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Abstract

We study asymptotic inference based on cluster-robust variance estimators for regression
models with clustered errors, focusing on the wild cluster bootstrap and the ordinary wild
bootstrap. We state conditions under which both asymptotic and bootstrap tests and confidence
intervals will be asymptotically valid. These conditions put limits on the rates at which the
cluster sizes can increase as the number of clusters tends to infinity. To include power in the
analysis, we allow the data to be generated under sequences of local alternatives. Simulation
experiments illustrate the theoretical results and show that all methods can work poorly in
certain cases.

Keywords: Clustered data, cluster-robust variance estimator, CRVE, inference, wild bootstrap,
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1 Introduction
Many applications of the linear regression model in economics and other fields involve error terms
that appear to be correlated within clusters. More generally, the use of clustering in fields such
as survey design goes back many decades. In such cases, it is very common to use a cluster-
robust variance estimator (CRVE) to calculate asymptotic t-statistics and Wald statistics, because
neglecting the cluster structure can lead to severely biased standard errors and large size distortions
(Moulton, 1986). Although CRVE-based t-statistics work well in many cases, this approach can
fail (sometimes disastrously) when the number of clusters is small, cluster sizes vary a lot, or the
variable(s) of interest take non-zero values for only a few clusters; see Cameron and Miller (2015)
for a recent survey.
∗We are grateful to Russell Davidson, Silvia Gonçalves, Bruce Hansen, and seminar participants at NY Camp

Econometrics XII, the 2017 CEA Annual Meeting, and U. C. San Diego for comments. Nielsen thanks the Canada
Research Chairs program, the Social Sciences and Humanities Research Council of Canada (SSHRC), and the Center
for Research in Econometric Analysis of Time Series (CREATES, funded by the Danish National Research Foundation,
DNRF78) for financial support. MacKinnon thanks the SSHRC for financial support. Some of the computations
were performed at the Centre for Advanced Computing at Queen’s University.
†Corresponding author. Address: Department of Economics, 94 University Avenue, Queen’s University, Kingston,
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The wild cluster bootstrap (WCB) was proposed in Cameron, Gelbach, and Miller (2008) as
a way to obtain more accurate inferences in finite samples than using cluster-robust t-statistics.
Although it typically does provide more accurate inferences, it too can fail (sometimes to an extreme
degree) in certain cases; see MacKinnon and Webb (2017b). Interestingly, MacKinnon and Webb
(2017a) provides simulation evidence which shows that the ordinary wild bootstrap (WB) seems
to work better than the wild cluster bootstrap in some of those cases. A formal treatment of the
conditions under which the WCB (and the WB in a cluster context), yields asymptotically valid
inferences is clearly needed.

In this paper, we provide an asymptotic analysis of cluster-robust inference with particular
emphasis on the WCB and the WB. In particular, we first establish the asymptotic distribution
of the least squares estimator and associated cluster-robust t-statistic when the error terms have a
cluster structure. We then establish the asymptotic validity of the WCB and the WB. All our results
are given under simple primitive assumptions and rate conditions on the heterogeneity of cluster
sizes. Our results allow for heteroskedasticity of unknown form and do not restrict dependence
within clusters.

We are not aware of any previous work on the asymptotic validity of wild bootstrap methods for
clustered errors. Conditions for asymptotic validity of CRVE-based inference are given by White
(1984, Chapter 6), Liang and Zeger (1986), Hansen (2007), and Carter, Schnepel, and Steigerwald
(2017), among others. All but the last of these assume that clusters are equal-sized. Carter et al.
(2017) allows clusters of unequal sizes and studies the effects of heterogeneity across clusters.

An obvious alternative to the wild cluster bootstrap is the pairs cluster bootstrap, in which the
bootstrap samples are constructed by resampling (Xg,yg) pairs. Several variants of this procedure
were studied in Cameron, Gelbach, and Miller (2008) using simulation methods. In almost all cases,
the pairs bootstrap produced less reliable inferences than the wild cluster bootstrap. This might
have been expected, because the ordinary pairs bootstrap generally yields less reliable inferences
in regression models with heteroskedastic errors than does the ordinary wild bootstrap; see, among
others, MacKinnon (2002) and Davidson and Flachaire (2008).

Simulation evidence from previous studies is not the only reason for not studying the pairs
cluster bootstrap here. The fundamental problem with the pairs cluster bootstrap is that, unlike
the WB or the WCB, it does not condition on X, which makes it unattractive for two reasons.
First, when cluster sizes are not equal across clusters, the sample size will vary across the bootstrap
samples. Second, when any of the regressors is a dummy variable that varies at the cluster level,
the number of treated clusters and treated observations will vary across the bootstrap samples.
Indeed, when there are few treated clusters in the actual sample, there may be none at all in some
of the bootstrap samples, which would cause the X>X matrix to be singular.

The remainder of the paper is organized as follows. In Section 2, we present the model that we
study and the associated asymptotic theory. In Section 3, we demonstrate the asymptotic validity
of both the wild cluster bootstrap and the ordinary wild bootstrap. In Section 4, we present results
of some simulation studies. Section 5 concludes. The proofs are relegated to the appendices.

2 The Model and Asymptotic Theory
Consider a linear regression model with clustered errors written as

y =


y1
y2
...
yG

 = Xβ + u =


X1
X2
...
XG

β +


u1
u2
...
uG

, (1)
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where each cluster, indexed by g, has Ng observations. The total number of observations in the
entire sample isN =

∑G
g=1Ng, and theN×k matrix of covariatesX contains k linearly independent

columns. The vector β is a k × 1 vector of unknown parameters. The variance matrix Ω of u,
conditional on X, is block-diagonal with G diagonal Ng ×Ng block variance matrices

Ωg = E(ugu>g |Xg), g = 1, . . . , G. (2)

When Ng = 1 for all g, the model (1) reduces to the well-known linear regression model with
heteroskedasticity of unknown form. Hence, as a special case, our results cover that model as well.

As usual, the OLS estimator of β is

β̂ = (X>X)−1X>y. (3)

Letting QN = N−1X>X and ΓN = N−2∑G
g=1X

>
g ΩgXg = N−2X>ΩX, the variance matrix of

β̂, conditional on X, is given by

VN = (X>X)−1
(

G∑
g=1

X>g ΩgXg

)
(X>X)−1 = Q−1

N ΓNQ−1
N . (4)

We then define the cluster-robust estimator of VN , i.e. the CRVE, as

V̂ = Q−1
N Γ̂Q−1

N , (5)

where Γ̂ = N−2∑G
g=1X

>
g ûgû

>
gXg.

WhenNg = 1 for all g, so thatG = N, the estimator V̂ reduces to the familiar heteroskedasticity-
consistent covariance matrix estimator (HCCME) of Eicker (1963) and White (1980); see also Arel-
lano (1987). Several variations of the CRVE have been proposed to reduce its finite-sample bias, in
the same way that variations of the HCCME (e.g., MacKinnon and White, 1985) can reduce its bias;
see, among others, Kauermann and Carroll (2001), Bell and McCaffrey (2002), Imbens and Kolesár
(2016), and Pustejovsky and Tipton (2017). However, since our focus is on bootstrap inference, we
maintain the version of the CRVE given in (5), which is simple to compute and analyze.1

We let β0 denote the true value of β and restrict our attention to the cluster-robust t-statistic

ta = a>(β̂ − β0)√
a>V̂ a

(6)

for testing the null hypothesis H0: a>β = a>β0 with a>a = 1 (a normalization that rules out
degenerate cases but is much stronger than really needed) against either a one-sided or two-sided
alternative hypothesis.

We next derive the asymptotic limit theory for ta. In order to obtain those results, we need
the following conditions, where, for any matrixM, ‖M‖ =

(
Tr(M>M)

)1/2 denotes the Euclidean
(Frobenius) norm.

Assumption 1. The {ug} are independent across g = 1, . . . , G and satisfy E(ug|X) = 0 and
E(ugu>g |X) = Ωg for all g = 1, . . . , G, where Ωg is positive definite. In addition, for some λ ≥ 0,

sup
1≤i≤Ng , 1≤g≤G

E
(
|uig|4+λ|X

)
<∞.

1It is easy to see that V̂ is singular if k > G, since the rank of V̂ cannot exceed G. This occurs, for example,
whenever there are cluster fixed effects. In that case, the diagonal elements of V̂ that correspond to the fixed effects
are 0. However, this does not prevent us from using (5) to make inferences about the remaining elements of β.
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Assumption 2. The regressor matrix X satisfies QN
P−→ Q, where Q is finite and positive

definite, and
sup

1≤i≤Ng , 1≤g≤G
E‖Xig‖4+λ <∞,

where λ is the same as in Assumption 1.

Assumption 3. For λ defined in Assumption 1 and µN denoting the smallest eigenvalue of ΓN ,

G→∞ and µ
− 4+λ

6+2λ
N sup

1≤g≤G

Ng

N
P−→ 0.

Assumption 1 imposes the conditions that the error vectors ug are independent across clus-
ters with zero conditional means and constant, but possibly heterogeneous, conditional variance
matrices. Conditions like Assumption 2 are standard in the asymptotic theory for linear regressions.

A substantial complication in the asymptotic theory for the model (1) is that the stochastic
order of magnitude of β̂ in (3) depends in a complex way on the intra-cluster correlation structure,
the regressors, the relative cluster sizes, and interactions among these. There are two extreme
cases, with all other cases lying in between: (i) Ω is diagonal with no intra-cluster correlation at
all and (ii) Ωg is a dense matrix without restrictions and the regressors are correlated. In case (i)
we easily find that, under Assumption 2,

‖VN‖ = OP (N−1). (7)

Thus, in particular, β̂ clearly converges at rate OP (N−1/2), because VN is the conditional vari-
ance matrix of β̂ under Assumption 1. On the other hand, in case (ii) for a general Ωg without
restrictions, it holds that

E(X>g ΩgXg) = E
( Ng∑
i,j=1

X>igΩg,ijXjg

)
= O

(
N2
g

)
, (8)

where Ωg,ij is the (i, j)th element of Ωg, and Xig is the ith row of Xg. It follows by (8) and
Assumption 2 that

‖VN‖ = OP (1)OP
(
N−2

G∑
g=1

N2
g

)
= OP

(
N−1 sup

1≤g≤G
Ng

)
. (9)

Therefore, in case (ii), β̂ converges at rate OP
(
N−1/2 sup1≤g≤GN

1/2
g
)
. In general, it follows that,

under Assumptions 1 and 2,
G→∞ and sup

1≤g≤G

Ng

N
→ 0 (10)

is sufficient for consistency of β̂ in the model (1).
Assumption 3 first requires the number of clusters G to diverge, which obviously implies that the

total number of observations N =
∑G
g=1Ng also diverges. The second condition of Assumption 3

restricts the extent of heterogeneity of cluster sizes Ng that is allowed. This restriction is related
to the order of magnitude of the matrix ΓN , and specifically its smallest eigenvalue. The reason
for this can be seen from the relation

‖Γ−1
N ‖

2 =
k∑
j=1

ω2
j (Γ−1

N ) =
k∑
j=1

ω−2
j (ΓN ) ≤ kω−2

1 (ΓN ) = kµ−2
N ,
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where ωj(A) is the function that returns the jth eigenvalue ofA, sorted in ascending order. Because
ΓN is positive definite, for N sufficiently large, all its eigenvalues are positive, so that ‖Γ−1

N ‖ ≤
Cµ−1

N . In view of Assumption 2, it follows from equation (4) that

‖V −1
N ‖ = OP (µ−1

N ). (11)

Thus µ−1
N can be interpreted as the rate at which information accumulates.

More generally, the second condition of Assumption 3 ensures that the information in the sample
remains sufficiently spread out across clusters asymptotically, which is a critical requirement for the
application of a central limit theorem. Therefore, the condition depends on the size of the largest
cluster, sup1≤g≤GNg, and on the information contained within each cluster, given by µN .

To analyze the role of µN , we investigate the two extreme cases described above, namely, (i) Ω
is diagonal, and (ii) the Ωg are dense. In case (i), it straightforwardly holds that

µ−1
N = OP (N), (12)

and in case (ii) we find (by the same arguments as in the proof of Lemma A.2) that

µ−1
N = OP

(
N
(

sup
1≤g≤G

Ng

)−1)
. (13)

Clearly, (12) implies a stronger condition in Assumption 3 than (13). Specifically, in the latter case
(ii) where the Ωg are dense, Assumption 3 is in fact implied by (10), which is very simple and very
weak. Thus, when there is a high degree of intra-cluster correlation, so that the effective cluster
size (as measured by the information contained in each cluster) is smaller than the actual cluster
size (Ng), more heterogeneity in Ng is allowed by the second condition of Assumption 3.

Note that the exponent on µN in Assumption 3 is increasing in λ and satisfies − 4+λ
6+2λ ∈ [−2

3 ,−
1
2).

Because µN
P−→ 0, the second condition in Assumption 3 is weaker when more moments are assumed

to exist, i.e. when λ is higher, cf. Assumption 1. In any case, a sufficient condition for Assumption 3
to hold is

G→∞ and µ−2/3
N sup

1≤g≤G

Ng

N
P−→ 0. (14)

If we use the strongest rate for µN in (12) and (13), then we can find a sufficient condition for
Assumption 3 which does not depend on µN :

G→∞ and sup
1≤g≤G

Ng

N1/3 → 0. (15)

The second condition of Assumption 3, or either of the sufficient conditions (14) and (15),
allows a variety of types of cluster-size heterogeneity. For example, the Ng can be fixed constants
as G → ∞, or the Ng can diverge as in, e.g., Ng = cgG

α, where cg and α are fixed constants. In
the former case, with the Ng being fixed constants, which could be considered a prototypical case,
and where also Ωg are non-zero in general, then β̂ is OP (G−1/2) for general Ωg.

Because µN
P−→ 0, the second condition of Assumption 3 rules out the possibility that one

cluster is proportional to the entire sample. However, it does allow one cluster, say g = 1, to
be quite dominant, in the sense that N1 = Nα satisfies the second condition of Assumption 3
for some α < 1. Specifically, with allowance for any intra-cluster correlation structure, including
independence, (15) shows that α < 1/3 is allowed. However, in the case where the Ωg are dense,
denoted case (ii) above, more heterogeneity of cluster sizes is allowed, and any α < 1 satisfies (14).
In this example, we note from (9) that the rate of convergence of β̂ can become very slow when α
is close to one.
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The possibility that the rate of convergence depends on a correlation structure is certainly
not new. For example, Hansen (2007) showed that if both the time-series and cross-sectional
dimensions in a panel setting diverge, then, in our notation, β̂ is either

√
N -convergent or

√
G-

convergent depending on whether the degree of intra-cluster (time-series) correlation is strong or
weak. Gonçalves (2011) extended Hansen (2007) to panels with both serial and cross-sectional
dependence and found that the rate of convergence depended on a parameter, denoted ρ, that
characterizes the degree of cross-sectional dependence.

Our first result in Theorem 1 below has several precursors in the literature, although these
are all obtained under assumptions that are very different from ours. In particular, White (1984,
Chapter 6) assumes equal-sized, homogeneous (same variance) clusters, and Hansen (2007) assumes
equal-sized, heterogeneous clusters. Thus both these papers assume that Ng = N/G for all g,
which trivially satisfies our Assumption 3. In contrast, our primitive moment and rate conditions
in Assumptions 1 and 3 allow heterogeneous clusters.

More recently, Carter, Schnepel, and Steigerwald (2017) obtains a result similar to Theorem 1
that allows clusters to be heterogeneous. That paper makes a primitive moment condition and some
high-level assumptions to govern cluster-size heterogeneity, which are not trivially compared with
our more primitive assumptions. In the moment condition in Assumption 1 of Carter et al. (2017)
it is assumed, in addition to our Assumption 1, that Ω−1/2

g ug has the same moment structure as an
independent sequence, up to the fourth order. This rules out any intra-cluster dependence in the
third and fourth moments and allows a much sharper bound on E(‖X>g ug‖4 |X), which becomes of
order OP (N2

g ) instead of OP (N4
g ); c.f. our Lemma A.2. In contrast, we allow arbitrary dependence

and correlation within each cluster in our Assumption 1, which is therefore substantially weaker
than the corresponding moment condition in Assumption 1 of Carter et al. (2017).

Restrictions on cluster-size heterogeneity in Carter et al. (2017) are governed by their Assump-
tions 2(ii) and 2(iii), both of which are very high-level assumptions. While there is not much
discussion of primitive sufficient conditions for their Assumption 2(iii), there is a rather detailed
discussion of sufficient conditions for their Assumption 2(ii). Here, Carter et al. (2017) argue that
(10) is a sufficient restriction on cluster size heterogeneity to satisfy their Assumption 2(ii). How-
ever, that argument relies on their statements that β̂ = OP (N−1) and β̂g = OP (N−1

g ), where β̂g
is the OLS estimator of β using only the observations in cluster g. Of course, both these state-
ments would only be valid under quite restrictive further assumptions to limit the intra-cluster
correlation; c.f. (8) and (9). Without restrictions on Ωg, we find that their γg and γ̄ satisfy
γg = OP (N2

g /N
2), γ̄ = OP (G−1N−1 sup1≤g≤GNg), and γ̄−1 = OP (Gµ−1

N ), respectively, such that
their G−1E(Γ) = O(GN−3µ−2

N sup1≤g≤GN
3
g ), and their Assumption 2(ii) requires this to tend to

zero. In the case of dense Ωg, this would require GN−1 sup1≤g≤GNg → 0, which is not possible
because G sup1≤g≤GNg ≥ N . In contrast, our assumptions are primitive and straightforward to
interpret.

Since we do not restrict the dependence within each cluster and wish to allow any structure
for the intra-cluster variance matrices, Ωg, we cannot normalize β̂−β0 in the usual way to obtain
an asymptotic distribution. Instead, we consider asymptotic limit theory for the studentized (self-
normalized) quantities (a>VNa)−1/2a>(β̂ − β0), (a>VNa)−1a>V̂ a, and ta. See, e.g., Hansen
(2007, Theorem 2) or Carter, Schnepel, and Steigerwald (2017) for related arguments.

In order to analyze the asymptotic local power of asymptotic and bootstrap tests based on the
cluster-robust t-statistic (6), we derive our results under the sequence of local alternatives

a>(βG − β0) = (a>VNa)1/2δ, (16)

which is often referred as a “Pitman drift.” Under (16), the DGP is characterized by a drifting
sequence of true values of the parameter vector β indexed by G with drift parameter δ. When
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δ = 0, there is no drift, the null hypothesis H0 is true, and the DGP is given by β = β0. In a more
conventional setting, without clustering, the factor that multiplies δ would be N−1/2.

The following result establishes the asymptotic normality of β̂ and ta.

Theorem 1. Suppose that Assumptions 1–3 are satisfied and the true value of β is given by (16).
It then holds that

a>(β̂ − βG)
(a>VNa)1/2

d−→ N(0, 1), (17)

a>V̂ a

a>VNa
P−→ 1, (18)

ta
d−→ N(δ, 1). (19)

When the null hypothesis H0 is true, the following corollary is an immediate consequence of
Theorem 1.

Corollary 1. Under the assumptions of Theorem 1 and H0, it holds that ta
d−→ N(0, 1).

The result in Corollary 1 justifies the use of critical values and P values from a normal approx-
imation to perform t-tests and construct confidence intervals. However, based on results in Bester,
Conley, and Hansen (2011), it will often be more accurate to use the t(G− 1) distribution; see also
Cameron and Miller (2015) for a discussion of this issue.

An important consequence of the results in Theorem 1 and Corollary 1 is that the relevant notion
of sample size in models that have a cluster structure is generally not the number of observations,
N. This is seen clearly in the rate of convergence of the estimator in (17), which is (a>VNa)1/2

instead of N−1/2 or G−1/2; see the discussion around (9).
The proof of Theorem 1 may be found in Appendix B. In this proof, we make use of the

scalars zg = (a>VNa)−1/2a>Q−1
N N−1X>g ug, which are indexed by cluster, and show that

∑G
g=1 zg

converges in distribution. This makes it clear that, in an important sense, G rather than N is the
relevant notion of sample size. Moreover, because we are summing over clusters, the clusters cannot
be too heterogeneous. In particular, the information cannot be concentrated in one cluster (or a
finite number of clusters), which is the reason why Assumption 3 imposes a restriction on supNg.

Theorem 1, specifically the result (19), gives the asymptotic local power of the cluster-robust
t-test as a function of δ. For example, for an α-level test against a left-sided alternative, the
probability of rejecting the null hypothesis when the DGP is (16) is given by the asymptotic local
power function

Φ(zα − δ), (20)
where Φ(x) denotes the cumulative distribution function of the standard normal distribution, and
zα satisfies Φ(zα) = α. The asymptotic local power function (20) may seem to be too simple.
However, the power of the t-test (or, equivalently, the asymptotic efficiency of the estimator)
implicitly depends on G, the Ng, X, and Ω via the quantity (a>VNa)1/2 that appears in (16). The
interpretation of δ implicitly changes whenever (a>VNa)1/2 changes.

Recalling the definition of VN in (4), we see that individual cluster sizes, Ng, impact the power
of the test in a way that depends heavily on the intra-cluster variance matrices, Ωg, and is also
confounded with the influence of the regressorsX. In general, the effects of the Ng, the Ωg, and the
regressors on the power of the t-test cannot be disentangled. They interact in a very complicated
manner, so that the total number of observations cannot be relied upon as a notion of sample size.
MacKinnon (2016) provides simulation evidence which illustrates this point.
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3 Asymptotic Validity of the Wild (Cluster) Bootstrap
In this section, we consider the asymptotic validity of inference based on the wild cluster bootstrap
(WCB) as an alternative to the asymptotic inference justified in Theorem 1. We consider two
versions of the WCB. One of them (WCU) uses unrestricted estimates in the bootstrap data-
generating process, and the other (WCR) uses estimates that satisfy the restriction H0. The latter
is the version proposed in Cameron, Gelbach, and Miller (2008), but it would be much easier to use
the former to construct studentized bootstrap confidence intervals; see Davidson and MacKinnon
(2004, Section 5.3). Cameron et al. (2008) provides no theoretical justification of the properties of
the WCR bootstrap, nor any conditions under which it is valid or expected to work well.

The key feature of the wild cluster bootstrap DGP is the way in which the bootstrap error
terms are generated. Let v∗1, v∗2, . . . , v∗G denote IID realizations of an auxiliary random variable v∗
with E∗(v∗) = 0 and Var∗(v∗) = 1. Here E∗ and Var∗ denote, respectively, the expectation and
variance under the bootstrap measure P ∗. The bootstrap error vectors u∗g, for g = 1, . . . , G, are
obtained by multiplying the residual vector ûg (unrestricted) or ũg (restricted), for each cluster g,
by the same draw v∗g from the auxiliary distribution.

This may be contrasted with the ordinary wild bootstrap (WB) DGP, which was designed for
regression models with independent, heteroskedastic errors but has recently been suggested in the
context of cluster-robust inference by MacKinnon and Webb (2017a). For the WB, the bootstrap
error vectors u∗g, for g = 1, . . . , G, are obtained by multiplying each residual ûig (unrestricted,
WU) or ũig (restricted, WR), by a draw v∗ig from the auxiliary distribution. We also analyze this
bootstrap algorithm below.

We next describe the algorithm for the WCU and WCR bootstraps in some detail. We then
prove the asymptotic validity of both versions. To describe the bootstrap algorithm and the prop-
erties of the bootstrap procedures, we introduce the notation üg and β̈, which will be taken to
represent either restricted or unrestricted quantities, depending on which of WCR or WCU is
being considered.

Wild Cluster Bootstrap Algorithm (WCU and WCR).

1. Estimate model (1) by OLS regression of y on X to obtain β̂ and V̂ defined in (3) and
(5), respectively. For WCR, additionally re-estimate model (1) subject to the restriction
a>β = a>β0 so as to obtain restricted estimates β̃ and restricted residuals ũ.

2. Calculate the cluster-robust t-statistic, ta, for H0: a>β = a>β0, given in (6).

3. For each of B bootstrap replications, indexed by b,

(a) generate a new set of bootstrap errors given by u∗b, where the subvector corresponding
to cluster g is equal to u∗bg = v∗bg üg, and v∗bg denotes independent copies of the random
variable v∗ with E∗(v∗) = 0 and E∗(v∗2) = 1;

(b) generate the bootstrap dependent variables according to y∗b = Xβ̈ + u∗b ;
(c) obtain the bootstrap estimate β̂∗b = (X>X)−1X>y∗b, the bootstrap residuals û∗b, and

the bootstrap variance matrix estimate

V̂ ∗b = (X>X)−1
(

G∑
g=1

X>g û
∗b
g û
∗b>
g Xg

)
(X>X)−1;
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(d) calculate the bootstrap t-statistic

t∗ba = a>(β̂∗b − β̈)√
a>V̂ ∗ba

.

4. Depending on whether the alternative hypothesis is HL: a>β < a>β0, HR: a>β > a>β0, or
H2: a>β 6= a>β0, compute one of the following bootstrap P values:

P̂ ∗L = 1
B

B∑
b=1

I(t∗ba < ta), P̂ ∗H = 1
B

B∑
b=1

I(t∗ba > ta) or P̂ ∗S = 1
B

B∑
b=1

I
(
|t∗ba | > |ta|

)
,

where I(·) denotes the indicator function. If the null hypothesis is H2, but it is inappropriate
to assume symmetry, then the symmetric P value P̂ ∗S can be replaced by the equal-tail P
value, which is simply 2 min(P̂ ∗L , P̂ ∗H).

The above algorithm presents the steps needed to implement the WCU and WCR bootstraps
for testing the hypothesis H0.2 The following theorem is the bootstrap analogue of Theorem 1 and
establishes the asymptotic normality of the WCB estimator and t-statistic.

Theorem 2. Suppose Assumptions 1–3 are satisfied, that the true value of β is given by (16), and
that E∗|v∗|η <∞ for some η > 2. It then holds that

a>(β̂∗ − β̈)
(a>VNa)1/2

d∗−→ N(0, 1), (21)

a>V̂ ∗a

a>VNa
P ∗−→ 1, (22)

t∗a
d∗−→ N(0, 1), (23)

in probability.

The results in Theorem 2 are conditional on the original sample, and hence also conditional
on ta. This implies that the results (21)–(23) hold for any possible realization of the original sample,
and therefore also any possible realization of ta, which is the crucial requirement for asymptotic
validity of the bootstrap.

Let the cumulative distribution function (CDF) of ta be denoted P (ta ≤ x). Then the following
result follows immediately from Theorems 1 and 2 by an application of the triangle inequality and
Polya’s Theorem.

Corollary 2. Under the conditions of Theorem 2 and H0,

sup
x
|P ∗(t∗a ≤ x)− P (ta ≤ x)| = oP (1).

Corollary 2 implies that the P values computed in step 4 of the WCU and WCR algorithms
are asymptotically valid, as are studentized bootstrap confidence intervals. Intuitively, the WCB
test must have the correct size asymptotically under the null hypothesis, because comparing ta
to the bootstrap distribution P ∗(t∗a ≤ x) is asymptotically equivalent to comparing it to N(0, 1).
Moreover, because the distribution (23) obtained for the bootstrap t-statistic, t∗a, under the sequence

2With the WCU bootstrap, a slight modification of this algorithm can be used to construct studentized bootstrap
confidence intervals by calculating lower-tail and upper-tail quantiles of the t∗ba instead of P values; see Davidson and
MacKinnon (2004, Section 5.3).
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of local alternatives (16) coincides with that of the original t-statistic, ta, obtained under the null
hypothesis H0 in Corollary 1, Theorem 2 also implies that the WCB test has the same asymptotic
local power function (20) as the asymptotic test based on ta.

We next describe the algorithm for the ordinary (non-cluster) WU and WR bootstraps, and we
then prove the asymptotic validity of both versions in the context of the cluster model (1).

Wild Bootstrap Algorithm (WU and WR).
All steps are identical to the corresponding steps in the WCU and WCR algorithms, except for
step 3. (a), which is replaced by the following.

3. (a) generate a new set of bootstrap errors given by u∗b, where u∗big = v∗big üig, and v∗big denotes
independent copies of the random variable v∗ with E∗(v∗) = 0 and E∗(v∗2) = 1.

The following theorem is the wild bootstrap analogue of Theorem 2. It establishes the asymp-
totic normality of the WB estimator and t-statistic. To this end, let Ω̄ denote the matrix obtained
by setting the off-diagonal elements of Ω to zero, Γ̄N = N−2X>Ω̄X, and V̄N = Q−1

N Γ̄NQ−1
N ; cf.

(2), (4), and Assumption 2. Notice that, except in very special cases, V̄N 6= VN .

Theorem 3. Suppose that Assumptions 1 and 2 and condition (10) are satisfied, that the true value
of β is given by (16), and that E∗|v∗|η <∞ for some η > 2. It then holds that

a>(β̂∗ − β̈)
(a>V̄Na)1/2

d∗−→ N(0, 1), (24)

a>V̂ ∗a

a>V̄Na

P ∗−→ 1, (25)

t∗a
d∗−→ N(0, 1), (26)

in probability.

The results in Theorem 3 differ in important ways from those in Theorem 2. From (24), we see
that the WB is unable to replicate the intra-cluster correlation structure in Ωg. This is expected,
because the WB multiplies each residual by independent draws of the auxiliary random variable v∗,
and hence the bootstrap DGP has independent (but possibly heteroskedastic) errors, even within
clusters. In consequence, the wild bootstrap estimator a>β̂∗ asymptotically has variance matrix
a>V̄Na, conditional on the original sample—see (24)—whereas both a>β̂ and the corresponding
WCB estimator asymptotically have variance matrix a>VNa conditional on the original sample;
see (17) and (21).

More importantly, however, the distribution of the WB t-statistic given in (26) replicates that
of the original sample t-statistic under the null hypothesis as given in Corollary 1. The fact that
β̂∗ has the wrong variance matrix has no effect on the asymptotic validity of the WB because t∗a is
based on an estimate of the correct variance matrix, a>V̄Na,—see (25)—and thus has the correct
asymptotic distribution. Moreover, as in Theorem 2, the results in Theorem 3 are conditional on
the original sample. Hence Theorem 3 implies asymptotic validity of the WB. This is stated in the
following corollary, which follows immediately from Theorems 1 and 3.

Corollary 3. Under the conditions of Theorem 3, Assumption 3, and H0,

sup
x
|P ∗(t∗a ≤ x)− P (ta ≤ x)| = oP (1).
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Like Corollary 2, this result implies that P values computed using the ordinary WB algorithms,
WU andWR, as well as studentized bootstrap confidence intervals based on WU, are asymptotically
valid. Moreover, since the result (26) is obtained under the sequence of local alternatives (16), it
implies that the asymptotic local power functions of tests based on the WB coincide with those
based on either the cluster-robust t-statistic (6) or the WCB. In other words, perhaps somewhat
surprisingly, there is no loss of asymptotic efficiency or power from imposing independence within
clusters in the bootstrap DGP.

However, because the normalization in (24) is in fact of order N1/2 (see (B.11) in the proof
of Theorem 3), it seems plausible that the distribution of t∗a for the WB should approach the
asymptotic N(0, 1) distribution more rapidly than the distributions of either t∗a for the WCB or ta
itself. This might well make it more difficult for the WB than for the WCB to mimic the distribution
of ta when µ−1

N is small, e.g. when either G is small or the cluster sizes are heterogeneous and the
Ωg are dense. We study this conjecture, and other aspects of the finite-sample performance of WB
and WCB, in the next section.

4 Simulation experiments
In this section, we use Monte Carlo experiments to investigate the finite-sample performance of
the procedures studied in Sections 2 and 3. Initially, we focus on cases in which cluster sizes
vary, but not to an extreme extent. Later, we consider cases in which the rate condition given in
Assumption 3 is either violated or close to being violated.

All of our experiments are based on the DGP

yg = β1 + β2xg + ug, E(ugu>g ) = Ωg, g = 1, . . . , G, (27)

where Ωg is an Ng × Ng matrix with every element on the principal diagonal equal to 1 and
every off-diagonal element equal to ρ. Thus the error terms are equicorrelated with correlation
coefficient ρ. In some of our simulations, the error terms are normally distributed. In others, they
are generated by a normal mixture model with skewness of 1 and excess kurtosis of 3, in order to
avoid the possibly excessive symmetry of normal errors. We obtained very similar results using
both methods.3 The null hypothesis is that β2 = 0; this is equivalent to setting a = [0 1]>. Every
experiment has 100, 000 replications.

Since we have to impose conditions like Assumption 3 on the cluster sizes, we expect inference
to be harder when cluster sizes are not all the same; for evidence on this point; see MacKinnon
and Webb (2017b). In order to allow cluster sizes to vary systematically, we initially allocate N
observations among G clusters using the equation

Ng =
[

N exp(γg/G)∑G
j=1 exp(γj/G)

]
, for g = 1, . . . , G− 1, (28)

where γ ≥ 0, [·] denotes the integer part of the argument, and NG = N −
∑G−1
g=1 Ng. When γ = 0

and N/G is an integer, Ng = N/G for all g. As γ increases, the cluster sizes become more and
more unequal.

In the first set of experiments, the regressor is lognormally distributed and correlated within
each cluster but uncorrelated across them, with correlation coefficient ρx, and the error terms are

3In a normal mixture model, the random variable u is equal to u1 ∼ N(µ1, σ
2
1) with probability p and u2 ∼ N(µ2, σ

2
2)

with probability 1 − p. We used p = 0.1967, µ1 = 0.7693, µ2 = −0.1884, σ1 = 1.5734, and σ2 = 0.6770. To make the
correlation within each cluster equal 0.1, the correlation between the components of the mixture was set to 0.2556.
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generated by the normal mixture model described above.4 Figure 1 shows rejection frequencies for
five tests at the .05 level when G = 20, N = 4000, γ = 3, and ρ = 0.1. Because γ is quite large,
cluster sizes vary from 33 to 598. For the t-test, we use critical values from the t(G−1) distribution.5
For the bootstrap tests, we report symmetric P values based on B = 399 bootstrap samples where
the v∗ come from the Rademacher distribution. Using alternative auxiliary distributions, such as
the two-point Mammen distribution or the standard normal distribution, would inevitably change
some of the results, in most cases not in a good way.

Figure 1: Rejection frequencies for continuous regressor, G = 20, N = 4000, γ = 3, ρ = 0.10
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The horizontal axis shows ρx, which varies from 0.0 to 1.0 by increments of 0.1. We focus on ρx
because past work, going back at least to Moulton (1986), has shown that the value of ρx is very
important. When ρx = 1, the elements of xg are constant within each cluster. It is evident that
the cluster-robust t-test always overrejects, and it does so more and more severely as ρx increases.
The WCR bootstrap does not work perfectly (except when ρx = 0), but it does perform quite well
in all cases, tending to underreject for larger values of ρx. In contrast, the WCU bootstrap always
overrejects, and for larger values of ρx it does so quite severely. The two ordinary wild bootstraps
(WR and WU) perform almost perfectly when ρx = 0 and then deteriorate quite rapidly. However,
they actually improve as ρx approaches 1.

We also performed a similar set of experiments with γ = 0, so that Ng = 200 for all G. The
shapes of all the rejection frequency curves were essentially same as in Figure 1, but the size
distortions were less than half as large. For example, the largest rejection frequency for the t-test
was 0.0878 (size distortion 0.0378) instead of 0.1334 (size distortion 0.0834).

The results of the next set of experiments are shown in Figure 2. Here we fix ρx at 0.8 (which is
roughly the worst value for the ordinary wild bootstrap tests) and vary G from 10 to 100 by 10 and
then from 120 to 200 by 20. The value of γ is still 3, so cluster sizes change as G, and therefore N,
increase. However, the way in which they vary is essentially the same as G increases. The largest

4We also ran some experiments in which the regressor was normally distributed. Most procedures worked a bit
better, but the relations among them were largely unchanged.

5The CRVE used in these experiments is slightly more complicated than the one in equation (5). We multiply the
latter by the factor G(N − 1)/

(
(G− 1)(N − k)

)
, because that is what popular programs do. Without this factor, or

if we had used the standard normal distribution instead of the t(19) distribution, the overrejection would have been
even more severe.
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Figure 2: Rejection frequencies for continuous regressor, ρx = 0.8, γ = 3, ρ = 0.10

0.03

0.05

0.07

0.09

0.11

0.13

0.15

0.17

0.19

..........

...

10
..........
...

20
..........
...

30
..........
...

40
..........
...

50
..........
...

60
..........
...

..........

...

80
..........
...

..........

...

100
..........
...

..........

...

140
..........
...

..........

...
..........
...

200

................................................................................................................................................................................................................................................................................................................................................................................................................................................



.......................................................................................................t(G− 1)


......................................................................................................................................................................................................................

.......................................................................................................WCR
....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

........................................................................WCU



................................................................................WR

............................................................................................................

...............WU

G

Rej. rate

Figure 3: Rejection frequencies for treatment dummy, G = 20, N = 4000, γ = 0, ρ = 0.10
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sample size is N = 40, 000.
There are three striking results in Figure 2. The first is that all the bootstrap tests work

better than the t-test. The second is that WCR performs very much better than WCU. It actually
underrejects for most values of G.6 This probably reflects the fact that the bootstrap DGP is
estimated more efficiently when the model is estimated subject to restrictions; see Davidson and
MacKinnon (1999). In particular, the unrestricted residuals be may worse estimators of the error
terms than the restricted ones, especially for high-leverage observations where the regressor happens
to be particularly large. The third result is that the two ordinary wild bootstrap tests perform
very similarly, with WR always overrejecting a bit less than WU. It also looks as if WR and WU
are improving less rapidly than WCU as G increases.

6This did not happen when the regressor was normally distributed.
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Figure 4: Rejection frequencies for treatment dummy, G = 20, N = 4000, γ = 3, ρ = 0.10
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In the next three experiments, a typical element of the test regressor in (27) is a dummy variable
that equals 1 for some clusters and 0 for others; it can be thought of as a cluster-level treatment
dummy. Many applications of cluster-robust inference involve this type of variable, and it is well-
known that inference can be problematical when the number of treated, or untreated, clusters is
small; see MacKinnon and Webb (2017b). We only study the pure treatment model here, but
difference-in-differences (DiD) regressions are similar. In the DiD context, there are additional
regressors, and the treatment variable is typically equal to 1 only for some observations within the
treated clusters. When there are few treated clusters, exactly the same problems for inference arise.

Figure 3 shows rejection frequencies for the same five tests when the regressor is a treatment
dummy that equals 1 for G1 out of G = 20 equal-sized clusters with N = 4000. Once again,
the error terms are drawn from a normal mixture model. The vertical axis has been subjected
to a square root transformation so that both very large and very small rejection frequencies can
be shown on the same graph. This is essential, because the cluster-robust t-tests and the WCU
bootstrap both reject more than 60% of the time when G1 = 1 and G1 = 19, and the WCR
bootstrap never rejects in the same cases. These extreme overrejections and underrejections are
precisely what the theory of MacKinnon and Webb (2017b) predicts for this model. However, all
the bootstrap methods work very well for 6 ≤ G1 ≤ 14.

Perhaps surprisingly, the ordinary wild bootstrap works very much better than the wild cluster
bootstrap for small and large values of G1. This result is predicted in MacKinnon and Webb
(2017a) for cases in which all clusters are the same size. Since all methods tend to work relatively
well when clusters are the same size and G1 is not too small, we need to investigate other cases.

Figure 4 shows rejection frequencies for a case in which γ = 3 and clusters are treated from
smallest to largest.7 Although there are a few exceptions for particular methods and particular
values of G1, all methods clearly work less well when γ = 3 than when γ = 0. The ordinary wild
bootstrap works very much worse than before, underrejecting for small values of G1 and overreject-
ing for large ones, as predicted by MacKinnon and Webb (2017a). WCU generally overrejects more

7If the error terms had been symmetric, treating the G1 smallest clusters would have been equivalent to treating
the G0 = G − G1 largest ones. Since the asymmetry here seems to have a very modest impact, it is safe to look at,
say, the results for G1 = 18 and use them to infer the results for treating the two largest clusters.
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Figure 5: Rejection frequencies for treatment dummy, N = 200G, G1 = 0.2G, γ = 3, ρ = 0.10
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severely than before. WCR underrejects more severely for small values of G1 and less severely for
G1 = 19, and it actually overrejects for 10 ≤ G1 ≤ 18.

The situation depicted in Figure 4 is rather extreme. In practice, it is unlikely that only the
very smallest or very largest clusters would be treated. Thus, with highly variable cluster sizes
and, say, just 3 or 4 treated clusters out of 20, we would expect all methods to perform better than
they do in Figure 4 but not as well as they do in Figure 3.

Next, we turn our attention to what happens as G increases, with γ = 3 and the fraction of
treated clusters held constant. Figure 5 shows rejection frequencies for various values ofG that range
from 10 to 200, with G1/G = 0.2; as in Figure 2, the actual values are 10, 20, . . . , 100, 120, . . . , 200.
The rejection frequencies for G = 20 correspond to the ones for G1 = 4 in Figure 4, although
they differ slightly due to simulation randomness. As the results of Section 3 suggest, all methods
improve steadily asG increases. However, the two wild cluster bootstrap methods evidently improve
faster than the two ordinary wild bootstrap ones. For G ≥ 30, the best methods are clearly WCR
and WCU. These results are consistent with those in Figure 2, although WCR no longer seems to
have a clear advantage over WCU.

In Figures 2 and 5, the largest cluster constitutes 27.5% of the sample for G = 10 but only 1.8%
for G = 200. In the remaining experiments, we investigate cases where one large cluster dominates
all the others, because this is a situation that is ruled out by the second condition of Assumption 3.
The regressor is lognormally distributed and correlated within clusters with ρx = 0.8, and the error
terms are normally distributed with ρ = 0.1. We set N = 200(G − 1) and N1 = 1000(N/2000)α
for α ≤ 1 and then divide the remaining observations as evenly as possible among the remaining
clusters. The values of G are 11, 21, . . . , 101 and 121, 141, . . . , 201. When α = 1, exactly half the
observations are always in the first cluster. When α < 1, this is still true for G = 11, but the
fraction of observations in the first cluster declines steadily as G increases. For example, when
α = 0.9, N1/N = 0.371, and when α = 0.5, N1/N = 0.112.

Figure 6 shows rejection frequencies for CRVE t-tests for various values of α. Since our exper-
imental design violates the rate condition given in Assumption 3 when α = 1, it is not surprising
that the rejection frequency increases steadily with G. This is also true when α = 0.95. There
appears to be no systematic change in rejection frequencies when α = 0.9, but for smaller values
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Figure 6: Rejection frequencies for CRVE t-tests, continuous regressor with one big cluster
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Figure 7: Rejection frequencies for WCR tests, continuous regressor with one big cluster
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they clearly drop as G increases. However, even for the smallest values of α, G would evidently
have to be very large for t-tests to yield reliable inferences.

Figure 7 shows rejection frequencies for the WCR bootstrap for the same set of experiments.
These are much smaller than the ones in Figure 6. They still increase with G when α = 1, but
they eventually start to decrease for α = 0.95 and α = 0.9, and they decrease rapidly for smaller
values of α. In quite a few cases, the procedure actually underrejects.

In contrast, we see from Figure 8 that rejection frequencies for the WCU bootstrap are quite
high when G = 11 but decrease with G for all values of α except α = 1, where they appear to
increase very slowly. This procedure always works at least somewhat better than the CRVE t-test,
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Figure 8: Rejection frequencies for WCU tests, continuous regressor with one big cluster
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Figure 9: Rejection frequencies for WR tests, continuous regressor with one big cluster
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especially for larger values of G.
Finally, we see from Figure 9 that the ordinary wild bootstrap (WR in this case, but WU is

very similar) works quite well when G is small, but it then overrejects more severely for all values
of α. It continues to overreject more and more severely even for large values of G when α ≥ 0.9.
Only for the smallest values of α does WR clearly improve as G increases

It can be dangerous to draw firm conclusions from simulation experiments, and we are therefore
reluctant to do so. Nevertheless, the results presented here, plus others that we do not present,
strongly suggest that Theorems 2 and 3 are relevant for moderate numbers of clusters such as may
often be encountered in practice, provided no single cluster is unduly large. They also suggest
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that the ordinary wild bootstrap does not provide an asymptotic refinement (that is, a rate of
improvement with G that is faster than the rate for the t-test), but that the wild cluster bootstrap
may do so, at least in certain cases. Nevertheless, the former can sometimes perform better than
the latter when G is small, even though it fails to mimic a crucial feature of the DGP.

5 Conclusion
In this paper, we have provided a formal analysis of the asymptotic properties of CRVE t-tests, the
wild cluster bootstrap, and the ordinary wild bootstrap for linear regression models with clustered
errors. The analysis makes quite weak assumptions about how the number of clusters and their
sizes change as the sample size increases. This requires that, in the three key theorems of the
paper, we use a self-normalizing rate of convergence that depends on the structure of the regressors
and the variance matrix of the error terms. It would be impossible to obtain conventional rates of
convergence for the least squares estimator β̂ without making much stronger assumptions.

The principal results of the paper are grouped into three theorems. Theorem 1 provides a
theoretical foundation for asymptotic inference based on cluster-robust t-tests and cluster-robust
confidence intervals. It differs from previous work in that it uses primitive assumptions which are
straightforward to interpret. Theorem 2 provides a similar foundation for the wild cluster bootstrap
(WCB), in both its restricted (WCR) and unrestricted (WCU) versions. Although the former
generally performs better, the latter can perform well and is much easier to use for constructing
confidence intervals. Finally, Theorem 3 shows that it is valid to base inferences on the ordinary
wild bootstrap, combined with cluster-robust standard errors, even though the distribution of
the bootstrap parameter estimates does not converge to the asymptotic distribution of the actual
parameter estimates. Simulation evidence suggests that, in consequence, the WB tends to improve
less rapidly than the WCB as the number of clusters becomes larger.

Appendix A: Preliminary lemmas
To prove our main results, we use the following preliminary lemmas. Throughout, C denotes a
generic finite constant, which may take different values in different places.

Lemma A.1. Let wg, g = 1, . . . , G, be independent random variables satisfying
∑G
g=1 E(wg) = 0

and sup1≤g≤G E|wg|θ <∞ for some θ ≥ 1. Then
∑G
g=1wg = OP (Gmax{1/θ,1/2}).

Proof. Defining the de-meaned random variables w̃g = wg − E(wg), it is evident that
∑G
g=1wg −∑G

g=1 w̃g = 0, and we can therefore assume E(wg) = 0 in the remainder of the proof. First suppose
1 ≤ θ ≤ 2. Let ε > 0 be arbitrary, and choose K such that Kθ = ε−1 supg E|wg|θ. By Markov’s
inequality and the von Bahr-Esseen inequality,

P

(
G∑
g=1

wg > KG1/θ
)
≤

E
∣∣∣∑G

g=1wg
∣∣∣θ

KθG
≤
∑G
g=1 E|wg|θ

KθG
≤

supg E|wg|θ

Kθ
= ε.

If θ ≥ 2, then we apply the same proof setting θ = 2.

Lemma A.2. Suppose Assumptions 1 and 2 are satisfied. Then
sup

1≤g≤G
N−2−ξ
g E

(
‖X>g ug‖2+ξ|X

)
= OP (1) for 0 ≤ ξ ≤ 2 + λ,

sup
1≤g≤G

N−2−ξ
g ‖X>g Xg‖2+ξ = OP (1) for 0 ≤ ξ ≤ λ/2.
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Proof. By the cr inequality, the left-hand side of the first equation is bounded as

sup
1≤g≤G

N−2−ξ
g N1+ξ

g

Ng∑
i=1

E
(
‖X>iguig‖2+ξ|X

)
= sup

1≤g≤G
N−1
g

Ng∑
i=1
‖Xig‖2+ξE|uig|2+ξ

≤ sup
1≤i≤Ng ,1≤g≤G

‖Xig‖2+ξE|uig|2+ξ = OP (1)

by Assumptions 1 and 2 because ξ < 2 + λ. Similarly, the left-hand side of the second equation is
bounded by

sup
1≤g≤G

N−2−ξ
g N1+ξ

g

Ng∑
i=1
‖X>igXig‖2+ξ = sup

1≤g≤G
N−1
g

Ng∑
i=1
‖Xig‖4+2ξ ≤ sup

1≤i≤Ng ,1≤g≤G
‖Xig‖4+2ξ = OP (1)

by Assumption 2 because ξ < λ/2.

Appendix B: Proofs of main results

B.1 Proof of Theorem 1

As usual, we give the proof conditional on X, which is sufficient because the limits do not depend
on X. Thus, we may treat X as if it were non-random.

Proof of (17). Because β̂ − βG = Q−1
N N−1∑G

g=1X
>
g ug, we need to prove that

(a>VNa)−1/2a>Q−1
N

1
N

G∑
g=1

X>g ug
d−→ N(0, 1). (B.1)

We define zg = (a>VNa)−1/2a>Q−1
N N−1X>g ug with mean and variance given by E(zg) = 0 and

E(z2
g) = (a>VNa)−1N−2a>Q−1

N X
>
g ΩgXgQ

−1
N a, respectively, and note that

∑G
g=1 E(z2

g) = 1. Then
(B.1) follows from the Lyapunov Central Limit Theorem for heterogeneous, independent random
variables if, for some ξ > 0,

∑G
g=1 E|zg|2+ξ → 0 (Lyapunov’s condition). To prove the latter, recall

that µN denotes the smallest eigenvalue of ΓN , such that ‖Γ−1
N ‖ = O(µ−1

N ) and hence ‖V −1
N ‖ =

O(µ−1
N ); see (11). Thus,

G∑
g=1

E|zg|2+ξ ≤ (a>VNa)−1−ξ/2‖Q−1
N ‖

2+ξN−2−ξ
G∑
g=1

E‖X>g ug‖2+ξ

≤ Cµ−1−ξ/2
N N−2−ξ

G∑
g=1

N2+ξ
g ≤ Cµ−1−ξ/2

N N−1−ξ sup
1≤g≤G

N1+ξ
g → 0, (B.2)

where the second inequality is due to Assumption 2 and Lemma A.2 with ξ ≤ 2 + λ, and the
convergence is due to Assumption 3. This completes the proof of (17).

Proof of (18). We start with the decomposition

a>V̂ a

a>VNa
− 1 = (a>VNa)−1a>(V̂ − VN )a = (a>VNa)−1a>

(
A1N −A2N −A>2N +A3N

)
a,
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where

A1N = 1
N2Q

−1
N

G∑
g=1

X>g ugu
>
gXgQ

−1
N − VN ,

A2N = 1
N2Q

−1
N

G∑
g=1

X>g ug(β̂ − βG)>X>g XgQ
−1
N , and

A3N = 1
N2Q

−1
N

G∑
g=1

X>g Xg(β̂ − βG)(β̂ − βG)>X>g XgQ
−1
N .

Thus, we need to show that (a>VNa)−1a>AmNa
P−→ 0 for m = 1, 2, 3. To prove the result for

m = 1, let wg = z2
g −G−1 such that

∑G
g=1wg =

∑G
g=1 z

2
g − 1 = (a>VNa)−1a>A1Na. We note that

E(
∑G
g=1wg) = 0 and prove convergence in mean-square. Thus, we analyze

E
( G∑
g=1

wg

)2
= E

( G∑
g,h=1

wgwh

)
=

G∑
g=1

E(w2
g) +

G∑
g,h=1,g 6=h

E(wgwh), (B.3)

where the first term on the right-hand side is
G∑
g=1

E(w2
g) =

G∑
g=1

E(z4
g)− 2G−1

G∑
g=1

E(z2
g) +G−1 =

G∑
g=1

E(z4
g)−G−1,

since
∑G
g=1 E(z2

g) = 1. The Lyapunov condition (B.2) with ξ = 2 shows that
∑G
g=1 E(z4

g)→ 0, and
hence

∑G
g=1 E(w2

g) → 0. Because z2
g is an independent sequence (Assumption 1), the second term

on the right-hand side of (B.3) is

G∑
g,h=1,g 6=h

E(wgwh) =
G∑

g,h=1,g 6=h
E(wg)E(wh) =

G∑
g,h=1

E(wg)E(wh)−
G∑
g=1

(
E(wg)

)2 = −
G∑
g=1

(
E(wg)

)2
because

∑G
g=1 E(wg) = 0. By Jensen’s inequality,

∑G
g=1
(
E(wg)

)2 ≤ ∑G
g=1 E(w2

g) → 0 using (B.2),
which proves the result for m = 1.

Next, we analyze the case of m = 2, where, using the fact that (β̂ − βG)>X>g XgQ
−1
N a is a

scalar, we find that

(a>VNa)−1a>A2Na = (a>VNa)−1(β̂ − βG)> 1
N2

G∑
g=1

X>g XgQ
−1
N aa

>Q−1
N X

>
g ug.

We first note that ‖β̂ − βG‖ = OP (‖VN‖1/2) = OP (N−1/2 sup1≤g≤GN
1/2
g ); see (9). In addition,

(a>VNa)−1 = OP (µ−1
N ); see (11) and Assumption 2. Then, since

E
(∥∥∥∥ 1

N2

G∑
g=1

X>g XgQ
−1
N aa

>Q−1
N X

>
g ug

∥∥∥∥2)
≤ 1
N4 ‖Q

−1
N ‖

2
G∑
g=1
‖X>g Xg‖2 E

(
‖X>g ug‖2

)
,

which isO(N−3 sup1≤g≤GN
3
g ) using Assumption 2, the Cauchy-Schwarz inequality, and Lemma A.2,

we obtain that

(a>VNa)−1a>A2Na = OP

((
µ
−1/2
N

sup1≤g≤GNg

N

)2)
= oP (1)
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under Assumption 3; see also (14). Finally, the proof for m = 3 is nearly identical to that for
m = 2, using the bound∥∥∥(a>VNa)−1a>A3Na

∥∥∥ ≤ (a>VNa)−1 1
N2 ‖Q

−1
N ‖

2‖β̂ − βG‖2
G∑
g=1
‖X>g Xg‖2

= OP

((
µ
−1/2
N

sup1≤g≤GNg

N

)2)
= oP (1).

Proof of (19). We use (16) to decompose the t-statistic (6) as

ta =
(
a>V̂ a

a>VNa

)−1/2 (
(a>VNa)−1/2a>(β̂ − βG) + δ

)
,

and the result then follows directly from (17), (18), and Slutsky’s Theorem.

B.2 Proof of Theorem 2

We give the proof conditional on X, which is sufficient. It follows the same main outline as
that of Theorem 1. Under the WCB probability measure, we let V̈ = Q−1

N Γ̈Q−1
N and Γ̈ =

N−2∑G
g=1X

>
g ügü

>
gXg denote the bootstrap true values. First we note that, by identical steps

to those in the proof of Theorem 1, it holds more generally that, under (16),
a>(β̈ − βG)
(a>VNa)1/2 = OP (1) and a>V̈ a

a>VNa
P−→ 1. (B.4)

Proof of (21). Noting (B.4) and that (a>V̈ a)−1/2a>(β̂∗ − β̈) = (a>V̈ a)−1/2a>Q−1
N N−1X>u∗,

we show that

(a>V̈ a)−1/2a>Q−1
N N−1X>u∗ = (a>V̈ a)−1/2a>Q−1

N N−1
G∑
g=1

X>g u
∗
g

d∗−→ N(0, 1). (B.5)

To show (B.5), we follow the proof of (B.1). We define z∗g = (a>V̈ a)−1/2a>Q−1
N N−1X>g u

∗
g and

apply the Lyapunov Central Limit Theorem to
∑G
g=1 z

∗
g . Since E∗(z∗g) = 0 and

∑G
g=1 E∗(z∗2g ) = 1

(because E∗(v∗g) = 0 and E∗(v∗2g ) = 1 for all g), this requires verifying the Lyapunov condition for
some ξ > 0; that is, we need to show that

∑G
g=1 E∗|z∗g |2+ξ P−→ 0.

We first use üg = ug −Xg(β̈ − βG) and the cr inequality to find that, for 0 ≤ ξ ≤ λ/2,
sup

1≤g≤G
N−2−ξ
g ‖X>g üg‖2+ξ ≤ 21+ξ sup

1≤g≤G
N−2−ξ
g ‖X>g ug‖2+ξ

+ 21+ξ‖β̈ − βG‖2+ξ sup
1≤g≤G

N−2−ξ
g ‖X>g Xg‖2+ξ = OP (1) (B.6)

using Lemma A.2 and (B.4). It follows from (B.6) that
sup

1≤g≤G
N−2−ξ
g E∗‖X>g u∗g‖2+ξ ≤ sup

1≤g≤G
N−2−ξ
g ‖X>g üg‖2+ξE∗|v∗g |2+ξ = OP (1) (B.7)

for 0 ≤ ξ ≤ min{η − 2, λ/2}. We then find that
G∑
g=1

E∗|z∗g |2+ξ ≤
(
a>V̈ a

a>VNa

)−1−ξ/2

(a>VNa)−1−ξ/2‖Q−1
N ‖

2+ξN−2−ξ
G∑
g=1

E∗‖X>g u∗g‖2+ξ

= OP

µ−1−ξ/2
N N−2−ξ

G∑
g=1

N2+ξ
g

 = OP
(
µ
−1−ξ/2
N N−1−ξN1+ξ

g

)
(B.8)
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using (B.4), (B.7), and (a>VNa)−1 = OP (µ−1
N ). Thus, it holds that

∑G
g=1 E∗|z∗g |2+ξ is oP (1) under

Assumption 3 as in (B.2).

Proof of (22). We note that X>g û∗g = X>g u
∗
g−X>g Xg(β̂∗− β̈), which implies the decomposition

(a>V̈ a)−1a>(V̂ ∗ − V̈ )a = (a>V̈ a)−1a>
(
B∗1N −B∗2N −B∗>2N +B∗3N

)
a,

where

B∗1N = Q−1
N

1
N2

G∑
g=1

X>g ügü
>
gXg(v∗2g − 1)Q−1

N ,

B∗2N = Q−1
N

1
N2

G∑
g=1

X>g u
∗
g(β̂∗ − β̈)>X>g XgQ

−1
N , and

B∗3N = Q−1
N

1
N2

G∑
g=1

X>g Xg(β̂∗ − β̈)(β̂∗ − β̈)>X>g XgQ
−1
N .

Using this decomposition it is sufficient to prove that (a>V̈ a)−1a>B∗mNa = oP ∗(1), in probability,
form = 1, 2, 3. The proofs for each term roughly follow those for the corresponding term in the proof
of (18). Form = 1, we let w∗g = z∗2g −G−1 such that (a>VNa)−1a>B1Na =

∑G
g=1w

∗
g =

∑G
g=1 z

∗2
g −1.

We prove convergence in mean-square by analyzing

E∗
( G∑
g=1

w∗g

)2
= E∗

( G∑
g,h=1

w∗gw
∗
h

)
=

G∑
g=1

E∗(w∗2g ) +
G∑

g,h=1,g 6=h
E∗(w∗gw∗h), (B.9)

where the first term on the right-hand side is
G∑
g=1

E∗(w∗2g ) =
G∑
g=1

E∗(z∗4g )− 2G−1
G∑
g=1

E∗(z∗2g ) +G−1 =
G∑
g=1

E∗(z∗4g )−G−1 = oP (1) (B.10)

using
∑G
g=1 E∗(z∗2g ) = 1 and the Lyapunov condition (B.8) with ξ = 2. Since z∗2g is an independent

sequence under the bootstrap measure, the second term on the right-hand side of (B.9) is

G∑
g,h=1,g 6=h

E∗(w∗gw∗h) =
G∑

g,h=1,g 6=h
E∗(w∗g)E∗(w∗h) =

G∑
g,h=1

E∗(w∗g)E∗(w∗h)−
G∑
g=1

(E∗(w∗g))2 = −
G∑
g=1

(E∗(w∗g))2

because E∗(v∗2g − 1) = 0. By Jensen’s inequality and (B.10),
∑G
g=1
(
E∗(w∗g)

)2 ≤ ∑G
g=1 E∗(w∗2g ) =

oP (1), which implies the result for m = 1. To prove the result for m = 2, we write

(a>V̈ a)−1a>B∗2Na =
(
a>V̈ a

a>VNa

)−1

(a>VNa)−1(β̂∗ − β̈)> 1
N2

G∑
g=1

X>g XgQ
−1
N aa

>Q−1
N X

>
g u
∗
g,

where (a>VNa)−1(a>V̈ a) P−→ 1 by (B.4), (a>VNa)−1 = OP (µ−1
N ) by (11) and Assumption 2, and

‖β̂∗ − β̈‖ = OP ∗(‖V̈ ‖1/2) = OP ∗(N−1/2 sup1≤g≤GN
1/2
g ), in probability, as in (9). We then apply

the bound

E∗
∥∥∥∥ 1

N2

G∑
g=1

X>g XgQ
−1
N aa

>Q−1
N X

>
g u
∗
g

∥∥∥∥2
 ≤ 1

N4 ‖Q
−1
N ‖

2
G∑
g=1
‖X>g Xg‖2 E∗

(
‖X>g u∗g‖2

)
,
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which is OP (N−3 sup1≤g≤GN
3
g ) using Assumption 2, the Cauchy-Schwarz inequality, Lemma A.2,

and (B.7). We then obtain that

(a>V̈ a)−1a>B∗2Na = OP ∗

((
µ
−1/2
N

sup1≤g≤GNg

N

)2)
= oP ∗(1),

in probability, under Assumption 3; see also (14). Finally, the proof for m = 3 is nearly identical
to that for m = 2, using the bound

‖(a>V̈ a)−1a>B∗3Na‖ ≤ (a>V̈ a)−1‖Q−1
N ‖

2‖β̂∗ − β̈‖2N−2
G∑
g=1
‖X>g Xg‖2,

which is of order OP ∗(µ−1
N N−2 sup1≤g≤GN

2
g ) = oP ∗(1) in probability.

Proof of (23). Follows immediately by (21), (22), and Slutsky’s Theorem.

B.3 Proof of Theorem 3

To prove (24), (25), and (26), we follow the same main steps as in the proof of Theorem 2, but now
let V̈ = Q−1

N Γ̈Q−1
N and Γ̈ = N−2∑G

g=1
∑Ng
i=1X

>
ig ü

2
igXig denote the bootstrap true values under the

WB probability measure. First, we note that

(a>V̄Na)−1 = OP (N) (B.11)

in view of (11) and (12).

Proof of (24). We now have (a>V̄Na)−1/2a>(β̂∗− β̈) = (a>V̄Na)−1/2a>Q−1
N N−1X>u∗. Under

the WB probability measure, u∗ig is heteroskedastic, but independent across both i and g. We let
z∗ig = (a>V̄Na)−1/2a>Q−1

N N−1X>igu
∗
ig, where E∗(z∗ig) = 0 and

∑G
g=1

∑Ng
i=1 E∗(z∗2ig ) = 1. The desired

result now follows by application of the Lyapunov Central Limit Theorem to
∑G
g=1

∑Ng
i=1 z

∗
ig, which

requires verifying the Lyapunov condition that, for some ξ > 0,
∑G
g=1

∑Ng
i=1 E∗|z∗ig|2+ξ P−→ 0. Noting

(B.11) and E∗‖X>igu∗ig‖2+ξ = OP (1)—see also (B.6) and (B.7)—we find that

G∑
g=1

Ng∑
i=1

E∗|z∗ig|2+ξ ≤ (a>V̄Na)−1−ξ/2‖Q−1
N ‖

2+ξN−2−ξ
G∑
g=1

Ng∑
i=1

E∗‖X>igu∗ig‖2+ξ = OP (N−ξ/2)

for ξ ≤ min{λ/2, η − 2}, which proves (24).

Proof of (25). To prove (22), we show that

a>V̈ a

a>V̄Na

P−→ 1 and a>V̂ ∗a

a>V̈ a

P ∗−→ 1, (B.12)

in probability. For the first statement in (B.12) we use the decomposition

a>(V̈ − V̄N )a = a>
(
C1N −C2N −C>2N +C3N

)
a,
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where

C1N = Q−1
N

1
N2

G∑
g=1

Ng∑
i=1
X>ig

(
u2
ig − E(u2

ig|X)
)
XigQ

−1
N ,

C2N = Q−1
N

1
N2

G∑
g=1

Ng∑
i=1
X>iguig(β̈ − βG)>X>igXigQ

−1
N , and

C3N = Q−1
N

1
N2

G∑
g=1

Ng∑
i=1
X>igXig(β̈ − βG)(β̈ − βG)>X>igXigQ

−1
N ,

and show that (a>V̄Na)−1a>CmNa
P−→ 0 for m = 1, . . . , 3. Equivalently, since (a>V̄Na)−1 =

OP (N), we show that Na>CmNa
P−→ 0 for m = 1, . . . , 3. To prove the result for m = 1, for

any conforming vector, b, let wig = b>X>ig(u2
ig − E(u2

ig|X))Xigb, which is independent across g
conditional on X. By the law of iterated expectations,

E

( G∑
g=1

Ng∑
i=1

wig

)2
 =

G∑
g=1

E

( Ng∑
i=1

wig

)2
 ≤ G∑

g=1
Ng

Ng∑
i=1

E(w2
ig) ≤ CN sup

1≤g≤G
Ng,

using also the cr inequality and Assumptions 1 and 2. It follows by Assumption 2 and (10) that
Na>C1Na = OP (N−1/2 sup1≤g≤GN

1/2
g = oP (1). For m = 2, we apply the bound

∥∥Na>C2Na
∥∥ ≤ N‖Q−1

N ‖
2‖β̈ − βG‖

1
N2

G∑
g=1

Ng∑
i=1
‖Xig‖3‖uig‖ = OP (N−1/2 sup

1≤g≤G
Ng) = oP (1),

using ‖β̈ − βG‖ = OP (N−1/2 sup1≤g≤GN
1/2
g ), Q−1

N = OP (1), (10), and Assumptions 1 and 2.
Finally, we turn to m = 3, where, by an identical argument, we obtain

∥∥Na>C3Na
∥∥ ≤ N‖Q−1

N ‖
2‖β̈ − βG‖2

1
N2

G∑
g=1

Ng∑
i=1
‖Xig‖4 = OP (N−1 sup

1≤g≤G
Ng) = oP (1).

To prove the second statement in (B.12), we apply the decomposition

a>(V̂ ∗ − V̈ )a = a>
(
D∗1N +D∗2N −D∗3N −D∗>3N +D∗4N

)
a,

where

D∗1N = Q−1
N

1
N2

G∑
g=1

Ng∑
i=1
X>ig ü

2
igXig(v∗2ig − 1)Q−1

N ,

D∗2N = Q−1
N

1
N2

G∑
g=1

Ng∑
i 6=j=1

X>ig üigüjgXjgv
∗
igv
∗
jgQ

−1
N ,

D∗3N = Q−1
N

1
N2

G∑
g=1

X>g u
∗
g(β̂∗ − β̈)>X>g XgQ

−1
N , and

D∗4N = Q−1
N

1
N2

G∑
g=1

X>g Xg(β̂∗ − β̈)(β̂∗ − β̈)>X>g XgQ
−1
N .
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In view of (B.11) and the first part of (B.12), it suffices to prove that (a>V̄Na)−1a>D∗mNa
P ∗−→ 0,

in probability, for m = 1, . . . , 4, or equivalently that Na>D∗mNa
P ∗−→ 0, in probability, also for

m = 1, . . . , 4.
To prove the result form = 1, we let w∗ig = z∗2ig −1/N , which is independent across i and g (under

the WB probability measure) and satisfies
∑G
g=1

∑Ng
i=1w

∗
ig = (a>V̄Na)−1a>D∗1Na. Moreover,

E∗
( G∑
g=1

Ng∑
i=1

w∗ig

)2
= E∗

( G∑
g,h=1

Ng∑
i,j=1

w∗igw
∗
jh

)
=

G∑
g=1

Ng∑
i=1

E∗(w∗2ig ) +
G∑

g,h=1

Ng∑
i,j=1

(i,g) 6=(j,h)

E∗(w∗igw∗jh), (B.13)

where, using
∑G
g=1

∑Ng
i=1 E∗(z∗2ig ) = 1,

G∑
g=1

Ng∑
i=1

E∗(w∗2ig ) =
G∑
g=1

Ng∑
i=1

E∗(z∗4ig )− 1/N = oP (1) (B.14)

by an application of the Lyapunov condition for ξ = 2. Thus, we only need to verify that the second
term on the right-hand side of (B.13) is oP (1). Using E∗(v∗2ig − 1) = 0 and the fact that z∗2ig − 1/N
is an independent sequence, under the WB probability measure, we have that
G∑

g,h=1

Ng∑
i,j=1

(i,g)6=(j,h)

E∗(w∗igw∗jh) =
G∑

g,h=1

Ng∑
i,j=1

E∗(w∗ig)E∗(w∗jh)−
G∑
g=1

Ng∑
i=1

(
E∗(w∗ig)

)2 = −
G∑
g=1

Ng∑
i=1

(
E∗(w∗ig)

)2 = oP (1)

because
∑G
g=1

∑Ng
i=1
(
E∗(w∗ig)

)2 ≤∑G
g=1

∑Ng
i=1 E∗(w∗2ig ) = oP (1) by Jensen’s inequality and (B.14).

Form = 2, we note that E∗(v∗igv∗jg) = 0 for i 6= j, so that (a>V̄Na)−1a>D∗2Na =
∑G
g=1

∑Ng
i 6=j=1 z

∗
igz
∗
jg

is a sum of zero mean random variables (conditional on the original sample). Hence,

E∗
((

(a>V̄Na)−1a>D∗2Na
)2) =

G∑
g=1

Ng∑
i 6=j=1

E∗(z∗2ig )E∗(z∗2jg )

≤ (a>V̄Na)−2‖Q−1
N ‖

4N−4
G∑
g=1

Ng∑
i 6=j=1

E∗‖X>igu∗ig‖2E∗‖X>jgu∗jg‖2,

which is OP (N2N−3 sup1≤g≤GNg) = OP (N−1 sup1≤g≤GNg) = oP (1) by (B.11) and E∗‖X>igu∗ig‖2 =
OP (1); see also (B.6) and (B.7).

For m = 3, we first observe that

(a>V̄Na)−1a>D∗3Na = (a>V̄Na)−1(β̂∗ − β̈)> 1
N2

G∑
g=1

X>g XgQ
−1
N aa

>X>g u
∗
g, (B.15)

where

E∗
∥∥∥∥ G∑
g=1

X>g XgQ
−1
N aa

>X>g u
∗
g

∥∥∥∥2
≤ ‖Q−1

N ‖
2
G∑
g=1
‖X>g Xg‖2E∗‖X>g u∗g‖2 = OP

(
N sup

1≤g≤G
N2
g

)
(B.16)

because X>g u∗g =
∑Ng
i=1X

>
igu
∗
ig, where X>igu∗ig is an independent, zero mean sequence with finite

variance under the WB probability measure, and by application of Lemma A.1 we thus obtain
E∗‖X>g u∗g‖2 = OP (Ng). Combining (B.11), (B.16), and β̂∗ − β̈ = OP (N−1/2), (B.15) is

(a>V̄Na)−1a>D∗3Na = OP ∗
(
N−1 sup

1≤g≤G
Ng

)
P ∗−→ 0,
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in probability, using (10). Finally, by very similar arguments, we find for m = 4 that

‖(a>V̄Na)−1a>D∗4Na‖ ≤ (a>V̄Na)−1‖Q−1
N ‖

2 1
N2

G∑
g=1
‖X>g Xg‖2‖β̂∗−β̈‖2 = OP ∗

(
N−1 sup

1≤g≤G
Ng

)
P ∗−→ 0,

in probability, using also Lemma A.2.

Proof of (26). Follows immediately by (24), (25), and Slutsky’s Theorem.
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