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Abstract:

Purpose: The main purpose of  this paper is to perform an analysis of  the factors determining

the architectural  configuration of  buildings for the mobility  of  people,  using dynamic flow

networks and considering group formation in the evacuation process. 

Design/methodology/approach: For a  long time it  has  been considered that  once an evacuation

begins, movement on the evacuation route mainly obeys mechanical factors; people occupy the

free spaces which lead to evacuation more or less automatically. However, recent research has

emphasized the need to consider people’s behavior; one of  the aspects considered in this work

is group formation, with its significant influence on the evacuation process. In positions of

convergence  and  their  branches  things  become  considerably  more  complicated;  as  well  as

occupants’ behavioral aspects other relevant factors such as the geometry of  the premises are

critical in this process. Authors propose models, in which nodes are strategically placed, besides

taking into consideration aspects of  behavior. Several cases are analyzed.

Findings: The solution proposed in this paper is to analyze the problem through dynamic flow

networks, using a macroscopic model in a deterministic environment in which the evolution of

the  quantities  characterizing  the  problem  at  regular  intervals  is  represented,  obtaining  a

reasonably accurate and reliable understanding of  the development of  the evacuation. 

Originality/value: A precise model of  evacuation routes, convergence points and branches which

includes  a  consideration  of  occupants’  behavior  is  obtained  using  stochastic  models  with

microscopic  analysis,  in  which  people’s  behavior  is  considered  individually,  this  solution  is
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complex, difficult to apply with many occupants and in large enclosures, and also, this way does

not lead to optimal solutions.

Keywords: building evacuation, evacuation optimization, optimal evacuation of  buildings 

1. Introduction

The problem of building evacuation has been dealt with extensively from different viewpoints:

Construction/Fire  Safety,  mathematics,  and  psychology/behavioral  sciences,  highlighting

different  classifications  for  each  subject,  so  the  field  of  mathematics  may  consider  a

classification  of  continuous  or  discrete  models,  stochastic  or  deterministic,  heuristic,  or

simulation models which in turn may be deterministic or stochastic. Moreover, models which

include  individuals  are  called  microscopic  models,  whereas  macroscopic  models  are  those

which analyze groups of people. As far as the scope is concerned, it is customary to deal with

the  evacuation  of  buildings,  sports  facilities,  ships,  trains  and  urban  areas  separately.  A

comprehensive reference on the problem can be found in EVACMOD, a website where much of

the up-to-date information available on the evacuation of buildings can be found.

The problem of evacuating buildings was born along with large buildings and the assessment of

people’s  safety.  Starting  in  the  seventies  with  the  study  of  cases  in  which  research  is

conducted on incidents using scientific methodology; Bryan’s (1983) work being pioneering.

These works have been developed over time with highly relevant results, leading to numerous

publications, the most noteworthy of which is that by the multidisciplinary team under the

auspices of NIST which conducted a detailed study of the September 11, 2001 attacks in New

York. The importance of these studies is that from them arise relevant conclusions from which

technical requirements and safety standards are adopted in buildings across the world.

In the eighties the study of dimensions and the movement of people begin, and the first

mathematical  formulations  that  provide  estimates  for  evacuation  times  appear.  A  solid

reference on the dimensions of individuals and the movement of people in buildings can be

found in works undertaken by Fruins (1971-1987) in the U.S.A; Pauls (1984) in Canada and

Predtechenskii  and  Milinskii  (1969-1978)  in  the  Soviet  Union.  Among the  most  important

recent  models  on  human  locomotion  are  Weidmann  and  Buchmueller (2007),  Nelson  and

MacLennan (1996) and Kholshenikov, Shields, Boyce and Samoshin (2009).

Among mathematical  models,  the  problem of  building  evacuation  evolves  decisively  when

using flow networks, which is thanks to Berlin (1980). The first formulation of the problem to

be optimized was by Francis (1981), and later Francis together with Chalmet and Saunders

(1982) suggest the optimization of building evacuation networks by incorporating dynamic flow

networks,  so  that  later  Francis  and  Kisko  (1985)  develop  the  first  version  of  EVACNET

software,  an  application  that  determines  evacuation  times  and  the  optimal  distribution  of

occupants towards the exits.  Years later Choi,  Hamacher and Tüfekci  (1988) consider flow
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networks with capacity constraints and arcs with variable capacity, also, in the nineties work by

Hope and Tardos (1994) is relevant as they present algorithms applicable to different dynamic

flow  networks,  generally  quickest  flow  for  problems  with  multiple  source  nodes;  dynamic

lexicografic maximum flow problem and the earliest arrival flow problem, making it possible to

determine  the  maximum number  of  people  evacuated  from  a  specified  area.  Meanwhile,

Hamacher and Tjandra (2001) provide a collection of mathematical models developed building

evacuation until  that date. Tjandra  and  Hamacher (2003) solve the evacuation of buildings

where the number of occupants is not known, the earliest arrival flow capacity model with time

dependent problems. These same authors address multi-objective problems that determine the

evacuation of premises establishing priority for occupants closest to risk points. Baumann and

Skutella  (2009)  develop  a  polynomial  algorithm that  solves  the  earliest  arrival  flow  with

multiple source nodes and a destination node, considering the problem of continuous flow.

Kamiyama,  Katoh  and  Atsushi (2008)  develops  algorithms  for  the  implementation  of  the

solutions presented by Hope and Tardos. More recent work such as by Fang,  Zong, Li and

Xiong (2011) used genetic or ant colony algorithms to be optimized in large sports venues.

Continuing in the field of mathematical modeling, another perspective for studying the problem

of evacuating buildings is that of physical models, the first in this field being fluid dynamics

and gas kinetic models, in which they compare the movement of people with fluid dynamics or

gas  flow,  and  Henderson  (1974)  draws an  analogy  between  the  mass  of  people  and  the

physical principles of gases by adapting Maxwell Boltzmann functions. A remarkable aspect of

these models is Social Force Models in which it is considered that the movement of people is

due to social forces and individual’ goals, and the authors who start this work are Helbing and

Molnar (1995). Currently these microscopic models have been extensively developed so that as

well as considering purely physical aspects they also incorporate aspects of people's behavior,

which makes them extremely interesting models. Also within the field of physical models we

find Cellular Automaton whose first models were by Fukui and Ishibashi (1999) and Blue and

Adler  (2000),  and  which  are  dynamic  models  that  discretize  space,  so  individuals  are

considered as particles with a degree of freedom that occupy discrete space elements called

cells and can move to neighboring cells with certain transition probabilities according to preset

goals.

In  recent  years  software  simulation  applications  have  flourished  in  the  study  of  building

evacuation,  among  which  we  might  mention:  AENEAS,  ALLSAFE,  CRISP,  EGRESS,  EXITT,

EVACSIM,  EVI,  EXIT-89,  EXODUS,  GRIDFLOW,  LEGION,  MAGNETIC  MODEL,  PATHFINDER,

PEDFLOW, PEDGO, PEDROUTE, SIMULEX, SIMWALK, STEPS, TIMTEX, TSEA, WAY OUT. Among

the huge number of published papers it is worth referring to the work by Gwynne (2009) who

demonstrates that simple modeling of the physical aspects does not adequately reproduce the

building evacuation process in situations in which people’s behavior is implicit, a concept, the

study of behavior, which is nothing new, as Frantzich and Benthorn (1999) published a paper

on how the occupants of an IKEA store in Helsingborg Sweden made a choice of exits. Also,

-833-



Journal of Industrial Engineering and Management – http://dx.doi.org/10.3926/jiem.635

Galea,  Sharp and Lawrence (2008) investigated the factors that determine the flow ratio at

junctions, and more recently Köster  Seitz, Treml, Hartmann and Klein (2011) analyzed the

formation of groups in the evacuation process. All this suggests that the current trend is in

multidisciplinary  models,  mathematical  models  that  incorporate  and  attempt  to  reproduce

individuals’ behavior, one of which is the formation of groups referred to in this paper.

2. Defining structures in buildings

In  order  to  study  the  evacuation  of  buildings  the  basic  structures  need  to  be  defined:

evacuation routes, confluences and branches (see Figure 1). Many buildings can be modeled by

only considering these three elements.

A  circulation  route  is  a  set  of  dependent  units  placed  successively  from  a  source  to  a

destination,  linked  by  consecutive  arcs.  The  joining  of  various  routes  or  exit  areas  that

converge in one place leads to a confluence, similarly, when a single unit or circulation route

diverges into several separate routes a branch is formed.

Figure 1. Evacuation route, confluence, and branch

To model the problem of architectural design elements which make up the basic structures of

the  evacuation  system  a  descriptive  analysis  of  each  situation  is  undertaken  and  then

represented by a flow network. The static flow network consists of nodes and arcs, the node

elements being busy at the outset or at any time during the evacuation process, while the arcs

represent the circulation elements (corridors, stairwells, hallways, etc.).

The dynamic network used to represent the process of evacuating the building is defined from

the static network. The modeling adopted is that presented by Francis et al. (1982) with some

special features that provide a more accurate modeling which allows for the consideration of

behavioral elements such as group formation. The nodes are not located in the center of the

premises but rather at specific points in the network, so there is a greater correspondence

between architectural elements and their representation, in this way a corridor in a building is

defined by a node and an arc. In an identical manner to that used in conventional networks h

periods of magnitude δ are considered, for example 50 periods of 10 seconds, 100 periods of 5

seconds 100, etc. To construct the dynamic network, h copies of the static network are made
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and they represent the building and expand in time periods, the initial period starts at the

moment 0 and the final period ends at the moment T, where T = h × δ . For each node j of the

static model, (h + 1) copies are made and are positioned sequentially and numbered from left

to right according to the index i of the corresponding period by correlated natural numbers 0,

1, 2,. . . h, then a similar procedure for the arcs, each arc (j–j´) representing the displacement

of occupants from j to j' starting in period i, h copies are made, the required number to model

the displacement of all occupants from the source node j to the destination j´. There are also

arcs (j-j) called retention arcs which represent the development of the occupation of node j.

A diagram of the basic network variables can be seen in Figure 2, enclosures k j and capacity

enclosures cj are variables which characterize the nodes, while flow capacity cj-j (people per

period) and circulation time tj-j (periods) are variables belonging to the arcs.

Figure 2. Basic network variables

The capacity of enclosures cj depends on the effective surface area of the enclosure as well as

the size of the occupants and the separation between them reflected as occupying density d j.

j ej jc a d= (1)

Flow capacity cj-j’ of an arc or peak flow depends on the minimum effective width wej-j´ between

the units j and j´ and on the maximum flow that can be registered on this path. The minimum

effective width has been defined by Pauls (1984).

j j' e j j' j j'c (w f )− − −= δ (2)

Flow capacity tj-j’ of the occupants in premises or a group, between nodes (j-j´) depends on

the distance  lj-j, and the average  flow speed  vj-j´ which  is  developed on the path,  and  is

expressed in periods.

)v/l(t 'jj'jj'jj δ= −−− (3)

To estimate the size of the occupying densities, flows and displacement speeds it is possible to

use occupancy and locomotion models provided by Fruins (1971-1987).

3. Dynamic analysis of circulation routes

As  already  defined,  an  evacuation  route  is  a  set  of  n  dependent  units  (n ≥ 3)  located

successively and connected by (n-1) arcs. Figure 3 shows an evacuation route made up of a

source node or several circulation nodes A, B, C, D, E, F, and a destination node DS which can
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be accessed from the arcs O-A, A-B,..., F-DS. In origin of evacuation nodes the occupying

densities, the physical conditions of the circulation route (horizontal flow, ramp, stairs, etc.), as

well as the personal characteristics of the occupants determine displacement speeds towards

the next node.

Figure 3. Architectural configuration of an evacuation route

The dynamic analysis of circulation routes is divided into three parts: a descriptive analysis of

the problem which allows for the observation of the physical conditions that determine the

development  of  the  evacuation,  followed  by  the  variables  observed  being  placed  in  the

dynamic network, and finally obtaining the resultant mathematical relations from the process.

3.1. Descriptive analysis of circulation in an evacuation route

To perform the analysis the simplest circulation route is used, that formed by a source node O

occupied by kO people, a single movement node A of length L in which two sections of lengths

l1 y l2 are considered, a section l3 representing the length taken up by the delay, a destination

node DS, an arc O-A which connects the source node O with the circulation A and another A-

DS which links A with the destination DS. It is assumed that the capacity of circulation in the

corridor cO-A is superior to that of the exit cA-DS, giving rise to the existence of delays, and it is

considered that the corridor has a capacity cA, in a way that access to it can be affected.

The initial circulation times between O-A and A-DS are the variables τO-A and τA-DS which are

considered to be of periods 2 and 1 respectively.  Figure 4 shows the development of the

evacuation in a deterministic context without delays at the outset and assuming constant flow,

and three stages can be observed: a transitory exit process from source node O, a stationary

circulation process in the corridor A, and a transitory occupation process of the destination DS.

In the first period xO-A(1) people are leaving the source node O and access the corridor A with a

flow value xO-A(1) the maximum possible cO-A, the flow capacity value between O and A. See

Figure 4 in which the first half of corridor A is occupied, the people who have left O at the end

of  the first  period find  themselves halfway along the route  as  the circulation time is  two

periods.

In the second period the xO-A(1) people from the first period that were occupying the first half

of  the  corridor  move  to  the  second  half  and  others  xO-A(2)  access  the  corridor  requiring
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immediate calculation of occupancy the areas O and A at the end of the period every time it is

observed that the entire surface of the corridor has been occupied; presumably having not

reached maximum occupancy cA. If the circulation time τO-A is of two periods, when they have

elapsed, the first occupants who had left the premises at source O in the first period, at the

end of the second period have reached the exit area A.

Figure 4. Descriptive analysis of the development of circulation in an evacuation route

Finally, in the third period there is an entry flow xO-A(3) in corridor A and an exit flow xA-DS(3),

the difference between the number of people entering the corridor and those that leave is the

increase in occupation recorded during the period. In the following periods until the corridor

reaches its maximum capacity the process is  transitory, in each period corridor occupation

increases until it reaches its maximum capacity at which time the next stage, defined as the

stationary process, begins. When the corridor reaches its capacity cA the process becomes

stationary, the same number of people enter the corridor as leave it,  a situation which is

maintained for a few periods. In the final periods when no entries are recorded into corridor A

the process is once again transitory. Finally when there are no occupants in O to maintain a

stable  circulation flow the process is  once again transitory,  corridor A is  emptied from its

maximum capacity, the occupants from A start occupying DS.

-837-



Journal of Industrial Engineering and Management – http://dx.doi.org/10.3926/jiem.635

Papers that have studied the formation of groups often begin with the phrase "Families survive

together or die together", as it is an undeniable fact that people affected by an evacuation

process may be individuals subject to a specific group be it family, friends or an organization.

If when modeling an evacuation route the initial formation of groups is taken into account the

situation becomes more complex (see Figure 5), where it can be seen that in the source the kO

occupants are forming different groups, in the moments when the occupants are in area A the

groups remain in occupancy densities lower than expected.

Figure 5. Initial formation of groups in the evacuation process of a single route

Group formation can be modeled using macroscopic models, the exit vector values of the area

should  take the values  corresponding to  this  situation.  When working with  fine  networks,

reduced time intervals, the differences to microscopic models are irrelevant.

m

O Oj
j 1

k (0) k (0)
=

= ∑ (4)

At a source node with an occupancy KO in which m groups form, the occupants of the various

groups complete the occupation of the node, a fact shown in the expression (4). There are

situations in which groups that form initially are numerous, consisting of more than twenty

people, for example this situation occurs in the evacuation of large venues visited by school

groups; in such cases an alternative solution to the problem is to consider each group as a

source  node.  Another  commonly  observed  situation  consists  of  the  formation  of  groups

according to the circulation speed during the evacuation process which is relevant in situations

in which evacuation routes are relatively long.

People’s  individual  displacement  speed  is  a  random  variable,  a  stochastic  process  that

corresponds to a normal distribution. On long routes it has been observed as a standard that

three groups usually form: an initial group in which faster moving people are placed, a large

middle group consisting of people who move more slowly due to their fitness level, attitude to

the process of evacuation or impossibility of overtaking, and a final group with people moving

at a slower rate. Considering these three displacement speeds for each group, it is possible to

model in dynamic network giving the situation shown in Figure 6.
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Figure 6. Groups forming in the evacuation route due to the speed of movement

In the solution proposed for these cases, modeling using a dynamic network, you lose the

identity of the groups as the model used is a macroscopic model, but the incidence of this

effect is taken into account in the evacuation process.

3.2. Dynamic network of an evacuation route

Figure 7 shows the dynamic network corresponding to the evacuation route analyzed, the first

row of the figure corresponds to the initial instants 0, δ, 2δ, ..., iδ and the end of each period

(I + 1)δ. The second row, the corresponding period 1, 2, i, ..., h. On the left the static network

is represented using the symbol corresponding to each node, its name and characteristics. In

the center, the quantities that characterize the development of the evacuation in the dynamic

network, kj(i) represents the occupancy of the area j at the end of period i, x j-j´(i) the number

of people moving from j to j' in period i, yj-j´(i) the number of people arriving at node j from j

during period i, and qj(i) the number of people waiting in area j at end of period i.

Figure 7. Dynamic network values for a single route

In  the  representation  of  the  dynamic  network  the  descriptive  analysis  undertaken  in  the

previous section is shown, analyzing occupancy, flows and delays.

3.2.1. Flow Analysis

In the dynamic network circulation flows O-A are observed, between the source node O and

the end of the corridor A, and circulation flows A-DS between the exit of corridor A and the
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destination DS. xO-A´(1) is the number of people moving from O to A in the first period and

yO-A(3),  yO-A(3)  =  xO-A´(1+2)  represent  arrivals  at  A  from  O  during  the  third  period  as  a

circulation time of two periods is assumed. In the initial periods yO-A(1) e yO-A(2) are zero as in

these periods there are no arrivals at A.

With regard to circulation towards DS, xA-DS´(1) y xA-DS´(2) have zero values since there are no

occupants at A. In the third period xA-DS´(3) takes the capacity value cA-DS for the path between

A and DS, and since the circulation time is of a period the resulting arrivals are yA-DS´(4). If

there are situations of group formation, the exit flows from each node x j-j´ will represent that

situation.

3.2.2. Analysis of occupancy and delays

In this analysis it is worth distinguishing between evacuation source nodes, circulation nodes

and evacuation destination nodes. In the source node O it is observed that kO(0) represents

the initial occupation of this area, kO(1) the occupancy at the end of the first period, kO(2) the

occupancy at the end of the second period, and so on until reaching the moment when no

occupants remain kO(n) = 0 at which time the evacuation from the area is complete. In the

intermediate node occupancy kA(0) is the initial value, with kA(1) representing occupancy at

the end of the first period. The occupancy of an intermediate node has two components: the

people who are circulating and those who are delayed. People that are circulating are those

who abandoned O in the first period xO-A´(1), and those who are delayed qA-DS´(i), in this case

qA-DS´(1) = 0 since no occupant has reached the exit, which makes it impossible for any delays

to exist. In the second period occupancy kA(2) is determined by xO-A´(1) y xO-A´(2), people who

have accessed A during the first and second periods respectively, in this case there are again

no people delayed qA-DS´(2) = 0. Throughout the third period xO-A´(1) people reach the end of A;

who are those who left O during the first period, ie yO-A(3), of all these people xA-DS(3) go

towards DS. The difference between the arrivals and departures [yO-A´(3)  – xA-DS(3)] are the

people who are delayed qA´(3). The occupation of A defined by kA(3) is given by the sum of the

people waiting at the end of the period qA´(3) and those who have accessed A defined by xO-A´(2)

y xO-A´(3).

With respect to the occupancy of destination node DS, there are qDS´(·) people waiting and

xA-DS(i) people abandoning A circulating to the safe destination DS. The occupancy of DS at the

end of period h is represented by kDS(h), occupancy that matches the initial occupancy kO(0)

since it corresponds to the end of the evacuation. While qA(i) is a delay, qDS(i) represents the

people waiting at destination DS. Knowing the delays at the end of each period facilitates the

analysis of the impact of these delays on the development of the evacuation, so for example,

long waits can generate occupants’ nervousness, which is extremely important to know in an

emergency situation. The analysis of the circulation in a corridor and its representation through

a dynamic network allows us to know the process of evacuation in an evacuation route.
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3.3. Relations describing circulation in an evacuation route

The physical quantities which define the parameters of the dynamic network can be seen in

Figure 8 where an occupied enclosure O is shown with access to a circulation route A and

destination DS. The exit capacity of the source node is determined by the physical widths wO-A

y wA–DS, and circulation times are determined by the length of the routes lO-A y lA–DS respectively.

Figure 8. Dynamic network values for a single route

The dynamic network values described in the following expressions correspond to occupancies,

flows and delays. When quantifying occupancies a distinction is made between source nodes,

circulation nodes and destination nodes. The occupancy of an evacuation origin area kO(i) at

the end of a period i is the same as the occupancy recorded in the previous period kO(i-1)

minus the people who have left the area xO-j(i) during the period i.

O O O Ak (i) k (i 1) x (i)−= − − (5)

The  occupancy  of  an  intermediate  node  kA(i)  at  the  end  of  period  i  corresponds  to  the

occupancy of the previous period kj(i) plus the incorporations yj´-j(i) minus the exits registered

xj-j´´(i) during that period.

A A O A A DSk (i) k (i 1) y (i) x (i)− −= − + − (6)

Finally, the occupancy of a destination node kDS(i) at the end of period i is equivalent to the

occupancy recorded in the previous period kDS(i-1) plus any incorporations yj-DS(i) registered

during that period.

DS DS O Ak (i) k (i 1) y (i)−= − + (7)

At every moment the flows xj-j´(i) are at the maximum possible corresponding to the capacity

cj-j´ of the route j-j´ if there is a sufficient number of occupants to start the evacuation, and

taking  into  account  the  formation  of  groups  in  the  evacuation  process.  The  following

expression shows an exit flow from a source node.

{ }O A O O Ax (i) Min q (i 1) ;c (i)− −= − (8)
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While at an intermediate node the expression is transformed as follows:

{ }A DS A O A A DSx (i) Min q (i 1) y (i) ;c (i)− − −= − + (9)

With regard to the delays qj(i) which are recorded in the area j corresponding to the value in

the previous period qj(i-1) plus the increment of the difference between entries y j´-j(i) and exits

xj´-j(i) during the period.

O A O A O A A DSq (i) q (i 1) y (i) x (i)− − − −= − + − (10)

Delays are a very important element in the study of this problem, which makes it an essential

area of study.

3.4. Numerical applications for the study of an evacuation route

Below is an analysis corresponding to the evacuation of premises with occupied by 198 people.

Figure 9 shows the dynamic network as well as a presentation of the calculations undertaken,

while Figure 10 shows a table of the results. This example uses periods of 10 seconds, with

maximum  flows  of  15  and  12  people  /  period,  constant  circulation  times  of  2  and  1

respectively, where delays at the initiation of the evacuation are not supposed and the capacity

of A is not considered significant.

Figure 9. Dynamic network of an evacuation route used as an example

The figure shows how in each period 15 people leave the source node until we reach period 13

when the evacuation of O is finalized, just as it is shown that in each period 12 people head to

the destination DS leaving three people trapped in A for each period, while an increase in

occupancy is observed at the destination, the evacuation ending after 20 periods, giving an

evacuation time of 200 seconds. Occupancy of O decreases, while occupancy of DS increases,

and A reaches a maximum value of 63 people.

The  representation  of  the  evacuation  route  through  a  dynamic  network  uncovers  the

calculation process of the evacuation. In the example a deterministic model has been used in

which circulation obeys the conditions of hydraulic flow, the exit flows from the source node

and the exit flows from A are constant, these flows are not altered by the destination node

capacity,  and  also  delays  occur  in  A.  The  results  table  shows  in  detail  the  values  which
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characterize the process and from which a graphical analysis of the results can be made if

deemed appropriate.

Figure 10. Example: Table of results of the dynamic network of an evacuation route

4. Dynamic analysis of confluences

In buildings there are locations where the confluence of movement from several areas occur or

the confluence of several evacuation routes go into one. Movement through confluences is

complex  because  there  are  many  possible  configurations  depending  on  the  geometrical

conditions of the area. Figure 11 shows three possible configurations: perpendicular  flows,

opposing flows and adjacent flows.

Figure 11. Examples of confluence configurations

When, after a confluence, movement continues to form a single flow it is known as a simple

confluence.

The existence of groups has a major effect on the confluence, there are situations in which the

group has a significant effect on its operation, it has been observed in residential compounds that

when families are involved in the evacuation process groups are maintained, whereas if there is no

link between the individuals in the groups at the confluence the situation is more orderly.
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Figure 12 shows the confluence in C of three evacuation routes, after which the occupants

proceeding from areas O1, O2 and O3, continue along a single route to the enclosure A and

from there to the destination DS. Flows are considered to be one-directional, the mix of people

from different areas is fluid and there are no pre-established priorities, simply allowing for the

mix of entry or arrival flows at the confluence leading to a single exit flow . This example

shows a triple confluence where there are flows perpendicular (O2-O1 y O3-O2) and linear

flows in the opposite direction (O1-O3).

Figure 12. Simple confluence

Research by Galea et al. (2008) on the movement on stairs in buildings in which the respective

floors intersect, has found that the specific entry flow to the stairs decreases if the stair flow

increases.  Similarly  it  is  observed  that  with  high  movement  densities  that  don’t  reach

saturation, the specific entry flow to stairs is at maximum if the connection to the staircase

landing is adjacent to the movement. When access to the stairs from a floor is linear and

against the circulation, speed of movement on the stairs is noticeably reduced.

At a confluence the condition of flow continuity between the entry and the exit are established.

If the number of people xe who access the confluence and who leave it xs are expressed in

terms of specific flows fe and fs and with effective step widths we y ws, the specific exit flow fs is

determined as shown by expression (11). If this specific exit flow value fs is less than the

maximum flow fMAX, this value is valid, however, if this value exceeds the maximum flow it will

be  physically  impossible  and the flow will  correspond  to  the value of  maximum flow,  the

occupants being trapped at the confluence.

ej ej
j

s MAX
s s s s

s

MAX s MAX

f w

if f ff x f ww

f if f f

∀ ≤= ⇒ =

>

∑
(11)

With this simple approach some issues remain undefined, in this paper we intend to analyze

them by conducting a descriptive analysis of the situation and its subsequent representation in

a dynamic flow network, as has been done in the evacuation routes.

-844-



Journal of Industrial Engineering and Management – http://dx.doi.org/10.3926/jiem.635

4.1. Descriptive analysis of confluence movement

A case analysis is made of two areas O1 and O2 occupied by people kO1 and kO2 respectively,

with an area A in which flows merge occurs giving access to evacuation point DS. Significant

factors  considered  within  this  process  are  physical  characteristics  of  the  occupants  and

confluence surface, given that both factors determine its full capacity cO1-O2-A, as well as access

route lengths lO1-A and lO2-A and the physical conditions of movement which determine the travel

time to confluence τO1-A and τO2-A. This supposes a value of 2 and 1 respectively. Route length lA-

DS gives rise to supposed flow capacity τA-DS of 1 period. The movement capacities in confluence

cO1-A, cO2-A for entrances and cA-DS for exit depend on effective minimum widths wO1-A, wO2-A and

wA-DS respectively. Figure 13 shows the descriptive process analysis without taking jams at the

start of evacuation into account.

Figure 13. Process in a simple confluence

In the first period, xO1-A(1) people coming from source node O1 and xO2-A(1) people coming from

O2 head towards confluence A. If flow capacities O2 are of 1 and 2 periods, the xO2-A(1) people

coming from O2 arrive at the confluence at the end of the first period whereas those xO1-A(1)
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coming from O1 can be found halfway along their route, where these arrivals are yO2-A(2) and

yO1-A(3) supposing capacity cA is not reached.

Throughout the second period, the xO2-A(1) people who left O2 during the first period arrive at A

giving rise to the xA-DS(2) people who leave the confluence to head towards destination DS. The

xO1-A(1) people coming from O1 are circulating in the confluence, this being the flow capacity of

2  periods.  xO2-A(2)  people  coming  from O2 and xO1-A(2)  people  coming  from O1 commence

evacuation. During this period flows xO1-A(1) and xO2-A(2) merge with xA-DS(2) people leaving the

confluence simultaneously. The difference between entrances and exits are the qA(2) people

held up. Occupancy of A is determined by the flow balance and people held up. People in

movement and those waiting are also taken into account.

In the third period, the situation is similar to that in the previous period as a mergence of flows

between occupants coming from O1 and O2 takes place. Two entrance flows and one exit flow

proceed  through  the  confluence.  Occupancy  in  confluence  A  increases  until  reaching  full

capacity,  the  point  at  which  the  transitory  period  finalizes  and  the  stationary  period

commences.

In the stationary period, the number of people entering the confluence corresponds to the

number of people  leaving it.  The difficulty  arises when determining the number of people

coming from O1 and O2 who have access to it. A simple solution consists in each period of

establishing the proportion taken from access width. In other cases access configuration or

personal characteristics of the occupants are also taken into consideration. These values, which

are habitually defined via the confluence loading function ΦC, are adjusted using evacuation

simulations.

Figure 14. Existence of groups in a confluence process
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A transitory process arises when no occupants remain in source nodes O1 and O2 whereas a

resulting transitory emptying process arises when no further occupants enter the confluence. A

maximum number of people leave the confluence period-on-period until no occupants are left.

In a simple confluence the mergence between occupants develops in an orderly way with no

pre-established priorities.  If,  on the other  hand,  we analyze the existence of  groups  in  a

confluence process, it can be seen that priorities between these groups are often established.

People  entering  a  confluence  in  an  automatic  way  respect  the  groups  by  prioritizing  the

movement of a specific group, such as in Figure 14 where the occupants of O1 give priority to

the  group  proceeding  from  O2.  Although  those  situations  in  which  a  total  respect  for

established  groups  occurs  have  been  verified  in  hotel  evacuations,  there  is  a  noticeable

uncertainty over whether this process observed in relatively non-severe situations would be

maintained in emergency situations.

4.2. Dynamic network of a confluence

Figure  15  shows  the  dynamic  network  which  enables  the  study  of  a  simple  confluence

evacuation. Both the initial and final moments of each period and the periods corresponding to

the network are shown at the top of the figure, an outline of the static network is shown on the

left,  and  the values  characterizing the development  of  the evacuation within  the dynamic

network are shown in the centre. Said values are: occupancies kj(i), exit flows xj-j´(i), arrival

flows yj-j´(i), and the number of people waiting at the end of the corresponding period q j(i).

Figure 15. Values of a simple confluence dynamic network

4.2.1. Flow analysis

Two exit flows xO1-A(1) y xO2-A(1) corresponding to those people leaving O1 and O2 respectively

can be observed in the first period. In the second period what can be seen is an arrival flow

yO1-A(2), corresponding to those people who have left node O1 in the first period, together with

four exit flows. The first of these exit flows xO1-A(1) refers to those people who have left O1 at

the start of the first period and who have arrived at A at the end of the second period, where
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the exits of O1 and O2 in this period are xO2-A(2) y xO1-A(2 ). Finally xA-DS(2) people leave A to

head towards destination DS.

Three arrival flows are produced during the third period, two towards node A, these being

yO1-A(3) and yO2-A(3), and a third yA-DS(3) towards destination DS. As in the previous period,

four exit  flows  take  place:  xO1-A(2),  xO1-A(3),  xO2-A(3),  and  xA-DS(3).  This  process  continues

period-on-period until evacuation is completed.

4.2.2. Occupancy and congestion analysis

Initial occupancy in evacuation source nodes are given as kO1(0) and kO2(0) and occupancies at

the end of the first period are given as kO1(1) and kO2(1). Occupancy in any non-initial node is

given by people who are either moving along or waiting. Finally, occupancy of confluence node

A is kA(1).

Congestion is expressed as qA(i) and qDS(i), where qA(i) is people held up in A and qDS(i) is

people found at destination DS.

4.3. Mathematical relationships describing confluence movement

In  order  to  establish  the  implicit  mathematical  relationships  in  a  confluence,  its  physical

conditions and principal values need to be taken into account. Figure 16 shows passage widths

wO1-A and wO2-A which give confluence access and width of confluence exit wA-DS. On the other

hand, route times are given by route lengths lO1-A, lO2-A, and lA-DS, personal characteristics of the

occupants, and physical conditions of movement.

Figure 16. Example of a confluence

Following on from this, the principal  mathematical relationships established in the dynamic

network, the corresponding expressions for node occupancy, and flows are then defined. What

can be seen is that the expressions given for the study of congestion in an evacuation route

are identical thus occupancy of the origin evacuation nodes kOj(i) is given by the occupancy

registered in the previous period kOj(i-1) minus  the people who have left  the node in the

present period xO-A(i).

-848-



Journal of Industrial Engineering and Management – http://dx.doi.org/10.3926/jiem.635

Oj Oj Oj Ak (i) k (i 1) x (i)−= − − (12)

Occupancy  in  confluence  kA(i)  corresponds  with  occupancy  in  the  previous  node  kA(i-1)

increased by arrivals produced during the present period yOj-A(i) minus exits registered xA-DS(i).

A A O1 A O2 A A DSk (i) k (i 1) y (i) y (i) x (i)− − −= − + + − (13)

Finally, occupancy of destination node kDS(i) is given by occupancy registered in the previous

period kDS(i-1) increased by arrivals produced during period yA-DS(i).

DS DS O Ak (i) k (i 1) y (i)−= − + (14)

While the intermediate node has not yet reached full capacity, movement flows xO-A(i) will be at

their highest possible cO-A. However, when the confluence reaches saturation, it is complex to

predict the number of people proceeding from the source nodes who will head towards it. A

reasonable  formula,  therefore,  is  the  proportionality  criterion  of  access  widths  applied

period-on-period.

{ }A A O O A

Oj A

A A Oj A O AMAX O1 A O2 A

k (i*) c Min q (i 1);c (i)
x (i)

k (i*) c x 1

−
−

− − − −

 ≤ −= 
> φ φ + φ =

(15)

Movement towards destination node xA-DS(i) will be the highest possible cA-DS at all times.

{ }A DS A O A A DSx (i) Min q (i 1) y (i) ;c (i)− − −= − + (16)

Following group formation, the process is similar to that in a simple confluence. What must be

highlighted is the behavior of the proportionality function ΦOj-A which commonly takes the form

ΦOj-A(i) using values 0 or 1 with the finality of establishing priorities between occupants from

O1 and O2. This is known as the traffic-light function.

4.4. Numerical application for confluence study

Below is  an  example  of  the  evacuation  of  two  areas  occupied  by  110  and  165 people

respectively.  The evacuation routes from the source nodes have a capacity of  8 and 12

people per period and the access route to its destination has a capacity of 18. This thus

causes a jam in the confluence. Figure 17 shows the corresponding dynamic network in

which the development of confluence occupancy in the occupancy of A can be seen. It also

states  that  following  18  periods  all  the  occupants  in  their  entirety  can  be  found  in

destination DS.

Occupancy of O1 and O2 reduces period-on-period whereas that of destination DS increases.

What can also be seen is confluence occupancy which is at its highest in the fourteenth period.

This entirely takes place in the established conditions of constant flows.
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Figure 17. Example of a confluence dynamic network

The values given in the dynamic network can be arranged in a table (Figure 18) to enable a

detailed analysis. This table can then be used to produce various analytical calculations and

graphs, such as diagrams of occupancy or flows registered at each exit.

Figure 18. Example of a confluence result table

5. Dynamic analysis of branches

A branch (Figure 19) occurs when the occupants of a building are able to choose between

several movement areas in order to continue their route towards an evacuation destination.

Figure 19 shows a simple branch in which the occupants of area O reach area R from which

they have the option of choosing between two alternative passage routes taking them either to

destination DS1 or DS2 There is  always a reason as to why these occupants head towards

either DS1 or DS2, although no supposition can be made beforehand in favor of either DS1 or

DS2.
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Figure 19. Example of a branch

Several authors,  such as Predtechenskii  and Milinskii  (1969-1978), Frantzich and Benthorn

(1999),  etc,  have  rigorously  studied  movement  conditions  within  a  branch.  It  is  worth

highlighting investigations carried out by Chen, Li and Zhang (2012) in which they reproduce

the  passage  and  exit  selections  in  branches  in  particular  building  types  using  simulation

models based on cellular automatas.

5.1. Descriptive analysis of movement in a branch

The process used in the study of branches has been identical as that followed in the study of

evacuation  routes  and  confluences,  a  detailed  analysis  of  evacuation  development,  its

representation through a dynamic network, and the deduction of the principal mathematical

relationships. Figure 20 considers an area O occupied by kO people with access to an area A in

which  the  branch  is  produced  giving  access  to  two  circulation  routes  heading  towards

destinations  DS1 and  DS2.  Considered  significant  in  this  process  are  actual  branch

configuration,  its  physical  characteristics,  personal  characteristics  of  the  occupants,  and

knowledge the occupants have of the building thus conditioning them to head towards one or

other destination. Access capacity of the branch is given by c O-A and its exit capacity is given by

cA-DS1 and cA-DS2. The moment the branch occurs is established at the precise moment of arrival

of τO-A. Likewise, τA-DS1 and τA-DS2 set the destination in the same way as travel times. It is

supposed that  the value of flow capacity is of one period, no delays occur at the start of

evacuation, and also that a group of people are ready at O to commence evacuation.

Figure 20 shows the descriptive analysis of  the process. In the first period, xO-A(1) people

coming from source node O head towards branch A; if flow capacity τO-A is of one period, at the

end of said period these people will arrive at the branch point giving rise to yO-A(2) arrivals,

thus producing a branch in the following period. It is supposed that capacity cA is not reached.

In the second period, xO-A(2) people coming from source node O will head towards branch A.

Likewise, the people arriving at  confluence yO-A(2) select the evacuation route which leads

them to destination DS1 or DS2, where xA-DS1(2) is the people heading towards DS1 and xA-DS2(2)

is those heading towards DS2, occupying routes A-DS1 and A-DS2 respectively.

Occupancy kA(2) of branch A is evaluated using the people in movement together with those

held up. If there were a difference between entrance and exits, there would be qA(2) people
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held up in A. If flow capacity τA-DS1 y τA-DS2 is of one period, at the end of said period yA-DS1(3)

and yA-DS2(3) will arrive at DS1 and a DS2 respectively.

Figure 20. Analysis of the branch process

In the third period, the exit flow from source node xO-A(3) and the exit flows from A towards

destinations xA-DS1(3) and xA-DS2(3) must be taken into consideration. Said flows will develop

identically to those described in previous sections. Those people leaving the source in the

previous period yO-A(3) arrive at the branch and yA-DS1(3) and yA-DS2(3) people are incorporated

heading  towards  the  destination.  Occupancy  within  the  area  of  branch  A  increases  until

reaching full capacity, at which time the transitory filling period of the branch finalizes and the

stationary period commences. In said stationary period, the number of people entering the

branch corresponds with those who leave. The difficulty arises in determining the number of

people  heading  towards  each  destination  DS1 and  DS2.  A  simple  solution  is  to  establish

proportionality in each period from access widths and in other cases access configuration or
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personal  characteristics  of  the  occupants.  These  values  are  very  often  adjusted  using

evacuation simulations and are generically indicated using the exit function of branch ΦR. A

transitory process results once again when no occupants remain in source node O. Finally,

when no further occupants enter, the branch enters a transitory emptying process in which a

maximum number of people leave to head towards one of the destinations until no occupants

are left.

Figure 21. Existence of groups in a branch process

When considering occupant groups in the branches, maintenance of groups must be referred

to. In a simple branch it has been considered that an orderly distribution is undertaken in

which occupants can head towards either O1 or O2 indistinctively. When groups have been

formed, however, these groups are maintained and the entire cluster heads to one or the other

destination. This situation takes place above all in the evacuation of hotels as it is obvious to

consider that the family group is maintained. A similar situation occurs in groups made up of

schoolchildren and has even been observed in exhibition halls in any nature of groups. It can

be seen in Figure 21 that occupants remain in groups in their respective destinations DS1 and

DS2. It  is  logical  to assume that this process observed in non-severe situations would be

maintained in emergency situations. Pressure is lower than in confluences.

5.2. Dynamic network in a branch

Figure 22 gives a representation using a dynamic network. What can be seen on the left of the

graph is the static network outline and in the centre are the values characterizing evacuation
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development in the dynamic network. kj(i) gives area occupancy j at the end of period i, xj-j´(i)

the number of people who move from j to j´ in period i, yj-j´(i) gives the number of people who

arrive at node j´ after leaving j during period i, and finally q j(i) gives the number of people

held up in area j at the end of period i.

By analyzing flows, what can be seen in the first period is how xO-A(1) people leave source node

O and how a flow of people leave O in this period xO-A(2) and a flow of xO-A(1) people from the

previous period. This gives rise to yO-A(2) arrivals in the period and generates flows xA-DS1(2)

and xA-DS2(2). The process continues while occupants remain in the origin areas of evacuation.

Likewise, what can also be seen are occupancies of the four areas O, A, DS1 and DS2 period-

on-period, recording jams in area A.

Figure 22. Values of a simple branch dynamic network

5.3. Mathematical relationships describing movement in a branch

Flows, occupancies and jams are given by values presented in Figure 23. The route, therefore,

from source node O to the centre of the branch is given by lO-A,  where the route to each

destination is lA-DS1 and lA-DS2 respectively. Personal characteristics of the occupants and physical

conditions of movement determine the average speed reached along each route. Path capacity

is given by minimum effective widths wj-j´, where path width giving access to the branch is wO-A

and widths giving access to destinations is wO-A, respectively.

The modelling of branches is complex as personal characteristics and branch configuration are

taken into account. It is a contrasted fact that in emergency situations occupants tend to use

evacuation  routes  they  are  familiar  with.  Their  familiarity  with  the  building  is  therefore

decisive.  The  most  significant  physical  aspects  are  signage,  lighting  conditions  and  alarm

system  characteristics.  Given  the  complexity  and  number  of  factors,  the  modelling  of

evacuation  using  flow  networks  with  branches  must  be  experimented  in  order  to  gain

approximations which enable the most plausible forecasts possible.
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Figure 23. Values of a simple branch dynamic network

The exit flow from source node xO-A(i) will be the highest possible at all times.

{ }O A A O Ax (i) Min q (i 1) ;c (i)− −= − (17)

At the branch exit, the relation of flows is assumed proportional to their widths. This operates

correctly when the occupants are familiar with the area and thus find one or the other exit

indistinctive. Function ΦR is taken following trials.

[ ]{ }A DSj A DSj A O A O Ax (i) Min q (i 1) y (i 1) ; c (i)− − − −= φ − + −

A DSj A DSj A TOTAL(w ) / w− −φ =

A DSj
j

1−
∀

φ =∑
(18)

When  groups  have  been  formed,  the  process  is  similar  to  that  in  a  simple  branch.  The

proportionality function ΦA–DSj takes the values 0 or 1 to establish distribution of occupants

heading towards DS1 or DS2.

5.4. Numerical application of the branch study

Figure  24  shows  flows,  occupancies  and  jams  period-on-period  corresponding  to  the

evacuation of an area occupied by 200 people with a path capacity of 15 people per period to

the  branch  area  and  from the  branch  to  each  destination  of  8  and  5  people  per  period

respectively, with flow capacities of one period being in the three arcs.

As in previous examples, the network values have been arranged in a table (Figure 25) in

order to enable result analysis. What can be seen is how source node O1 remains occupied

until period 14, in which the last 5 occupants are evacuated. Likewise, what can also be seen is

that  the  branch node  remains  occupied until  period  17,  in  which  3  people  head towards
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destination  DS1 and  2  towards  destination  DS2.  At  the  end,  123  people  can be  found  in

destination DS1 and 77 in destination DS2.

Figure 24. Example of a branch

In the same way as occupancies are analyzed, flows can also be observed. In the first period,

15 people can be seen to move from source node O1 until branch A, a further 15 people leave

node O1 in the second period, 8 people head towards DS1 and 5 towards DS2, etc. Flows can

thus be observed period-on-period and jams can also be seen in a similar way; 2 people are

held up in the second period, 4 in the third, 6 in the fourth and so on therefore reaching a

maximum value of 26 in period 14.

Figure 25. Example of branch result table

-856-



Journal of Industrial Engineering and Management – http://dx.doi.org/10.3926/jiem.635

6. Conclusions

A proposal is put forward in this paper for the resolution of building evacuation problems using

dynamic  flow  networks  within  deterministic  surroundings.  It  shows  that  when  operating

rigorously an excellent model is achieved. Dynamic flow networks are a powerful tool which

enable a precise and complete formalization of the building evacuation problem and which give

satisfactory  results,  as  seen  in  the  proposed  examples.  Although  the  numerical  problem

acquires a different value, the solution in buildings of big dimensions has exactly the same

detail, consistency and precision as those presented in this paper.

Among the most relevant contributions is the way in which the representation of the building

using a flow network is carried out. The nodes are situated strategically in order to achieve

optimal modeling, thus, for instance, a passageway is represented using a node and an arc.

The node is situated at the end of the passage in the direction of movement while the arc

represents  movement  between  it  and  the  previous  node.  A  direct  relationship  between

architectural factors and the network it represents is achieved enabling the given results to

have a physical  sense with an immediate  interpretation.  When this  proposal  is  applied  to

circulation  routes,  confluences  and  branches,  it  improves  classical  networks  which  situate

nodes in the centre of areas and the arcs are also limited to showing passage between one

another. 

Another significant contribution has been the consideration of behavioral  aspects. Although

various  microscopic  models  consider  individual  behavior,  there  is  a  lack  of  knowledge  of

behaviors  such  as  group  formation,  differences  in  movement  speeds,  and  confluence  and

branch behaviors in macroscopic models. This is considered to be of great interest due to the

difficulty in the study of problems in buildings with a large number of occupants. This paper

studies behavioral aspects using dynamic network flows. 

Finally, mathematical expressions have been adapted from classical networks to the modeling

proposed  in  this  paper  and  also  to  the  inclusion  of  behavioral  aspects  of  the  individuals

subjected to the evacuation process.
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