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Abstract:

Purpose: This study examines Clements’ Approach (CA), Box-Cox transformation (BCT), and

Johnson  transformation  (JT)  methods  for  process  capability  assessments  through

Weibull-distributed data with different parameters to figure out the effects of the tail behaviours

on process capability  and compares their  estimation performances  in  terms of accuracy  and

precision.

Design/methodology/approach: Usage of process performance index (PPI) Ppu is handled for

process  capability  analysis  (PCA)  because  the  comparison  issues  are  performed  through

generating Weibull data without subgroups. Box plots, descriptive statistics, the root-mean-square

deviation (RMSD), which is used as a measure of error, and a radar chart are utilized all together

for evaluating the performances of the methods. In addition, the bias of the estimated values is

important as the efficiency measured by the mean square error. In this regard, Relative Bias (RB)

and the Relative Root Mean Square Error (RRMSE) are also considered.

Findings: The results reveal that the performance of a method is dependent on its capability to

fit the tail behavior of the Weibull distribution and on targeted values of the PPIs. It is observed

that the effect of tail behavior is more significant when the process is more capable.
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Research limitations/implications: Some other methods such as Weighted Variance method,

which also give good results, were also conducted. However, we later realized that it would be

confusing in terms of comparison issues between the methods for consistent interpretations.

Practical implications: Weibull distribution covers a wide class of non-normal processes due to

its capability to yield a variety of distinct curves based on its parameters. Weibull distributions are

known to have significantly different tail behaviors, which greatly affects the process capability. In

quality and reliability applications, they are widely used for the analyses of failure data in order to

understand  how  items  are  failing  or  failures  being  occurred. Many  academicians  prefer  the

estimation of long term variation for process capability calculations although Process Capability

Indices (PCIs) Cp and Cpk are widely used in literature. On the other hand, in industry, especially

in automotive industry, the PPIs Pp and Ppk are used for the second type of estimations.

Originality/value: Performance comparisons are performed through generating Weibull data

without  subgroups and for this  reason, process performance indices  (PPIs)  are executed for

computing process capability rather than process capability indices (PCIs). Box plots, descriptive

statistics, the root-mean-square deviation (RMSD), which is used as a measure of error, and a

radar chart are utilized all together for evaluating the performances of the methods. In addition,

the bias of the estimated values is important as the efficiency measured by the mean square error.

In this regard, Relative Bias (RB) and the Relative Root Mean Square Error (RRMSE) are also

considered. To the best of our knowledge, all these issues including of execution of PPIs are

performed all together for the first time in the literature.

Keywords: process  performance  indices  (PPIs),  process  capability  indices  (PCIs),  process  capability

analysis (PCA), non-normal processes

1. Introduction

Manufacturing  philosophies  and  business  environments  are  changing  continuously  (Moges-Kasie  &

Moges-Belay, 2013). In many companies and industries, there are initiatives for ensuring the quality of

products. These initiatives are related with the management literature in terms of how managers take

decisions  based  on  data.  Process  capability  studies  have  main  purposes  which  are  controlling

organizations’  processes  towards  target  values,  and causes  of  variation  and successively  to eliminate

causes (Brannstrom-Stenberg & Deleryd, 1999). 
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Principally, process capability can be defined as the ability of the combination of materials, methods,

people, machine, equipment, and measurements in order to produce a product that will consistently meet

the  design  requirements  or  the  customer  expectations  (Kane,  1986).  Recent  developments  in  the

assessment of process capability have fostered the principle of continuously monitoring and assessing the

ability of a process to meet customer requirements (Spiring, 1995).

Álvarez, Moya-Fernández, Blanco-Encomienda and Muñoz (2015) considers process capability analysis

(PCA) as a  very important  aspect  in many manufacturing industries.  The purpose of  PCA involves

assessing and quantifying variability before and after the product is released for production, analyzing the

variability relative to product specifications, and improving the product design and manufacturing process

by  reducing  the  variability.  Variation  reduction  is  the  key  to  product  improvement  and  product

consistency.  For  this  reason,  PCA  occupies  an  important  place  in  manufacturing  and  quality

improvement efforts (Montgomery, 2009).

Process capability index (PCI) is developed to provide a common and easily understood language for

quantifying  process  performance,  and  is  a  dimensionless  function  of  process  parameters  and

specifications (Chang, Choi & Bai, 2002). Process capability indices (PCIs) provide numerical measures

on whether a process conforms to the defined manufacturing capability prerequisite. In practical aspects,

PCIs provide common quantitative measures of the manufacturing capability in terms of production

quality to be used by both producer and supplier by means of guidelines when signing a contract. Wang

and Du (2007) investigated supply chain performance based on PCI which establishes the relationship

between customer specification and actual process performance, providing an exact measure of process

yield. Moreover, PCIs have been successfully applied by companies to compete with and to lead high-

profit markets by evaluating the quality and productivity performance (Parchamia, Sadeghpour-Gildeha,

Nourbakhshb & Mashinchic, 2013).

In theoretical aspects, the traditional PCIs are basically determined under the assumption that process

characteristic  follows  a  normal  distribution.  In  practice,  most  widely  in  engineering  and  reliability

applications, quality control problems arising from non-normal processes occur. Since PCIs based on the

normality assumption concerning the data are used to deal with non-normal observations, the values of

the PCIs may be incorrect  and quite  likely misrepresent the  actual  product  quality.  In other words,

conventional PCIs based on normality are not convenient for non-normal industrial processes to reflect

their  performances (Senvar & Kahraman, 2014a).  Principally,  for non-normally  distributed processes,

mean  and  standard  deviation  are  not  sufficient  and  convenient  for  reflecting  characteristics  and

performance of the processes. For non-normally distributed processes, magnitude of the errors can vary

substantially according to the true (unknown) distribution parameters (Senvar & Kahraman, 2014b).
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Hosseinifard, Abbasi  and Niaki (2014) also emphasized that  conventional methods with a normality

assumption  fails  to  provide  trustful  results.  They  conduct  a  simulation  study  to  compare  different

methods in estimating the process capability index of non-normal processes and then they apply these

techniques to obtain the process capability of the leukocyte filtering process.

In literature, several approaches have been proposed to overcome the problems of PCIs for the non-

normal distributions. Mathematical transformation of the raw data into approximately normal distribution

can be an alternative approach that evaluates process capability using the assumption of normality and the

transformed  data  and  specification  limits.  Box-Cox  and  Johnson's  transformations  are  data

transformation techniques. The main aim of all  conventional techniques is to use conventional PCIs

based  on  normality  assumption.  The  conventional  PCIs  can  be  used  once  the  non-normal  data  is

transformed to normal data. However, practitioners may feel uncomfortable working with transformed

data. Reversing the results of the calculations back to the original scale can be troublesome (Pearn &

Kotz, 2006). Another way is Clements’ Method which is one of the most popular approaches since it is

easy to compute and apply.

Weibull distribution has often been used in the field of lifetime data analysis due to its flexibility, and it

can mimic the behaviors of other statistical distributions such as the exponential and gamma. Weibull

distributions are used in the analysis of failure data for quality and reliability applications in order to

understand how items are failing or failures being occurred. Failures arise from quality deficiencies, design

deficiencies, material deficiencies, and so forth. Weibull distribution covers a wide class of non-normal

processes due to its capability to yield a variety of distinct curves based on its parameters. The shape

parameter of Weibull distribution determines the behavior of the failure rate of the product or system and

has  been  used  as  a  measure  of  reliability  (Yavuz,  2013).  Hsu,  Pearn  and  Lu  (2011)  use  Weibull

distributions to model the data of the processes and express time until a given technical device fails. They

determine the adjustments for capability measurements with the mean shift consideration for Weibull

processes. Weibull distributions are known to have significantly different tail behaviours, which greatly

affects the process capability. Hosseinifard, Abbasi, Ahmad and Abdollahian (2009) assessed the efficacy

of the root transformation technique by conducting a simulation study using gamma, Weibull, and beta

distributions. The root transformation technique is used to estimate the PCI for each set of simulated

data.  They  compared  their  results  with  the  PCI  obtained  using  exact  percentiles  and  the  Box-Cox

method. 

In this study, Clements’, Box-Cox, and Johnson transformation methods for PCAs with non-normal data

are reviewed and their performances are evaluated in terms of accuracy and precision for the issue of

comparison.  Performance  comparisons  are  performed  through  generating  Weibull  data  without

subgroups and for this reason, process performance indices (PPIs) are executed for computing process
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capability rather than PCIs. Box plots,  descriptive statistics,  the root-mean-square deviation (RMSD),

which  is  used  as  a  measure  of  error,  and  a  radar  chart  are  utilized  all  together  for  evaluating  the

performances of the methods. To the best of our knowledge, all these issues including of execution of

PPIs are performed all together for the first time in the literature. 

The rest of the paper is organized as follows: In section 2, PCIs with short term and long term variation

within PCA are given. In Section 3, Clements’, Box-Cox, Johnson transformation methods are explained.

In Section 4, these methods are applied to Weibull distributions to examine the impact of non-normal

data on the process performance index Ppu. In Section 5, the results are given, and comparisons are made

according to the results. The last section provides concluding remarks and recommendations.

2. Process Capability Analysis (PCA)

Process capability deals with the uniformity of the process. Variability of critical to quality characteristics

in the process is a measure of the uniformity of outputs. Here, variability can be thought in two ways: one

is inherent variability in a critical to quality characteristic at a specified time, and the other is variability in a

critical  to quality  characteristic  over  time (Montgomery,  2009).  Process  capability  compares  inherent

variability  in  a  process  with  the  specifications  that  are  determined  according  to  the  customer

requirements.  In  other  words,  process  capability  is  the  proportion  of  actual  process  spread  to  the

allowable process spread, which is measured by six process standard deviation units. Principally, process

capability is the long term performance level of the process after it has been brought under statistical

control.

PCA involves  statistical  techniques  (Senvar  &  Tozan,  2010).  PCA is  used  to  estimate  the  process

capability and evaluate how well the process will hold the customer tolerance. PCA can be useful in

selecting  or  modifying  the  process  during  product  design  and  development,  selecting  the  process

requirements for machines and equipment, and reducing the variability in production processes.

In PCA, process variation is defined by standard deviation. In general,  the standard deviation is not

known and must be estimated from the process data. The estimated standard deviation used in process

capability calculations may address short term or long term variability. The variability due to common

causes is described as short term variability. Short term variability may be within‐part variation, part‐to‐

part variation, variations within a machine. On the other hand, the variability due to special causes is

considered long term variability. Long term variability may be lot‐to‐lot variation, operator‐to‐operator

variation, day‐to‐day variation or shift‐to‐shift variation.
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In assessing process capability, both short term and long term PCIs are computed and are not considered

separately. Different real (targeted) indices (Ppu, Cp, Cpk, Pp, Ppk, etc) can be used. The Cp and Cpk are short

term PCIs and are computed using short term standard deviation. On the other hand, Pp and Ppk are long

term PPIs and are computed using long term standard deviation estimate.

The sigma quality level of a process can be used to express its capability that means how well it performs

with respect to specifications. As a measure of process capability, it is customary to take six sigma spread

in the distribution of product quality characteristic.

For a process whose quality characteristic x has a normal distribution with process mean μ and process

standard deviation σ; the lower natural tolerance limit of the process is LNTL = μ – 3σ, and the upper

natural tolerance limit of the process is UNTL = μ + 3σ. It should be considered that natural tolerance

limits include 99.73% of the variable and 0.27% of the process output falls outside the natural tolerance

limits.

The standard assumptions in statistical process control (SPC) are that the observed process values are

normally, independently and identically distributed (IID) with fixed mean μ and standard deviation σ

when the process is in control. Due to the dynamic behavior, these assumptions are not always valid. The

data  may not  be  normally  distributed and/or  autocorrelated,  especially  when the  data  are  observed

sequentially and the time between samples is short (Haridy & Wu, 2009). Statistical analysis of non-

normal data is usually more complicated than that for normal distribution (Abbasi, 2009). It is always

crucial to estimate PCI when the quality characteristic does not follow normal distribution, however

skewed distributions come about in many processes. The classical method to estimate process capability is

not applicable for non-normal processes. In the existing methods for non-normal processes, probability

density function (pdf) of the process or an estimate of it is required. Estimating pdf of the process is a

hard work and resulted PCI by estimated pdf may be far from real value of it. Abbasi (2009) proposed an

artificial neural network to estimate PCI for right skewed distributions without appeal to pdf of the

process.

Estimating the PCI for non-normal processes has been discussed by many other researches. There are

two  basic  approaches  to  estimating  the  PCI  for  non-normal  processes.  The  first  commonly  used

approach is to transform the non-normal data into normal data using transformation techniques and then

use a conventional normal method to estimate the PCI for transformed data. This is a straightforward

approach and is easy to deploy. The alternate approach is to use non-normal percentiles to calculate the

PCI. The latter approach is not easy to implement and a deviation in estimating the distribution of the

process may affect the efficacy of the estimated PCI (Hosseinifard et al., 2009).
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When data follows a well-known, but non-normal distribution, such as Weibull distribution, computation

of defect rates is  performed by using the properties  of the distribution given the parameters of the

distribution and the specification limits. Besseris (2014) performed interpretation of key indices from a

non-parametric viewpoint and recommended method for estimating PCIs as purely distribution-free, and

deployable at any process maturity level.

3. Clements’, Box-Cox, Johnson Transformation Methods

When the distribution of a process characteristic is non-normal, conventional methods give erroneous

interpretation of process capability. For computing PCIs under non-normality, various methods have

been proposed in the literature. Tang, Than and Ang (2006) classified these methods into two main

categories as transformation and non-transformation methods. Transformation methods are Box-Cox

power  transformation,  Johnson  transformation  system,  Clements’  method  using  Pearson  curves.

Non-transformation methods are Wright’s index, Probability plot, Weighted variance method. In this

study, we will focus on Clements’ method and both Box-Cox and Johnson transformation methods.

3.1. Transformation Methods

Kane (1986) suggested transforming data for maintaining an approximately normal distribution. Among

various  researchers  and  applied  statisticians,  Gunter  (1989)  empirically  proved  that  the  results  of

transformed data are much better than the results of the original raw data. Generally, transformations are

used for three purposes:

1. Stabilising response variance

2. Making distribution of the response variable closer to the normal

3. Improving the fit  of the model to the data including model simplification, i.e. by eliminating

interaction terms.

Transforming the non-normal process data into normal process data is the fundamental objective for the

data  transformation  approaches.  For  this  purpose,  several  methods  have  been  proposed  for

approximating normally distributed data by using mathematical functions. The main rationale behind

these methods is to first transform the non-normal data into normal data and then use standard PCIs,

which are based on the normality assumption, for the transformed data. Nevertheless, transformation

methods have handicaps which inherent in their utilization. Firstly, Tang and Than (1999) highlighted that

transformation  methods  are  computing-extensive.  Secondly,  practitioners  hesitate  to  use  the
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transformation methods because of the problems associated with translating the computed results with

regard to the original scales (Kotz & Johnson, 2002; Ding, 2004). 

Most known amongst these methods are Box-Cox power transformation based on maximization of a

log-likelihood function and Johnson transformation system based on derivation of the moments of the

distribution.  Yeo and Johnson (2000)  introduced a  new power  transformation family  which  is  well

defined on the whole real  line  and which is  appropriate for reducing skewness and to approximate

normality.  They provided desirable properties, such as the fact it can be used for both negative and

positive values. It has properties similar to those of the Box-Cox transformation for positive variables.

The larges ample properties of the transformation are investigated in the contect of a single random

sample. 

In this study, we handled Box-Cox power transformation and Johnson transformation in the following

context: 

3.1.1. Box-Cox power Transformation (BCT)

The Box-Cox transformation was proposed by Box and Cox in 1964 and used for transforming non-

normal data (Box & Cox, 1964). The Box-Cox transformation uses the parameter λ. In order to transform

the data as closely as possible to normality, the best possible transformation should be performed by

selecting the most appropriate value of λ. In order to obtain the optimal λ value, Box-Cox transformation

method requires maximization of a log-likelihood function. After the transformation, process capability

can be evaluated.

Box  & Cox  (1964)  proposed  a  useful  family  of  power  transformations  on  the  necessarily  positive

response variable X. The Box-Cox power transformation is given in Equation 1.

(1)

where variable X necessarily takes positive values. In other words, Box-Cox transformation can be done

only on non-zero, positive data. If there are negative values, a constant value can be added in order to

make the values positive. This continuous family depends on a single parameter λ that can be estimated

by using maximum likelihood estimation. Firstly, a value of λ from a pre-assigned range is collected. Then,

Lmax is computed as in Equation 2:
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(2)

For all λ, J(λ, X ) is evaluated as in Equation 3.

(3)

Thus, Equation 4 is obtained as follows:

(4)

For fixed λ, σ2 is estimated by using S(λ), which is the residual sum of squares of X (λ). σ2 is estimated by

the formula in Equation 5.

(5)

When the optimum value of λ is obtained, for all the quality characteristic values of X, upper and lower

specification limits  are transformed to normal  variables  (Yang,  Song & Ming,  2010).  Therefore,  the

corresponding  PCIs,  Cp and  Cpk,  can  be  computed  from  the  mean  and  standard  deviation  of  the

transformed data just like computations of Cp and Cpk under normality. Box-Cox transformation is best

done using computers. Most statistical software packages offer Box-Cox transformation as a standard

feature.

3.1.2. Jonhson Transformation System Using Pearson Curves (JT)

Johnson (1949) proposed a system of distributions, which is called the Johnson transformation system

based on the moment method. Simply, Johnson method requires fitting of the first four moments in

order to determine the appropriate Johnson family. Process capability can be evaluated after selecting the

optimal  transform  function  in  which  transformed  data  comes  closest  to  normality.  Johnson

transformation  internally  evaluates  several  transform  functions  and  optimally  selects  one,  which

transforms the data closest to the normality, from three families of distributions, which transform the

data into a normal distribution. These three distributions are lognormal, unbounded, and bounded. 

Table 1 summarizes Johnson transformation system. For a specific non-normal application, the primary

issue is to find an appropriate sample of Johnson curve type. For procedure, the steps given below can be

followed:
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Step 1. Select a suitable z.

Step 2. Find the probability distribution p-sz, p-z, pz and psz corresponding to {-sz, -z, z, sz}

Step 3. Find the corresponding quantile x-sz, x-z, xz, xsz in the sample data.

Step 4. Let m = xsz -xz, η = x-z, x-sz, p = xz x-z 

Step 5. Define the quantile ratio (QR) as 

Bounded System (SB) and Unbounded System (SU) can be selected according to the following general

condition:

If 1 < s ≤ 3 and OR < (s – 1)2/4, then select SB

If s ≥ 3 and OR > (s – 1)2/4, then select SU

When s = 3, the rule is determined to differentiate among Bounded System (SB), Lognormal System (SL),

and Unbounded System (SU).

When QR < 1, select Bounded System (SB). When QR = 1, select Lognormal System (SL). When QR > 1,

select Unbounded System (SU).

Johnson System Bounded System
(SB)

Lognormal System 
(SL)

Unbounded System 
(SU)

Johnson Curve

Normal Transformation

Parameter Constraints

X Constraint

Table 1. Summary of Johnson transformation system (Yang et al., 2010)

However, in the case of s = 3, if the suitable value of z is identified, Johnson system that fits the data is

identified  as  well.  Based  on  the  transformed  data,  the  quality  control  technique  under  the  normal

assumption can be applied. Using the method above the location parameters and standard parameters

(ε, γ, λ, η) of the Johnson curves can be determined. The quantiles x0.00135, x0.50, x0.99865 that correspond the
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probabilities 0.00135, 0.5 and 0.99865 can be obtained. Hence, the corresponding process capability index

can be evaluated (Yang et al., 2010).

3.2. Clements Approach

The well-known quantile estimation techniques were developed by Clements (1989), who utilized the

Pearson curves to provide better estimates of the relevant quantiles. Non-normal Pearsonian distributions

include a wide class of populations with non-normal characteristics. This method uses Pearson curves to

provide more accurate estimates of x0.00135, x0.50 (median), and x0.99865. Modified Cp and Cpk do not require

transformation of the data and they have straightforward meaning which makes them easy to understand.

Also, their estimations are fairly easy to be computed (Pearn & Kotz, 2006).

Clements’ estimator for  Cp (Equation 6) is obtained by replacing 6σ by subtracting  x0.00135 from x0.99865

(x0.99865 – x0.00135) and for Cpk (Equation 7) by replacing the mean µ by the median x0.50. Notably, x0.99865 is

the 0.99865 quantile,  x0.00135 is  the 0.00135 quantile,  and  x0.50  is  the 0.50 quantile  calculated with the

knowledge of skewness, kurtosis, mean, and variance from the sample data for a non-normal Personian

distribution. In Equations 6 and 7, USL and LSL denote upper specification limit and lower specification

limit, respectively.

(6)

(7)

4. Sample and Methods

In this study, Weibull distributions are executed to examine the impact of non-normal data on the PPI

Ppu. Computations are performed by using Minitab 16 and MS Excel 2010 as software packages. 

The cumulative distribution function (CDF) of a Weibull distribution having shape parameter α and scale

parameter β is expressed as in Equation 8.

(8)
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Weibull Distributions with shape and scale parameters of (1,1), (1,2), (2,1), and (2,2) are considered in the

simulation study. 50 data sets (r = 50) are randomly generated by sample size of 100 (n=100) from

Weibull (1,1), (1,2), (2,1), and (2,2), respectively. Notice that, first two Weibull distributions with their

shape parameter values of 1 are at the same time Exponential distributions. Because when its shape

parameter  is  equal  to  1,  the  Weibull  distribution  reduces  to  the  Exponential  distribution  with  its

parameter equal to the reciprocal of the scale parameter of the Weibull distribution.

USL is  calculated through Equation 9 using  the targeted capability  index values of  1.0  and 1.5  for

quantile-based process capability index  Cpu(q) by considering theoretical distribution with the specified

parameters.

(9)

where USL denotes upper specification limit, and  x0.99865  and  x0.50 (median) correspond to 0.99865 and

0.50 cumulative probabilities of the distribution, respectively. When a transformation method is used,

USL is transformed by the corresponding transformation formula. 

Table 2 illustrates the corresponding quantiles, mean, median along with skewness and kurtosis based on

the specified parameter values of  Weibull  distribution for this  study. It  is  interesting to observe the

difference between the mean and the median for the different distributions. Kurtosis gives information

about the relative concentration of values in the center of the distribution as compared to the tails. Data

sets with high kurtosis tend to have prominent peak and heavy tails. Skewness gives information about

whether the distribution of the data is symmetrical. The skewness for a normal distribution is zero. The

positive skewness values indicate that the distribution is positively skewed, which corresponds that right

tail is longer than the left tail, and for negative skewness values it is vice versa. Therefore, it can be stated

that kurtosis and skewness give information about tail behavior of a distribution.

Weibull (α,β ) x0.99865 Median = x0.50 Mean Skewness Kurtosis

Weibull (1,1) 6.607650 0.693147 1 1.676698 3.413711

Weibull (1,2) 13.215300 1.386290 2 1.747334 3.982865

Weibull (2,1) 2.570540 0.832555 0.7071 0.562298 0.104820

Weibull (2,2) 5.141070 1.665110 1.4142 0.590805 0.212021

Table 2. Cumulative probabilities, quantiles, mean, median, skewness and kurtosis 

for specified parameter values of Weibull distribution
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The probability density functions (PDFs) of these distributions are plotted in Figure 1. The average values

of  skewness  and  kurtosis  calculated  from  50  data  sets  (r  =  50)  each  having  sample  size  of  100

observations (n = 100) are generated randomly for each Weibull distribution with specified parameters.

Figure 1. PDFs of Weibull distributions

For the skewed processes, the proportion of nonconforming items for fixed values of standard PCIs

tends to increase as skewness increases. For instance, the standard PCIs simply ignore the skewness

of the underlying population. For example; if the underlying distribution is Weibull with the shape

parameter (α = 2.0), the skewness is 0.63 or Weibull distribution with the shape parameter (α = 1.0),

the skewness is 2.00. Then the expected proportions of non-conforming items below and above the

LSL = –3.0 and USL = 3.0 are 0.56% and 1.83%, respectively, for the same value of μ = 0 and σ = 1.

Hence Cp = Cpk = 1.0, whereas the expected non-conforming proportion for a normal population is

0.27% (Pearn and Kotz, 2006). As a matter of fact, it is very desirable to consider the skewness of the

underlying population by a method of adjusting the values of a PCI in accordance with the expected

proportion of non-conforming items.

In this study, the Weibull data are generated without subgroups, therefore, PPI Ppu is used for PCA. Ppu is

the ratio of the interval formed by the process mean and USL to one-sided spread of the process and is

estimated using Equation 10.

(10)

Where  is the process mean and  (Equation 11) is the overall standard deviation.
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(11)

Firstly, we figured out box plots in order to compare the transformation methods graphically at each

targeted Ppu (1.0 and 1.5). A box plot (also known as box and whisker plot) is used to show the shape of

the distribution, its central value (x0.50), variability (x0.75 – x0.25), and outliers by star symbol if exist. The

position of the median line in a box plot indicates the location of the values.

Figure 2 shows box plots with targeted Ppu values of 1.0 and 1.5. According to Figure 2 CA provides the

most accurate estimates in comparison to the other methods. While, BCT underestimates the targeted

values, JT overestimates them. Overestimation and underestimation of the targeted values point out less

accuracy for the methods.

a. Weibull (1,1) and target Ppu=1.0 b. Weibull (1,1) and target Ppu=1.5

c. Weibull (1,2) and target Ppu=1.0 d. Weibull (1,2) and target Ppu=1.5
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e. Weibull (2,1) and target Ppu=1.0 f. Weibull (2,1) and target Ppu=1.5

g. Weibull (2,2) and target Ppu=1.0 h. Weibull (2,2) and target Ppu=1.5

Figure 2. Box plots of CA, BCT, and JT methods

Secondly, we examined descriptive statistics. In this regards, we computed the mean values, which are

measures of location, in order to confirm the results. Table 3 includes the computed mean values. In

addition to this, as a measure of spread or variability, the range of the box in a box plot can be used.

Based on box plots with targeted Ppu values of 1.0 and 1.5 shown in Figure 2, both CA and BCT generally

give  more precise  estimates  than JT.  These  results  can  also  be  confirmed with  computed  standard

deviation values, which are included in Table 3.
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Target Ppu Statistics Method Weibull(1,1) Weibull(1,2) Weibull(2,1) Weibull(2,2)

1.0

Mean

CA 1.0294 1.0219 1.0227 1.0451

BCT 0.9354 0.9349 0.9319 0.9383

JT 1.4196 1.3334 1.2008 1.2231

Standard
Deviation

CA 0.1814 0.1654 0.1260 0.1162

BCT 0.1223 0.1157 0.1203 0.1123

JT 0.4379 0.3709 0.2669 0.3956

1.5

Mean

CA 1.5425 1.5343 1.5350 1.5691

BCT 1.1474 1.1530 1.2770 1.2820

JT 2.0453 1.9218 1.7423 1.7771

Standard
Deviation

CA 0.2686 0.2458 0.1906 0.1700

BCT 0.1672 0.1717 0.2009 0.1865

JT 0.6966 0.5905 0.3915 0.4642

Table 3. Descriptive statistics for CA, BCT, and JT methods

Using the formula in Equation 12,  the  root-mean-square deviation (RMSD) is  used to measure the

differences between the target Ppu values and the estimates obtained by CA, BCT, and JT methods.

(12)

where  r is  the number of  data sets  generated randomly for each Weibull  distribution with specified

parameters. Notice that, 50 data sets (r = 50) each having sample size of 100 observations (n = 100) are

generated  randomly  for  each  Weibull  distribution  with  Weibull  Distributions  with  shape  and  scale

parameters of (1,1), (1,2), (2,1), and (2,2) are considered in the simulation study. In other words, 50 data

sets (r=50) are randomly generated by sample size of 100 (n = 100) from Weibull (1,1), (1,2), (2,1) and

(2,2), respectively.

Table 4 shows root-mean-square deviations (RMSD) for CA, BCT, and JT methods.  The results  in

Table 4 indicate that the higher target value (Ppu = 1.5) corresponds to worse estimates for all methods

and for all Weibull distributions. Among three methods, JT produces worse estimates for both targeted

values of the performance indices.
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Target Ppu Method Weibull (1,1) Weibull (1,2) Weibull (2,1) Weibull (2,2)

1.0

CA 0.18 0.17 0.13 0.12

BCT 0.14 0.13 0.14 0.13

JT 0.60 0.50 0.33 0.45

1.5

CA 0.27 0.25 0.19 0.18

BCT 0.39 0.39 0.30 0.29

JT 0.88 0.72 0.46 0.54

Table 4. The root-mean-square deviations for CA, BCT, and JT methods

The Weibull distributions (1,1) and (1,2) with near values of skewness and kurtosis (Table 2) have similar

tail behaviors and as it can be observed in Figure 3 that shows radar chart. All methods produce high

RMSD values for these distributions. It is also observed that the RMSD values for Weibull distributions

(1,1) and (1,2) are higher at the target Ppu of 1.5 than that of 1.0 for all methods. This result indicates that

the effect of tail behavior is more significant when the process is more capable.

It has to be emphasized that some scientists discuss that RMSD is not a good measure to compare the

different Weibull distributions, since the RMSD is not a relative measure. In addition, the bias of the

estimated values is important as the efficiency measured by the mean square error. In this regard, Relative

Bias (RB) (Equation 13) and the Relative Root Mean Square Error (RRMSE) (Equation 14) can also be

considered. These measures are defined by Chambers and Dunstan (1986), Rao Kovar and Mantel (1990),

Silva and Skinner (1995), Muñoz and Rueda (2009), etc.

(13)

(14)

The radar charts of the methods for RB and RRMSE shown in Figure 3 and Figure 4 indicate that both

Clements’ approach and Box-Cox transformation method produce better estimates than the Johnson

transformation method.
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Figure 3. Radar Chart for RB

Figure 4. Radar Chart for RRMSE
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5. Discussion and Conclusion

PCA occupies an important place in manufacturing environment. PCIs are used to define the relationship

between  technical  specifications  and  production  abilities  which  lead  to  operational  decisions  about

manufacturing and purchasing.

In industrial practices, a variety of processes result in a non-normal distribution for a quality characteristic.

In this case, PCIs become sensitive to departures from normality. When the distribution of a process

characteristic is non-normal, PCIs computed by conventional methods would give unreliable, misleading

results as well as erroneous or incorrect interpretations of process capability. Incorrect application or

interpretation of the PCIs causes unreliable results, which can lead incorrect decision making, waste of

resources, money, time, and etc.

In manufacturing environment, Weibull-distributed quality characteristics are encountered a lot, especially

when controlling the process components in terms of times-to-failure. Weibull distributions are known to

have  significantly  different  tail  behaviours,  which  greatly  affects  the  process  capability.  In  order  to

examine the impact of non-normal data, the parameter values of Weibull distribution are specified as

(1,1), (1,2), (2,1), and (2,2) corresponding to (shape, scale). These parameters of Weibull distributions are

specified such that the effects of the tail behaviours on process capability could be examined. Principally,

when its shape parameter is equal to 1, Weibull distribution reduces to Exponential distribution. Hence,

this study covers Exponential distribution, as well.

The comparison is performed through generating Weibull data without subgroups and therefore,  Ppu is

used in PCA in this study. Many academicians prefer the estimation of long term variation for process

capability calculations although Cp and  Cpk is widely used in literature. On the other hand, in industry,

especially in automotive industry, the Pp and Ppk notations are used for the second type of estimations.

This study examines three methods (CA, BCT, JT) for process capability through Weibull-distributed data

with different parameters and compares their estimation performances in term of accuracy and precision.

Performance comparison of methods is made in terms of box plots, descriptive statistics, the root-mean-

square deviation, and a radar chart.  In addition, the bias of the estimated values is important as the

efficiency measured by the mean square error. In this regard, Relative Bias (RB) and the Relative Root

Mean Square Error (RRMSE) are also considered. 

According to the results, it is concluded that the Clements’ approach is the best among three methods

and both Clements’ approach and Box-Cox transformation method produce better estimates than the

Johnson transformation method. In general, methods involving transformation seem more troublesome,

though they provide estimates of PCIs that truly reflect the capability of the process. However, it must be
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taken into account that a method that performs well for a particular distribution may give erroneous

results for another distribution with a different tail behaviour. It is observed in this study that the effect of

tail behavior is more significant when the process is more capable.

For further directions, inducing some of the new methods such as Best Root Transformation method

into the comparison. For recommendations, we emphasize that all methods should be employed with

same índices. We tried to execute Weighted Variance method that provides good results. However, we

did not involve in this study because we later realized that it would be confusing in terms of comparison

issues between the methods for consistent interpretations. 

We believe that our findings would be helpful for selecting appropriate methods in process capability

assessments  with  non-normal  processes,  especially  with  Weibull  or  Exponentially  distributed  quality

characteristic. It is possible to conclude that since Weibull distribution has relationships with the other

distributions, such as Exponential and Normal distribution, this study can also be a guideline for the

other non-normal processes for further directions. It should be emphasized that our understanding of

distributions that provide good models for most non-normal data of quality and process characteristics,

are the Weibull, Log-normal, and Exponential distributions that have been extensively used in quality and

reliability applications.
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