Kind, Hans Jarle; Midelfart, Karen Helene; Schjelderup, Guttorm

Working Paper
Corporate tax systems, multinational enterprises, and economic integration

CESifo Working Paper, No. 1241

Provided in Cooperation with:
Ifo Institute – Leibniz Institute for Economic Research at the University of Munich

Suggested Citation: Kind, Hans Jarle; Midelfart, Karen Helene; Schjelderup, Guttorm (2004) : Corporate tax systems, multinational enterprises, and economic integration, CESifo Working Paper, No. 1241

This Version is available at:
http://hdl.handle.net/10419/18880

Standard-Nutzungsbedingungen:
Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.
Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.
Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.
You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.
If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
CORPORATE TAX SYSTEMS, MULTINATIONAL ENTERPRISES, AND ECONOMIC INTEGRATION

Abstract

Multinational firms are known to shift profits and countries are known to compete over shifty profits. Two major principles for corporate taxation are Separate Accounting (SA) and Formula Apportionment (FA). These two principles have very different qualities when it comes to preventing profit shifting and preserving national tax autonomy. Most OECD countries use SA. In this paper we show that a reduction in trade barriers lowers equilibrium corporate taxes under SA, but leads to higher taxes under FA. From a welfare point of view the choice of tax principle is shown to depend on the degree of economic integration.

Keywords: multinational enterprises, economic integration, trade costs, international tax competition, tax regimes.

Hans Jarle Kind
Department of Economics
Norwegian School of Economics and Business Administration
Helleveien 30
5045 Bergen
Norway

Karen Helene Midelfart
Department of Economics
Norwegian School of Economics and Business Administration
Helleveien 30
5045 Bergen
Norway

Guttorm Schjelderup
Department of Economics
Norwegian School of Economics and Business Administration
Helleveien 30
5045 Bergen
Norway
Guttorm.Schjelderup@nhh.no
1 Introduction

The rise in FDI and multinational firm activity is one of the most pronounced trends in the world economy over the last two decades.\(^1\) This trend has worried policymakers and academics, since multinationals are known to shift profits to low tax countries and governments are prone to compete for shifty profits.\(^2\) In response to these problems the European Commission has focused on "harmful" tax competition (as in the "Monti Package"), and has more recently published a study on corporate taxation. The latter study aims at finding a system for corporate taxation that prevents profit shifting, reduces compliance costs for firms, and preserves national tax autonomy (Commission of the European Communities, 2001).

One of the main proposals emerging from the Commission’s corporate tax study is a switch from the corporate tax system employed by most European countries - called Separate Accounting (SA) - to a system of Formula Apportionment (FA). Apportionment systems are already in use internally among states, provinces, and cantons in federal countries such as the United States, Canada, and Switzerland, where its introduction has been motivated by the need to disentangle the activities of state subsidiaries from the activities of multistate enterprises as a whole in order to secure a tax base in all states where the enterprise has ongoing activities.

Under Separate Accounting (SA) taxable income of a corporation’s activity in each jurisdiction is based on computing the value of transactions between related affiliates as if they had occurred by independent parties in the market place (so called arm’s length pricing). The obvious weakness of this system is that it can be difficult to obtain market parallels on which such prices can be established. In particular, there is substantial evidence that Multinational Corporations (MNCs) arise because they possess firm-specific assets that are intangible in nature and difficult to trade at arm’s length (Markusen (1995)). In practice, multinationals therefore have signifi-

\(^1\)See Markusen (ch. 1, 2002).
\(^2\)The profit shifting activities of MNCs are well documented. Grubert and Mutti (1991), Hines and Rice (1994), Harris et al. (1993), and Collins, Kemsley and Lang (1998) study U.S. data and find strong evidence in support of profit shifting to low tax countries. Broader data are analyzed by Bartelsman and Beetsma (2001) who find evidence for tax avoiding transfer pricing in most OECD countries. For Europe Weichenrieder (1996) shows that German firms have shifted profits to the manufacturing sector in Ireland, thereby taking advantage of the low Irish tax rate. For a survey of this literature, see Hines (1999).
cant discretion when setting their transfer prices. The competing alternative

to SA, Formula Apportionment (FA), implies that the corporate group com-
bines the income of each of its operatives into a single measure of taxable
income. The group then uses a formula to apportion taxable income to each
of the jurisdictions in which the group has activities. The advantage of this
approach is that manipulation of income between affiliates by use of trans-
fer prices does not have an impact on the single measure of income for the
corporate group.

Given the growing importance of multinationals worldwide and the at-
tention by policymakers to the issue of company taxation, it is perhaps sur-
prising that very little work has been done to compare separate accounting
to formula apportionment. Our objective in this paper is to undertake such
a comparison in a framework that also allows us to investigate the impact of
economic integration on tax policy, the choice of corporate tax system, and
welfare.

Our paper relates to a small literature that has mainly addressed cor-
porate tax competition in the presence of multinational firms and transfer
pricing under SA. Konan (1996) models strategic taxation policy of home
and host governments under SA when a multinational enterprise sets trans-
fer prices on globally joint inputs. She finds that an equilibrium home-tax
solution is to tax foreign earned profits at a higher rate than domestically
earned profits. In Elitzur and Mintz (1996) the transfer price takes on a
dual role affecting both the amount of profits shifted and incentives for the
subsidiary’s managing partner. Using a framework of separate accounting
governments compete over MNC profits and impose corporate income taxes
subject to a rule that approximates what the government believes is the
arm’s length price. In the tax competition equilibrium tax rates are affected
by home country production costs, agency costs, and the productivity of
the subsidiary, and it is shown that tax harmonization is likely to reduce
tax rates. Haufer and Schjelderup (2000) analyze the optimal taxation of
multinational profits under SA when firms can shift profits between countries

3In the United States, for example, some of the states that levy a corporate income
tax determine taxable income within their state on the basis of the state’s shares of the
corporation’s total property, payroll and sales.

4Related are Janeba (1995, 1996) and Konan (1997) who study social welfare effects of
multinational enterprise taxation under SA in relation to double taxation treaties and FDI.
Neither of these papers, however, considers transfer pricing nor the impact of economic
integration on policy.
by transfer pricing. They consider a setting where countries compete over corporate profits by choosing both the tax rate and the tax base (depreciation allowances) simultaneously. They find that recent corporate tax reforms in the OECD where corporate tax rates have been reduced while the tax base has been broadened, are optimal responses to the increased presence of multinationals and transfer pricing.\(^5\)

Studies that compare the welfare or revenue effects of a switch from SA to FA are scant.\(^6\) Slemrod and Shackelford (1998) examine financial reports from U.S. based multinationals for the period 1989-1993 to estimate the revenue implications of implementing a U.S. federal formula apportionment system. They find that a switch from SA to FA using an equal three-weighted, three factor formula would have increased US tax liabilities by 38 percent. Nielsen et al (1999) use a two-country setup to compare SA to FA. In their model each MNC consists of a parent firm in one country and a subsidiary in the other. Both the parent firm and its subsidiary produce an output using a public input and (plant-specific) capital, and the public input is acquired by the parent company and made available to the subsidiary at a (transfer) price. They find that if the pure profits of multinationals are either very low or very high, and at the same time the costs of engaging in transfer pricing are of intermediate size, a switch from SA to FA reduces tax revenue and welfare. Finally Anand and Sansing (2000) show that a harmonized apportionment rule can prevail as the cooperative solution to a game between states (as can a system under SA), but a state can increase its welfare by deviating from the cooperative solution. This incentive gives rise to a Prisoner’s Dilemma type of problem under FA. We emphasize that none of the papers reviewed above focuses on economic integration (taken to imply a reduction in trade costs) and transfer pricing, nor on how the interaction between the two may affect tax competition and the choice of tax system.

Our analysis is related to Nielsen et al (1999) in the sense that we study the effect of competition over corporate profits in the presence of multinationals and transfer pricing. Different from their analysis (and previous studies) is that the transfer price applies to a traded commodity that can only be

\(^5\)There is also a small literature studying the regulation of transfer prices under SA when countries compete for corporate profit (see Mansori and Weichenrieder (2001) and Raimondos-Møller and Scharf (2002)).

\(^6\)Separate papers by Gordon and Wilson (1986), McLure (1987), and Mintz (1999) study distortions under FA. Goolsbee and Maydew (2000) provide evidence for negative externalities between jurisdictions under FA.
shipped to the subsidiary at a (trade) cost. This allows us to analyze the impact of economic integration. Furthermore, we also take into account the fact that the transfer price as well as being a tax saving device gives rise to strategic effects. The latter is in contrast to the traditional literature on transfer pricing where monopoly is most often assumed. Under oligopoly, it has been shown by Schjelderup and Sørgard (1997) for SA and by Nielsen et al (2003) for FA that transfer prices trade off tax incentives against strategic incentives. The strategic role of the transfer price is similar to the role of export (or import) subsidies (taxes) in strategic trade policy models (see e.g. Brander, 1985), but with the difference that the transfer price can be used either as a profit shifting device or as a strategic trade instrument. The strategic effect of the transfer price is as follows: if affiliates of an MNC face oligopolistic competition, the MNC can gain by setting the transfer price of internationally traded goods at a central level and delegating decisions about quantities (or prices) to its local affiliates. Such a strategy is beneficial to the MNC as a whole if it triggers favorable responses by local competitors. For example, under Cournot competition, a low transfer price set by the headquarters, turns the importing affiliate into a low cost firm that behaves aggressively by selling a large quantity. Such aggressive behavior induces the local rival to behave softly by setting a low quantity. The soft response from the rival is beneficial to the MNC as a whole. Hence, delegation can achieve higher profits than would arise if all decisions were undertaken centrally. The implication is that the transfer price has a strategic value in addition to being an instrument for profit shifting. Furthermore, since it is the headquarters of the MNC that conducts trade policy, the chosen transfer price is both credible and consistent with international trade agreements.

To sum up, this paper differs from previous studies in that it analyzes how economic integration affects equilibrium tax rates, transfer prices and national welfare under SA and FA. Another novelty of the analysis is that we allow transfer prices to take on a dual role in the sense that they are both tax saving and strategic devices in markets with oligopolistic competition. We show that the transfer price is relatively tax sensitive for a high degree of

\footnote{The strategic role of the transfer price has been observed in the car industry and the petroleum industry. In the car industry it is often the case that the headquarters of the MNC determines the export price on cars, but delegates decisions about the final price of the car to its subsidiary.}

\footnote{The opposite result would be true under price competition (i.e., a high transfer price would be preferable - see Schjelderup and Sørgard 1997).}
economic integration under SA, while the opposite is true under FA. Hence, the conventional wisdom in the tax competition literature that increased economic integration leads to lower tax rates is supported by our findings under SA. However, under FA where increased integration reduces the tax sensitivity of the transfer price, increased competition over shifty profits allows governments to levy higher tax rates. A basic message that emerges from our analysis is therefore that from a welfare point of view the choice of system for corporate taxation hinges on the level of economic integration.

2 The model

We consider two countries, 1 and 2, which are identical in all respects. Each country is host to the headquarters of a multinational corporation, and the headquarters commands two plants, one in each country. The plant located in i produces quantities x_{ii} and x_{ij} with zero unit costs (the first subscript indicates where the headquarters is located and the second where sales occur). The assumption of zero unit costs is made for the sake of technical simplicity, and does not affect results qualitatively.\(^9\) Quantity x_{ii} is sold in country i at a price p_i, while quantity x_{ij} is exported to the affiliate in country j at a transfer price g_i and resold in that country at price p_j. A positive g_i implies that the transfer price is higher than the marginal cost of production, while a negative g_i signifies under invoicing. The inverse demand functions faced by the firms are given by

\[
p_i = \alpha - \beta (x_{ii} + x_{ji}), \quad i = 1, 2, i \neq j. \quad \alpha, \beta > 0. \tag{1}\]

Profits before tax for the MNC’s domestic (π_{ii}) and foreign (π_{ij}) plants are respectively,

\[
\begin{align*}
\pi_{ii} &= p_i x_{ii} + g_i x_{ij} - C(g_i), \\
\pi_{ij} &= (p_j - g_i - \tau) x_{ij}, \quad i = 1, 2, i \neq j.
\end{align*} \tag{2}
\]

where τ denotes trade costs and $C(g_i) = \delta g_i^2$ is a concealment cost of transfer pricing, with $\delta \geq 0$. The higher the value of δ, the more expensive it is for the firm to deviate from the true production costs when it sets the transfer price. This assumption can be interpreted as costs related to concealing the true

\(^9\)A proof of this is obtainable from the authors upon request.
nature of the transaction by making it harder to compare the two products across markets (for example by incurring costs related to the use of lawyers, and/or accountants, see, e.g., Haufler and Schjelderup, 2000). If it is not costly to shift profits, transfer pricing may imply that one of the plants ends up with negative profits ($\pi_{ii} < 0$ or $\pi_{ii} < 0$). It is reasonable to assume that such transfer pricing would not go undetected by the governments. In order to ensure non-negative profits for each plant, we configure the concealment cost function so that profits by the parent firm are non-negative. This can be shown to hold if $\delta = \frac{1}{(9\beta)}$, where $\beta > 0$. Note, however, that all our results are robust to changes in δ and do also hold even in the case of $\delta = 0$.\footnote{For a proof: see http://www.nhh.no/sam/res-publ/supplements/AppendixKMS.pdf.}

The transfer price is set by a central authority within the multinational firm (to be called the headquarters), which maximizes global after tax profits. The headquarters delegates decisions about quantities to its affiliates. Hence, the plants are independent decision makers which maximize before tax profits with quantity as their strategic variable. In what follows, we study a three-stage game in which quantities, transfer prices, and tax rates are endogenously determined. The structure of the game is as follows: At the first stage the two governments choose tax rates simultaneously, and at the second stage the headquarters of each MNC sets the transfer price to maximize total after tax profits of the corporation, taking into account how tax payments should be minimized globally. Finally, at the third stage there is quantity competition between plants in each country. Solving the game backwards, we start at the third stage, which is independent of the tax system.

Before we proceed, we would like to comment on why we assume in the third stage of the game that the affiliates maximize profit before tax rather than after tax. Under SA economic profit equals taxable profit so maximization of pre-tax and after-tax profit yields the same outcome. However, under FA economic profit differs from taxable profit. Thus, if each affiliate maximizes after-tax profit, a tax distortion arises, which gives each affiliate an incentive to reduce the apportionment weight that determines its tax payment. This opens up for a game between affiliates of the same multinational firm, where each affiliate wants to minimize its tax apportionment weight (i.e., its relative activity level in proportion to the total activity level of the multinational as a whole). Such a game does not seem very plausible. Furthermore, maximization of after tax profit by each affiliate may result in the
payment of too much tax by the multinational as a whole, since each affiliate disregards how its tax saving actions affect the tax payments of related affiliates. Consequently, we make the more realistic assumption that the affiliates maximize before tax profit, while the headquarters uses the transfer price to maximize global after tax profits under both SA and FA.

3 The three stage game

3.1 Stage 3: Quantity competition

At the third stage, the domestic and the foreign plant of each MNC maximize before-tax profits in the two segmented markets in countries 1 and 2, and set quantities. Equilibrium quantities at the third stage are given by

\[x_{ii} = \frac{\alpha + \tau + g_j}{3\beta}, \quad x_{ij} = \frac{\alpha - 2(\tau + g_i)}{3\beta}. \]

From (3) it follows that the transfer price set by MNC\(_i\) does not affect its domestic sales, that is, \(\partial x_{ii}/\partial g_i = \partial x_{jj}/\partial g_j = 0\). However, an increase in the transfer price affects sales in the foreign country:

\[\partial x_{ij}/\partial g_i = -\frac{2}{3\beta}, \quad \partial x_{jj}/\partial g_i = \frac{1}{3\beta}. \]

From (4) we see that a marginal increase in the transfer price \(g_i\) reduces the foreign plant’s sales by \(2/(3\beta)\) units, and increases the local competitor’s sales by \(1/(3\beta)\) unit. The transfer price thus introduces a fundamental asymmetry on sales in different markets; it has no effect on domestic sales, but is negatively correlated to sales abroad. Qualitatively the transfer price has the same effect on sales abroad as an export subsidy set by the home government; it increases the home firm’s market share abroad (see Brander, 1995). In the next sections we investigate transfer pricing and tax policy under Separate Accounting and Formula Apportionment.

3.2 Stage 2: Optimal transfer prices

Under delegation of authority, headquarters choose the transfer price in order to maximize after-tax global profits. From (3) we know that a change in
the transfer price influences the competitive behavior of the affiliates of the multinational firm. The idea of delegation, well known from the Industrial Organization literature, is that it may give the affiliates a strategic advantage that benefits the corporation as a whole (see e.g. Sklivas, 1987 and Fershtmann and Judd, 1987). Since each headquarters maximizes global profits after tax, we start this section by deriving the full expressions for after-tax global profits under SA and FA.

Separate Accounting Under Separate accounting each country imposes a tax on the profits generated within its borders. The aim of the tax code is to identify the precise receipts and expenditures attributable to the corporation’s activities in each jurisdiction. Although repatriated profits in principle are taxed in the country of residence, there is general agreement that due to deferral possibilities and limited tax credit rules, the source principle of taxation is effectively in operation (Keen, 1993, and Tanzi and Bovenberg, 1990). Taking this into account, global after tax profits of a multinational firm with headquarters in country i are

\[
\Pi_{i}^{SA} = (1 - t_i) \pi_{ii} + (1 - t_j) \pi_{ij}, \quad i = 1, 2. \tag{5}
\]

Formula Apportionment Under Formula Apportionment (FA) the tax liability of a multinational corporation is apportioned to each country based on the activities of the MNC in each country relative to the MNC’s worldwide activities. In general, the FA scheme may utilize information on the relative stock of capital employed in each country, relative sales, and/or relative payroll. For simplicity we consider only a simplified version here, in which the activity measure is revenue from sales.

Global after tax profits of the MNC with headquarters in country $i = 1, 2$ are

\[
\Pi_{i}^{FA} = [(1 - t_i) S_i + (1 - t_j) (1 - S_i)] \pi_i, \tag{6}
\]

where $S_i \equiv p_i x_{ii} / (p_i x_{ii} + p_j x_{ij})$ and $\pi_i \equiv \pi_{ii} + \pi_{ij}$.

11 The FA system is currently used in the US, Canada, and Switzerland.
Optimal transfer price The optimal transfer price under SA and FA is found by computing how a marginal change in g_i affects global after tax profits (i.e., the effect on (5) and (6)), taking into account the fact that the plants take transfer prices as given (i.e., by using (3) in the first order condition for the headquarters).

The transfer price potentially serves two purposes in this model; it can be used as a strategic trade instrument and as an instrument to reduce tax payments if the countries have different tax rates. The strategic incentive is best seen by setting $t_i = t_j \equiv t$, in which case the multinationals would set the same transfer price ($g_1 = g_2 \equiv g$) under both tax regimes (see the Web-Appendix for a full derivation). We then have\(^{12}\)

\[
g|_t = -\frac{\alpha - 2\tau}{6} < 0 \quad \text{and} \quad \frac{dg}{-d\tau}|_t = -\frac{1}{3} < 0, \quad (7)
\]

The fact that the transfer price is set below marginal cost of production ($g < 0$) means that the headquarters subsidizes exports to its foreign affiliate. Such a pricing strategy turns the foreign affiliate into a low-cost firm that behaves aggressively by increasing its sales in the foreign market. The response of the competing local firm is to scale down its sales, thus allowing the foreign affiliate to capture a larger share of the market. From (7) we further see that increased economic integration in the form of reduced trade costs lowers the transfer price. A reduction in trade costs enhances the profit margin of foreign sales, and thus increases the volume and profitability of foreign sales. Economic integration, therefore, means that it becomes more attractive to use the transfer price as a strategic device.

The easiest way to see how the multinationals can possibly use the transfer price as a tax reducing instrument, is to assume that we initially have $t_i = t_j \equiv t$, and then to consider the effect of a marginal increase in one of the tax rates. In this case we have that (the derivation is given in the Web-Appendix),

\[
SA: \frac{\partial g_i}{\partial t_i} = -\frac{\partial g_i}{\partial t_j} = -\frac{8(\alpha - 2\tau)}{9(1 - t)} < 0. \quad (8)
\]

Equation (8) reflects the fact that under the SA tax regime the multinationals will use the transfer price to shift profit to the country with the lower tax rate.

\(^{12}\)The transfer price in equation (7) is always negative, since trade will only take place if $a > 2\tau$.

10
Under FA the multinationals pay taxes according to their relative activity levels S_i and $(1-S_i)$ in the two countries, as shown by equation (6). This gives them an incentive to have the higher activity level in the low-tax country. Hence, the multinationals use the transfer price to shift activity from country i to country j if t_i increases (and vice versa if t_j increases). In the Web-Appendix we show formally that this implies

$$\frac{\partial g_i}{\partial t_i} = -\frac{\partial g_i}{\partial t_j} = \frac{3\beta_i \pi_i}{2(1-t)} \left(\frac{\partial S_i}{\partial g_i} \right) < 0,$$

where the derivative $\frac{\partial S_i}{\partial g_i}$ is positive, since a higher transfer price reduces export and thus increases the ratio between domestic sales and total sales for the firm.

To sum up, equations (8) and (9) make it clear that, under both tax regimes, an increase in the tax rate of country i reduces the transfer price set by the MNC with headquarters in country i, while an increase in the tax rate of country j increases the same MNC’s transfer price.

3.3 Stage 1: Optimal tax rates

At the first stage each government sets the tax rate in order to maximize national welfare (W), taking the tax rate of the other country as given. For simplicity, we assume that the multinational firms are owned by third country residents. This means that welfare equals the sum of consumer surplus (CS) and tax income (T).

Each government’s welfare maximization problem is

$$W_i = \max_{t_i} \left\{ CS_i + T_i^k \right\}, \quad k = SA, FA$$

with consumer surplus (CS_i) given by

$$CS_i = \frac{1}{2}(\alpha - p_i)(x_{ii} + x_{ji}).$$

The equilibrium tax rates are determined through the countries’ competition for tax revenue. The tax competition game between the two governments is qualitatively different under the two tax regimes we consider. Under SA the multinationals want to shift profit to a (possible) low-tax jurisdiction, as shown by equation (8). This generates an incentive for the governments
to compete for shifty profit. Under FA, on the other hand, the governments compete to attract sales revenue, since the multinationals want to shift the larger share of their activity to a low-tax jurisdiction (c.f., equation (9)).

Technically, the derivation of the optimal tax rates is found by maximizing welfare subject to the reaction functions of the plants and the headquarters from stages 3 and 2, respectively.

Separate Accounting From (5) we see that tax revenue under SA can be expressed as

\[T_{i}^{SA} = t_{i}(\pi_{ii} + \pi_{ji}). \]

(12)

Solving the governments’ maximization problem we derive the optimal tax rate \(t_{i} = t_{i}(t_{j}, \tau) \). A symmetric equilibrium is characterized by \(t_{1} = t_{2} \), and using the symmetry condition yields (see the Web-Appendix for derivation):

\[t^{SA} = \min \left\{ 1, \frac{-4\alpha^{2} + 79\alpha\tau + 101\tau^{2}}{3(88\alpha^{2} - 355\alpha\tau + 439\tau^{2})} \right\} \]

(13)

Before investigating the impact of reduced trade barriers on the tax rate, we derive the equilibrium transfer price and tax rate under FA.

Formula Apportionment As in the case of SA, the government maximizes \(W_{i} = \max_{t_{i}} \{CS_{i} + T_{i}^{FA}\} \). The expression for consumer surplus is given by (11) as before, while tax revenue under FA equals

\[T_{i}^{FA} = t_{i} [S_{i}\pi_{i} + (1 - S_{j})\pi_{j}]. \]

(14)

In a similar fashion as under SA, we first solve for the optimal tax rate \(t_{i} \) and then use the symmetry condition \(t_{1} = t_{2} \). This gives the equilibrium tax rate (see the Web-Appendix for calculations):

\[t^{FA} = \frac{2(19\alpha - 20\tau)(13\alpha - 8\tau)^{3}}{84281\alpha^{4} - 225760\alpha^{3}\tau + 296688\alpha^{2}\tau^{2} - 358144\alpha\tau^{3} + 512000\tau^{4}}. \]

(15)

In the next section we study the implications of economic integration on transfer prices, equilibrium tax rates, and national welfare under Separate Accounting and Formula Apportionment.

\(^{13} \)Whether we use output or sales revenue as activity measure does not influence the qualitative results. A proof of this is obtainable from the authors.

4 Economic integration, tax regimes and welfare

In order to understand how economic integration affects tax rates and welfare, we need to explore the link between trade costs, transfer prices, and tax rates. First, recall from equation (7) that the transfer price is the same under SA and FA if $t_i = t_j$. However, the sensitivity of the transfer price with respect to changes in the tax rates is qualitatively different under the two tax regimes. In particular, the tax sensitivity is higher the lower the level of trade costs under SA, while the opposite is true under FA (see Web-Appendix for a proof):

\[\text{SA: } \frac{\partial}{\partial \tau} \left(\frac{\partial g_i}{\partial t_i} \right) = - \frac{\partial}{\partial \tau} \left(\frac{\partial g_i}{\partial t_j} \right) > 0 \]

\[\text{FA: } \frac{\partial}{\partial \tau} \left(\frac{\partial g_i}{\partial t_i} \right) = - \frac{\partial}{\partial \tau} \left(\frac{\partial g_i}{\partial t_j} \right) < 0 \]

(16)

(17)

To see the intuition for equation (16), assume that there is a small increase in t_j from the symmetric equilibrium. The higher tax rate in country j implies that MNC_i has an incentive to shift profits to country i by increasing the transfer price, and this incentive is stronger the greater is the profit margin of exports. Since the profit margin is higher the lower the level of trade costs, the tax sensitivity of the transfer price rises as economic integration proceeds. Conversely, if t_i increases, MNC_i shifts sales to the foreign affiliate by underinvoicing. The greater the profit margin of exports (i.e. the lower is τ), the stronger the incentive to underinvoice. Hence, under SA economic integration increases the profit shifting activities of MNCs and thereby the tax sensitivity of national tax bases.

Under Formula Apportionment, the relationship between transfer pricing, tax sensitivity, and trade costs is the opposite of that under SA. A tax sensitive transfer price implies that the MNC can easily shift profits to the low tax country. The ease with which the MNC can shift profits under FA depends on the effect of a change in the transfer price on the apportionment of tax liability across countries. If the foreign affiliate’s share of total sales – due to high trade costs – is small initially, a given change in g_i has a large effect on the (relative) share of sales abroad, since the increase in foreign
sales starts from a very low level. On the other hand, for low levels of trade
costs, the foreign affiliate’s share of total sales is quite large, and the relative
share of sales will therefore not change significantly in response to a change
in the transfer price. The lower the trade costs, the smaller the tax gain from
changing the transfer price, and the relatively less sensitive is the transfer
price to changes in either tax rate. This explains the sign of equation (17).

The impact of economic integration on equilibrium tax rates is a function
of the tax sensitivity of the transfer prices. Formally, the relationship between
trade costs and equilibrium tax rates is found by differentiating t^{SA} and t^{FA}
in equations (13) and (15), respectively, with respect to τ. The analytical
expressions are presented in the Web-Appendix, while Figure 1 provides a
graphical illustration.

Figure 1: Equilibrium tax rates and economic integration; SA versus FA.

Figure 1 shows that equilibrium tax rates under SA are lower, the lower
the level of trade costs. From (16) we know that under SA economic inte-
gration makes the transfer prices more tax sensitive and therefore increases
the mobility of the tax base. This puts a downward pressure on tax rates as
trade costs are reduced.14

14This result is similar to the standard tax competition result, see e.g., Zodrow and
Economic integration has a very different implication under FA. As seen from Figure 1 the relationship between trade costs and equilibrium taxes is the opposite under FA: a reduction in trade costs leads to higher tax rates. Recall that transfer prices under FA are less tax sensitive the lower the level of trade costs (cf. (17)). Consequently, economic integration reduces the effectiveness of the transfer price as an instrument for profit shifting and lowers the tax sensitivity of the national tax base, thereby allowing each country to increase its tax rate.

The implication of differences in the tax sensitivity of the transfer prices under the two tax regimes is that there exists a level of trade costs where tax rates are equal (see the Web-Appendix for a formal proof). In Figure 1 this is illustrated by the fact that \(t^{FA} > t^{SA} \) for \(\tau < \tau^* \) and \(t^{FA} < t^{SA} \) for \(\tau > \tau^* \).

Welfare The effect of increased economic integration on equilibrium taxes and tax revenue depends on the choice of tax regime as is illustrated in Figure 2. Recall that we have shown that the transfer price in equilibrium is independent of the choice of tax regime (c.f. (7)). This in turn implies that consumer surplus and taxable profit in equilibrium profit are also independent of the tax regime in place. Thus, the tax regime that yields the higher tax rate (and revenue) will also yield the higher welfare. Since we know that the tax rate under SA is lower than the tax rate under FA if and only if \(\tau < \tau^* \), it follows that welfare under FA is higher than under SA for \(\tau < \tau^* \). To sum up, Separate Accounting is preferred for high levels of trade costs, while Formula Apportionment is preferable for low levels of trade costs.\(^{15}\)

\(^{15}\)To make a full welfare assessment of the effect of economic integration, one needs to take into account the fact that trade liberalization reduces consumer prices. This explains the non-monotonic form of the SA welfare curve; economic integration increases consumer surplus but reduces tax revenue due to falling tax rates.
5 Concluding remarks

This paper has demonstrated that the transfer price of multinationals is relatively tax sensitive for high degrees of economic integration under separate accounting. Separate accounting is the corporate tax system used by most OECD countries. In contrast, the transfer price is not very tax sensitive for closely integrated countries under a formula apportionment tax system, which is used in the USA and Canada, and proposed by the recent EU Commission report on corporate taxation.¹⁶ These findings are mirrored in the welfare analysis, where we find that a system of formula apportionment (separate accounting) dominates for high (low) degrees of economic integration. Thus, the choice of corporate tax system depends crucially on the perceived degree of economic integration, and our findings give support to the view brought forward by many other economists that increased economic integration may call for a substantial reform of the corporate tax system.¹⁷

In our model we have made a number of simplifying assumptions, two of which we would like to discuss in more detail. The first relates to trade costs, where we have assumed that it is the foreign subsidiary that pays these expenses. An alternative formulation is to let the exporting plant pay the trade costs. Everything else being equal, the importing plant is more competitive (has lower costs) when it does not pay trade costs. This implies that the transfer price needs not be set as low as in the case when the importing plant pays the trade costs. The alternative modelling assumption thus amounts to a scaling of the transfer price that does not qualitatively affect the tax sensitivity of transfer prices under SA and FA, nor our welfare analysis.18

The second simplifying assumption refers to the use of tax revenues. Would our results change if we allowed tax revenues to be used for public good production? Our analysis shows that tax revenues differ under SA and FA and a reasonable conjecture is therefore that this difference would be reflected in differences in the provision of public goods under the two tax schemes. For public consumption goods one would not expect our results to change qualitatively, but if there is decreasing utility from consuming public goods, the relative benefit of one scheme to the other would be less pronounced. If instead tax revenue could be used to enhance the productivity of firms, one would expect, depending on the cross derivative between private and public input goods, that the preference for one tax scheme would increase. However, the main thrusts of our arguments should survive, but this is an obvious topic for future research.

18 A proof is obtainable from the authors upon request.
References

1175 Chang Woon Nam and Doina Maria Radulescu, Types of Tax Concessions for Attracting Foreign Direct Investment in Free Economic Zones, April 2004

1176 M. Hashem Pesaran and Andreas Pick, Econometric Issues in the Analysis of Contagion, April 2004

1177 Steinar Holden and Fredrik Wulfsberg, Downward Nominal Wage Rigidity in Europe, April 2004

1178 Stefan Lachenmaier and Ludger Woessmann, Does Innovation Cause Exports? Evidence from Exogenous Innovation Impulses and Obstacles, April 2004

1179 Thiess Buettner and Johannes Rincke, Labor Market Effects of Economic Integration – The Impact of Re-Unification in German Border Regions, April 2004

1180 Marko Koethenbuerger, Leviathans, Federal Transfers, and the Cartelization Hypothesis, April 2004

1181 Michael Hoel, Tor Iversen, Tore Nilssen, and Jon Vislie, Genetic Testing and Repulsion from Chance, April 2004

1182 Paul De Grauw and Gunther Schnabl, Exchange Rate Regimes and Macroeconomic Stability in Central and Eastern Europe, April 2004

1183 Arjan M. Lejour and Ruud A. de Mooij, Turkish Delight – Does Turkey’s accession to the EU bring economic benefits?, May 2004

1184 Anzelika Zaiceva, Implications of EU Accession for International Migration: An Assessment of Potential Migration Pressure, May 2004

1185 Udo Kreickemeier, Fair Wages and Human Capital Accumulation in a Global Economy, May 2004

1186 Jean-Pierre Ponssard, Rent Dissipation in Repeated Entry Games: Some New Results, May 2004

1187 Pablo Arocena, Privatisation Policy in Spain: Stuck Between Liberalisation and the Protection of Nationals’ Interests, May 2004

1188 Günter Knieps, Privatisation of Network Industries in Germany: A Disaggregated Approach, May 2004

1189 Robert J. Gary-Bobo and Alain Trannoy, Efficient Tuition Fees, Examinations, and Subsidies, May 2004
1190 Saku Aura and Gregory D. Hess, What’s in a Name?, May 2004
1191 Sjur Didrik Flåm and Yuri Ermoliev, Investment Uncertainty, and Production Games, May 2004
1192 Yin-Wong Cheung and Jude Yuen, The Suitability of a Greater China Currency Union, May 2004
1193 Inés Macho-Stadler and David Pérez-Castrillo, Optimal Enforcement Policy and Firms’ Emissions and Compliance with Environmental Taxes, May 2004
1194 Paul De Grauwe and Marianna Grimaldi, Bubbles and Crashes in a Behavioural Finance Model, May 2004
1195 Michel Berne and Gérard Pogorel, Privatization Experiences in France, May 2004
1196 Andrea Galeotti and José Luis Moraga-González, A Model of Strategic Targeted Advertising, May 2004
1197 Hans Gersbach and Hans Haller, When Inefficiency Begets Efficiency, May 2004
1198 Saku Aura, Estate and Capital Gains Taxation: Efficiency and Political Economy Consideration, May 2004
1199 Sandra Waller and Jakob de Haan, Credibility and Transparency of Central Banks: New Results Based on Ifo’s World Economy Survey, May 2004
1201 Michael Ehrmann, Firm Size and Monetary Policy Transmission – Evidence from German Business Survey Data, May 2004
1202 Thomas A. Knetsch, Evaluating the German Inventory Cycle – Using Data from the Ifo Business Survey, May 2004
1203 Stefan Mittnik and Peter Zadrozny, Forecasting Quarterly German GDP at Monthly Intervals Using Monthly IFO Business Conditions Data, May 2004
1204 Elmer Sterken, The Role of the IFO Business Climate Indicator and Asset Prices in German Monetary Policy, May 2004
1205 Jan Jacobs and Jan-Egbert Sturm, Do Ifo Indicators Help Explain Revisions in German Industrial Production?, May 2004
1206 Ulrich Woitek, Real Wages and Business Cycle Asymmetries, May 2004
1207 Burkhard Heer and Alfred Maußner, Computation of Business Cycle Models: A Comparison of Numerical Methods, June 2004
1208 Costas Hadjiyiannis, Panos Hatzipanayotou, and Michael S. Michael, Pollution and Capital Tax Competition within a Regional Block, June 2004

1209 Stephan Klasen and Thorsten Nestmann, Population, Population Density, and Technological Change, June 2004

1211 Luis H. R. Alvarez and Erkki Koskela, Taxation and Rotation Age under Stochastic Forest Stand Value, June 2004

1212 Bernard M. S. van Praag, The Connexion Between Old and New Approaches to Financial Satisfaction, June 2004

1213 Hendrik Hakenes and Martin Peitz, Selling Reputation When Going out of Business, June 2004

1214 Heikki Oksanen, Public Pensions in the National Accounts and Public Finance Targets, June 2004

1215 Ernst Fehr, Alexander Klein, and Klaus M. Schmidt, Contracts, Fairness, and Incentives, June 2004

1216 Amihai Glazer, Vesa Kanniainen, and Panu Poutvaara, Initial Luck, Status-Seeking and Snowballs Lead to Corporate Success and Failure, June 2004

1217 Bum J. Kim and Harris Schlesinger, Adverse Selection in an Insurance Market with Government-Guaranteed Subsistence Levels, June 2004

1218 Armin Falk, Charitable Giving as a Gift Exchange – Evidence from a Field Experiment, June 2004

1219 Rainer Niemann, Asymmetric Taxation and Cross-Border Investment Decisions, June 2004

1220 Christian Holzner, Volker Meier, and Martin Werding, Time Limits on Welfare Use under Involuntary Unemployment, June 2004

1221 Michiel Evers, Ruud A. de Mooij, and Herman R. J. Vollebergh, Tax Competition under Minimum Rates: The Case of European Diesel Excises, June 2004

1223 Josse Delfgaauw and Robert Dur, Incentives and Workers’ Motivation in the Public Sector, June 2004

1225 Volker Grossmann, How to Promote R&D-based Growth? Public Education Expenditure on Scientists and Engineers versus R&D Subsidies, June 2004

1227 Bertil Holmlund, Sickness Absence and Search Unemployment, June 2004

1228 Klaas J. Beniers and Robert Dur, Politicians’ Motivation, Political Culture, and Electoral Competition, June 2004

1229 M. Hashem Pesaran, General Diagnostic Tests for Cross Section Dependence in Panels, July 2004

1231 Stefan Homburg, A New Approach to Optimal Commodity Taxation, July 2004

1232 Lorenzo Cappellari and Stephen P. Jenkins, Modelling Low Pay Transition Probabilities, Accounting for Panel Attrition, Non-Response, and Initial Conditions, July 2004

1233 Cheng Hsiao and M. Hashem Pesaran, Random Coefficient Panel Data Models, July 2004

1234 Frederick van der Ploeg, The Welfare State, Redistribution and the Economy, Reciprocal Altruism, Consumer Rivalry and Second Best, July 2004

1235 Thomas Fuchs and Ludger Woessmann, What Accounts for International Differences in Student Performance? A Re-Examination Using PISA Data, July 2004

1236 Pascalis Raimondos-Møller and Alan D. Woodland, Measuring Tax Efficiency: A Tax Optimality Index, July 2004

1237 M. Hashem Pesaran, Davide Pettenuzzo, and Allan Timmermann, Forecasting Time Series Subject to Multiple Structural Breaks, July 2004

1239 Eckhard Janeba, Moral Federalism, July 2004

1241 Hans Jarle Kind, Karen Helene Midelfart, Guttorm Schjelderup, Corporate Tax Systems, Multinational Enterprises, and Economic Integration, July 2004