Section 2 outlines our reference het-
eroskedastic fractional time series model and our main assumptions. Section 3 outlines the properties
of the QML estimator under our set-up, details our ACSS estimator and establishes its large sample
properties. Section 4 develops methods of inference based on confidence intervals, heteroskedasticity-
robust t and Wald statistics, and wild bootstrap implementations thereof. Monte Carlo simulation
results are given in Section 5. A variety of data examples are reported in Section 6. Section 7 con-
cludes. Mathematical proofs and additional data analysis are contained in supplementary material.

Notation. As a convention, it is assumed that j−1 = 0 for j = 0 in summations over j. We
use c or K to denote a generic, finite constant, || · || to denote the Euclidean norm and || · ||r to
denote the Lr-norm. A function f(x) : Rq → R satisfies a Lipschitz condition of order α, or is in
Lip(α), if there exists a finite constant K > 0 such that |f(x1) − f(x2)| ≤ K||x1 − x2||α for all

x1, x2 ∈ Rq. We use
w→,

p→ and
Lr→ to denote convergence in distribution, in probability, and in

Lr-norm, respectively, in each case as T → ∞, T denoting the sample size. The probability and
expectation conditional on the realisation of the original sample are denoted P ∗ and E∗, respectively.

For a given sequence X∗T computed on the bootstrap data, X∗T
p∗→p 0 or X∗T = o∗p(1), in probability,

denote that P ∗ (|X∗T | > ε)→ 0 in probability for any ε > 0, X∗T = O∗p(1), in probability, denotes that

there exists a K > 0 such that P ∗ (|X∗T | > K)→ 0 in probability, and
w∗→p denotes weak convergence

in probability, in each case as T →∞.

2 The Heteroskedastic Fractional Model and Assumptions

We consider the fractional time series model1

Xt = ∆−d+ ut with ut = a(L,ψ)εt, (1)

1The model in (1) uses the so-called “type II” fractional integration. This has the desirable feature that the same
definition is valid for any value of the fractional parameter, d, and that no prior knowledge needs to be assumed about
d. Consequently, stationary, non-stationary, and over-differenced time series are all permitted because the range of
admissible values of the fractional parameter can be arbitrarily large; see Hualde and Robinson (2011).
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where L is the usual lag operator, and the operator ∆−d+ is given, for a generic variable xt, by

∆−d+ xt := ∆−dxtI (t ≥ 1) =
∑t−1

n=0 πn (d)xt−n, where I(·) denotes the indicator function, and with

πn (d) := Γ(d+n)
Γ(d)Γ(1+n) = d(d+1)...(d+n−1)

n! denoting the coefficients in the usual binomial expansion of

(1 − z)−d, and where ψ is a p-dimensional parameter vector and a(z, ψ) :=
∑∞

n=0 an(ψ)zn. We let
θ := (d, ψ′)′ denote the full parameter vector. The parametric form of the function a(z, ψ) will be
assumed known, so that, specifically, ut is assumed to be a linear process governed by an underlying
unknown p-dimensional parameter vector, ψ. For example, any process that can be written as a
finite order ARMA model is permitted, as is the exponential spectrum model of Bloomfield (1973).
Further discussion on the function a(z, ψ) can be found in Hualde and Robinson (2011). Thus,
our focus is model-based inference (which might be on the long memory parameter, d, or the short
memory parameter, ψ, or jointly on both). As such we assume a statistical model characterised by
a finite-dimensional vector of parameters and the objective is one of estimation and inference on
those parameters.

We now outline the assumptions that we will place on the model in (1). It is important to note
that none of the assumptions which follow impose Gaussianity on (1).

Assumption 1. The innovations {εt}t∈Z are such that εt = σtzt, where {zt}t∈Z and {σt}t∈Z satisfy
the conditions in parts (a) and (b), respectively, below:

(a) {zt}t∈Z is a (conditionally heteroskedastic) martingale difference sequence with respect to the
natural filtration Ft, the sigma-field generated by {zs}s≤t, such that Ft−1 ⊆ Ft for t =
...,−1, 0, 1, 2, ..., and satisfies

(i) E(z2
t ) = 1,

(ii) τr,s := E(z2
t zt−rzt−s) is uniformly bounded for all r ≥ 0, s ≥ 0,

(iii) For all integers q such that 3 ≤ q ≤ 8 and for all integers r1, ..., rq−2 ≥ 1, the q’th order
cumulants κq(t, t, t − r1, . . . , t − rq−2) of (zt, zt, zt−r1 , . . . , zt−rq−2) satisfy the condition
that supt

∑∞
r1,...,rq−2=1 |κq(t, t, t− r1, . . . , t− rq−2)| <∞.

(b) {σt}t∈Z is a non-stochastic sequence satisfying

(i) supt∈Z σt <∞,

(ii) for all t = 1, ..., T , σt = σ (t/T ), where σ (·) ∈ D([0, 1]), the space of càdlàg functions on
[0, 1], satisfies inf0≤u≤1 σ(u) > 0.

Assumption 2. It holds that θ0 = (d0, ψ
′
0)′ ∈ D × Ψ =: Θ, where D := [d1, d2] with −∞ < d1 ≤

d2 <∞ and the set Ψ ⊂ Rp is convex and compact.

Assumption 3. It holds that:

(i) For all z in the complex unit disk {z ∈ C : |z| ≤ 1} and for all ψ ∈ Ψ, a(z, ψ) is bounded and
bounded away from zero and a0(ψ) = 1.

(ii) For all ψ ∈ Ψ, a(eiλ, ψ) is twice differentiable in λ with second derivative in Lip(ζ) for ζ > 0.

(iii) For all λ, a(eiλ, ψ) is differentiable in ψ on ψ ∈ Ψ, and for all ψ ∈ Ψ, ȧ(eiλ, ψ) := ∂a(eiλ,ψ)
∂ψ is

twice differentiable in λ with derivative in Lip(ζ) for ζ > 0.

(iv) For all λ, a(eiλ, ψ) is thrice differentiable in ψ on the closed neighborhood Nδ(ψ0) := {ψ ∈
Ψ : ||ψ − ψ0|| ≤ δ} for some δ > 0, and for all ψ ∈ Nδ(ψ0), the second and third derivatives
of a(eiλ, ψ) with respect to ψ are themselves twice differentiable in λ with derivative in Lip(ζ)
for ζ > 0.

Assumption 4. For all ψ ∈ Ψ\{ψ0} it holds that a(z, ψ) 6= a(z, ψ0) on a subset of {z ∈ C : |z| = 1}
of positive Lebesgue measure.

Remark 2.1. Under Assumption 1(a) volatility clustering, such as generalised autoregressive condi-
tional heteroskedasticity (GARCH), is permitted by the fact that the quantity τr,r is not necessarily
equal to E(z2

t )E(z2
t−r) = 1. Asymmetric volatility clustering is allowed for by non-zero τr,s for

r 6= s. Statistical leverage is also permitted, which occurs when the quantity E(z2
t zt−i) is non-zero
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for some i ≥ 1, noting that E(z2
t zt−i) = E(htzt−i), where ht := E(z2

t |Ft−1) is the conditional
variance function. The stated conditions, including the summability condition on the eighth-order
cumulants of εt, are typical, but rather weaker than, those used in the fractional literature; see,
for example, Robinson (1991), Hassler, Rodrigues and Rubia (2009), and Harris and Kew (2017).
Notably, these authors impose further conditions which rule out, among other things, statistical
leverage and asymmetric volatility clustering. Harris and Kew (2017) additionally impose condi-
tional homoskedasticity on zt. ♦

Remark 2.2. Assumption 1 implies that the time-varying scale factor σ2
t corresponds to the uncon-

ditional variance of εt. Thus, both the conditional and the unconditional variance of εt are allowed
to display time-varying behaviour under Assumption 1. ♦

Remark 2.3. Assumption 1(b) imposes relatively mild conditions on the sequence {σt}. In particu-
lar, the càdlàg assumption on σ(·) appears much weaker than those usually applied in the literature.
For example, Assumption S of Harris and Kew (2017) and Assumption (i) of Xu and Phillips (2008,
p. 267) require σ(·) to satisfy a uniform first-order Lipschitz condition with at most a finite number
of discontinuities. In contrast, our assumption allows a countable number of jumps, which admits
an extremely wide class of potential models for the unconditional variance of εt.

2 Models of sin-
gle or multiple variance shifts satisfy part (b) of Assumption 1 with σ (·) piecewise constant; for
example, a one-time break in variance from σ2

0 to σ2
1 at time bτT c, 0 < τ < 1, corresponds to

σ (u) := σ0 + (σ1 − σ0)I (u > τ). (Piecewise) affine functions are also permitted. ♦

Remark 2.4. Zhang and Wu (2012) consider shocks which are ‘locally stationary’; that is, of the
form ut = G(t/T ;Ft), where Ft = (..., εt−1, εt) is shift process (see, for example, Rosenblatt, 1959)
of i.i.d. random variables {εt} and G is a sufficiently smooth (Lipschitz) measurable function. It is
not difficult to see that our ut process in (1) satisfies local stationarity under Assumption 1, up to
an Op(T

−1) term, provided σ(·) is Lipschitz measurable. The main difference between the ‘locally
stationary’ set-up and ours is that the former places smoothness (and moment) restrictions on the
function G, whereas we impose a linear dependence structure on ut through the function a(z, ψ),
leaving the scaling function σ(·) essentially unrestricted. ♦

Remark 2.5. Assumption 2 permits the length of the interval of admissible values of the param-
eter d to be arbitrarily large such that the model in (1) is sufficiently general to simultaneously
accommodate both non-stationary, (asymptotically) stationary, and over-differenced processes. ♦

Remark 2.6. Assumption 3 relates to the coefficients of the linear filter a(z, ψ) and is easily
satisfied, for example, by stationary and invertible finite order ARMA processes. In particular,
Assumptions 3(i)-(ii) ensure that ut in (1) is an invertible short-memory process with power transfer
function (scale-free spectral density) that is bounded and bounded away from zero at all frequencies.
Under Assumption 3(i) the function b(z, ψ) :=

∑∞
n=0 bn(ψ)zn = a(z, ψ)−1 is well-defined by its

power series expansion for |z| ≤ 1 + ε for some ε > 0, and is also bounded and bounded away from
zero on the complex unit disk and b0(ψ) = 1. Under Assumption 3 the coefficients an(ψ), bn(ψ),
ȧn(ψ) := ∂an(ψ)/∂ψ, and ḃn(ψ) := ∂bn(ψ)/∂ψ satisfy

|an(ψ)| = O(n−2−ζ), |bn(ψ)| = O(n−2−ζ), ||ȧn(ψ)|| = O(n−2−ζ), ||ḃn(ψ)|| = O(n−2−ζ) (2)

uniformly in ψ ∈ Ψ; see Zygmund (2003, pp. 46 and 71). The second and third derivatives with
respect to ψ satisfy the same bounds uniformly over the neighborhood Nδ(ψ0). ♦

Remark 2.7. Assumption 3(i) coincides with Assumption A1(iv) of Hualde and Robinson (2011),
while Assumption 3(ii) strengthens their Assumption A1(ii) from once differentiable in λ with
derivative in Lip(ζ) for ζ > 1/2, and Assumption 3(iii) strengthens their Assumption A1(iii) from

2For t ≤ 0, σt is assumed only to be uniformly bounded, see Assumption 1(b)(i), whereas, for t = 1, . . . , T ,
Assumption 1(b)(ii) entails that σt depends on (t/T ). Therefore, a time series generated according to Assumption 1
formally constitutes an array of the type {εT,t : t ≤ T, T ≥ 1}, where εT,t = σT,tzt and σT,t satisfies Assumption 1(b)
for all T ≥ 1. The array notation is not essential and so for simplicity the subscript T is suppressed in what follows.
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continuity in ψ to differentiability. Assumption 3(iv) requires a(z, ψ) to be thrice differentiable in
ψ rather than the corresponding twice differentiable condition in Assumption A3(ii) of Hualde and
Robinson (2011) with associated Lipschitz conditions in λ. The latter are used to obtain the bounds
in (2), and also appear to be needed to obtain the corresponding bounds in Hualde and Robinson
(2011, p. 3169). ♦

Remark 2.8. Assumption 3 is assumed to apply for all ψ in the user-chosen optimizing set Ψ. For
example, in the case where ut is an ARMA model, the set Ψ can then be chosen as any compact
and convex subset of the (open) set for which the roots of the AR and MA polynomials are strictly
outside the unit circle. Specifically, if ut is modeled as a first-order AR model then Assumption 3
is clearly satisfied for all ψ ∈ (−1, 1), and the optimizing set Ψ can be chosen by the user as any
compact and convex subset of (−1, 1). ♦

Remark 2.9. The identification condition in Assumption 4 is identical to Assumption A1(i) in
Hualde and Robinson (2011) and is satisfied, for example, by all stationary and invertible finite
order ARMA processes whose AR and MA polynomials do not admit any common factors. ♦

To conclude this section we need to set up some additional notation and an associated final
assumption that will be required in the next section when stating the large sample properties of the
QML estimator and of our proposed adaptive estimator. To that end, define

A0 :=
∞∑

n,m=1

τn,m

[
n−1m−1 −γn(ψ0)′/m
−γn(ψ0)/m γn(ψ0)γm(ψ0)′

]
and B0 :=

∞∑
n=1

[
n−2 −γn(ψ0)′/n

−γn(ψ0)/n γn(ψ0)γn(ψ0)′

]
,

where τn,m is defined in Assumption 1(a)(ii) and γn(ψ) :=
∑n−1

m=0 am(ψ)ḃn−m(ψ). Observe that A0

(and hence B0) is finite because
∑∞

n=0 ||γn(ψ)|| < ∞ under Assumption 3 and
∑∞

n,m=1 |τn,m| < ∞
by Assumption 1(a)(iii). The matrix B0 coincides with the matrix A in Hualde and Robinson (2011)
and derives from the autocorrelation present in the process through a(z, ψ). The matrix A0 also
includes the effects of any conditional heteroskedasticity present in εt. If there is no conditional
heteroskedasticity present, then A0 = B0 because here τn,m = I(n = m). Notice that neither A0

nor B0 are affected by any unconditional heteroskedasticity arising from Assumption 1(b). As in
Hualde and Robinson (2011), in order to state the limiting distribution of the QML and adaptive
estimators we will require B0 to be invertible, as formally stated in Assumption 5.

Assumption 5. The matrix B0 is non-singular.

This condition is satisfied by, for example, stationary and invertible ARMA processes.

3 Adaptive Estimation

Adaptive estimation requires a preliminary consistent estimator. For this purpose, in Section 3.1 we
review the standard QML estimator analyzed in CNT. Then, in Section 3.2, we detail our adaptive
estimator and its large sample properties.

3.1 Standard QML Estimation

Define the residuals

εt(θ) :=

t−1∑
n=0

bn(ψ)∆d
+Xt−n. (3)

Then the conditional3 Gaussian QML estimator of θ is identical to the classical least squares or
CSS estimator, which is found by minimizing the sum of squared residuals; that is,

θ̃ := arg min
θ∈Θ

QT (θ), QT (θ) := T−1
T∑
t=1

εt(θ)
2. (4)

3We use the term ‘conditional’ here in its usual sense to indicate that we have conditioned on the initial values of
ut. This has been done implicitly through the assumption that (1) generates a type II fractional process.
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CNT show that if Xt is generated according to (1) under Assumptions 1–5, then it holds that

√
T (θ̃ − θ0)

w→ N(0, λC0), (5)

where C0 := B−1
0 A0B

−1
0 and λ :=

∫ 1
0 σ

4(s)ds/(
∫ 1

0 σ
2(s)ds)2.

Remark 3.1. A fairly standard conditionally homoskedastic alternative to Assumption 1 (see, for
example, Hannan, 1973, and Hualde and Robinson, 2011) is one where the innovations {εt} are
assumed to form a conditionally homoskedastic martingale difference sequence with respect to the
filtration Ft, i.e., where E

(
ε2
t |Ft−1

)
= σ2 almost surely and suptE(|εt|q) ≤ K <∞ for some q ≥ 4.

Under these conditions, A0 = B0 and λ = 1 and, hence, the result in (5) reduces to the result in
Theorem 2.2 of Hualde and Robinson (2011). In the case where λ = 1 and zt in Assumption 1(a)
is Gaussian (and hence i.i.d.), the QML estimator θ̃ of (4) is asymptotically efficient. ♦

Remark 3.2. Where heteroskedasticity arises only through part (a) of Assumption 1 then so the
variance matrix C0 in the right member of (5) reduces to B−1

0 A0B
−1
0 . On the other hand, where

heteroskedasticity arises only through part (b) of Assumption 1 then so C0 reduces to B−1
0 . ♦

Remark 3.3. As (5) shows, the variance of the asymptotic distribution of the standard QML
estimator, θ̃, depends on the scalar parameter λ. This parameter is a measure of the degree of
unconditional heteroskedasticity (non-stationary volatility) present in {εt}. For an unconditionally
homoskedastic process, where σ(·) is constant, λ = 1, whereas when σ(·) is non-constant, λ > 1 by
the Cauchy-Schwarz inequality. Consequently, other things being equal, the variance of the asymp-
totic distribution of the QML estimator is seen to be inflated when unconditional heteroskedasticity
is present in {εt}, via-à-vis the unconditionally homoskedastic case. ♦

Suppose for the present that {σ2
t } was known. In such circumstances, a (infeasible) weighted

CSS estimate of θ could be formed as

θ̄ := arg min
θ∈Θ

Q̄T (θ), where Q̄T (θ) := T−1
T∑
t=1

(
εt(θ)

σt

)2

. (6)

In Theorem 1 below it is shown that if Xt is generated by (1) under Assumptions 1–5, then
√
T (θ̄−

θ0)
w→ N(0, C0). The asymptotic variance matrix of the QML estimator, θ̃, therefore differs from

that of the infeasible weighted CSS estimator, θ̄, by the factor λ and since C0 is invariant to the
function σ(·) the inefficiency of the standard QML estimator relative to the weighted CSS estimator
is solely determined by this factor in large samples. Where this factor is large, QML will be highly
inefficient relative to the weighted CSS estimator, whereas if it is close to unity QML will lose little
in efficiency relative to the weighted CSS estimator and would be close to being asymptotically
optimal under Gaussianity.

3.2 Adaptive QML Estimation

The weighted CSS estimator θ̄ in (6) is infeasible, because the true values of σ2
t are unknown in

practice. However, it is possible to implement a feasible version of θ̄ that has the same asymptotic
distribution as θ̄ following the approach used in, e.g., Xu and Phillips (2008, p. 271) using a kernel-
based nonparametric estimate of σ2

t . To that end, we first need a preliminary estimator of θ which,
although based on an assumption of homoskedasticity, is nonetheless (root-T ) consistent under
heteroskedasticity. The standard QML estimator, θ̃ of (4), satisfies this requirement, see (5).

Defining ε̃t := εt(θ̃) as the standard QML residuals, our proposed feasible CSS estimator of θ is
then defined as

θ̂ := arg min
θ∈Θ

Q̂T (θ), Q̂T (θ) := T−1
T∑
t=1

εt(θ)
2

σ̂2
t

. (7)

where

σ̂2
t :=

T∑
i=1

ktiε̃
2
i , (8)
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and where

kti :=
K( t−iT b )∑T
i=1K( t−iT b )

. (9)

In (9), K (·) is a bounded, nonnegative, continuous kernel function and b := b(T ) is a bandwidth
parameter which depends on the sample size, T . In what follows we will refer to θ̂ as the adaptive
CSS [ACSS] estimator of θ; this in the sense that it is a feasible version of θ̄ based on adaptive
estimation of σ2

t .
To establish the large sample properties of the adaptive ACSS estimator θ̂ in (7), we impose

some conditions on both the kernel function, K(·), and on the bandwidth, b. We formally state
these in Assumptions 6 and 7, respectively.

Assumption 6. The kernel function K(·) : [−∞,∞] → R+ ∪ {0} is continuous and satisfies
sup−∞≤x≤∞K(x) <∞ and

∫∞
−∞K(u)du ∈ (0,∞).

Assumption 7. The bandwidth b := b(T ) satisfies b+ T−1b−2 → 0.

We now detail the asymptotic distribution of the ACSS estimator, θ̂ of (7).

Theorem 1. Let Xt be generated according to (1) and let Assumptions 1–7 be satisfied. Then,

√
T (θ̄ − θ̂) p→ 0, (10)
√
T (θ̂ − θ0)

w→ N(0, C0). (11)

Remark 3.4. Notice that Theorem 1 holds without the need to strengthen the càdlàg condition
in part (b) of Assumption 1. In contrast, additional smoothness conditions on σ(·) are routinely
needed in the adaptive inference literature; see Remark 2.3 and also Patilea and Räıssi (2014). This
generalization with respect to the extant literature is made possible because our method of proof
for Theorem 1 is based on showing that

∑T
t=1(σ̂2

t −σ2
t )

2 p→ 0 (see Lemma A.1), rather than showing

supt |σ̂2
t − σ2

t |
p→ 0 as is usually done. Of course, under additional smoothness conditions on the

kernel function and on σ(·), the former convergence implies the latter. ♦

Remark 3.5. Implementation of σ̂2
t depends on the choice of kernel function, K(·), and the

bandwidth, b. Commonly used kernels which satisfy Assumption 6 include the uniform, Epanech-
nikov, biweight and Gaussian functions. The bandwidth condition in Assumption 7 implies that
b → 0 but at a slower rate than T−1/2. In practice bandwidth selection is crucial to perfor-
mance and here the data-driven method of Wong (1983), which uses cross-validation on the average
squared error, could be employed. This cross-validatory choice of b is the value b∗ which minimises
ĈV (b) := T−1

∑T
t=1(ε̃2

t − σ̂2
t )

2, but where a leave-one-out procedure is used in (8) such that the ob-
servation ε̃2

t is omitted which is done by defining K( t−iT b ) := 0 for t = i in (9). Using a leave-one-out
procedure does not impact on any of the large-sample results we provide. ♦

Remark 3.6. A comparison of the result in Theorem 1 with that given at the end of Section 3.1
for θ̄ of (6) shows that the asymptotic distribution of the ACSS estimator coincides with that of
the infeasible weighted CSS estimator. The limiting distribution of the ACSS estimator is therefore
seen not to depend on the non-stationary volatility process, σ(·). ♦

Remark 3.7. Noting that λ ≥ 1 by the Cauchy-Schwarz inequality, a comparison of (5) and (11)
shows that there can never be a loss of asymptotic efficiency from using the ACSS estimator rather
than the QML estimator (the relative efficiency being given by λ) even in the case where the shocks
are unconditionally homoskedastic. Thus, the ACSS estimator is asymptotically more efficient than
the QML estimator. ♦

Remark 3.8. Where zt in Assumption 1(a) is conditionally homoskedastic but εt is unconditionally
heteroskedastic the ACSS estimator recovers the asymptotic distribution attained by the QML
estimator in the purely homoskedastic case. ♦
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Remark 3.9. Consider the case where zt in Assumption 1(a) is Gaussian. Then the adaptive
estimator θ̂ is asymptotically efficient in the sense that it has the same asymptotic variance, C0 =
B−1

0 , as obtains under homoskedasticity for the standard QML estimator θ̃ in (4). As a consequence,
the standard QML estimator is not efficient, even when zt is Gaussian, except in the special case
where λ = 1, due to the factor λ ≥ 1 appearing in its asymptotic variance. ♦

4 Adaptive Inference

For inference purposes, a consistent estimator of C0 is required. In Section 4.1 we discuss such
an estimator and show that it can be used to obtain asymptotically valid confidence regions for
(functions of) θ. Section 4.2 discusses asymptotically pivotal hypothesis tests based on this esti-
mator, and details the asymptotic power functions of these tests under Pitman drift. Bootstrap
implementations of these methods are explored in Section 4.3.

4.1 Confidence Regions

To construct adaptive confidence regions for (functions of) the elements of θ based on the limiting
result in (11) we will require a consistent estimate of C0. Following Eicker (1967), Huber (1967),
and White (1982), we consider the familiar sandwich-type estimator of C0,

Ĉ :=

((
∂2QT (θ)

∂θ∂θ′

)−1
(
T−1

T∑
t=1

∂qt (θ)

∂θ

∂qt (θ)

∂θ′

)(
∂2QT (θ)

∂θ∂θ′

)−1
)∣∣∣∣∣

θ=θ̂

(12)

with qt(θ) := εt(θ)
2/σ̂2

t . The consistency of Ĉ for C0 is formalised in Theorem 2.

Theorem 2. Let the conditions of Theorem 1 hold. It then follows that Ĉ
p→ C0.

Theorem 2, taken together with the result in (11), implies that we can construct asymptotically
pivotal feasible adaptive confidence regions for the elements of θ, using Ĉ, in the usual way. Let
f : Rp+1 → Rq be a (possibly non-linear) function which is continuously differentiable at θ0 and
let ξ := f(θ) denote the parameter of interest. The adaptive estimator of ξ is given by ξ̂ := f(θ̂).
Given previous results, the asymptotic distribution of ξ̂ can straightforwardly be shown, using the
delta method, to be

√
T (ξ̂ − ξ0)

w→ N(0, F (θ0)C0F (θ0)′), where F (θ) := ∂
∂θf(θ) is the Jacobian

of the function f(θ). Confidence regions for ξ can then be formed using a consistent estimator of
F (θ0)C0F (θ0)′, an obvious candidate for which is F (θ̂)ĈF (θ̂)′.

4.2 Hypothesis Testing and Local Power Considerations

To complement the material on feasible adaptive confidence regions, we now discuss adaptive tests
of general hypotheses on the elements of θ. To that end, suppose we wish to test the null hypothesis,

H0 : ξ := f(θ) = 0, (13)

where f(θ) is as defined below Theorem 2, and consider the sequence of local (Pitman) alternatives,

H1,T : ξT = δ/
√
T , (14)

where δ is a fixed q-vector. In the case where we wish to test for linear restrictions on θ, we would
set f(θ) = M ′θ − m where M is a (p + 1) × q full-rank matrix of constants defining q (linearly
independent) restrictions on the parameter vector θ and m is a q-vector of constants. An obvious
example involves testing hypotheses on the long memory parameter d, important cases thereof are
d = 0 (short memory), d = 0.5 (the series being weakly stationary, in the absence of unconditional
heteroskedasticity, if d < 0.5) and d = 1 (unit root). As a second example, testing hypotheses
on the elements of ψ could be used for order determination for the short memory dynamics, such
as establishing an autoregressive order. Finally, joint hypotheses involving both d and ψ can be
tested; for example, d = 1 ∩ ψ = 0 corresponds to the pure (possibly heteroskedastic) random walk
hypothesis, while d = 0 ∩ ψ = 0 yields a martingale difference sequence.
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The null hypothesis in (13) can be tested using the familiar Wald statistic,

WT := Tf(θ̂)′(F (θ̂)ĈF (θ̂)′)−1f(θ̂), (15)

rejecting H0 in favour of H1 : ξ = 0 for large values of WT . Where only a single restriction is being
tested, so that q = 1, one can also use the t-type statistic

tT :=

√
Tf(θ̂)√

F (θ̂)ĈF (θ̂)′
(16)

with H0 rejected in favour of H1 for large absolute values of this statistic. The statistic in (16) can
also be used to test H0 against one-sided alternatives of the form H1,L : ξ < 0 and H1,U : ξ > 0 by
rejecting for large negative and large positive values of tT , respectively. A familiar special case of
tT in (16) which obtains for testing the simple null hypothesis that the i’th element of θ is equal to
some hypothesised value mi, H0,i : θi−mi = 0 say, is given by ti,T := T 1/2(θ̂i −mi)/(Ĉii)

1/2, which
again can be performed as either a one-sided or two-sided test.

The asymptotic distributions of WT and tT under H0 follow immediately from Theorems 1 and
2, which we state as a corollary.

Corollary 1. Let the conditions of Theorem 1 hold. Then, under H0 of (13) and provided F (θ0)
is of full row rank, WT

w→ χ2(q) and tT
w→ N(0, 1).

As an obvious consequence of Corollary 1, critical regions for the tests are found from standard
tables, and hence the tests are easily implemented in practice.

We proceed to discuss asymptotic local power and optimality of the tests under the assumption
that zt is Gaussian; c.f. Remark 3.9 relating to efficiency of the estimator. The following corollary
is implied by Theorems 1 and 2 and Le Cam’s Third Lemma.

Corollary 2. Let the conditions of Theorem 1 hold and assume also that zt is Gaussian. Then,
under H1,T of (14) and provided F (θ0) is of full row rank, it holds that a one-sided test based
on the tT statistic is asymptotically uniformly most powerful (UMP) while a two-sided test based
on tT will be an asymptotically UMP unbiased. Specifically, WT

w→ χ2
q

(
δ′(F (θ0)B−1

0 F (θ0)′)−1δ
)

and tT
w→ N(δ(F (θ0)B−1

0 F (θ0)′)−1/2, 1), where χ2
q(g) indicates a noncentral χ2

q distribution with
non-centrality parameter g.

Remark 4.1. As with Remark 3.9, Corollary 2 imposes Gaussianity, and hence conditional ho-
moskedasticity, on zt, so that A0 = B0 and C0 = B−1

0 . Consequently, the limiting distributions
given in Corollary 2 for the WT and tT statistics, and as a result the asymptotic local power functions
of the tests based on these statistics, coincide with those which would obtain for the corresponding
statistics in the homoskedastic Gaussian case, and the optimality statements follow. That is, even
in the presence of heteroskedasticity of the form in Assumption 1(b), and regardless of the value of
λ, the tests based on WT and tT achieve the same asymptotic local power as in the homoskedastic
Gaussian case. Examples of these asymptotic local power functions, showing the impact of λ, are
graphed in Cavaliere et al. (2015). ♦

Remark 4.2. Asymptotically pivotal test statistics can also be constructed based on the QML
estimator, θ̃, using the sandwich estimator C̃ defined as in (12), but with QT (θ) given by (4) and
qt(θ) = εt(θ)

2 and evaluated at θ = θ̃. It is shown in Theorem 2 of CNT that if Xt is generated

according to (1) under Assumptions 1–5 then C̃ − λC0
p→ 0. Consequently, defining W̃T and t̃T as

in (15) and (16) but now based on θ̃ and C̃, it follows that, under the additional assumption that zt
is Gaussian, W̃T

w→ χ2
q

(
λ−1δ′(F (θ0)B−1

0 F (θ0)′)−1δ
)

and t̃T
w→ N(λ−1/2δ(F (θ0)B−1

0 F (θ0)′)−1/2, 1).
It is seen from a comparison with the results in Corollary 2 that the noncentrality parameters of
tests based on our ACSS estimator are larger than those based on the QML estimator by a factor
of λ ≥ 1 (for WT ) or λ1/2 ≥ 1 (for tT ) and so asymptotic local power is correspondingly higher. ♦
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Remark 4.3. Although possessing standard limiting null distributions, cf Corollary 1, it is seen
from the results in Corollary 2 that tests based on WT and tT will have asymptotic local power
functions that depend on any weak dependence present in ut. ♦

4.3 Bootstrap Methods

As an alternative to the asymptotic approach to forming confidence regions for θ outlined in Section
4.1, we now consider bootstrap-based methods of constructing confidence regions for θ. We will
subsequently also explore bootstrap implementations of the robust Wald and t tests from Section 4.2.
To that end, we first outline our proposed bootstrap algorithm. Because we allow for the presence of
conditional heteroskedasticity under Assumption 1, we use a wild bootstrap-based approach (Wu,
1986). Specifically, with ε̂t := εt(θ̂) denoting the residuals based on the ACSS estimate, θ̂, we
construct the bootstrap innovations ε∗t := ε̂twt, where wt, t = 1, ..., T , is an i.i.d. sequence with
E(wt) = 0, E(w2

t ) = 1 and E(w16
t ) <∞, setting ε∗t = 0 for t ≤ 0. Then the bootstrap sample {X∗t }

is generated from the recursion

X∗t := ∆−d̂+ u∗t with u∗t := a(L, ψ̂)ε∗t , t = 1, ..., T, (17)

and the bootstrap ACSS estimator is given by

θ̂∗ := arg min
θ∈Θ

Q̂∗T (θ), Q̂∗T (θ) := T−1
T∑
t=1

ε∗t (θ)
2

σ̂∗2t
, (18)

where

ε∗t (θ) :=

t−1∑
n=0

bn(ψ)∆d
+X

∗
t−n (19)

and σ̂∗2t is defined as the estimator (8) computed from the residuals ε̃∗t := ε∗t (θ̃
∗) with θ̃∗ denoting

the preliminary standard QML estimator computed on the bootstrap sample.

Remark 4.4. The assumption that E(w16
t ) < ∞ is not restrictive in practice as it is satisfied

by all common choices of the distribution of wt, e.g., Gaussian, Rademacher, and other two-point
distributions (Mammen, 1993, or Liu, 1988). ♦

Remark 4.5. Notice that θ̂∗ employs an unrestricted estimate of θ in constructing the bootstrap
data. Because the bootstrap data generating process is then based on θ̂, it is the distribution of√
T (θ̂∗ − θ̂), conditional on the original data, that will be used to approximate that of

√
T (θ̂ − θ0).

As is standard, the former can be approximated numerically to any desired degree of accuracy. ♦

Remark 4.6. An alternative to θ̂∗ is to calculate the following bootstrap estimator,

θ̌∗ := arg min
θ∈Θ

Q̌∗T (θ), Q̌∗T (θ) := T−1
T∑
t=1

ε∗t (θ)
2

σ̂2
t

, (20)

where σ̂2
t is the kernel-based estimator of σ2

t computed on the original data. In contrast, θ̂∗ is based
on the bootstrap analogue of the adaptive estimator, σ̂∗2t . The alternative estimator (20) has the
advantage of being computationally significantly less intensive than θ̂∗ because it eliminates the
need to calculate the preliminary QML estimator on each bootstrap sample. All of the large sample
results given below for θ̂∗ also hold for θ̌∗. ♦

We are now in a position to establish the large-sample distribution theory for θ̂∗ and its com-
putationally simpler analogue, θ̌∗. By analogy to the use of Ĉ to estimate C0 in the case of the
original data, we also consider the bootstrap analogue of Ĉ, defined as

Ĉ∗ :=

(∂2Q̂∗T (θ)

∂θ∂θ′

)−1(
T−1

T∑
t=1

∂q∗t (θ)

∂θ

∂q∗t (θ)

∂θ′

)(
∂2Q̂∗T (θ)

∂θ∂θ′

)−1
∣∣∣∣∣∣

θ=θ̂∗

(21)
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with q∗t (θ) :=
ε∗t (θ)2

σ̂∗2t
. The variance estimator corresponding to θ̌∗, denoted Č∗, is defined accordingly.

Theorem 3. Let Assumptions 1–7 be satisfied and assume that θ0 ∈ int(Θ). Then,

√
T (θ̂∗ − θ̂) w

∗
→p N(0, C†0) and Ĉ∗

p∗→p C
†
0, (22)

where C†0 := B−1
0 A†0B

−1
0 with A†0 :=

∑∞
n=1 τn,n

[
n−2 −γn(ψ0)′/n

−γn(ψ0)/n γn(ψ0)γn(ψ0)′

]
. Furthermore,

√
T (θ̌∗ − θ̂∗) p∗→p 0 and Č∗ − Ĉ∗ p

∗
→p 0. (23)

The large sample result in (22) can be used as a basis for developing asymptotically valid
bootstrap confidence regions and hypothesis tests for θ. We describe these for θ̂∗ in the following
remarks; corresponding results for θ̌∗ follow entirely analogously.

Remark 4.7. It is immediately seen from a comparison of the limiting covariance matrices which
appear in (11) and (22) that bootstrap confidence regions for θ based on non-studentized quantities

will be (asymptotically) valid provided C†0 = C0; that is, when τr,s = 0 for r 6= s, so that A†0 = A0.
This additional condition rules out certain asymmetries in the fourth-order moments of zt, but
importantly does not place any restrictions on the third-order moments of zt and hence does not
restrict leverage, see also Remark 2.1. As an example, in the case where θ is a scalar parameter,
letting θ̂∗(α) denote the α percent quantile of the bootstrap distribution of θ̂∗, the asymptotic (1 −
α)%-level näıve (or basic) and percentile bootstrap confidence intervals for θ are given by [2θ̂ −
θ̂∗(1−α/2); 2θ̂ − θ̂∗(α/2)] and [θ̂∗(α/2), θ̂

∗
(1−α/2)], respectively. ♦

Remark 4.8. The additional condition in Remark 4.7 can be avoided by bootstrapping pivotal
statistics such as the studentized quantities WT of (15) and tT of (16), as will be considered in
Remark 4.9 to follow, or studentized bootstrap confidence intervals. Because Ĉ∗ converges to the
correct limiting variance as shown in (22), the fact that C0 6= C†0 is inconsequential for the validity of
bootstrap procedures as long as these are properly studentized. For example, letting t∗(α) and |t∗|(α)

denote the α percent quantiles of the bootstrap distributions of t∗i,T = T 1/2(θ̂∗i−θ̂i)/(Ĉ∗ii)1/2 and |t∗i,T |,
respectively, the asymptotic (1 − α)%-level equal-tailed and symmetric studentized (or percentile-
t) bootstrap confidence intervals for θi are [θ̂i − t∗(1−α/2)T

−1/2(Ĉii)
1/2; θ̂i − t∗(α/2)T

−1/2(Ĉii)
1/2] and

[θ̂i − |t∗|(1−α)T
−1/2(Ĉii)

1/2; θ̂i + |t∗|(1−α)T
−1/2(Ĉii)

1/2], respectively. As these intervals are based
on studentized quantities, they do not require any additional conditions, and their (asymptotic)
validity follows immmediately from Theorem 3 under the conditions stated there. ♦

Remark 4.9. Wild bootstrap analogues of the robust WT and tT statistics of (15) and (16),
respectively, are given by

W ∗T := T (f(θ̂∗)− f(θ̂))′(F (θ̂∗)Ĉ∗F (θ̂∗)′)−1(f(θ̂∗)− f(θ̂)) (24)

and

t∗T :=

√
T (f(θ̂∗)− f(θ̂))√
F (θ̂∗)Ĉ∗F (θ̂∗)′

. (25)

It is immediate from Theorem 3 that these statistics attain the same first order limiting distributions
as those attained under the null hypothesis by their non-bootstrap counterparts. This implies that
the wild bootstrap tests based on W ∗T and t∗T will have correct asymptotic size regardless of any
conditional or unconditional heteroskedasticity (satisfying Assumption 1) present in εt and hence
establishes their (asymptotic) validity. Again this result does not require the additional condition
in Remark 4.7. ♦

12



5 Monte Carlo Simulations

We report results from a simulation study comparing the finite sample properties of confidence inter-
vals based on the asymptotic and bootstrap theory described above, in the context of a fractionally
integrated process allowing for autocorrelation and both homoskedastic and heteroskedastic errors.

5.1 Monte Carlo Setup

The Monte Carlo data are simulated from the model in (1) with ut generated according to either
an AR(1) or an MA(1) process; that is ut will satisfy either (26) or (27):

(1− aL)ut = εt, (26)

ut = (1 + bL)εt, (27)

where in each case the structure of the innovations εt = σtzt will be defined below. Our focus will be
on investigating the finite sample behaviour of confidence intervals for the long memory parameter,
d. We set d0 = 0 in what follows with no loss of generality.

We report results for asymptotic confidence intervals based on the QML estimator (reported
under d̃) and the corresponding ACSS estimator (reported under d̂). For the latter, σ̂t was estimated
using the Gaussian kernel and with the bandwidth parameter chosen by cross-validation as outlined
in Remark 3.5. In each case the confidence intervals were based on robust standard errors, using C̃
and Ĉ (as defined in Remark 4.2 and (12)) for the QML and ACSS estimators, respectively. We also
report results for symmetric studentized (or percentile-t) wild bootstrap intervals (see Remark 4.8
or Gonçalves and Kilian, 2004, p. 100) based on the QML estimator (reported under d̃∗) and based
on the ACSS estimator. In the latter case, we report results based on (20) (reported under ď∗) as
well as results based on (18). For the results based on (18), the bandwidth is either re-determined
by cross-validation for each bootstrap replication (reported under d̂∗1) or the bandwidth is simply
chosen to be the same as that used for the original sample (reported under d̂∗2). For each method,
we report the coverage percentage and the median length (across the Monte Carlo replications) of
the confidence interval for d based on 10, 000 Monte Carlo replications. All of these methods of
interval estimation are asymptotically pivotal for each of the models we will consider here.

Results are reported for samples of size T = 100, 250 and 500. All confidence intervals are
nominal 90% intervals. The variance estimators required in, for example, (12) were implemented
using numerical derivatives. For the bootstrap implementations, we used 999 bootstrap replications
and the i.i.d. sequence wt for the wild bootstrap was chosen as the simple two-point distribution
P (wt = −1) = P (wt = 1) = 0.5, which we found to perform slightly better than other standard
choices of wt made in the bootstrap literature.

5.2 Results With Heteroskedastic, Uncorrelated Errors

We consider first the case where the shocks are not autocorrelated (i.e., a = b = 0, such that ut = εt)
and analyse the impact of heteroskedasticity on the confidence intervals, uncontaminated by the
influence of autocorrelation in ut.

The unconditional volatility process is generated according to the deterministic one-shift volatil-
ity process, σt = υ1+(υ2−υ1)I(t ≥ τT ); i.e., there is an abrupt single shift in the variance from υ2

1 to
υ2

2 at time τT , for some τ ∈ (0, 1). In this example, λ = (τ+(1−τ)(υ2/υ1)2)−2(τ+(1−τ)(υ2/υ1)4).
This function is graphed in Xu and Phillips (2008, p. 270), whereby it is seen that the variance
of the QML estimator will be least inflated by either early positive (υ2/υ1 > 1) or late negative
(υ2/υ1 < 1) breaks, but most inflated by either early negative or late positive breaks. Without
loss of generality we normalise υ2

1 = 1. We let the break date vary among τ ∈ {1/4, 3/4} and the
ratio υ := υ2/υ1 among υ ∈ {1/3, 1, 3}. Note that υ = 1 corresponds to homoskedastic errors.
These values of τ and υ are motivated by the so-called Great Moderation and the recent Great
Recession, as mentioned in the introduction, suggesting a decline in volatility early in the sample
and an increase in volatility late in the sample, respectively.

The results with uncorrelated errors are presented in Table 1. We consider the following three
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models for {zt}, in each case with {et} forming an i.i.d. standard normal sequence:

Panel A : zt = et,

Panel B : zt = h
1/2
t et, ht = 0.1 + 0.2z2

t−1 + 0.79ht−1,

Panel C : zt = et exp(ht), ht = 0.936ht−1 + 0.424vt, (vt, et) ∼ N(0, I2).

Thus, Panel A relates to the case where zt is conditionally homoskedastic, while Panels B and C
contain results pertaining to conditionally heteroskedastic GARCH(1,1) and first-order autoregres-
sive stochastic volatility [ARSV] specifications for zt, respectively. These generating mechanisms
and parameter values are taken from Gonçalves and Kilian (2004), where empirical evidence docu-
menting their practical relevance is also presented. When zt follows either a GARCH or an ARSV
process, we simulate T + 100 values and discard the first 100 as initialization.

Consider first the results in the first three rows of Panels A, B and C where εt is unconditionally
homoskedastic (υ = 1). In this case, all of the reported confidence intervals have coverage rates which
lie reasonably close to the nominal 90% level, albeit the standard QML estimator with asymptotic
standard errors (d̃) has a coverage rate somewhat below the nominal level for T = 100, but the wild
bootstrap-based confidence interval (d̃∗) rectifies this. Here there is also little to choose between
the median confidence interval lengths, each of which decreases as the sample size increases, as
would be expected given the consistency of both the QML and ACSS estimates. Where conditional
heteroskedasticity is present the confidence intervals based on asymptotic standard errors do not
perform as well, most notably where εt displays ARSV, with coverage rates consistently below the
nominal level, increasingly so the smaller the sample size and for QML vis-à-vis ACSS. With one
exception, the corresponding bootstrap confidence intervals do a good job in correcting the coverage
rates. The exception is the wild bootstrap confidence interval for the ACSS estimate which uses
the same bandwidth in the bootstrap samples as was estimated on the original data (d̂∗2) which has
a coverage rate considerably in excess of the nominal level even for T = 500. For all methods, the
median length of the confidence intervals is larger under conditional heteroskedasticity than under
homoskedasticity.4 Comparing across methods, it is clear that the ACSS-based ď∗ and d̂∗1 intervals
perform similarly to one another and are clearly superior to both the wild bootstrap interval based
on the QML estimator (d̃∗) and also to d̂∗2, in that they deliver approximately correct coverage rates
and the smallest width intervals.

Consider next the results where unconditional heteroskedasticity is present in εt. Relative to the
unconditionally homoskedastic results, we see a clear deterioration in finite sample coverage rates
for the standard QML estimator with asymptotic standard errors. Other things equal, it performs
worst where λ is largest. Its performance is particularly poor in the case where zt is also an ARSV
process (Panel C); here, even for T = 500, the coverage rate is still only around 84%. The ACSS
estimator with asymptotic standard errors displays significantly better finite sample coverage, albeit
coverage rates under ARSV zt are also significantly below the nominal level. For both the QML
and ACSS estimators, these effects are considerably ameliorated when implemented with a wild
bootstrap. Amongst the wild bootstrap confidence intervals, the ACSS-based interval where the
bandwidth is determined in each bootstrap sample using cross validation (d̂∗1) performs best with
an empirical coverage rate very close to the nominal level throughout. The median length of the
QML-based confidence intervals are, other things equal, inflated (often considerably so) the larger
the value of λ, consistent with the impact of unconditional heteroskedasticity on the asymptotic
variance matrix of the QML estimate; see (5). To illustrate, in the case where zt is IID (Panel
A) the median length of the wild bootstrap confidence interval based on d̃ (T = 100) increases
from 0.274 under unconditional homoskedasticity to 0.430 when a late positive break in variance
occurs. In contrast, the median length of the confidence intervals based on the ACSS estimator
appear relatively unaffected by unconditional heteroskedasticity, as anticipated by Theorems 1 and
3. Notice also that, consistent with the large sample theory, the ratio of the median length of

4Recall from the results in (5) and Theorem 1 that the asymptotic variance of the limiting distributions of d̃ and
d̂ depend, in general, on any conditional heteroskedasticity present in zt.
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Table 1: Simulation results with uncorrelated errors, 90% nominal intervals

Empirical coverage rate (%) Median length

τ υ T θ̃ θ̃∗ θ̂ θ̌∗ θ̂∗1 θ̂∗2 θ̃ θ̃∗ θ̂ θ̌∗ θ̂∗1 θ̂∗2

Panel A: IID errors

1 100 88.7 89.8 89.1 90.2 89.8 90.5 0.265 0.274 0.269 0.278 0.276 0.281
1 250 89.0 89.4 89.2 89.6 89.5 89.8 0.166 0.167 0.167 0.168 0.168 0.169
1 500 90.2 90.5 90.3 90.4 90.4 90.5 0.116 0.117 0.117 0.117 0.117 0.118

1/4 1/3 100 85.9 89.4 88.6 90.3 89.8 92.5 0.358 0.405 0.282 0.295 0.293 0.319
1/4 1/3 250 88.0 89.9 89.6 90.0 90.0 91.8 0.239 0.253 0.172 0.174 0.174 0.183
1/4 1/3 500 88.8 89.8 89.5 89.6 89.6 91.0 0.173 0.178 0.119 0.120 0.120 0.124
1/4 3 100 88.0 89.3 88.6 89.9 89.5 91.2 0.295 0.310 0.292 0.304 0.301 0.317
1/4 3 250 88.7 89.2 88.7 89.1 89.0 90.4 0.185 0.188 0.176 0.179 0.178 0.184
1/4 3 500 90.2 90.6 90.0 90.2 90.1 90.8 0.130 0.131 0.121 0.122 0.122 0.125
3/4 1/3 100 88.3 89.6 88.8 90.4 89.8 91.3 0.288 0.302 0.280 0.293 0.289 0.305
3/4 1/3 250 89.4 90.0 89.9 90.2 90.1 91.1 0.183 0.186 0.173 0.175 0.175 0.180
3/4 1/3 500 89.4 89.7 89.5 89.6 89.5 90.3 0.129 0.129 0.120 0.120 0.120 0.123
3/4 3 100 85.5 89.0 88.7 90.4 90.0 92.8 0.378 0.430 0.295 0.307 0.306 0.333
3/4 3 250 87.8 89.5 89.7 90.1 89.9 91.9 0.246 0.261 0.176 0.178 0.178 0.188
3/4 3 500 88.4 89.3 89.3 89.5 89.4 90.8 0.175 0.181 0.121 0.121 0.121 0.126

Panel B: GARCH errors

1 100 87.3 89.8 88.8 90.2 90.3 92.8 0.310 0.333 0.290 0.303 0.302 0.328
1 250 88.2 89.5 89.8 90.3 90.3 93.8 0.216 0.226 0.180 0.183 0.183 0.205
1 500 88.7 89.6 89.4 89.7 89.7 94.0 0.168 0.174 0.125 0.126 0.126 0.144

1/4 1/3 100 85.2 89.0 87.6 89.7 89.6 92.8 0.366 0.416 0.284 0.304 0.302 0.342
1/4 1/3 250 87.4 89.6 89.5 90.3 90.1 93.9 0.259 0.281 0.179 0.182 0.182 0.206
1/4 1/3 500 88.3 90.0 89.6 89.9 89.9 94.0 0.201 0.211 0.124 0.125 0.125 0.142
1/4 3 100 87.2 89.6 88.0 89.7 89.6 92.7 0.336 0.365 0.302 0.318 0.317 0.354
1/4 3 250 87.9 89.5 89.3 89.8 89.9 93.3 0.230 0.242 0.183 0.186 0.186 0.210
1/4 3 500 88.4 89.6 89.4 89.5 89.3 94.1 0.180 0.186 0.127 0.127 0.128 0.145
3/4 1/3 100 86.3 89.0 87.3 89.6 89.4 92.4 0.324 0.352 0.284 0.302 0.300 0.333
3/4 1/3 250 88.2 89.8 89.5 90.4 90.3 93.8 0.227 0.239 0.177 0.180 0.180 0.203
3/4 1/3 500 88.8 89.9 89.2 89.5 89.6 93.9 0.177 0.183 0.124 0.124 0.125 0.142
3/4 3 100 85.2 89.1 87.8 89.7 89.5 93.1 0.391 0.448 0.302 0.319 0.319 0.363
3/4 3 250 87.3 89.7 88.8 89.3 89.5 93.4 0.268 0.290 0.184 0.188 0.188 0.214
3/4 3 500 87.9 89.5 89.6 89.8 90.1 94.2 0.206 0.217 0.127 0.128 0.128 0.147

Panel C: SV errors

1 100 82.8 88.2 84.0 88.7 88.9 92.3 0.410 0.489 0.306 0.345 0.348 0.406
1 250 83.6 88.2 86.1 88.9 89.5 94.1 0.325 0.375 0.181 0.195 0.199 0.251
1 500 84.9 89.1 87.2 88.7 89.7 95.2 0.270 0.305 0.117 0.122 0.125 0.167

1/4 1/3 100 82.2 88.0 83.8 88.9 89.6 92.5 0.421 0.517 0.280 0.324 0.328 0.383
1/4 1/3 250 83.3 88.5 85.7 88.6 89.5 94.1 0.339 0.400 0.168 0.182 0.189 0.239
1/4 1/3 500 84.1 88.8 87.1 88.7 90.0 95.6 0.289 0.334 0.111 0.116 0.121 0.168
1/4 3 100 83.3 88.2 84.3 88.7 88.8 92.5 0.422 0.507 0.317 0.356 0.360 0.424
1/4 3 250 84.4 88.7 86.0 88.5 89.3 94.1 0.334 0.387 0.188 0.200 0.205 0.258
1/4 3 500 84.7 89.1 87.0 88.6 89.7 95.5 0.282 0.322 0.122 0.127 0.131 0.175
3/4 1/3 100 82.5 87.9 83.6 88.6 89.0 92.4 0.408 0.493 0.279 0.323 0.327 0.381
3/4 1/3 250 84.0 89.0 85.5 88.7 89.7 94.2 0.327 0.382 0.167 0.181 0.185 0.236
3/4 1/3 500 84.3 88.6 86.6 88.4 89.4 95.1 0.279 0.319 0.108 0.114 0.118 0.161
3/4 3 100 82.0 88.3 84.6 88.8 89.1 92.9 0.440 0.534 0.325 0.367 0.373 0.435
3/4 3 250 84.0 88.8 86.6 89.1 90.0 94.4 0.348 0.412 0.191 0.203 0.209 0.264
3/4 3 500 84.0 88.7 87.1 88.9 89.9 95.3 0.294 0.340 0.124 0.129 0.133 0.180

Notes: The table reports empirical coverage percentage and median length of confidence intervals for d based on
10,000 replications. The reported intervals are based on the QML estimator with robust standard errors (θ̃), the wild
bootstrap equivalent (θ̃∗), the ACSS estimator (θ̂), the wild bootstrap ACSS in (20) (θ̌∗), the wild bootstrap ACSS
estimator in (18), where the bandwidth is re-determined for each bootstrap sample (θ̂∗1), and the wild bootstrap ACSS
in (18), using the bandwidth from the original sample on each bootstrap sample (θ̂∗2). The bootstrap intervals are
symmetric studentized bootstrap confidence intervals as described in Remark 4.8, based on 999 bootstrap replications.
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the wild bootstrap confidence intervals based on d̃∗ (QML) and d̂∗1 (ACSS) is approximately unity,
regardless of T , when υ = 1 (such that

√
λ = 1), and is 1.41, 1.47 and 1.50 for T = 100, 250 and

500, respectively, in the late positive break case (where
√
λ ≈ 1.53).

5.3 Results With Heteroskedastic, Autocorrelated Errors

Table 2 reports results for cases where ut can display both weak parametric autocorrelation and het-
eroskedasticity. Specifically, ut is generated according to either (26) or (27) with a, b ∈ {−0.8, 0, 0.8}.
The reported cases where either a = 0 or b = 0 correspond to the situation where an AR(1) or
MA(1) specification is estimated, respectively, even though it is not present in the data generating
process. Results are given for where εt is either IID (Panel A) or displays an early negative (Panel
B) or late positive (Panel C) break in is unconditional variance.

Relative to the results in Table 1, autocorrelation can be seen to have a significant impact on
both the coverage rate and median length of the confidence intervals. For both the QML and ACSS
estimators, coverage rates based on asymptotic standard errors are not as accurate (relative to the
corresponding results in Table 1) when autocorrelation is either present and modelled or not present
but allowed for in the estimated model. For example, where a = 0 (so that an AR(1) is modelled but
not actually present in the data) the coverage rates for d̃ and d̂ are both 83.7% when T = 100 in the
homoskedastic case compared to 88.7% and 89.1%, respectively, in the corresponding case in Table
1. Where autocorrelation is present, the empirical coverage rates of d̃ and d̂ can lie significantly
below the nominal level. This is seen most obviously for the cases where ut is either positively
autocorrelated (a = 0.8) or follows a negative moving average (b = −0.8). To illustrate, when
b = −0.8 the coverage rates for d̃ and d̂ are around 70% when T = 100, regardless of whether εt is
homoskedastic or contains a break in variance. As with the impact of conditional heteroskedasticity,
the wild bootstrap considerably improves the coverage rates of the confidence intervals, albeit in
the most problematic cases above (a = 0.8 and b = −0.8) the wild bootstrap tends to rather over
correct such that the resulting confidence intervals are somewhat too liberal.

Turning to confidence interval width, as with the presence of conditional heteroskedasticity, the
median lengths of the confidence intervals are seen to vary with a and b, again as expected given
the results for the QML and ACSS estimates in (5) and Theorem 1, respectively. The confidence
intervals are considerably wider when either a = 0.8 or b = −0.8 than when a = −0.8 or b = 0.8.
Controlling for the impact of autocorrelation, however, the results in Table 2 reveal qualitatively
similar conclusions to those drawn from the results in Table 1; that is, the efficiency gains from
basing confidence intervals around the ACSS estimator, d̂, rather than the QML estimator, d̃ are
clearly visible when unconditional heteroskedasticity is present in εt. As with the conclusions drawn
from Table 1, the ACSS-based interval with the bandwidth determined in each bootstrap sample
using cross validation (d̂∗1) appears to deliver the best overall performance.

6 Data Examples

We now apply the methods discussed in this paper to a variety of data sets. All bootstrap confidence
intervals were based on 999 replications using the Rademacher distribution for wt. For each data set
an ARFIMA(p,d,0) model was fitted to the data with p chosen by a forward search algorithm starting
from p = 0 (p = 12 for the sunspots data which includes a clear seasonal pattern) sequentially
increasing p by one until the additional lag was deemed statistically insignificant (at the nominal
asymptotic 10% level) using the appropriate form of the statistic tT in (15). Additional graphical
analysis of the residuals from the chosen models for each data set along with formal statistical tests
for heteroskedasticity are reported in Supplementary Materials C.

6.1 Physical Data

The first data set we consider is the monthly mean sunspot number observed for 1749:1 to 2005:2.
The data are plotted in Figure 1(a) and were obtained from the NOAA Earth System Research Lab-
oratory time-series database (www.esrl.noaa.gov/psd/gcos wgsp/Timeseries/SUNSPOT/). The results
in Supplementary Materials C highlight strong evidence of conditionally heteroskedastic behaviour
in these data as well as evidence of unconditional heteroskedasticity. The ACSS estimate of d re-
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Table 2: Simulation results with AR or MA errors, 90% nominal intervals

Empirical coverage rate (%) Median length

a b T θ̃ θ̃∗ θ̂ θ̌∗ θ̂∗1 θ̂∗2 θ̃ θ̃∗ θ̂ θ̌∗ θ̂∗1 θ̂∗2

Panel A: No break, υ = 1

0.0 100 83.7 91.3 83.7 91.5 91.2 91.4 0.432 0.622 0.438 0.637 0.626 0.630
0.0 250 88.8 91.4 88.8 91.6 91.4 91.7 0.270 0.282 0.272 0.284 0.283 0.285
0.0 500 89.2 89.5 89.2 89.5 89.6 89.8 0.189 0.191 0.190 0.191 0.190 0.192
−0.8 100 88.3 89.8 88.8 90.2 89.8 90.4 0.284 0.300 0.289 0.304 0.301 0.306
−0.8 250 89.0 89.5 89.2 89.7 89.6 90.1 0.176 0.180 0.177 0.181 0.180 0.182
−0.8 500 89.7 89.9 89.8 89.9 90.0 90.0 0.124 0.125 0.124 0.125 0.125 0.126

0.8 100 76.4 96.8 76.8 96.9 96.9 97.1 0.461 0.921 0.466 0.941 0.922 0.941
0.8 250 79.3 96.4 79.5 96.3 96.4 96.5 0.349 0.619 0.350 0.623 0.617 0.625
0.8 500 82.8 95.6 82.8 95.7 95.7 95.8 0.282 0.414 0.283 0.416 0.415 0.416

0.0 100 87.3 90.2 87.5 90.6 90.2 90.7 0.445 0.488 0.453 0.501 0.492 0.503
0.0 250 89.8 90.4 90.0 90.5 90.5 90.6 0.272 0.274 0.274 0.275 0.275 0.278
0.0 500 89.7 89.6 89.7 89.6 89.7 89.7 0.189 0.189 0.190 0.189 0.189 0.190
−0.8 100 69.9 94.1 70.3 94.2 93.9 94.2 0.447 1.472 0.451 1.467 1.456 1.492
−0.8 250 74.1 93.7 74.3 93.9 93.7 93.9 0.353 0.942 0.355 0.949 0.945 0.947
−0.8 500 79.3 93.8 79.4 93.9 93.8 93.8 0.288 0.547 0.290 0.547 0.546 0.550

0.8 100 88.9 90.0 89.2 90.2 89.8 90.4 0.290 0.300 0.295 0.305 0.300 0.307
0.8 250 89.1 89.5 89.2 89.5 89.3 89.7 0.178 0.179 0.179 0.181 0.180 0.182
0.8 500 90.2 90.0 90.3 90.3 90.3 90.3 0.124 0.125 0.125 0.125 0.125 0.125

Panel B: Early break, τ = 1/4, υ = 1/3

0.0 100 77.7 89.5 82.5 92.4 91.9 93.3 0.512 0.791 0.427 0.629 0.610 0.645
0.0 250 84.7 92.6 88.8 91.6 91.3 92.9 0.370 0.457 0.276 0.293 0.291 0.306
0.0 500 87.9 91.2 89.4 89.7 89.4 90.8 0.272 0.294 0.192 0.194 0.193 0.201
−0.8 100 84.0 89.2 87.6 90.1 89.4 92.1 0.375 0.441 0.298 0.319 0.316 0.344
−0.8 250 87.5 89.8 89.3 90.1 89.9 91.7 0.253 0.273 0.183 0.187 0.186 0.197
−0.8 500 88.6 90.0 89.6 90.0 89.8 91.1 0.184 0.191 0.127 0.128 0.128 0.133

0.8 100 75.9 96.1 78.6 97.9 97.5 98.1 0.545 1.007 0.471 0.950 0.907 0.960
0.8 250 78.2 96.5 82.2 97.1 96.9 97.3 0.432 0.785 0.351 0.590 0.580 0.610
0.8 500 80.5 96.0 84.0 96.3 96.2 96.6 0.354 0.602 0.278 0.394 0.392 0.407

0.0 100 84.2 89.2 87.2 90.5 90.0 91.9 0.577 0.704 0.448 0.511 0.499 0.541
0.0 250 87.9 89.7 90.0 90.5 90.3 92.1 0.386 0.414 0.278 0.280 0.279 0.295
0.0 500 89.1 89.8 90.1 90.2 89.9 91.2 0.277 0.282 0.192 0.192 0.190 0.199
−0.8 100 70.8 93.2 69.8 93.4 93.2 93.8 0.518 1.812 0.440 1.353 1.333 1.507
−0.8 250 71.4 93.3 74.3 93.1 92.8 93.2 0.410 1.269 0.351 0.873 0.866 0.915
−0.8 500 73.4 92.4 79.7 93.5 93.5 93.8 0.344 0.869 0.285 0.506 0.502 0.525

0.8 100 86.7 89.3 89.0 90.3 89.7 92.5 0.391 0.431 0.305 0.318 0.313 0.343
0.8 250 87.8 89.2 89.4 89.5 89.4 91.4 0.257 0.269 0.185 0.186 0.185 0.196
0.8 500 88.6 89.2 90.2 90.2 90.1 91.3 0.184 0.188 0.128 0.128 0.128 0.133

Panel C: Late break, τ = 3/4, υ = 3

0.0 100 75.4 88.9 81.9 90.7 90.4 92.1 0.567 0.945 0.475 0.741 0.723 0.766
0.0 250 84.9 93.1 88.9 92.3 92.2 93.5 0.390 0.495 0.287 0.306 0.304 0.320
0.0 500 87.3 90.9 89.7 89.9 89.9 91.2 0.282 0.304 0.197 0.199 0.198 0.207
−0.8 100 84.1 88.7 87.9 89.7 89.8 92.3 0.401 0.472 0.316 0.337 0.333 0.365
−0.8 250 87.3 89.7 89.1 89.7 89.6 91.6 0.260 0.281 0.188 0.191 0.191 0.202
−0.8 500 88.2 89.5 89.2 89.7 89.6 91.1 0.186 0.194 0.129 0.130 0.130 0.135

0.8 100 73.8 97.0 75.2 97.1 97.0 97.5 0.572 1.188 0.491 1.053 1.029 1.119
0.8 250 76.2 96.4 78.5 96.1 96.0 96.5 0.437 0.854 0.363 0.677 0.669 0.707
0.8 500 78.1 95.7 82.0 95.6 95.7 96.0 0.362 0.648 0.290 0.446 0.442 0.463

0.0 100 81.2 89.4 86.0 90.6 90.2 92.4 0.627 0.886 0.499 0.592 0.579 0.633
0.0 250 87.9 90.3 90.0 91.0 90.7 92.6 0.407 0.445 0.291 0.295 0.292 0.310
0.0 500 89.0 90.0 90.0 89.9 89.7 91.1 0.287 0.294 0.197 0.197 0.196 0.205
−0.8 100 70.7 95.7 70.7 95.5 95.0 95.8 0.553 1.861 0.476 1.544 1.519 1.719
−0.8 250 71.0 94.9 73.7 94.1 94.1 94.5 0.428 1.400 0.365 1.026 1.014 1.088
−0.8 500 73.6 93.1 78.8 94.0 93.9 94.2 0.359 0.940 0.294 0.590 0.585 0.613

0.8 100 87.1 89.7 88.9 90.2 90.0 92.7 0.417 0.468 0.322 0.335 0.333 0.366
0.8 250 88.0 89.8 89.1 89.4 89.5 91.5 0.267 0.280 0.189 0.191 0.190 0.202
0.8 500 89.5 90.2 90.6 90.4 90.6 91.8 0.189 0.193 0.129 0.130 0.130 0.135

Notes: See notes to Table 1.
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Figure 1: Physical data
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Notes: Sunspots data is monthly 1749:1 to 2005:2 and CO2 data is annual 1900 to 2011.

Table 3: Physical Data
Asympt. WB1 WB2 WB3

d̂ seH(d̂) seR(d̂) CIL CIU CIL CIU CIL CIU CIL CIU
Panel A: Sunspots
QML 0.482 0.054 0.053 0.378 0.586 0.352 0.612
ACSS 0.448 0.049 0.034 0.381 0.514 0.378 0.518 0.377 0.518 0.371 0.524
Panel B: CO2

QML 0.326 0.076 0.078 0.173 0.480 0.141 0.512
ACSS 0.304 0.074 0.072 0.164 0.444 0.147 0.461 0.155 0.453 0.147 0.461

Notes: The sample sizes are T = 3074 (sunspots) and T = 111 (CO2). An ARFIMA(12,d,0) model was estimated

on the de-meaned sunspot data and an ARFIMA(0,d,0) model was estimated on the de-meaned first differenced CO2

data. seH(d̂) is the Hessian-based (non-robust) standard error of d̂; seR(d̂) is the robust standard error of d̂. WB1

does not re-estimate σt for each bootstrap replication; WB2 re-estimates σt for each bootstrap replication, estimating

the bandwidth parameter in each bootstrap replication using cross-validation; WB3 re-estimates σt for each bootstrap

replication using same bandwidth parameter as selected for the original data.

ported in Panel A of Table 3 is slightly lower than the QML estimate and the ACSS-based confidence
intervals are also smaller, consistent with the theoretical findings of the paper. The null hypothesis
that d = 0.5 cannot, however, be rejected based on any of the reported intervals.

Figure 1(b) plots annual data from 1900–2011 on global CO2 emissions from fossil-fuel burning,
cement manufacture, and gas flaring. The data were obtained from the Carbon Dioxide Information
Analysis Center. The data display a clear upward trend and, hence, we will analyse the first
differences of the data shown in Figure 1(c). The results in Supplementary Materials C again
highlight strong evidence of conditionally heteroskedastic behaviour in these data, but no significant
evidence of any unconditional heteroskedasticity. Both the ACSS and QML estimates of d, reported
in Panel B of Table 3 are smaller than 0.5 with the former lying further from 0.5 than the latter. The
ACSS-based confidence intervals are also smaller. Interestingly, the null hypothesis that d = 0.5 is
rejected, suggesting that the annual changes in CO2 emissions are weakly stationary, using the ACSS
wild bootstrap confidence intervals, but cannot be rejected the based on the QML wild bootstrap
interval.

6.2 Macroeconomic Data

We next analyse the three U.S. monthly macroeconomic data series considered in Patilea and Räıssi
(2014): the producer price index (PPI), the M1 monetary aggregate (M1), and the consumer price
index (CPI). The PPI and M1 series are observed for 1959:1–2012:9 and the CPI data for 1998:1–
2012:09. Graphs of these series and data descriptions can be found in Patilea and Räıssi (2014, p.
1108). Each of the series displays trending behaviour so, like Patilea and Räıssi (2014), we analyse
the first differences of the series. Patilea and Räıssi (2014, p. 1108) argue that these series display
conditional and unconditional heteroskedasticity and our data analysis in Supplementary Materials
C supports this view. All three series display strong evidence of conditional heteroskedasticity. For
the PPI and M1 data there is also strongly significant evidence of non-stationary volatility; in each
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Table 4: Macroeconomic Data
Asympt. WB1 WB2 WB3

d̂ seH(d̂) seR(d̂) CIL CIU CIL CIU CIL CIU CIL CIU
Panel A: PPI
QML 0.328 0.038 0.134 0.065 0.590 0.029 0.627
ACSS 0.363 0.030 0.028 0.308 0.417 0.308 0.412 0.306 0.419 0.287 0.439
Panel B: M1
QML 0.517 0.047 0.159 0.204 0.829 0.144 0.889
ACSS 0.656 0.045 0.045 0.567 0.745 0.559 0.753 0.561 0.750 0.559 0.752
Panel C: CPI
QML 0.003 0.054 0.066 −0.127 0.133 −0.140 0.146
ACSS 0.154 0.071 0.065 0.027 0.280 0.024 0.283 0.015 0.292 −0.014 0.321

Notes: Sample sizes are T = 644 for PPI and M1 and T = 176 for CPI, respectively. An ARFIMA(p,d,0) model was

estimated on the de-meaned first-differenced data with p = 0, p = 2, and p = 0 for PPI, M1 and CPI, respectively.

seH(d̂), seR(d̂), WB1, WB2 and WB3 are as described in the Note to Table 3.

case the residuals suggest a pattern of heteroskedasticity not dissimilar to a late positive increase
in the unconditional variance. For consumer price inflation (the first difference of CPI) there is
also evidence of unconditional heteroskedasticity, albeit weaker than for PPI and M1, resembling
an early negative shift in variance.

For the PPI and M1 series the confidence intervals for d obtained from the ACSS estimate are
considerably smaller than those obtained from the QML estimate, consistent with the Monte Carlo
results in Section 5 for the case of a late positive break in variance. Notably, for PPI (M1) all of the
ACSS based intervals for the first differenced data lie below (above) d = 0.5 while those for QML
all contain d = 0.5 for both series. For the inflation data, both the point estimates and confidence
intervals differ markedly between QML and ACSS estimation. For QML, the estimate is close to
zero with zero contained in all of the confidence intervals, suggestive that consumer price inflation
is a short memory process. In contrast, the results based on ACSS estimation suggest that inflation
displays positive (stationary) long memory.

7 Conclusions

In this paper we have discussed estimation and inference on the parameters of fractionally inte-
grated time series models driven by shocks which can display conditional and/or unconditional
heteroskedasticity. The asymptotic variance matrix of the limiting distribution of the standard
QML estimator is inflated under unconditional heteroskedasticity relative to the unconditionally
homoskedastic case. We have shown that an adaptive version of the QML estimator, based on
a non-parametric kernel-based estimator of the unconditional variance process, attains the same
asymptotic variance matrix when unconditional heteroskedasticity is present as the standard QML
estimator would achieve under unconditional homoskedasticity and, hence, achieves (asymptotic)
efficiency gains over the QML estimator. Under Gaussianity, the adaptive estimator is asymptoti-
cally efficient. We have shown that asymptotically pivotal inference based on the adaptive estimator
can be achieved through the development of confidence regions or hypothesis tests using either het-
eroskedasticity robust standard errors and/or a wild bootstrap, and that these deliver gains in
asymptotic efficiency/local power over their counterparts based on the standard QML estimator.
Monte Carlo simulation results reported suggest that the large sample advantages of basing confi-
dence intervals on adaptive methods carry over into finite samples. Empirical illustrations of the
proposed methods were given for a variety of data sets.
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Patilea, V. and H. Räıssi (2013), Corrected portmanteau tests for VAR models with time-varying
variance, Journal of Multivariate Analysis 116, 190–207.
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A.1 Introduction

This supplement contains the proofs of the theorems in our paper “Adaptive Inference in Het-
eroskedastic Fractional Time Series Models”. Equation references (A.n) for n ≥ 1 refer to equations
in these supplementary materials, equations (B.n) refer to equations in Supplementary Materials
B, and other equation references are to the main paper. Additional references are included at the
end of the supplement.

A.2 Proof of Theorem 1

The following lemma provides the technical results needed to prove our main theorems. Importantly,
we do not prove a (uniform) consistency result for the volatility function itself, such as supt |σ̂t−σt|

p→
0, but only for a smoothed average of the volatility function as in part (d) below. This is sufficient
for the proofs of the main theorems, and allows us to assume only that σ(·) is càdlàg, where, e.g.,
Hansen (1995) and Xu and Phillips (2008) need much stronger assumptions. The proof is given in
Section A.5.

Lemma A.1. Define σ̃2
t :=

∑T
i=1 ktiε

2
i and σ̄2

t :=
∑T

i=1 ktiσ
2
i . Then:

(a) Under Assumptions 1(b), 6, and 7, T−1
∑T

t=1(σ̄2
t − σ2

t )
2 = o(1),

(b) Under Assumptions 1 and 6, T−1
∑T

t=1(σ̃2
t − σ̄2

t )
2 = Op(T

−1b−1),

(c) Under Assumptions 1–3 and 6, T−1
∑T

t=1(σ̂2
t − σ̃2

t )
2 = Op(T

−3/2b−1),

(d) Under Assumptions 1–3, 6, and 7, T−1
∑T

t=1(σ2
t − σ̂2

t )
2 = op(1),

(e) Under Assumptions 1 and 6, T−1
∑T

t=1(σ̃2
t − σ̄2

t )
4 = Op(T

−2b−2),
(f) Under Assumptions 1–3, 6, and 7, max1≤t≤T σ̂

2
t = Op(1),

(g) Under Assumptions 1–3, 6, and 7, (min1≤t≤T σ̂
2
t )
−1 = Op(1), (min1≤t≤T σ̃

2
t )
−1 = Op(1), and

(min1≤t≤T σ̄
2
t )
−1 = Op(1).

A.2.1 Proof of consistency

As in other proofs of consistency for fractional time series models, e.g. Theorem 1 of CNT, the
parameter space Θ is partitioned into disjoint compact subsets; in this case Θ1 := Θ1(κ) = D1 ×Ψ
and Θ2 := Θ2(κ) = D2×Ψ, where D1 := D1(κ) = D ∩ {d : d− d0 ≤ −1/2 + κ} and D2 := D2(κ) =
D∩{d : d− d0 ≥ −1/2 +κ} for some constant κ ∈ (0, 1/2) to be determined later. Clearly, θ0 ∈ Θ2

and if d1 > d0 − 1/2 then the choice κ = d1 − d0 + 1/2 > 0 implies that Θ1 is empty in which case
the proof is easily simplified accordingly.

First we show that for any K > 0 there exists a (fixed) κ̄ > 0 such that

P ( inf
θ∈Θ1(κ̄)

Q̂T (θ) > K)→ 1 as T →∞, (A.1)

P ( inf
θ∈Θ1(κ̄)

Q̄T (θ) > K)→ 1 as T →∞. (A.2)

However, this follows easily from the lower bound Q̂T (θ) ≥ (max1≤s≤T σ̂
2
s)
−1T−1

∑T
t=1 εt(θ)

2, be-

cause (A.1) is proven for T−1
∑T

t=1 εt(θ)
2 in CNT and max1≤s≤T σ̂

2
s = Op(1) by Lemma A.1(f). It

follows that P (θ̂ ∈ Θ2(κ̄))→ 1 as T →∞, so that the relevant parameter space is reduced to Θ2(κ̄).
The same holds for (A.2).

We define also the objective function

Q̄0
T (θ) := T−1

T∑
t=1

 t−1∑
n=0

bn(ψ)
t−n−1∑
j=0

πj(d0 − d)
∞∑
m=0

am(ψ0)
εt−n−j−m
σt−n−j−m

2

,

where εt/σt = zt, from which it follows easily that arg minθ∈Θ Q̄
0
T (θ)

p→ θ0 by (5). In view of (A.1)
and (A.2), the desired results follow if, for any κ > 0,

sup
θ∈Θ2

|Q̂T (θ)− Q̄T (θ)| p→ 0 and sup
θ∈Θ2

|Q̄0
T (θ)− Q̄T (θ)| p→ 0. (A.3)
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For the first statement in (A.3) we find the difference

|Q̂T (θ)− Q̄0
T (θ)| =

∣∣∣∣∣T−1
T∑
t=1

εt(θ)
2 (σ2

t − σ̂2
t )

σ̂2
t σ

2
t

∣∣∣∣∣
≤ ( min

1≤t≤T
σ̂2
t σ

2
t )
−1

(
T−1

T∑
t=1

εt(θ)
4

)1/2(
T−1

T∑
t=1

(σ2
t − σ̂2

t )
2

)1/2

by the Cauchy-Schwarz inequality. The first term on the right-hand side is Op(1) by Lemma A.1(g)
and uniform strict positivity of σ2

t (Assumption 1(b)(ii)). For the second and third terms we apply
Lemmas B.3 and A.1(d), respectively.

To prove the second statement in (A.3) we decompose the residual as

εt(θ) =
t−1∑
j=0

φj(θ)εt−j + rt(θ), (A.4)

where the coefficients φj(θ) and remainder term rt(θ) are subject to the bounds in Lemma B.2. We
then split the infinite summation in Q̄0

T (θ) and find

Q̄T (θ)− Q̄0
T (θ) =T−1

T∑
t=1

t−1∑
j=0

φj(θ)
2ε2
t−j

σ2
t−j − σ2

t

σ2
t−jσ

2
t

(A.5)

+ 2T−1
T∑
t=1

t−1∑
k>j=0

φj(θ)φk(θ)εt−jεt−k
σt−jσt−k − σ2

t

σt−jσt−kσ
2
t

(A.6)

+ T−1
T∑
t=1

σ−2
t rt(θ)

2 − T−1
T∑
t=1

r̃t(θ)
2 (A.7)

+ 2T−1
T∑
t=1

t−1∑
j=0

σ−2
t φj(θ)εt−jrt(θ)− 2T−1

T∑
t=1

t−1∑
i=0

φi(θ)zt−ir̃t(θ), (A.8)

where r̃t(θ) is defined in the same way as rt(θ) but with zt replacing εt. For (A.5) we reverse the
order of the summations and find the bound

E sup
θ∈Θ2

|(A.5)| ≤ c
T−1∑
j=1

j−1−2κT−1
T∑

t=j+1

|σ2
t−j − σ2

t | → 0

using Lemma B.2 and Lemma B.1 with aj = j−1−2κ and bj,T = T−1
∑T

t=j+1 |σ2
t−j − σ2

t |, which, by
Cavaliere and Taylor (2009, Lemma A.1), satisfies the assumptions of Lemma B.1.

For (A.6) we apply summation by parts, noting that πn+1(d) − πn(d) = πn+1(d − 1) implies
φn+1(d, ψ)− φn(d, ψ) = φn+1(d− 1, ψ), see Lemma B.2, and then

T−1∑
k=j+1

φk(d0 − d, ψ)
T−1∑
t=k+1

εt−jεt−k
σt−jσt−k − σ2

t

σt−jσt−kσ
2
t

=φT (d0 − d, ψ)

T−1∑
k=j+1

T−1∑
t=k+1

εt−jεt−k
σt−jσt−k − σ2

t

σt−jσt−kσ
2
t

−
T−2∑
l=j+1

φl+1(d0 − d− 1, ψ)
l∑

k=j+1

T−1∑
t=k+1

εt−jεt−k
σt−jσt−k − σ2

t

σt−jσt−kσ
2
t

,

where
∑l

k=j+1

∑T−1
t=k+1 εt−jεt−k

σt−jσt−k−σ2
t

σt−jσt−kσ
2
t

=
∑T−1

t=k+1 εt−j
∑l

k=j+1 εt−k
σt−jσt−k−σ2

t

σt−jσt−kσ
2
t

=
∑T−1

t=k+1 vt,j,l
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and vt,j,l is a martingale difference sequence with variance of order l. It follows that E|
∑T−1

t=k+1 vt,j,l| ≤
cT 1/2l1/2, uniformly in k, j. Thus, using Lemma B.2 we obtain the bound

E sup
θ∈Θ2

|(A.6)| = E sup
θ∈Θ2

|T−1
T−1∑
j=0

φj(d0 − d, ψ)
T−1∑
k=j+1

φk(d0 − d, ψ)
T−1∑
t=k+1

εt−jεt−k
σt−jσt−k − σ2

t

σt−jσt−kσ
2
t

|

≤ cT−1
T−1∑
j=1

j−1/2−κT−1/2−κT + cT−1
T−1∑
j=1

j−1/2−κ
T−2∑
l=j+1

l−3/2−κT 1/2l1/2 ≤ cT−2κ.

For the proofs of (A.7) and (A.8), first note that σ−2
t rt(θ), rt(θ), and r̃t(θ) are clearly subject

to the same bounds due to Assumption 1(b), see Lemma B.2, and thus the same proof applies
to each term in (A.7) and to each term in (A.8). For (A.7) we find that E supθ∈Θ2

|(A.7)| ≤
cT−1

∑T
t=1 t

−1−2κ ≤ cT−1 by Lemma B.2, while for (A.8) we find

E sup
θ∈Θ2

|(A.8)| ≤ cT−1
T∑
t=1

t−1∑
j=0

j−1/2−κt−1/2−κ ≤ cT−2κ

by Lemma B.2. This proves the second statement in (A.3), and hence completes the proof.

A.2.2 Proof of asymptotic normality

We show that

sup
θ∈N (θ0)

∣∣∣∣∣∂2Q̂T (θ)

∂θ∂θ′
− ∂2Q̄T (θ)

∂θ∂θ′

∣∣∣∣∣ p→ 0 and sup
θ∈N (θ0)

∣∣∣∣∂2Q̄T (θ)

∂θ∂θ′
−
∂2Q̄0

T (θ)

∂θ∂θ′

∣∣∣∣ p→ 0, (A.9)

√
T
∂Q̂T (θ0)

∂θ
−
√
T
∂Q̄T (θ0)

∂θ

p→ 0 and
√
T
∂Q̄T (θ0)

∂θ
−
√
T
∂Q̄0

T (θ0)

∂θ

p→ 0, (A.10)

which together imply both (10) and (11) by (5). The proof of (A.9) follows by the same argument
as that of (A.3), noting that the derivatives add at most a logarithmic term, see (2) and Lemma
B.2.

To prove (A.10) we first decompose εt(θ0), similarly to (A.4), as

εt(θ0) = εt + rt, (A.11)

where rt is subject to the bound in Lemma B.2. We then let vt := εt
∂εt(θ0)
∂θ and find that

√
T
∂Q̂T (θ0)

∂θ
−
√
T
∂Q̄T (θ0)

∂θ
=2T−1/2

T∑
t=1

rt
∂εt(θ0)

∂θ
(σ̂−2
t − σ

−2
t ) (A.12)

+ 2T−1/2
T∑
t=1

vt(σ̂
−2
t − σ̃

−2
t ) (A.13)

+ 2T−1/2
T∑
t=1

vt(σ̃
−2
t − σ̄

−2
t ) (A.14)

+ 2T−1/2
T∑
t=1

vt(σ̄
−2
t − σ

−2
t ). (A.15)

For (A.12) we apply the Cauchy-Schwarz inequality and find that the i’th element satisfies

|(A.12)i| ≤ 2

(
T−1/2

T∑
t=1

r2
t

(
∂εt(θ0)

∂θi

)2
)1/2(

T−1/2
T∑
t=1

(σ̂−2
t − σ

−2
t )2

)1/2

,
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where the first term is Op(T
−1/4) by Lemma B.2 and the second term satisfies T−1/2

∑T
t=1(σ̂−2

t −
σ−2
t )2 ≤ (min1≤s≤T σ̂

2
sσ

2
s)
−2
∑T

t=1(σ2
t − σ̂2

t )
2 = op(T

1/2) by Lemma A.1(d),(g), so that |(A.12)i| =
op(1).

For (A.15) we note that vt(σ̄
−2
t −σ

−2
t ) is a martingale difference sequence so that the i’th element

satisfies

E(A.15)2
i = 4T−1

T∑
t=1

(Ev2
it)(σ̄

−2
t − σ

−2
t )2 ≤ 4( min

1≤s≤T
σ̄2
sσ

2
s)
−2(sup

t
Ev2

it)T
−1

T∑
t=1

(σ2
t − σ̄−2

t )2,

where we can apply Lemma A.1(a),(g) to the first and last terms on the right-hand side. Using the
decomposition (A.4) and the Cauchy-Schwarz inequality the middle term is

sup
t
Ev2

it = sup
t
Eε2

t

 t−1∑
j=0

∂φj(θ0)

∂θi
εt−j +

∂rt(θ0)

∂θi

2

≤ sup
t
c

t−1∑
j=1

(log j)2j−2σ2
t σ

2
t−jτj,j + sup

t
c

t−1∑
j>k=1

(log j)(log k)j−1k−1σ2
t σt−jσt−k|κ4(t, t, t− j, t− k)|

+ sup
t

(
Eε4

t

)1/2(
E

(
∂rt(θ0)

∂θi

)4
)1/2

+ sup
t

2Eε2
t

t−1∑
j=0

∂φj(θ0)

∂θi
εt−j

∂rt(θ0)

∂θi
≤ c (A.16)

by Assumption 1 and Lemma B.2.
Next, for (A.13) we apply the Cauchy-Schwarz inequality, so the i’th element is

(A.13)i ≤ 2

(
T−1

T∑
t=1

v2
it

)1/2( T∑
t=1

(σ̂−2
t − σ̃

−2
t )2

)1/2

,

where T−1
∑T

t=1 v
2
it = Op(1) by (A.16) and

∑T
t=1(σ̂−2

t − σ̃−2
t )2 ≤ (min1≤s≤T σ̂

2
s σ̃

2
s)
−2
∑T

t=1(σ̃2
t −

σ̂2
t )

2 = Op(T
−1/2b−1)

p→ 0 by Lemma A.1(c),(g) and Assumption 7.
Finally, we decompose the i’th element of (A.14) as

(A.14)i = 2T−1/2
T∑
t=1

vit(σ̄
2
t − σ̃2

t )σ̄
−4
t + 2T−1/2

T∑
t=1

vit(σ̄
2
t − σ̃2

t )
2σ̃−2
t σ̄−4

t . (A.17)

For the second term on the right-hand side we apply the Cauchy-Schwarz inequality,

2T−1/2
T∑
t=1

vit(σ̄
2
t − σ̃2

t )
2σ̃−2
t σ̄−4

t ≤ 2( min
1≤s≤T

σ̄4
s σ̃

2
s)
−1

(
T−1

T∑
t=1

v2
it

)1/2( T∑
t=1

(σ̄2
t − σ̃2

t )
4

)1/2

,

where the first two terms are Op(1) by Lemma A.1(g) and (A.16), while the last term is op(1) by
Lemma A.1(e) and Assumption 7. Using the decomposition (A.4), the first term on the right-hand
side of (A.17) is

2T−1/2
T∑
t=1

vit(σ̄
2
t − σ̃2

t )σ̄
−4
t =2T−1/2

T∑
t=1

(σ̄2
t − σ̃2

t )σ̄
−4
t

t−1∑
n=1

∂φn(θ0)

∂θi
εtεt−n (A.18)

+ 2T−1/2
T∑
t=1

(σ̄2
t − σ̃2

t )σ̄
−4
t εt

∂rt(θ0)

∂θi
. (A.19)
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For (A.19) we apply Hölder’s inequality and find

(A.19) ≤ 2T−1/2

(
T∑
t=1

σ̄−8
t (σ̄2

t − σ̃2
t )

2

)1/2( T∑
t=1

ε4
t

)1/4( T∑
t=1

(
∂rt(θ0)

∂θi

)4
)1/4

= 2T−1/2Op(b
−1/2)Op(T

1/4)Op(1) = Op(T
−1/4b−1/2) = op(1)

by Lemmas A.1(b),(g) and B.2 and Assumptions 1,7. Next, (A.18) has second moment

E(A.18)2 =4T−1
T∑

t,s=1

T∑
j1,j2=1

t−1∑
n=1

s−1∑
m=1

σ̄−4
t σ̄−4

s σtσsσt−nσs−mσ
2
j1σ

2
j2ktj1ksj2

∂φn(θ0)

∂θi

∂φm(θ0)

∂θi

× E(ztzszt−nzs−m(z2
j1 − 1)(z2

j2 − 1)).

By symmetry, we assume t ≥ s and j1 ≥ j2 such that also t > t − n and t > s − m, which by
Lemma B.4 leaves two possibilities: (i) t = s ≥ j1 and (ii) j1 ≥ t. The proofs for these cases are
nearly identical, so we prove only the first case. Here we find that E(z2

t zt−nzt−m(z2
j1
− 1)(z2

j2
−

1)) is a combination of cumulants. When the expectation is a κ8(·) cumulant, we eliminate the
summations over n,m, j1, j2 by Assumption 1(a)(iii) and the contribution to the second moment is
T−1

∑T
t=1 sup1≤j1,j2≤T ktj1ktj2 ≤ c(Tb)

−2 because

sup
1≤j≤T,1≤t≤T

|ktj | = sup
1≤j≤T,1≤t≤T

|K( t−jT b )| 1
Tb

|
∑T

n=1K( t−nTb ) 1
Tb |
≤ c 1

Tb
(A.20)

by boundedness and integrability of K(·), see Assumption 6. When the expectation is a κ2(·)κ6(·)
product or a κ4(·)κ4(·) product, 3 summations are eliminated and the contribution to the second

moment is O((Tb)−1). Thus, (A.18)
p→ 0 by Assumption 7, which shows that (A.17)

p→ 0 and hence
proves the first statement of (A.10).

To prove the second statement of (A.10) we find, as in (A.5)–(A.8),

√
T
∂Q̄T (θ0)

∂θi
−
√
T
∂Q̄0

T (θ0)

∂θi
=2T−1/2

T∑
t=1

σ−2
t (εt + rt)

 t−1∑
j=0

∂φj(θ0)

∂θi
εt−j +

∂rt(θ0)

∂θi


− 2T−1/2

T∑
t=1

(σ−1
t εt + r̃t)

 t−1∑
j=0

σ−1
t−j

∂φj(θ0)

∂θi
εt−j +

∂r̃t(θ0)

∂θi


=2T−1/2

T∑
t=1

t−1∑
j=0

∂φj(θ0)

∂θi
ztzt−j

(
σt−j
σt
− 1

)
(A.21)

+ 2T−1/2
T∑
t=1

zt

(
σ−1
t

∂rt(θ0)

∂θi
− ∂r̃t(θ0)

∂θi

)
(A.22)

+ 2T−1/2
T∑
t=1

σ−2
t rt

t−1∑
j=0

∂φj(θ0)

∂θi
εt−j − r̃t

t−1∑
j=0

∂φj(θ0)

∂θi
zt−j


(A.23)

+ 2T−1/2
T∑
t=1

(
σ−2
t rt

∂rt(θ0)

∂θi
− r̃t

∂r̃t(θ0)

∂θi

)
. (A.24)

where r̃t is defined in the same way as rt but with zt replacing εt. The last three terms on the
right-hand side are all easily shown to be op(1) using either L1- or L2-convergence and applying the

6



bounds in Lemma B.2. For example, for (A.22) we find

T−1/2
T∑
t=1

E|zt
∂rt(θ0)

∂θi
| ≤ T−1/2

T∑
t=1

(Ez2
t )1/2(E(

∂rt(θ0)

∂θi
)2)1/2 ≤ cT−1/2

T∑
t=1

(log t)t−1 ≤ cT−1/2(log T )2 → 0.

We are left with (A.21), which for j = 0 is zero and otherwise has second moment

E(A.21)2 =4T−1
T∑
t=1

t−1∑
j,k=1

∂φj(θ0)

∂θi

∂φk(θ0)

∂θi
E(z2

t zt−jzt−k)

(
σt−j
σt
− 1

)(
σt−k
σt
− 1

)

=4T−1
T∑
t=1

t−1∑
j,k=1

∂φj(θ0)

∂θi

∂φk(θ0)

∂θi
κ4(t, t, t− j, t− k)

(
σt−j
σt
− 1

)(
σt−k
σt
− 1

)

+ 4T−1
T∑
t=1

t−1∑
j=1

(
∂φj(θ0)

∂θi

)2(σt−j
σt
− 1

)2

.

The last term converges to zero by Lemma B.1 after reversing summations and setting aj =

(∂φj(θ0)/∂θi)
2 ≤ c(log j)2j−2 (using Lemma B.2) and bj,T = T−1

∑T
t=j+1 (σt−j/σt − 1)2 ≤ cT−1

∑T
t=j+1(σt−j−

σt)
2 (using Assumption 1(b)), which satisfy the assumptions of Lemma B.1 by Cavaliere and

Taylor (2009, Lemma A.1). For the first term we find the bound c
∑T−1

j,k=1(supt |κ4(t, t, t − j, t −
k)|)T−1

∑T
t=max(j,k)+1 |σt−σt−j ||σt−σt−k| → 0 again by Lemma B.1 in view of Assumption 1(a)(iii).

This concludes the proof of the second statement of (A.10) and hence that of (11).

A.3 Proof of Theorem 2

We first consider

Â =
1

4
T−1

T∑
t=1

∂qt(θ̂)

∂θ

∂qt(θ̂)

∂θ′
=

1

4
T−1

T∑
t=1

σ̂−4
t

∂εt(θ̂)
2

∂θ

∂εt(θ̂)
2

∂θ′

=
1

4
T−1

T∑
t=1

(σ̂−4
t − σ

−4
t )

∂εt(θ̂)
2

∂θ

∂εt(θ̂)
2

∂θ′
(A.25)

+ T−1
T∑
t=1

σ−4
t

(
εt(θ̂)

2∂εt(θ̂)

∂θ

∂εt(θ̂)

∂θ′
− εt(θ0)2∂εt(θ0)

∂θ

∂εt(θ0)

∂θ′

)
(A.26)

+ T−1
T∑
t=1

σ−4
t εt(θ0)2∂εt(θ0)

∂θ

∂εt(θ0)

∂θ′
. (A.27)

By the Cauchy-Schwarz inequality, the (i, j)’th element of (A.25) satisfies

|(A.25)i,j | ≤
1

4

(
T−1

T∑
t=1

(σ̂−4
t − σ

−4
t )2

)1/2
T−1

T∑
t=1

(
∂εt(θ̂)

2

∂θi

∂εt(θ̂)
2

∂θj

)2
1/2

,

where the first term is op(1) by Assumption 1(b) and Lemma A.1(d),(f),(g) because (σ̂−4
t − σ

−4
t ) =

σ̂−4
t σ−4

t (σ2
t + σ̂2

t )(σ
2
t − σ̂2

t ), and the last term is Op(1) by the uniform convergence in Lemma B.3

combined with consistency of θ̂; see, e.g., Johansen and Nielsen (2010, Lemma A.3).
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Next, we decompose the (i, j)’th element of (A.26) and apply the Cauchy-Schwarz inequality,

T−1
T∑
t=1

1

σ4
t

(εt(θ̂)
2 − εt(θ0)2)

∂εt(θ̂)

∂θi

∂εt(θ̂)

∂θj
+ T−1

T∑
t=1

1

σ4
t

εt(θ0)2

(
∂εt(θ̂)

∂θi

∂εt(θ̂)

∂θj
− ∂εt(θ0)

∂θi

∂εt(θ0)

∂θj

)

≤

(
T−1

T∑
t=1

1

σ4
t

(εt(θ̂)
2 − εt(θ0)2)2

)1/2
T−1

T∑
t=1

1

σ4
t

(
∂εt(θ̂)

∂θi

∂εt(θ̂)

∂θj

)2
1/2

(A.28)

+

(
T−1

T∑
t=1

1

σ4
t

εt(θ0)4

)1/2
T−1

T∑
t=1

1

σ4
t

(
∂εt(θ̂)

∂θi

∂εt(θ̂)

∂θj
− ∂εt(θ0)

∂θi

∂εt(θ0)

∂θj

)2
1/2

. (A.29)

The proofs for (A.28) and (A.29) are nearly identical, so we give only the former. The second large
parenthesis in (A.28) is Op(1) by Lemma B.3 and Assumption 1(b)(ii). By the mean value theorem,

T−1
T∑
t=1

(εt(θ̂)
2 − εt(θ0)2)2 = 4

p+1∑
i=1

(θ̂i − θ0,i)T
−1

T∑
t=1

(εt(θ̄)
2 − εt(θ0)2)εt(θ̄)

∂εt(θ̄)

∂θi

for an intermediate value, θ̄, between θ̂ and θ0. By another application of the Cauchy-Schwarz
inequality,

T−1
T∑
t=1

(εt(θ̄)
2 − εt(θ0)2)εt(θ̄)

∂εt(θ̄)

∂θi
≤ (T−1

T∑
t=1

(εt(θ̄)
2 − εt(θ0)2)2)1/2(T−1

T∑
t=1

εt(θ̄)
2(
∂εt(θ̄)

∂θi
)2)1/2,

which is also Op(1) by Lemma B.3. Because θ̂i − θ0,i = Op(T
−1/2) by Theorem 1 and using

Assumption 1(b)(ii), it follows that (A.28) is op(1). Next, (A.27)
p→ A0 by the same arguments as

applied to the second term of (A.10), and it follows that Â
p→ A0.

Finally, we find that

B̂ =
1

2

∂2Q̂T (θ̂)

∂θ∂θ′
p→ B0

by the uniform convergence in (A.9) combined with consistency of θ̂; see, e.g., Johansen and Nielsen
(2010, Lemma A.3). It now follows straightforwardly, using Slutsky’s Theorem and Assumption 5,

that Ĉ = B̂−1ÂB̂−1 p→ B−1
0 A0B

−1
0 = C0.

A.4 Proof of Theorem 3

We first give the bootstrap equivalent of Lemma A.1, the proof of which is given in Section A.6.

Lemma A.2. Define σ̃∗2t :=
∑T

i=1 ktiε
∗2
i . Under Assumptions 1–7 it holds that, in probability:

(b∗) T−1
∑T

t=1(σ̃∗2t − σ̂2
t )

2 = O∗p((Tb)
−1),

(c∗) T−1
∑T

t=1(σ̂∗2t − σ̃∗2t )2 = O∗p(T
−3/2b−1),

(e∗) T−1
∑T

t=1(σ̃∗2t − σ̂2
t )

4 = O∗p(T
−2b−3),

(f∗) max1≤t≤T σ̂
∗2
t = O∗p(1),

(g∗) (min1≤t≤T σ̂
∗2
t )−1 = O∗p(1) and (min1≤t≤T σ̃

∗2
t )−1 = O∗p(1).

We next give two results which are applied several times in the proof of Theorem 3.

Lemma A.3 (CNT, Lemma D.1). Under the assumptions of Theorem 3,

T−1
T∑
t=1

(ε̂2
t − ε2

t )
2 = Op(T

−1/2).

Lemma A.4. Suppose the conditions of Theorem 3 are satisfied. Suppose also that the coefficients
λj(θ) satisfy supθ |λj(θ)| = Op(j

g) and supθ |λj+1(θ) − λj(θ)| = Op(j
g−1), where g is fixed and
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|g| < ∞. Introduce the notation h for a positive integer, which in the following can be either
h = k + 1 or h ≤ m− 1. Then, uniformly in 1 ≤ m ≤ k ≤ T ,

E∗ sup
θ

∣∣∣∣∣∣
k∑

j=m

λj(θ)
T∑

t=max(j,h)+1

1

σ̂t
ε∗t−jε

∗
t−h

∣∣∣∣∣∣
= I(g > −1/2)Op(T

1/2k1/2+g) + I(g < −1/2)Op(T
1/2m1/2+g) + I(g = −1/2)Op(T

1/2(log k)).

Proof. The proof follows by Lemma A.1(g) and Lemma D.2 of CNT.

A.4.1 Proof of consistency

As in the proof of consistency in Theorem 1, see Section A.2.1, we partition the parameter space
into two disjoint sets, this time depending on the bootstrap true value, d̂. That is, we define D̂1 :=
D∩{d : d− d̂ ≤ −1/2 +κ} and D̂2 := D∩{d : −1/2 +κ ≤ d− d̂}. Note that these sets are random
and depend on T since d̂ is random and depends on T . This presents an additional complication,
so we will need also D0

1 := D ∩ {d : d− d0 ≤ −1/2 + 2κ} and D0
2 := D ∩ {d : −1/2 + κ/2 ≤ d− d0},

which are non-random and do not depend on T . Analogously to Θi, we define Θ̂i := D̂i × Ψ and
Θ0
i := D0

i ×Ψ for i = 1, 2. Note that the D0
i are defined such that, by definition of d0,

P (D0
1 ⊇ D̂1) = P (d̂− d0 ≤ κ)→ 1, (A.30)

P (D0
2 ⊇ D̂2) = P (d0 − d̂ ≤ κ/2)→ 1. (A.31)

The general strategy of the proof relies on analyzing these parts of the parameter space sepa-
rately, as was also the case in the proof of consistency in Theorem 1. First, it is shown that for any
K > 0 there exists a (fixed) κ̄ > 0 such that

P ∗( inf
θ∈Θ̂1(κ̄)

Q̂∗T (θ) > K)
p→ 1 as T →∞, (A.32)

P ∗( inf
θ∈Θ̂1(κ̄)

Q̌∗T (θ) > K)
p→ 1 as T →∞. (A.33)

This implies that P ∗(θ̂∗ ∈ Θ̂2(κ̄))
p→ 1 and P ∗(θ̌∗ ∈ Θ̂2(κ̄))

p→ 1 as T → ∞, so that the relevant
parameter space is reduced to Θ̂2(κ̄). As in the proofs of (A.1) and (A.2), the results (A.32) and
(A.33) follow from the bounds in (D.12) of CNT and Lemma A.2(g∗).

In view of (A.32) and (A.33), it follows that θ̂∗ − θ̌∗ p
∗
→p 0 because

sup
θ∈Θ̂2

|Q̂∗T (θ)− Q̌∗T (θ)| ≤ sup
θ∈Θ̂2

T−1
T∑
t=1

ε∗t (θ)
2 |σ̂2

t − σ̂∗2t |
σ̂2
t σ̂
∗2
t

(A.34)

≤ (min
t
σ̂2
t σ̂
∗2
t )−1 sup

θ∈Θ̂2

T−1
T∑
t=1

ε∗t (θ)
2|σ̂2

t − σ̂∗2t |

≤ (min
t
σ̂2
t σ̂
∗2
t )−1

(
sup
θ∈Θ̂2

T−1
T∑
t=1

ε∗t (θ)
4

)1/2(
T−1

T∑
t=1

(σ̂2
t − σ̂∗2t )2

)1/2

,

which is O∗p(1)O∗p(1)o∗p(1) = o∗p(1), in probability, by Lemmas A.1(g), A.2(g∗), B.8, and A.2(b∗),(c∗).

Thus, we proceed with θ̌∗. We define also θ̃† := arg minθ∈Θ̂2
Q̂T (θ), which satisfies

θ̂ − θ̃† p→ 0 (A.35)

because P (|θ̂ − θ̃†| > ε) = P (θ̂ /∈ Θ̂2) = 0 by definition of Θ̂2.
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Next, we prove that

arg min
θ∈Θ̂2

Q̌∗T (θ)− θ̃† p
∗
→p 0. (A.36)

With P ∗-probability converging to one in probability, the first term in (A.36) is θ̌∗, see (A.33), so
that the required result follows by combining (A.35) and (A.36). We therefore prove that (for any
κ > 0)

sup
θ∈Θ̂2

|Q̌∗T (θ)− Q̂T (θ)| p
∗
→p 0, (A.37)

which implies (A.36).
To show (A.37) we decompose

Q̌∗T (θ)− Q̂T (θ) =Q̌∗T (θ)− E∗Q̌∗T (θ) (A.38)

+ E∗Q̌∗T (θ)− Q̂T (θ) (A.39)

and write ε∗t (θ) =
∑t−1

n=0 φ̂n(θ)ε∗t−n, where supθ∈Θ̂2
|φ̂n(θ)| = Op(n

−1/2−κ), uniformly in n, by Lemma
B.7. By uncorrelatedness of ε∗t conditional on the original data,

(A.38) =T−1
T∑
t=1

1

σ̂2
t

t−1∑
n=0

φ̂n(θ)2(ε∗2t−n − ε̂2
t−n) (A.40)

+ 2T−1
T∑
t=1

1

σ̂2
t

t−1∑
n=0

t−1∑
m=n+1

φ̂n(θ)φ̂m(θ)ε∗t−nε
∗
t−m. (A.41)

Noting that, conditionally on the original sample, ε∗2t − ε̂2
t = ε̂2

t (w
2
t − 1) is a martingale difference

sequence, it follows that, defining η4 := E((w2
t − 1)2),(

E∗

∣∣∣∣∣
T∑

t=n+1

1

σ̂2
t

(ε∗2t−n − ε̂2
t−n)

∣∣∣∣∣
)2

≤
T∑

t,s=n+1

1

σ̂2
t σ̂

2
s

E∗(ε∗2t−n − ε̂2
t−n)(ε∗2s−n − ε̂2

s−n)

=

T∑
t=n+1

1

σ̂4
t

E∗(ε∗2t−n − ε̂2
t−n)2

≤ 1

mint σ̂4
t

η4

T∑
t=n+1

ε̂4
t−n =: C2

T = Op(T ) (A.42)

uniformly in 0 ≤ n ≤ T−1 by Lemmas A.1(g) and B.3. Thus, reversing the order of the summations
in (A.40) and using (A.42), we find

E∗ sup
θ∈Θ̂2

|(A.40)| ≤ sup
θ∈Θ̂2

T−1
T−1∑
n=0

φ̂n(θ)2E∗

∣∣∣∣∣
T∑

t=n+1

1

σ̂2
t

(ε∗2t−n − ε̂2
t−n)

∣∣∣∣∣
≤ CT sup

θ∈Θ̂2

T−1
T−1∑
n=0

φ̂n(θ)2 ≤ CTOp(T−1
T−1∑
n=0

n−1−2κ) = Op(T
−1/2),

which shows that supθ∈Θ̂2
|(A.40)| = O∗p(T

−1/2), in probability.
To deal with (A.41), we apply Lemmas A.1(g) and A.4 with g = −1/2− κ,

E∗ sup
θ∈Θ̂2

∣∣∣∣∣
T−1∑

m=n+1

φ̂m(θ)
T∑

t=m+1

1

σ̂2
t

ε∗t−nε
∗
t−m

∣∣∣∣∣ = Op(T
1/2n−κ).

10



It follows that

E∗ sup
θ∈Θ̂2

|(A.41)| = sup
θ∈Θ̂2

T−1
T−1∑
n=0

|φ̂n(θ)|Op(T 1/2n−κ) = Op(T
−1/2)

T−1∑
n=0

n−1/2−2κ

= Op((log T )Tmax(−1/2,−2κ)),

such that supθ∈Θ̂2
|(A.41)| = o∗p(1), in probability.

It remains to analyze (A.39), for which we find

E∗Q∗T (θ)− Q̂T (θ) =T−1
T∑
t=1

1

σ̂2
t

t−1∑
n=0

(φ̂n(θ)2ε̂2
t−n − φn(θ)2ε2

t−n) (A.43)

− 2T−1
T∑
t=1

1

σ̂2
t

∞∑
n=0

∞∑
m=n+1

φn(θ)φm(θ)εt−nεt−m. (A.44)

By identical arguments to those in the proof of (A.6), the term (A.44) is op(1), uniformly in θ ∈ Θ0
2

and P (Θ0
2 ⊇ Θ̂2)→ 1 by (A.31). We therefore proceed with (A.43), which is

(A.43) =T−1
T∑
t=1

1

σ̂2
t

t−1∑
n=0

φn(θ)2(ε̂2
t−n − ε2

t−n) (A.45)

+ T−1
T∑
t=1

1

σ̂2
t

t−1∑
n=0

(φ̂n(θ)2 − φn(θ)2)ε̂2
t−n. (A.46)

For (A.45) we apply the Cauchy-Schwarz inequality and find

(A.45)2 ≤

T−1
T∑
t=1

(
1

σ̂2
t

t−1∑
n=0

φn(θ)2

)2
(T−1

T∑
t=1

(ε̂2
t−n − ε2

t−n)2

)
,

where the term in the second parenthesis is op(1) by Lemma A.3. From Lemmas A.1(g) and B.2, the

term in the first parenthesis is bounded, uniformly in θ ∈ Θ0
2, by Op(1)T−1

∑T
t=1(

∑t−1
n=0 n

−1−κ)2 =

Op(1). Because P (Θ0
2 ⊇ Θ̂2)→ 1, see (A.31), this bound applies also uniformly in θ ∈ Θ̂2. Finally,

for the term (A.46) we note that, by the mean value theorem,

|φ̂n(θ)−φn(θ)| ≤ |d̂−d0|
n∑
j=0

n−j∑
m=0

bm(ψ)π̇j(d̄−d)an−j−m(ψ̂)+|ψ̂−ψ0|
n∑
j=0

n−j∑
m=0

bm(ψ)πj(d̂−d)ȧn−j−m(ψ̄),

so that supθ∈Θ̂2
|φ̂n(θ)−φn(θ)| = Op(T

−1/2n−1/2−κ(log n)) using (2), Lemmas B.5,B.6, and θ̂−θ0 =

Op(T
−1/2) by Theorem 1, and noting that P (Θ0

2 ⊇ Θ̂2) → 1, see (A.31). Thus, by revers-

ing the order of the summations such that |(A.46)| ≤ (mint σ̂
2
t )
−1
∑T−1

n=0 |φ̂n(θ) + φn(θ)||φ̂n(θ) −
φn(θ)|T−1

∑T
t=n+1 ε̂

2
t−n, we find that

sup
θ∈Θ̂2

|(A.46)| ≤ (min
t
σ̂2
t )
−1

T−1∑
n=0

Op(n
−1/2−κ)Op(T

−1/2n−1/2−κ(log n))T−1
T∑

t=n+1

ε̂2
t−n = Op(T

−1/2(log T ))

because T−1
∑T

t=n+1 ε̂
2
t−n ≤ T−1

∑T
t=1 ε̂

2
t = Op(1).

11



A.4.2 Proof of asymptotic normality

Following roughly the same steps as in the proof of asymptotic normality in Theorem 1, see Section
A.2.2, we first prove the asymptotic first-order equivalence of θ̂∗ and θ̌∗ by showing

sup
θ∈N (θ̂)

∣∣∣∣∣∂2Q̂∗T (θ)

∂θ∂θ′
−
∂2Q̌∗T (θ)

∂θ∂θ′

∣∣∣∣∣ p∗→p 0, (A.47)

√
T
∂Q̂∗T (θ̂)

∂θ
−
√
T
∂Q̌∗T (θ̂)

∂θ

p∗→p 0. (A.48)

The proof of (A.47) is identical to that of (A.34) recognizing that the derivatives add at most a
logarithmic factor, see Lemma B.6. The proof of (A.48) is identical to that of (A.13)–(A.14) with
appropriate adjustments to take into account the bootstrap errors, i.e., replacing σ̃2

t and σ̄2
t with

σ̃∗2t and σ̂2
t , respectively, and using Lemma A.2 and independence of the wt sequence.

Next, we define

θ̄∗ := arg min
θ
Q̄∗T (θ) with Q̄∗T (θ) := T−1

T∑
t=1

 t−1∑
n=0

bn(ψ)
t−n−1∑
j=0

πj(d̂− d)
∞∑
m=0

am(ψ̂)
ε∗t−n−j−m
σt−n−j−m

2

as well as the objective function Q̄∗0T (θ) := T−1
∑T

t=1 ε
∗
t (θ)

2/σ2
t . From Theorem 6 of CNT it holds

that
√
T (θ̄∗ − θ̂) w→p N(0, C0), so it is sufficient to show that

sup
θ∈N (θ̂)

∣∣∣∣∂2Q̌∗T (θ)

∂θ∂θ′
−
∂2Q̄∗0T (θ)

∂θ∂θ′

∣∣∣∣ p∗→p 0 and sup
θ∈N (θ̂)

∣∣∣∣∂2Q̄∗0T (θ)

∂θ∂θ′
−
∂2Q̄∗T (θ)

∂θ∂θ′

∣∣∣∣ p∗→p 0 (A.49)

√
T
∂Q̌∗T (θ̂)

∂θ
−
√
T
∂Q̄∗0T (θ̂)

∂θ

p∗→p 0 and
√
T
∂Q̄∗0T (θ̂)

∂θ
−
√
T
∂Q̄∗T (θ̂)

∂θ

p∗→p 0, (A.50)

from which the result follows by the triangle inequality. The proofs of (A.49) and (A.50) follow nearly
identically to those of (A.3) and (A.10), respectively, but are simpler because ε∗t is independent,
conditionally on the data, and ε∗t = 0 for t ≤ 0. Specifically, in the bootstrap case we use Lemmas
B.7 and B.8 instead of Lemmas B.2 and B.3 and note that there is no rt(θ) or rt remainders in
the bootstrap case because ε∗t = 0 for t ≤ 0. Finally, it follows from Section D.2.1 of CNT that√
T∂Q̄∗T (θ̂)/∂θ

w→p N(0, 4A†0).

A.4.3 Proof of consistency of bootstrap variance estimator

We define

Â∗ :=
1

4
T−1

T∑
t=1

σ̂∗−4
t

∂ε∗t (θ̂)
2

∂θ

∂ε∗t (θ̂)
2

∂θ′
and Ǎ∗ :=

1

4
T−1

T∑
t=1

σ̂−4
t

∂ε∗t (θ̂)
2

∂θ

∂ε∗t (θ̂)
2

∂θ′

and also

B̂∗ :=
1

2

∂2Q̂∗T (θ̂∗)

∂θ∂θ′
and B̌∗ :=

1

2

∂2Q̌T (θ̌∗)

∂θ∂θ′
.

It follows directly from (A.47) combined with θ̂∗ − θ̌∗ p
∗
→p 0 that B̂∗ − B̌∗ p

∗
→p 0; see, e.g., Johansen

and Nielsen (2010, Lemma A.3). From (A.49) it then follows that B̌∗ −B0
p∗→p 0.

By the Cauchy-Schwarz inequality we find that

||Â∗ − Ǎ∗||2 ≤ 1

4

(
T−1

T∑
t=1

(σ̂∗−4
t − σ̂−4

t )2

)T−1
T∑
t=1

∥∥∥∥∥∂ε∗t (θ̂)2

∂θ

∥∥∥∥∥
4
 ,

where the last parenthesis is O∗p(1), in probability, by Lemma B.8. To bound the first parenthesis
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we note that

σ̂∗−4
t − σ̂−4

t =
σ̂4
t − σ̂∗4t
σ̂∗−4
t σ̂−4

t

=
(σ̂2
t − σ̂∗2t )(σ̂2

t + σ̂∗2t )

σ̂∗−4
t σ̂−4

t

and apply the Cauchy-Schwarz inequality once more,

T−1
T∑
t=1

(σ̂∗−4
t − σ̂−4

t )2 ≤

(
T−1

T∑
t=1

(σ̂2
t − σ̂∗2t )2

)1/2(
T−1

T∑
t=1

(σ̂2
t + σ̂∗2t )2

σ̂∗−8
t σ̂−8

t

)1/2

,

where the term inside the first parenthesis on the right-hand side is O∗p(T
−1b−1) = o∗p(1), in proba-

bility, by Lemma A.2(b∗),(c∗) and Assumption 7, and the last parenthesis on the right-hand side is
O∗p(1), in probability, by Lemmas A.1(f),(g) and A.2(f∗),(g∗). It follows that ||Â∗ − Ǎ∗||2 = o∗p(1),
in probability.

The proof that Ǎ∗−A†0
p∗→p 0 is nearly identical to that of Â−A0

p→ 0 given in Section A.3 and
is therefore omitted. The required result now follows by Slutsky’s Theorem.

A.5 Proof of Lemma A.1

Proof of (a): We have

T−1
T∑
t=1

(σ̄2
t − σ2

t )
2 =T−1

T∑
t=1

T∑
i,j=1

ktiktj(σ
2
i − σ2

t )(σ
2
j − σ2

t ) ≤ 2G

T∑
i=1

ktiT
−1

T∑
t=1

|σ2
i − σ2

t |

=2GT−1
T∑
t=1

t−bMTbc∑
i=1

kti|σ2
i − σ2

t |+ 2GT−1
T∑
t=1

t+bMTbc∑
i=t−bMTbc+1

kti|σ2
i − σ2

t |

+ 2GT−1
T∑
t=1

T∑
i=t+bMTbc+1

kti|σ2
i − σ2

t | =: A1T +A2T +A3T

forG := sup0≤u≤1 σ(u)2 <∞ by Assumption 1(b), for someM to be chosen, and using
∑T

j=1 ktj = 1.
The proofs for A1T and A3T are identical, so we give only the former. In this case we first find

1

Tb

bTxc−bMTbc∑
i=1

K

(
bTxc − i
T b

)
=

1

b

∫ (bTxc−bMTbc)/T

1/T
K

(
bTxc − bTsc

Tb

)
ds

u:=(s−x)/b
=

∫ bTxc−bMTbc−Tx
Tb

1/T−x
b

K(u)du+ o(1)

≤
∫ − bMTbc

Tb

1/T−1
b

K(u)du+ o(1)→
∫ −M
−∞

K(u)du

by Assumptions 6 and 7, where the bound is uniform in x ∈ [0, 1] and can be made arbitrarily

small by picking M sufficiently large. Thus, A1T ≤ c supx∈[0,1]
1
Tb

∑bTxc−bMTbc
i=1 K( bTxc−iT b ) ≤ ε for

M sufficiently large. Next,

A2T = 2GT−1
T∑
t=1

bMTbc∑
j=−bMTbc+1

kt,t−j |σ2
t−j − σ2

t | ≤ c

(
sup

−bMTbc≤j≤bMTbc
T−1

T∑
t=1

|σ2
t−j − σ2

t |

)
→ 0

for any M < ∞ by Lemma A.1 of Cavaliere and Taylor (2009) because b → 0 by Assumption 7,

and where the inequality used
∑bMTbc

j=−bMTbc+1 kt,t−j <∞ by Assumption 6.
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Proof of (b): The left-hand side is a non-negative random variable with expectation

T−1
T∑
t=1

T∑
i,j=1

ktiktjσ
2
i σ

2
jE(z2

i − 1)(z2
j − 1)

= T−1
T∑
t=1

T∑
i=1

k2
tiσ

4
i κ4(i, i, i, i) + T−1

T∑
t=1

T∑
i 6=j

ktiktjσ
2
i σ

2
jκ4(i, i, j, j) ≤ c 1

Tb

because
∑T

i=1 kti = 1 and using Assumption 1(a)(iii),(b) together with (A.20).

Proof of (c): We let σ2
t (θ) :=

∑T
i=1 ktiεi(θ)

2 and define RT (θ) := T−1
∑T

t=1(σ2
t (θ) − σ̃2

t )
2. We

then apply a third-order Taylor expansion of RT (θ̃) around RT (θ0),

T−1
T∑
t=1

(σ̂2
t − σ̃2

t )
2 = RT (θ̃) =RT (θ0) +

∂RT (θ0)

∂θ
(θ̃ − θ0) + (θ̃ − θ0)′

∂2RT (θ0)

∂θ∂θ′
(θ̃ − θ0)

+

p+1∑
k,m,n=1

(θ̃k − θ0k)(θ̃m − θ0m)(θ̃n − θ0n)
∂3RT (θ̇)

∂θk∂θm∂θn
, (A.51)

for an intermediate value, θ̇. The first term on the right-hand side, RT (θ0), is a non-negative random
variable with expectation

ERT (θ0) ≤ T−1
T∑
t=1

T∑
i,j=1

ktiktjE|(r2
i + 2εiri)(r

2
j + 2εjrj)|,

where ri is defined in Lemma B.2. By repeated application of the Cauchy-Schwarz inequality and
using that E(εir

3
i ) = 0,(

E|(r2
i + 2εiri)(r

2
j + 2εjrj)|

)2 ≤ E(r2
i + 2εiri)

2E(r2
j + 2εjrj)

2

= E(r4
i + 4ε2

i r
2
i )E(r4

j + 4ε2
jr

2
j )

≤
(
Er4

i + 4(Eε4
i )

1/2(Er4
i )

1/2
)

(Er4
j + 4(Eε4

j )
1/2(Er4

j )
1/2),

so that, by Lemma B.2 and Assumption 1, E|(r2
i + 2εiri)(r

2
j + 2εjrj)| ≤ ci−1−ζj−1−ζ , and thus

ERT (θ0) ≤ cT−1
T∑
t=1

T∑
i,j=1

ktiktji
−1−ζj−1−ζ ≤ cT−2b−2

using (A.20).
For the second term on the right-hand side of (A.51), we find in the same way that

E

∣∣∣∣∂RT (θ0)

∂θm

∣∣∣∣ = E

∣∣∣∣∣∣4T−1
T∑
t=1

T∑
i,j=1

ktiktj(εi(θ0)2 − ε2
i )εj(θ0)

∂εj(θ0)

∂θm

∣∣∣∣∣∣
≤ 4T−1

T∑
t=1

T∑
i,j=1

ktiktjE

∣∣∣∣(r2
i + 2εiri)εj(θ0)

∂εj(θ0)

∂θm

∣∣∣∣ ,
where the square of the expectation is bounded by

(
Er4

i + 4(Eε4
i )

1/2(Er4
i )

1/2
)
E

(
εj(θ0)2

(
∂εj(θ0)

∂θm

)2
)
≤ ci−2−2ζ .
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It follows that

E

∣∣∣∣∂RT (θ0)

∂θm

∣∣∣∣ ≤ cT−1
T∑
t=1

T∑
i,j=1

ktiktji
−1−ζ ≤ c 1

Tb

using
∑T

j=1 ktj = 1 and (A.20), so that the contribution to the right-hand side of (A.51) is

Op(T
−3/2b−1).

To prove the result for the third term on the right-hand side of (A.51) we first find

∂2RT (θ0)

∂θm∂θn
=8T−1

T∑
t=1

T∑
i,j=1

ktiktj(εi + ri)
∂εi(θ0)

∂θm
(εj + rj)

∂εj(θ0)

∂θn

+ 4T−1
T∑
t=1

T∑
i,j=1

ktiktj(r
2
i + 2εiri)

εj(θ0)

∂θm

∂εj(θ0)

∂θn

+ 4T−1
T∑
t=1

T∑
i,j=1

ktiktj(r
2
i + 2εiri)εj(θ0)

∂2εj(θ0)

∂θm∂θn

=:8B1T + 4B2T + 4B3T .

The proofs for B2T and B3T are nearly identical, so we give only the latter, for which we find, as
above, that

E|B3T | ≤ T−1
T∑
t=1

T∑
i,j=1

ktiktjE

∣∣∣∣(r2
i + 2εiri)εj(θ0)

∂2εj(θ0)

∂θm∂θn

∣∣∣∣ ≤ cT−1
T∑
t=1

T∑
i,j=1

ktiktji
−1−ζ ≤ c 1

Tb
,

so the contribution to (A.51) is Op(T
−2b−1). Next, we find that

B1T ≤

T−1
T∑
t=1

(
T∑
i=1

kti(εi + ri)
∂εi(θ0)

∂θm

)2
1/2T−1

T∑
t=1

 T∑
j=1

ktj(εj + rj)
∂εj(θ0)

∂θn

21/2

,

where the term inside the first large square-root is

T−1
T∑
t=1

(
T∑
i=1

ktiεi
∂εi(θ0)

∂θm

)2

+ T−1
T∑
t=1

(
T∑
i=1

ktiri
∂εi(θ0)

∂θm

)2

+ 2T−1
T∑
t=1

T∑
i,j=1

ktiktjεirj
∂εi(θ0)

∂θm

∂εj(θ0)

∂θm

=: B11T +B12T +B13T ,

and if the desired result can be shown for B11T and B12T it then follows for B13T by application
of the Cauchy-Schwarz inequality. We note that ktiεi

∂εi(θ0)
∂θm

is a martingale difference sequence and
hence that B11T is a non-negative random variable with

EB11T = T−1
T∑
t=1

T∑
i=1

k2
tiE

(
εi
∂εi(θ0)

∂θm

)2

≤ c 1

Tb

using
∑T

i=1 kti = 1, (A.20), and Assumption 1, see also Lemma B.2. Similarly,

EB12T = T−1
T∑
t=1

T∑
i,j=1

ktiktjE

(
rirj

∂εi(θ0)

∂θm

∂εj(θ0)

∂θm

)
≤ c 1

Tb
.
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It follows that the contributions ofB11T andB12T , and henceB13T andB1T , to (A.51) isOp(T
−2b−1).

Finally, we prove the result for the last term on the right-hand side of (A.51), where we find

∂3RT (θ)

∂θl∂θm∂θn
=2T−1

T∑
t=1

T∑
i,j=1

ktiktj(εi(θ)
2 − ε2

i )
∂3(εj(θ)

2)

∂θl∂θm∂θn

+ 2T−1
T∑
t=1

T∑
i,j=1

ktiktj
∂(εi(θ)

2)

∂θl

∂2(εj(θ)
2)

∂θm∂θn

+ 2T−1
T∑
t=1

T∑
i,j=1

ktiktj
∂(εi(θ)

2)

∂θm

∂2(εj(θ)
2)

∂θl∂θn

+ 2T−1
T∑
t=1

T∑
i,j=1

ktiktj
∂(εi(θ)

2)

∂θn

∂2(εj(θ)
2)

∂θl∂θm

=:2C1T (θ) + 2C2T (θ) + 2C3T (θ) + 2C4T (θ).

The proofs for CiT (θ), i = 1, . . . , 4, are nearly identical, so we give only the proof for i = 1. With
the supremum taken over an arbitrarily small neighborhood of θ0, we apply the Cauchy-Schwarz
inequality such that

sup
θ

∣∣∣∣∣
T∑
i=1

kti(εi(θ)
2 − ε2

i )

∣∣∣∣∣
2

≤

(
T∑
i=1

k2
ti

)(
sup
θ

T∑
i=1

(εi(θ)
2 − ε2

i )
2

)
= Op(b

−1)

using (A.20) and Lemma B.3. In the same way,

sup
θ

∣∣∣∣∣∣
T∑
j=1

ktj
∂3(εj(θ)

2)

∂θl∂θm∂θn

∣∣∣∣∣∣
2

= Op(b
−1),

and it follows that supθ |C1T (θ)| = Op(b
−1) and hence the contribution to (A.51) is Op(T

−3/2b−1).
Proof of (d): We find the decomposition

T−1
T∑
t=1

(σ̂2
t − σ2

t )
2 = T−1

T∑
t=1

(σ̂2
t − σ̃2

t )
2 + T−1

T∑
t=1

(σ̃2
t − σ̄2

t )
2 + T−1

T∑
t=1

(σ̄2
t − σ2

t )
2 + cross-terms,

which proves part (d) in light of parts (a)–(c), Assumption 7, and the Cauchy-Schwarz inequality
applied to the cross-terms.

Proof of (e): The left-hand side is a non-negative random variable with expectation

T−1
T∑
t=1

T∑
i,j,m,n=1

ktiktjktmktnσ
2
i σ

2
jσ

2
mσ

2
nE(z2

i − 1)(z2
j − 1)(z2

m − 1)(z2
n − 1),

which is a combination of cumulants. When the right-hand side is a κ8(·) cumulant, 3 summa-
tions are eliminated by Assumption 1(a)(iii) and the contribution is O((Tb)−3) using (A.20) and∑T

i=1 kti = 1, and when it is a κ2(·)κ6(·) product or a κ4(·)κ4(·) product, 2 summations are elimi-
nated and the contribution is O((Tb)−2).

Proof of (f): We apply the inequality σ̂2
t ≤ σ2

t + |σ̂2
t − σ̃2

t |+ |σ̃2
t − σ̄2

t |+ |σ̄2
t − σ2

t |, and note that
max1≤t≤T σ

2
t is O(1) by Assumption 1(b), so we show that the max of each of the remaining terms

are Op (1). First, following the proof of part (c) above, define MT (θ) := max1≤t≤T |σ2
t (θ)− σ̃2

t | and
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apply a mean-value expansion around MT (θ0),

max
1≤t≤T

|σ̂2
t − σ̃2

t | = MT (θ̃) = MT (θ0) + 2(θ̃ − θ0)
∂MT (θ̇)

∂θ

≤MT (θ0) + 2

p+1∑
m=1

|θ̃m − θ0,m| max
1≤t≤T

∣∣∣∣∣
T∑
i=1

ktiεi(θ̇)
∂εi(θ̇)

∂θm

∣∣∣∣∣ , (A.52)

for an intermediate value, θ̇. The first term on the right-hand side of (A.52) is a non-negative
random variable with expectation

EMT (θ0) = E max
1≤t≤T

∣∣∣∣∣
T∑
i=1

kti(εi(θ0)2 − ε2
i )

∣∣∣∣∣ ≤ E( sup
1≤i≤T,1≤t≤T

|kti|)
T∑
i=1

|2εiri − r2
i |

≤ c( sup
1≤i≤T,1≤t≤T

|kti|)
T∑
i=1

i−1−ζ ≤ c 1

Tb
,

where the first two inequalities are due to Lemma B.2 and Assumption 1 and the last inequality
is due to (A.20). For second term on the right-hand side of (A.52) we apply the Cauchy-Schwarz
inequality and find the bound

2|θ̃m − θ0,m|

(
max

1≤t≤T

T∑
i=1

k2
ti

)1/2
 T∑
i=1

εi(θ̇)
2

(
∂εi(θ̇)

∂θm

)2
1/2

,

where |θ̃m−θ0,m| = Op(T
−1/2) by (5), max1≤t≤T

∑T
i=1 k

2
ti = O(T−1b−1) by (A.20) and

∑T
i=1 kti = 1,

and the term inside the last parenthesis is Op(T ) by Lemma B.3 with k1 = 0, k2 = 1. Thus,

max1≤t≤T |σ̂2
t − σ̃2

t | = Op(T
−1/2b−1/2)

p→ 0 by Assumption 7.

Next, for σ̃2
t − σ̄2

t =
∑T

i=1 ktiσ
2
i (z

2
i −1) we apply Bonferroni’s and Markov’s inequalities and find

P ( max
1≤t≤T

|σ̃2
t − σ̄2

t | > ε) ≤
T∑
t=1

P (|σ̃2
t − σ̄2

t | > ε) ≤ 1

ε4

T∑
t=1

E(σ̃2
t − σ̄2

t )
4,

which is O(T−1b−2)→ 0 by Assumption 7 as in the proof of part (e).
Finally,

|σ̄2
t − σ2

t | =

∣∣∣∣∣
T∑
i=1

kti(σ
2
i − σ2

t )

∣∣∣∣∣ ≤ 2G

T∑
i=1

kti = 2G <∞,

where G := sup0≤u≤1 σ(u)2 < ∞ by Assumption 1(b) and using
∑T

i=1 kti = 1. This implies that
max1≤t≤T |σ̄2

t − σ2
t |, and hence max1≤t≤T σ̂

2
t , is Op(1).

Proof of (g): We apply the inequality

min
1≤t≤T

σ̂2
t ≥ min

1≤t≤T
σ̄2
t − max

1≤t≤T
|σ̂2
t − σ̃2

t | − max
1≤t≤T

|σ̃2
t − σ̄2

t |,

and note that the last two terms are shown to be op(1) in the proof of part (f). Thus, proving the
result for the first term on the right-hand side is sufficient for proving all the results in part (g).
Because

∑T
i=1 kti = 1 for all t = 1, . . . , T , we find that

min
1≤t≤T

σ̄2
t = min

1≤t≤T

T∑
i=1

ktiσ
2
i ≥ ( min

1≤i≤T
σ2
i ) min

1≤t≤T

T∑
i=1

kti ≥ inf
u∈[0,1]

σ2 (u) > 0

by Assumption 1(b), so that (min1≤t≤T σ̄
2
t )
−1 ≤ (infu∈[0,1] σ

2 (u))−1 <∞.
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A.6 Proof of Lemma A.2

Proof of (b∗): The left-hand side is T−1
∑T

t=1(
∑T

i=1 ktiε̂
2
i (w

2
i −1))2, which is a non-negative random

variable with expectation, conditional on the original sample, given by T−1
∑T

t=1

∑T
i=1 k

2
tiε̂

4
i η4,

where η4 := E(w2
i−1)2. The result now follows as in the proof of Lemma A.1(b) since T−1

∑T
t=1 ε̂

4
t =

Op(1).

Proof of (c∗): This follows as in the proof of Lemma A.1(c) by definingR∗T (θ) := T−1
∑T

t=1(σ∗2t (θ)−
σ∗2t (θ̂))2 and σ∗2t (θ) =

∑T
i=1 ktiε

∗
i (θ)

2, noting that (θ̃∗− θ̂) = O∗p(T
−1/2), in probability, by Theorem

6 of CNT.
Proof of (e∗): The left-hand side is a non-negative random variable with expectation, conditional

on the original data, given by

T−1
T∑
t=1

T∑
i,j,m,n=1

ktiktjktmktnε̂
2
i ε̂

2
j ε̂

2
mε̂

2
nE
∗(w2

i − 1)(w2
j − 1)(w2

m − 1)(w2
n − 1)

≤ cT−1
T∑
t=1

T∑
i,j=1

k2
tik

2
tj ε̂

4
i ε̂

4
j ≤ c

1

T 3b2

T∑
t=1

(
T∑
i=1

ktiε̂
4
i

)2

≤ c 1

T 3b2

T∑
t=1

(
T∑
i=1

k2
ti

)(
T∑
i=1

ε̂8
i

)
,

which is Op(T
−2b−3) by (A.20) since T−1

∑T
i=1 ε̂

8
i = Op(1).

Proof of (f ∗): We apply the inequality σ̂∗2t ≤ σ̂2
t + |σ̂∗2t − σ̃∗2t | + |σ̃∗2t − σ̂2

t |, and note that
max1≤t≤T σ̂

2
t = Op(1) by Lemma A.1(f). The proof for the second term is exactly the same as for

the corresponding term in the proof of Lemma A.1(f), but using that (θ̃∗ − θ̂) = O∗p(T
−1/2), in

probability (by Theorem 6 of CNT) and Lemma B.8.
Next, for σ̃∗2t − σ̂2

t =
∑T

i=1 ktiε̂
2
i (w

2
i − 1) we apply Bonferroni’s and Markov’s inequalities and

find

P ∗( max
1≤t≤T

|σ̃∗2t − σ̂2
t | > ε) ≤

T∑
t=1

P ∗(|σ̃∗2t − σ̂2
t | > ε) ≤ 1

ε8

T∑
t=1

E∗(σ̃∗2t − σ̂2
t )

8

≤ c
T∑
t=1

E∗
8∏
i=1

T∑
ji=1

ktji ε̂
2
ji(w

2
ji − 1) = cη4

4

T∑
t=1

(
T∑
i=1

k2
tiε̂

4
i )

4,

which by the Cauchy-Schwarz inequality is bounded by

cη4
4

T∑
t=1

(

T∑
i=1

k4
ti)

2(

T∑
i=1

ε̂8
i )

2 ≤ cT (T−3b−3)2Op(T
2) = Op(T

−3b−6)

using (A.20), integrability of the kernel, and T−1
∑T

i=1 ε̂
8
i = Op(1). The required result then follows

by Assumption 7. This implies that max1≤t≤T |σ̃∗2t − σ̂2
t |, and hence max1≤t≤T σ̂

∗2
t , is O∗p(1), in

probability.
Proof of (g∗): We apply the inequality

min
1≤t≤T

σ̂∗2t ≥ min
1≤t≤T

σ̂2
t − max

1≤t≤T
|σ̂∗2t − σ̃∗2t | − max

1≤t≤T
|σ̃∗2t − σ̂2

t |,

and note that the last two terms are shown to be o∗p(1), in probability, in the proof of part (f∗) and
the first term is Op(1) by Lemma A.1(g).

Additional References

These are the additional references cited in this appendix and not listed in the main paper.

Cavaliere, G. and A.M.R. Taylor (2009), Heteroskedastic time series with a unit root, Econometric
Theory 25, 1228–1270.
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Johansen, S. and M.Ø. Nielsen (2010), Likelihood inference for a nonstationary fractional autore-
gressive model, Journal of Econometrics 158, 51–66.
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B.1 Introduction

This supplement contains technical lemmas and their proofs, which are used to prove the main results
in our paper “Adaptive Inference in Heteroskedastic Fractional Time Series Models”. Equation
references (B.n) for n ≥ 1 refer to equations in these supplementary materials, equations (A.n)
refer to equations in Supplementary Materials A, and other equation references are to the main
paper. Additional references are included at the end of the supplement.

B.2 Technical Lemmas

The proofs of these lemmas are in Section B.3.
In Lemma B.2 we prove bounds for certain coefficients and remainder terms, which need to be

uniform in the parameters, although for the second and third derivatives uniformity is only needed
in a neighborhood of the true value. For any function f(θ) : Rn → R, we define ∂kf(θ)/∂θ(k) as a
short-hand notation for a generic element of the k’th derivative with respect to the vector θ.

Lemma B.1. Let the sequences aj and bj,T , j = 1, . . . , T , be such that
∑T

j=1 |aj | <∞, supj,T |bj,T | <
∞, and, for some qT →∞ as T →∞, supj≤qT ,T |bj,T | → 0. Then

∑T
j=1 ajbj,T → 0.

Lemma B.2. Let Assumptions 1–3 be satisfied. For k = 0, 1 define Ψk := Ψ and for k = 2, 3 define
Ψk := Nδ(ψ0) := {ψ ∈ Ψ : ||ψ − ψ0|| ≤ δ} for some δ > 0. Then it holds that

εt(θ) =

t−1∑
j=0

φj(θ)εt−j + rt(θ) and εt(θ0) = εt + rt,

where, for any integer h such that 1 ≤ h ≤ 8, for any finite constant g, and for k = 0, 1, 2, 3,

sup
d0−d≤g,ψ∈Ψk

|∂kφj(θ)/∂θ(k)| ≤ c(log j)kjmax(g−1,−2−ζ),

E sup
d0−d≤g,ψ∈Ψk

|∂krt(θ)/∂θ(k)|h ≤ c(log t)hkthmax{g−1,−1−ζ},

E|rt|h ≤ ct−h(1+ζ).

Lemma B.3. Let Assumptions 1–3 be satisfied. For k = 0, 1 define Ψk := Ψ and for k = 2, 3
define Ψk := Nδ(ψ0) := {ψ ∈ Ψ : ||ψ − ψ0|| ≤ δ} for some δ > 0. Also, for all integers q such
that 2 ≤ q ≤ 8, let k(i) = 0, 1, 2, 3 for i = 1, . . . , q, and define integers r1, . . . , rk(i) such that
1 ≤ rm ≤ p+ 1 for m = 1, . . . , k(i). Then, for any κ > 0,

sup
d0−d≤1/2−κ,ψ∈Ψmax k(i)

T−1
T∑
t=1

(
q∏
i=1

∂k(i)εt(θ)

∂θr1 . . . ∂θrk(i)

)
= Op(1).

B.3 Proofs of Technical Lemmas

B.3.1 Proof of Lemma B.1

By the triangle inequality,∣∣∣∣∣∣
T∑
j=1

ajbj,T

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
qT∑
j=1

ajbj,T

∣∣∣∣∣∣+

∣∣∣∣∣∣
T∑

j=qT+1

ajbj,T

∣∣∣∣∣∣ ≤ ( sup
j≤qT ,T

|bj,T |)
qT∑
j=1

|aj |+ (sup
j,T
|bj,T |)

T∑
j=qT+1

|aj |,

where the first term converges to zero by assumption and the last converges to zero because it is
the tail of a convergent sum.
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B.3.2 Proof of Lemma B.2

The residual is given in (3) as

εt(θ) =
t−1∑
n=0

t−1−n∑
j=0

∞∑
m=0

bn(ψ)πj(d0 − d)am(ψ0)εt−n−j−m

=

t−1∑
j=0

t−1−j∑
n=0

t−n−j−1∑
m=0

bn(ψ)πj(d0 − d)am(ψ0)εt−n−j−m

+
t−1∑
n=0

t−1−n∑
j=0

∞∑
m=t−n−j

bn(ψ)πj(d0 − d)am(ψ0)εt−n−j−m

=

t−1∑
j=0

φj(θ)εt−j + rt(θ),

where φj(θ) :=
∑j

n=0

∑j−n
m=0 bm(ψ)πn(d0 − d)aj−n−m(ψ0) satisfies

sup
d0−d≤g,ψ∈Ψ

∣∣∣∣∂kφj(θ)∂θ(k)

∣∣∣∣ ≤ c j∑
n=0

(log n)kng−1
j−n∑
m=0

m−2−ζ(j − n−m)−2−ζ

≤ c(log j)k
j∑

n=0

ng−1(j − n)−2−ζ ≤ c(log j)kjmax(g−1,−2−ζ)

by (2) and Lemmas B.5 and B.6. The remainder term, rt(θ) :=
∑t−1

n=0

∑t−1−n
j=0

∑∞
m=t−n−j bn(ψ)πj(d0−

d)am(ψ0)εt−n−j−m, satisfies, by the same arguments and using also Assumption 1(a)(iii),(b),

E sup
d0−d≤g,ψ∈Ψ

∣∣∣∣∂krt(θ)∂θ(k)

∣∣∣∣h ≤ cE h∏
i=1

t−1∑
ni=0

n−2−ζ
i

t−1−ni∑
ji=0

(log ji)
kjg−1
i

∞∑
mi=t−ni−ji

m−2−ζ
i |εt−ni−ji−mi |

≤ c

(log t)k
t−1∑
n=0

n−2−ζ
t−1−n∑
j=0

jg−1(t− n− j)−1−ζ

h

≤ c

(
(log t)k

t−1∑
n=0

n−2−ζ(t− n)max{g−1,−1−ζ}

)h
≤ c(log t)hkthmax{g−1,−1−ζ}.

At θ = θ0 we find, using πj(0) = I(j = 0),

εt(θ0) =

t−1∑
n=0

∞∑
m=0

bn(ψ0)am(ψ0)εt−n−m = εt + rt,

where rt := −
∑∞

n=t

∑∞
m=0 bn(ψ0)am(ψ0)εt−n−m satisfies, by the same arguments as above,

E|rt|h ≤ c

( ∞∑
n=t

∞∑
m=0

|bn(ψ0)||am(ψ0)|

)h
≤ c

( ∞∑
n=t

n−2−ζ

)h
≤ c

(
t−1−ζ

)h
≤ ct−h(1+ζ).

B.3.3 Proof of Lemma B.3

First apply Hölder’s inequality,

T−1
T∑
t=1

(
q∏
i=1

∂k(i)εt(θ)

∂θr1 . . . ∂θrk(i)

)
≤

q∏
i=1

(
T−1

T∑
t=1

∣∣∣∣∣ ∂k(i)εt(θ)

∂θr1 . . . ∂θrk(i)

∣∣∣∣∣
q)1/q

.
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Next, by Lemma B.2 and Minkowski’s inequality we find

(
T−1

T∑
t=1

∣∣∣∣∣ ∂k(i)εt(θ)

∂θr1 . . . ∂θrk(i)

∣∣∣∣∣
q)1/q

≤

T−1
T∑
t=1

∣∣∣∣∣∣
t−1∑
j=0

∂k(i)φj(θ)

∂θr1 . . . ∂θrk(i)
εt−j

∣∣∣∣∣∣
q1/q

+

(
T−1

T∑
t=1

∣∣∣∣∣ ∂k(i)rt(θ)

∂θr1 . . . ∂θrk(i)

∣∣∣∣∣
q)1/q

.

(B.1)
We note from Lemma B.2 that the derivatives add at most a logarithmic factor, which is inconse-
quential to the proof, so we give the proof only for k(i) = 0 to lighten the notation. We first find
from Lemma B.2 that the second term on the right-hand side of (B.1) satisfies

E sup
d0−d≤1/2−κ,ψ∈Ψ

T−1
T∑
t=1

|rt(θ)|q ≤ cT−1
T∑
t=1

tq(−1/2−κ) ≤ cT−1

for any κ > 0 because q ≥ 2.
Next, we give the proof for the first term on the right-hand side of (B.1). By summation by

parts,
t−1∑
j=0

φj(θ)εt−j = φt−1(θ)
t−1∑
j=0

εt−j +
t−2∑
j=0

(φj(θ)− φj+1(θ))

j∑
l=0

εt−l,

so that

T−1
T∑
t=1

∣∣∣∣∣∣
t−1∑
j=0

φj(θ)εt−j

∣∣∣∣∣∣
q

=T−1
T∑
t=1

∣∣∣∣∣∣φt−1(θ)
t−1∑
j=0

εt−j

∣∣∣∣∣∣
q

(B.2)

+ T−1
T∑
t=1

∣∣∣∣∣∣
t−2∑
j=0

(φj(θ)− φj+1(θ))

j∑
l=0

εt−l

∣∣∣∣∣∣
q

(B.3)

+ cross-terms,

where the cross-terms will be Op(1), uniformly in θ ∈ Θ2, by the Cauchy-Schwarz inequality
after showing that the same is true for the two main terms. Because

∑t−1
j=0 εt−j = Op(t

1/2),

uniformly in t, and supd0−d≤1/2−κ,ψ∈Ψ |φt−1(θ)| ≤ ct−1/2−κ by Lemma B.2, we first find that

supd0−d≤1/2−κ,ψ∈Ψ |(B.2)| = Op(T
max{−κq,−1}) = op(1) because κ > 0, q ≥ 2. To prove the re-

sult for (B.3), first note that, with obvious notation, φj+1(d, ψ) − φj(d, ψ) = φj+1(d − 1, ψ),
so that supd0−d≤1/2−κ,ψ∈Ψ |φj(θ) − φj+1(θ)| ≤ cj−3/2−κ by Lemma B.2. It then follows that

supd0−d≤1/2−κ,ψ∈Ψ |
∑t−2

j=0(φj(θ)− φj+1(θ))
∑j

l=0 εt−l| = Op(1), uniformly in t, and therefore

sup
d0−d≤1/2−κ,ψ∈Ψ

|(B.3)| = Op(1)

which proves the result.

B.4 Additional Lemmas Without Proofs

Lemma B.4 (CNT, Lemma A.2). Let zt be a martingale difference sequence with respect to the
natural filtration Ft, the sigma-field generated by {zs}s≤t, and suppose E|zt|q <∞ for some integer
q ≥ 2. Then the q’th order moments and cumulants satisfy

E(ztzt−r1 · · · zt−rq−1) = 0 and κq(t, t− r1, . . . , t− rq−1) = 0

for all integers rk ≥ 1, k = 1, . . . , q − 1.

Lemma B.5 (Johansen and Nielsen, 2010, Lemma B.4). Uniformly for max{|α|, |β|} ≤ a0 it holds
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that
t−1∑
j=1

jα−1(t− j)β−1 ≤ c(a0)(1 + log t)tmax{α+β−1,α−1,β−1}.

Lemma B.6 (Johansen and Nielsen, 2010, Lemma B.3). For |u| ≤ u0, m ≥ 0, and all j ≥ 1 it
holds uniformly in u that

| ∂
m

∂um
πj(u)| ≤ c(u0)(1 + log j)mju−1, (B.4)

| ∂
m

∂um
T−uπj(u)| ≤ c(u0)T−u(1 + | log(j/T )|)mju−1. (B.5)

Lemma B.7. Let the assumptions of Theorem 3 be satisfied. For k = 0, 1 define Ψk := Ψ and for
k = 2, 3 define Ψk := Nδ(ψ0) := {ψ ∈ Ψ : ||ψ − ψ0|| ≤ δ} for some δ > 0. Then it holds that

ε∗t (θ) =
t−1∑
j=0

φ̂j(θ)ε
∗
t−j and ε∗t (θ̂) = ε∗t ,

where, for any finite constant g and for k = 0, 1, 2, 3,

sup
d̂−d≤g,ψ∈Ψk

|∂kφ̂j(θ)/∂θ(k)| = Op((log j)kjmax(g−1,−2−ζ)).

Proof. The proof is almost identical to that of Lemma B.2, with the main difference being that
ε∗t = 0 for t ≤ 0, and is omitted for brevity.

Lemma B.8. Let the assumptions of Theorem 3 be satisfied. For k = 0, 1 define Ψk := Ψ and for
k = 2, 3 define Ψk := Nδ(ψ0) := {ψ ∈ Ψ : ||ψ − ψ0|| ≤ δ} for some δ > 0. Also, for all integers q
such that 2 ≤ q ≤ 8, let k(i) = 0, 1, 2, 3 for i = 1, . . . , q, and define integers r1, . . . , rk(i) such that
1 ≤ rm ≤ p+ 1 for m = 1, . . . , k(i). Then, for any κ > 0, in probability,

sup
d̂−d≤1/2−κ,ψ∈Ψmax k(i)

T−1
T∑
t=1

(
q∏
i=1

∂k(i)ε∗t (θ)

∂θr1 . . . ∂θrk(i)

)
= O∗p(1).

Proof. The proof is almost identical to that of Lemma B.3 and is omitted for brevity.

Additional References

These are the additional references cited in this appendix and not listed in the main paper.

Johansen, S. and M.Ø. Nielsen (2010), Likelihood inference for a nonstationary fractional autore-
gressive model, Journal of Econometrics 158, 51–66.
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Table C.1: Conditional and unconditional heteroskedasticity tests

Test statistic sunspots CO2 PPI M1 CPI

ARCH(5) 686.129a 32.616a 213.404a 65.401a 58.446a

ARCH(20) 794.302a 48.050a 234.493a 82.630a 78.424a

HR 1.980b 0.833 2.033a 1.910b 1.363
HKS 1.464b 0.826 2.031a 1.910a 1.283c

HCvM 0.540b 0.260 1.625a 1.523a 0.603b

HAD 2.942b 1.549 9.003a 9.427a 2.773b

Notes: ARCH(k) denotes the LM test for ARCH(k) based on a AR(k) regression fitted to the squared residuals, and
HR, HKS, HCvM, and HAD denote the stationary volatility tests proposed in Cavaliere and Taylor (2008, p. 312). The
superscripts a, b, and c denote significance at the 1%, 5%, and 10% nominal (asymptotic) levels, respectively.

C.1 Introduction

This supplement contains additional data analysis for the data examples in our paper “Adaptive
Inference in Heteroskedastic Fractional Time Series Models”. Additional references are included at
the end of the supplement.

C.2 Heteroskedasticity Diagnostics

To investigate the possible presence of heteroskedasticity in the residuals, we report in Table C.1
several tests for conditional and unconditional heteroskedasticity. The superscripts a, b, and c
denote significance at the 1%, 5%, and 10% nominal (asymptotic) levels, respectively.

In the first two rows of Table C.1 we report results for the LM test of the null hypothesis of
conditional homoskedasticity against the alternative of ARCH(k) dynamics. These tests are based
on an AR(k) regression fitted to the squared residuals. For all series, conditional homoskedasticity
is easily rejected at any conventional significance level.

In the last four rows of Table C.1 we report the HR, HKS, HCvM, and HAD stationary volatility
tests of Cavaliere and Taylor (2008, p. 312). These are tests of the null of stationary volatility,
i.e. allowing in particular for conditional heteroskedasticity under the null, against the alternative
of non-stationary volatility (unconditional heteroskedasticity). All series except CO2 show strong
evidence of unconditional heteroskedasticity.

To visualize the possible presence of unconditional heteroskedasticity in the residuals, we first
plot the residual series in the left-hand panels in Figure C.1. In the middle panels of Figure C.1
we plot the sample variance profiles of the residuals, say ε̃t, of the fitted ARFIMA models. The

sample variance profiles, see Cavaliere and Taylor (2008), are plots of η̂ (u) := (
∑T

t=1 ε̃
2
t )
−1
∑bTuc

t=1 ε̃2
t

against u ∈ [0, 1]. In large samples, η̂ (u) ≈ (
∫ 1

0 σ
2 (s) ds)−1

∫ u
0 σ

2 (s) ds, which equals u when
the unconditional volatility is constant; that is, when there is no unconditional heteroskedasticity.
Consequently, under conditional homoskedasticity or, more generally, under stationary conditional
heteroskedasticity, η̂(u) should be close to the 45 degree line, and significant deviations of this
function from the 45 degree line point to the presence of persistent changes in volatility. These
deviations, along with the corresponding 95% confidence bands5, are reported in the right-hand
panels of Figure C.1.

Additional References

These are the additional references cited in this appendix and not listed in the main paper.

Cavaliere, G. and A.M.R. Taylor (2008), Time-transformed unit root tests for models with non-
stationary volatility, Journal of Time Series Analysis 29, 300–330.

5The confidence bands are obtained as suggested by Cavaliere and Taylor (2008). This requires estimation of the
long-run variance of ε̃2t under the null hypothesis, which is done here using a sums-of-covariances estimator with the
Bartlett kernel and a lag truncation of five.
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Figure C.1: Residual graphics for data examples
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Note: Left panels show time series plots of residuals, middle panels show residual variance profiles,
η̂(u), and right panels show centered variance profiles with 95% confidence bands.
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