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Abstract:  

Purpose: Healthcare is a universally used service that hugely affects economies 

and the quality of life. The research of service supply chains has found a significant 

role in the past decade. The main research goal of this paper is to model and 

simulate the internal service supply chains of a healthcare system to study the 

effects of different parameters on the outputs and capability measures of the 

processes. The specific objectives are to analyse medication delivery errors in a 

community hospital based on the results of the models and to explore the presence 

of bullwhip effect in the internal service supply chains of the hospital. 

Design/methodology/approach: System dynamics which is an approach for 

understanding the behaviour of complex systems, used as a methodology to model 

two internal service supply chains of the hospital with a sub-model created to 

simulate medication delivery errors in the hospital. The models are validated using 

the actual data of the hospital and the results are analyzed based on experimental 

design techniques. 

Findings: It is observed that the bullwhip effect may not occur in a hospital’s 

internal service supply chains. Furthermore the paper points out the conditions for 

reducing the medication delivery error in a hospital. 
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Research limitations/implications: Because of the community hospital’s data 

availability the type of service supply chains modelled in this paper, are small 

service supply chains, representing only the tasks which are done inside the 

hospital. To better observe the bullwhip effect in healthcare service supply chains, 

the chains should be modelled more generally.  

Originality/value: The original system dynamics modelling of the internal service 

supply chains of a community hospital, with a sub-model simulating the medication 

delivery error. 

Keywords: service supply chains, healthcare services, medication delivery error, 

amplification effect, bullwhip effect 

 

1 Introduction  

In today’s global market, competition is ever increasing and companies are widely 

adopting customer-focused strategies in integrated-system approaches. 

Competition is no longer one company against other companies, but one supply 

chain against other supply chains. Supply chain management is a mechanism that 

will allow companies to respond to these environmental changes. It has become 

one of the top priorities on the strategic agenda of industrial and service 

businesses. Service supply chains should be managed differently, because they 

have the following characteristics not found in manufacturing supply chains: 

intangibility, heterogeneity, simultaneous production and consumption, and 

perishability (Zeithaml et al., 2009).  

Healthcare is an expensive, complex, universally used service that hugely affects 

economies and the quality of life (Berry & Bendapudi, 2007). The U.S., for 

example, was projected to spend more than $2 trillion (nearly $7,000 per person) 

on healthcare in 2006 and still only 44% of a national sample of Americans were 

satisfied with the quality of U.S. healthcare (Berry & Bendapudi, 2007). The 

healthcare industry in the U.S. accounts for 16 percent of GDP, whereas the 

European Union average is about 8% (Baltacioglu et al., 2007). There are several 

reasons for the growth of the healthcare industry. The most important one is 

decreasing fertility rates and increasing life expectancy. Several challenges like the 

complexity of processes, the need for efficient utilization of resources, the need to 
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control the workload of the healthcare employees, and the public pressure on 

healthcare institutions to control costs while increasing the quality of services are 

involved with the healthcare industry (Baltacioglu et al., 2007). All these 

challenges prove the importance of supply chain management in healthcare 

organizations.  

Most of the discussions in literature focus on supply chain operations in the 

healthcare industry from a manufacturing viewpoint (Fineman & Kapadia, 1978; 

Bier, 1995; Rivard-Royer et al., 2002), but there are few discussions about 

applying service supply chain management principles to healthcare organizations. 

Baltacioglu et al. (2007) proposed a general supply chain model for services, which 

includes some managerial activities to be performed for effective management of 

service supply chains. These activities are demand management, capacity and 

resources management, customer relationship management, supplier relationship 

management, order process management, and service performance management. 

The proposed model is implemented for the healthcare industry.  

Medication delivery error is an important issue faced by healthcare systems or, 

more specifically, hospitals. Recently, medication errors have become so common 

in hospitals that the patients should expect to suffer at least one every day (Baker 

et al., 2002). In 2006, the Institute of Medicine estimated that medication-related 

errors harm approximately 1.5 million people in the U.S., costing the nation at least 

$3.5 billion annually. To help with these challenges, improving service supply chain 

for medication delivery processes in a hospital is very important. The medication 

preparation is usually done in the pharmacy of the hospital and then delivered to 

different departments of the hospital. So, analyzing the process of preparing drugs 

in the pharmacy of the hospital and measuring medication errors and wastes and 

trying to minimize them would have an important role in reducing the medication-

related errors.  

Upstream amplification of inventory and demand in a supply chain has been a well-

known phenomenon to supply chain managers for several decades. This 

phenomenon is called bullwhip effect in which fluctuations in orders increase as one 

moves up the supply chain from retailers to wholesalers to manufacturers and to 

suppliers. The evidence of bullwhip effect was first found by Forrester (1961) and 

was then demonstrated by Sterman (1989a, 1989b) based on the famous Beer 

Game, an experiment that includes a supply chain with four stages. Lee et al. 

(1997) suggested four root causes of amplification effects in inventory supply 

chains: demand signaling, batch ordering, price fluctuations and shortage gaming. 
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Most of the research on amplification effects, or bullwhip effects, has focused on 

manufacturing (or inventory) supply chains (Akkermans & Vos, 2003). Although the 

research of service supply chains has found a significant role with the increasing 

importance of service industry in recent decade, there are few studies on the 

amplification phenomenon in service supply chains. Anderson et al. (2005) studied 

the dynamic behavior of service supply chains in the presence of varying demand 

and information sharing. Their model presented the relationships between capacity, 

processing, backlog and service delays at each stage in the supply chain. They 

characterized the conditions under which a bullwhip effect can occur. They indicated 

that depending on the policies used to manage each stage the bullwhip effect may 

not occur in service supply chains. 

This paper focuses on service supply chains in the area of healthcare services based 

on a case study from a community hospital (CH). The main research goal of this 

paper is to model and simulate the internal service supply chains of a healthcare 

system to study the effects of different parameters on the outputs and capability 

measures of the processes. The specific objectives are: 

 To create system dynamics models for the internal service supply chains in 

CH. 

 To analyze medication delivery errors in CH based on the results of the 

models. 

 To explore the presence of bullwhip effect in the internal service supply 

chains of the hospital. 

2 System dynamics modelling 

System dynamics is an approach to understanding the behavior of complex systems 

over time. In this study, system dynamics is used to model two internal processes 

in CH: the pharmacy internal service supply chain (i.e., medication preparation 

procedure in the pharmacy) and the emergency room internal service supply chain 

(i.e., the patient treatment procedure in the emergency room). Only one 

medication type, intravenous (IV), is considered in this study. The reason that we 

focused on IV is that medication errors associated with the highest risk of harm are 

IV medication errors (Williams & Maddox, 2005). IV medications are associated 

with 54% of potential adverse drug events (ADEs) (Kaushal et al., 2001), 56% of 

medication errors (Ross et al., 2000), and approximately 61% of the serious and 

life-threatening errors (Vanerveen, 2005). The modelling software used is Vensim, 
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which is a visual modelling tool that allows conceptualizing, documenting, 

simulating, and analyzing system dynamics models.  

2.1 Pharmacy internal service supply chain model 

The pharmacy service supply chain model contains three main stages: Computer 

Order Entering (the IV orders received from the other departments are entered 

into computer), Order Sorting (the labels are printed and sorted), and Order 

Assembling (the IVs are assembled). Each stage contains three variables: capacity, 

processing rate, and backlog. Capacity in each stage represents the number of IVs 

that a pharmacy staff can process per period. Capacity is changed by turnaround 

rate. Turn around rate is the rate of changing positions of the employees in 

pharmacy. For example there may be a need for more people in the order entering 

stage, so the manager may ask a pharmacist who is working in the order sorting 

section to help with the order entering. Capacity adjustment time is the average 

nominal delay required to adjust the pharmacy staff. Target capacity is the desired 

number of pharmacy staff required in each stage. Backlogs present the number of 

orders in queue to be processed. Backlogs decrease as processing rate increases. 

The average service delay is the average nominal delay required to complete a 

backlogged order. Figure 1 shows the first two stages of the pharmacy model, 

which is built based on Anderson et al. (2005). The following are the variables used 

in the model: 

 Bi (t) = stage i backlog at time t. We assume that Bi (t) ≥0 for t ≥0. 

 Ci (t) = stage i capacity in job at time t. We assume that Ci (t) ≥0 for t ≥0. 

C0 (t) equals end-customer demand at time t.  

 Pi (t) = the processing rate at stage i at time t.  

 TC i (t) = target capacity of stage i at time t. 

 TR i (t) = turn around rate of the employees in stage i at time t. 

 µi = the average nominal delay required to adjust capacity at stage i. We 

will refer to µi as the capacity adjustment time. We assume that µi >0. 

 λi = the average nominal delay required to complete a backlogged order at 

stage i. We will refer to λi as the average service delay. We assume λi >0. 

 αi,1 = the relative weight of end-customer demand in the target capacity 

decision of stage i. We assume that 0≤α i,1≤1. 
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 αi,i = the relative weight of local demand of stage i in the target capacity 

decision of the same stage. We assume that 0≤α i,i≤1.  

 D = the average pharmacy’s demand for IV. 

 

Figure 1. Pharmacy service supply chain model for the first two stages 

The followings are the equations describe the model: 

 

Equations 1 and 2 describe the rate of change of backlog and capacity at stage i 

respectively. The rate of change of capacity at each stage is equal to the 

turnaround rate of that stage. According to equation 3, if stage i backlog is positive, 

then production runs at full capacity. Otherwise, what is produced at stage i equals 

production from the previous stage if this is less than stage i capacity. In equation 

4, the first term represents the degree to which the target capacity relies on the 

end-customer demand rate. The second term captures the degree to which the 

target capacity depends on the processing rate of the previous stage. The third 

term denotes how the target capacity depends on the magnitude of the local 

backlog Bi(t). The ratio in this term represents the capacity required to guarantee 

that, on average, the orders in each backlog will not be delayed longer than an 

acceptable amount of time (i.e., the average nominal delay). 
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2.2 Emergency room internal service supply chain model 

The emergency room service supply chain model contains four main stages: Patient 

Registration (by a registration clerk), Nurse Assessment, Doctor 

Diagnosis/Prescription, and Medication Preparation/Treatment (a nurse retrieves 

the required IV medications from the ER inventory room, prepares medications, and 

administers medications to the patient). Figure 2 shows the two first stages of the 

ER model. The patients demand (or patient’s inter-arrival rate) is formulated as a 

random normal function based on the actual data of CH. The logic of the ER model 

is similar to the logic of the pharmacy model. 

 

Figure 2. ER service supply chain model for the first two stages 

2.3 The linkage between the pharmacy and ER models 

Figure 3 shows a sub-model linking the pharmacy and ER models. ER’s IV demand 

is sent to the pharmacy with a delay. The delay time contains two parts: one is the 

order delay related to the orders that reach the pharmacy by phone, fax, or 

computer; another is the waiting time delay that depends on how busy the 

pharmacy staffs are. The following are the variables used in this sub-model: 

 D2: ER’s IV Demand 

 DT: Delay Time 

 WD: Waiting Time Delay 

 OD: Order Delay 

 IV: IV’s per Patient. Number of IVs which a patient will use during his stay 

in ER on average. This number is given using CH’s real data. 
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The followings are the equations describe the sub-model: 

D2 = DELAY FIXED (P3-2 * IV, DT, Initial)  (5)          

DT = OD + WD (6) 

WD = B1 * λ1 (7) 

  

 

Figure 3. A Sub-model linking the pharmacy and ER models 

Equation 5 states that, starting at time Initial, the amount of the IV’s prescribed by 

the doctors will be delayed for a fixed amount of time DT. The delay time in 

equation 6 is the sum of the order delay and waiting time delay. Equation 7 defines 

the waiting time delay as the computer order entering backlog times the average 

service delay in the stage of computer order entering. 

2.4 Experience model 

The purpose of the experience model is to analyze the effect of experience on 

medication delivery errors. An experience model is built for each of the following 

positions: pharmacy staff, ER registration clerk, ER nurses and ER doctors. 

Figure 4 shows the experience model for pharmacists as an example. The 

employee’s average experience is calculated based on the average experience of 

new hires, hours worked per year, and fractional attrition rate. Fractional attrition 

rate is assumed constant but might vary with different organizational structure of 

the hospital. See Sterman (2000: page 506) for more information on fractional 

attrition rate. The following are the variable and inputs used in the experience 

model for ER doctors: 

 Ex: Pharmacist’s Average Experience  

 AR: Pharmacist’s Fractional Attrition Rate 

 NEx: New Hired Pharmacist’s Average Experience 

 H: Pharmacist’s Hours Worked per Year 
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The following equation is used to define the pharmacist’s average experience: 

Ex = (AR * NEx + H)/AR (8) 

Equation 8 describes that the pharmacist’s average experience is a function of the 

hours worked per year and the average experience of the new hire, considering the 

fractional attrition rate. Pharmacist’s Average Experience is used to calculate the 

medication delivery error. However the average experience and the reference 

experience level of other positions of the hospital (doctors, nurses and clerks) are 

calculated but not used in the rest of the model again. 

 

Figure 4. The Experience model for pharmacist 

Figure 5 shows a sub-model of the pharmacy model, which simulates medication 

delivery error based on staff’s workload and experience level.  

The followings are the variables and input used in this sub-model: 

 N: Number of Pharmacists.  

The capacities which we calculated before are actually the capacities in job. The 

number of pharmacists is calculated by separating the total pharmacists to two 

inexperienced and experienced groups. Using the productivity of each group which 

are given by the real data of the CH, the total number of pharmacists is calculated. 

 PhTC: Pharmacy’s total capacity, which is the sum of order entering 

capacity, order sorting capacity and order assembling capacity. 

 TB: Total backlog 

 W: Total workload of the pharmacists 

 EE: Total Effective Experience of all the pharmacists 
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 MDE: Medication Delivery Error 

 FP: Fractional Decrease in Error per Doubling the Experience 

 FW: Fractional Increase in Error per Doubling the Workload (Zangwill & 

Kantor, 1998) 

 REx: Pharmacists Reference Experience Level. Is found using the CH’s real 

data. 

 RE: Reference Error. A reference medication delivery error which is given by 

the CH. 

 RW: Reference Workload. A reference workload which is given by the CH’s 

real data. 

 Per1: Pharmacists Inexperienced Percentage. This percentage is used to 

calculate the number of pharmacists and is given by the CH’s real data. 

 Pr1: Productivity of Inexperienced Pharmacists 

 Pr2: Productivity of Experienced Pharmacists 

The following are the formulas which describe the model: 

N = (PhTC * Per1 / Pr1) + ((PhTC * (1 – Per1)) / Pr2) (9) 

W= TB / N (10) 

EE = Ex * TC (11) 

Error = RE * ((EE / REx) ^ C1) * ((W / RW) ^ C2) 

Where C1 = ln(1+fp)/ln(2), C2 = ln(1+fw)/ln(2)  

(12) 

Equation 9 defines the number of pharmacists as a function of the productivity of 

the inexperienced and experienced pharmacists. The workload in equation 10 is the 

total backlog divided by the number of pharmacists. Equation 11 defines the total 

effective experience as the average experience times the capacity. In equation 12, 

the medication delivery error is equal to a function of the experience and workload. 

The constants fp and fw are fractional decrease in error per doubling the experience 

and fractional increase in error per doubling the workload, respectively. The 

fractional decrease in error fp is negative because increasing experience will reduce 
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error, while the fractional increase in error fw is positive since higher workload 

increases error (Zangwill & Kantor, 1998). 

 

Figure 5. A Sub-model for medication delivery errors 

3 Model validation 

CH provided us the data of the medication delivery errors for 44 continuous weeks. 

Therefore, the model can be validated by comparing the medication delivery error 

values given by the simulation run and the real data from CH. The unit time of 

entire model is hour. The model has been simulated for 500 hours and 44 

medication delivery errors have been selected randomly from the simulation data. 

To be more precise about the error values given by the simulation run as well as to 

gain insights into the impact of the other parameters on medication delivery errors, 

an experimental design was employed. The experimental design consists of three 

parameters which have the most impact on the medication delivery error. Each 

parameter has two levels, which are shown in Table 1. In order to find how to 

change the current values of each parameter, many simulations were run, some 

trial and error experiments were performed, and the most appropriate new values 

for each parameter were chosen. The experimental design is done for three 

parameters: pharmacist reference experience level, reference error, and reference 

workload. By running some simulations it is found out that these parameters have 

the greatest impact on the medication delivery errors. The purpose of this 

experimental design is to find a set of values for these three parameters that result 

in a reasonable value for the medication delivery error to be as close as possible to 

the medication delivery error data of CH. 



Journal of Industrial Engineering and Management -  http://dx.doi.org/10.3926/jiem.201 

 

- 565 -  

 

 

 

Factor 

Mean 
Square 

Deviation 

Factor 
Level 

Pharmacist Reference 
Experience Level (A) 

Reference 
Error (B) 

Reference 
Workload (C) 

Units Hour IV/Hour IV/Hour 

Low 4000 0.75 15 

High 8000 1 30 

Run Factor A Factor B Factor C 

1 -1 -1 -1 0.175410 

2 -1 +1 +1 0.162899 

3 -1 -1 +1 0.180175 

4 -1 +1 -1 0.166093 

5 +1 +1 +1 0.164949 

6 +1 -1 -1 0.172450 

7 +1 +1 -1 0.169004 

8 +1 -1 +1 0.176864 

Table 1. Values for the simulation model parameters which has impact on errors in the 

experimental design and experimental design formation and the mean square deviations for 

each run 

Eight simulations were run (three factors at two levels). Each simulation is run for 

500 hours, with the first 14 hours truncated in order to eliminate initialization 

effects (the first 14 error values are related to the warm-up period and are 

relatively small compared to others). The mean square deviation—which is the 

squared of each simulation’s average medication delivery error minus the hospital’s 

average medication delivery error—is calculated in Table 1. The experimental 

design was created using the Design-Expert Software. From the contrast constants 

for the 23 design, the seven factorial effects and the sum of squares are estimated 

and shown in Table 2. 

Model Term Effect Estimate Sum of Squares Percent Contribution 

A -0.0003275 2.14513E-07 0.079326222 

B -0.0104885 0.000220017 81.36187151 

C 0.0004825 4.65613E-07 0.172182417 

AB 0.0028080 1.57697E-05 5.831608652 

AC -0.0003030 1.83618E-07 0.067901508 

BC -0.0041070 3.37349E-05 12.47508664 

ABC -0.0001275 3.25125E-08 0.012023047 

Table 2. Factor effect estimates and sums of squares 

The half-normal probability plot of these effects is shown in Figure 6. All the effects 

that lie along the line are negligible, whereas the large effects are far from the line. 

The significant effects based on this analysis are the main effect of B and the BC 

and AB interactions. 

The mean square deviation is minimal with the following values for the three 

parameters: 

 Pharmacist Reference Experience Level= 4000 hours 
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 Reference Error= 1 IV/Hour 

 Reference Workload= 30 IV/Hour 

 

Figure 6. Half-normal probability plot of the medication delivery error effects (model 

validation) 

The partial analysis of variance is summarized in Table 3. Based on the ANOVA, the 

main effect B and the interactions of AB and BC (the effects with the P-Values less 

than 0.0500) are significant. If the interactions are not considered, the conclusion 

is that the reference error is the most significant factor. 

Source of 
Variation 

Sum of 
Squares 

Degrees of 
Freedom 

Mean Square F Value P-Value 

A 2.14513E-07 1 2.14513E-07 1.985028 0.2942 

B 0.000220017 1 0.000220017 2035.967 0.0005 

C 4.65613E-07 1 4.65613E-07 4.308624 0.1736 

AB 1.57697E-05 1 1.57697E-05 145.9278 0.0068 

BC 3.37349E-05 1 3.37349E-05 312.1716 0.0032 

Error 2.1613E-07 2 1.08065E-07   

Total 0.000270418 7    

Table 3. Analysis of variance for the medication delivery error 

After formulating the medication delivery error of the model, it is time to use an 

appropriate test to validate the model using medication delivery error data. 

Although the model’s medication delivery error data hold a normal distribution 

assumption, the medication delivery error data of CH do not. Thus, classical t tests 

cannot be used for model validation. Instead, nonparametric statistics methods are 

used. Nonparametric or distribution-free tests do not require the samples to be 

normal. However, they require assumptions for their validity, and these 
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assumptions are less restrictive than the assumptions needed for the t test (Navidi, 

2008). For validation purposes the Mann-Whitney Test is used (Conover, 1999). 

Our samples meet all the assumptions of the test. The hypothesis test is: 

 

X1, X2,…, X44 denote the random sample of size n= 44 from the hospital data and Y1, 

Y2,…, Y44 denote the random sample of size m= 44 from the model data. The ranks 1 

to n + m are assigned to the values from smallest to largest. R(Xi) and R(Yj) denote 

the rank assigned to Xi and Yj for all i and j. In this case, none of the sample values 

are equal, so there is no tie in ranking. The test statistic is the sum of the ranks 

assigned to the sample from the real data: 

 

H0 will be rejected at the level of significance α if T is less than its α/2 quantile or 

greater than its (1-α/2) quantile obtained from the following equation: 

 

α is equal to 0.05, so z0.95=1.6449 and w0.95=2155.105. (α/2)w0.95<T<(1-α/2)w0.95. 

So there is no sufficient evidence to reject H0. Therefore, the two means are 

statistically equal. The variances of the model medication delivery errors and the 

hospital medication delivery errors are also close to each other. Thus the model is 

validated. 

4 Simulation analysis 

The model has been simulated for 500 hours. We first analyze the medication 

delivery errors. Another important question is to check if the bullwhip effect 

(defined here, following Anderson et al. (2005), as the variance in the processing 

rate--and therefore the next stage’s demand--being greater than the input task) 

occurs in the internal service supply chains of the hospital? We also analyze if the 

variance in each stage’s backlog increases as one proceeds up the supply chain. 
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4.1 Medication delivery errors analysis and discussion 

It is clear that we always try to reduce the medication delivery error. Figure 7 

shows the medication delivery error of the hospital in a normal situation.  

To analyze the impact of the different parameters on the medication delivery 

errors, we use experimental design for the most important ones. Consider Table 4 

for the parameters used in the experimental design. 

 

Figure 7. Medication Delivery Error 

Factor 

Average 
Medication 
Delivery 

Error 

Factor 

Level 

New Hired 
Pharmacist 

Average 
Experience (A) 

Pharmacist 
Fractional 

Attrition 
Rate (B) 

Productivity of 
Inexperienced 
Pharmacist (C) 

Productivity of 
Experienced 

Pharmacist (D) 

Units Hours Fraction IV/Hour/Person IV/Hour/Person 

Low 8000 0.02 1.2 3.1 

High 24000 0.08 2.4 6.3 

Run Factor A Factor B Factor C Factor D 

1 -1 +1 +1 -1 0.79422 

2 -1 +1 -1 +1 0.79934 

3 +1 +1 -1 +1 0.79141 

4 +1 -1 -1 +1 0.76886 

5 -1 +1 -1 -1 0.78686 

6 +1 -1 +1 +1 0.76886 

7 -1 +1 +1 +1 0.81080 

8 +1 +1 -1 -1 0.77906 

9 -1 -1 -1 +1 0.77141 

10 -1 -1 +1 +1 0.78247 

11 +1 -1 -1 -1 0.75685 

12 +1 +1 +1 -1 0.78635 

13 -1 -1 -1 -1 0.78247 

14 +1 +1 +1 +1 0.78635 

15 +1 -1 +1 -1 0.76393 

16 -1 -1 +1 -1 0.75936 

Table 4. Values for the medication delivery error parameters in the experimental design and 

formation and results of the medication delivery error experimental design 
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For the complete experimental design, we ran a total of 16 simulations (four factors 

at two levels). Table 4 contains each run formation and the average of the 

medication delivery error for each run. From the contrast constants for the 24 

design, the 15 factorial effects and the sum of squares are estimated and shown in 

Table 5. The half-normal probability plot of these effects is shown in Figure 8. All of 

the effects that lie along the line are negligible, whereas the large effects are far 

from the line. The significant effects based on this analysis are the main effects of 

A, B, D and the ACD interaction. The main effect B is plotted in Figure 9. Based on 

the plot related to main effect B, the smaller the fractional attrition rate the smaller 

the medication delivery error would be. Thus, factor B should be chosen 0.02. The 

optimal settings of the four parameters are: 

 Pharmacist new hired average experience= 24000 hours 

 Pharmacist fractional attrition rate= 0.02  

 Productivity of inexperienced pharmacist= 1.2 IV/hour/person 

 Productivity of experienced pharmacist= 3.1 IV/hour/person 

Model Term Effect Estimate Sum of Squares Percent Contribution 

A -0.0106575 0.000454329 13.62958821 

B 0.0225225 0.002029052 60.87027213 

C 0.0020100 1.61604E-05 0.484801737 

D 0.0088000 0.00030976 9.292603276 

AB -0.0013550 7.3441E-06 0.220318336 

AC 0.0003175 4.03225E-07 0.012096494 

AD -0.0014775 8.73202E-06 0.261955204 

BC 0.0032525 4.2315E-05 1.269423876 

BD 0.0015525 9.64103E-06 0.289224627 

CD 0.0023550 2.21841E-05 0.665508911 

ABC -0.0044650 7.97449E-05 2.392296355 

ABD -0.0027000 2.916E-05 0.874781481 

ACD -0.0072125 0.000208081 6.242286601 

BCD -0.0044175 7.80572E-05 2.341667177 

ABCD 0.0031000 3.844E-05 1.153175587 

Table 5. Medication delivery error factor effect estimates and sums of squares 

Source of 
Variation 

Sum of 
Squares 

Degrees of 
Freedom 

Mean Square F Value P-Value 

A 0.000454329 1 0.000454329 11.17063281 0.0124 

B 0.002029052 1 0.002029052 49.88848148 0.0002 

C 1.61604E-05 1 1.61604E-05 0.397337183 0.5485 

D 0.00030976 1 0.00030976 7.616096499 0.0281 

AC 4.03225E-07 1 4.03225E-07 0.009914129 0.9235 

AD 8.73202E-06 1 8.73202E-06 0.21469507 0.6572 

CD 2.21841E-05 1 2.21841E-05 0.545442428 0.4842 

ACD 0.000208081 1 0.000208081 5.116096719 0.0582 

Error 0.000284702 7 4.06718E-05   

Total 0.003333404 15    

Table 6. Analysis of variance for the medication delivery error  
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Figure 8. Half-normal probability plot of the medication delivery error effects  

 

Figure 9. Main effect of the attrition rate versus medication delivery error plot 

4.2 Bullwhip effect analysis and discussion 

To check if the bullwhip effect occurs in the modelled service supply chains a pulse 

has been imposed to the patient demand at time 70. The chosen duration of the 

pulse is 80 hours. The pulse is added to the minimum, maximum and mean values 

of the random normal distribution. Thus, the formula of the patient demand is now: 

RANDOM NORMAL (1 + PULSE (70, 80), 5 + PULSE (70, 80), 2.5 + PULSE (70, 80), 

0.5, 0.5) 
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To begin our analysis, consider Figure 10 which shows the patient demand as well 

as the processing rates for the four stages in ER. The phase lags, which show the 

delay from one stage to the next one, can be clearly seen. The same effect happens 

for the backlogs (see Figure 11). However, by looking at the variances of the 

processing rates and backlogs, the evidence for the bullwhip effect is unclear. We 

can justify this phenomenon using the four major root causes of the bullwhip effect 

proposed by Lee et al. (1997). The four root causes are demand signalling, order 

batching, price fluctuation, and rationing and shortage gaming. However, because 

of the intangible nature of the services and the fact that finished goods inventories 

cannot be used as a buffer against demand fluctuations, it is unlikely that demand 

signalling will be an important root cause of amplification effects in all the service 

supply chains. In the case of CH, among the four stages of the ER, there is no 

special room for demand forecasting. The same number of patients who enter the 

ER and go through the registration will pass the other stages. Also, because of the 

intangibility of services, order batching cannot be a root cause of amplification 

effects in service operations. Price fluctuation may be a root cause of the bullwhip 

effect in some service supply chains. However, in this case it certainly cannot be a 

cause. People go to the ER when they are in a serious need. They cannot forward 

buy the ER services in the case of the price fluctuations. In fact, ER services are not 

offered at discount prices to attract customers in anticipation of periods of reduced 

demand. Service operations offer no obvious examples of shortage gaming, but 

when buying certain services customers, may apply rationing practices. However, 

because of the unpredictable nature of the need for ER services, this is not true for 

the ER. Thus, none of the four root causes of the bullwhip effect can be a cause for 

the ER services. Furthermore, there is a good level of communication between all 

the stages in ER. The four stages almost face the same level of fluctuations. 
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Figure 10. ER’s demand and processing rates 

 

Figure 11. ER’s backlogs 

The same results are true for the pharmacy processing rates and backlogs (see 

Figures 12 and 13). However, it should be noted that the type of service supply 

chains modelled in this paper, are internal service supply chains, representing only 

the tasks which are done inside the pharmacy and the ER of a hospital. To observe 

the bullwhip effect in a healthcare service supply chains, one should consider and 

study the whole supply chain from downstream to upstream. For example, the 

service supply chain may involve the hospital as one stage along with the insurance 

company and other related firms as other stages.  

 

Figure 12. Pharmacy’s demand and processing rates 
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Figure 13. Pharmacy’s backlogs 

5 Conclusions 

This paper models and simulates the processes of two internal service supply chains 

of a hospital to study the effects of different input parameters on the outputs and 

capability measures of the processes. This study can help the hospital improve 

processes, reduce errors, and deliver more efficient services. The paper focuses on 

medication delivery errors and amplification effects of demand. 

According to the results of this study, the following managerial policies are 

suggested to reduce medication delivery errors of the hospital: 

 Hiring employees with more average experiences can reduce medication 

delivery errors. 

 Decreasing the fractional attrition rate, which means having more 

experienced employees for a longer time in the pharmacy, can reduce 

medication delivery errors. 

 There is a trade-off between the productivity of the employees and 

medication delivery errors. Increasing the productivity could increase the 

errors. The task of assembling the medications needs accuracy. Therefore, 

the manager should try not to allow the productivity to increase more than 

a certain level. 
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Another result from this study is that the bullwhip effect may not occur in a 

hospital’s pharmacy and ER service supply chains. It should be noted that the type 

of service supply chains modelled in this paper are internal service supply chains, 

representing only the tasks which are done inside the pharmacy and the ER of a 

hospital. To observe the bullwhip effect, one should consider and study the whole 

supply chain from downstream to upstream because the bullwhip effect indicates 

that variations are amplified as one moves from downstream to upstream in the 

supply chain. Therefore the chains should be modelled more generally to observe 

the bullwhip effect in healthcare service supply chains. For example, the service 

supply chain may involve the hospital as one stage along with the insurance 

company and other related firms as other stages. In this case the bullwhip effect 

may be observed. It is observed that the four root causes mentioned by Lee et al. 

(1997) are not valid in the case of the pharmacy and ER service supply chains. 

Another reason that the bullwhip effect does not occur is the good level of 

communication between the stages in the pharmacy and ER service supply chains.  

6 Future research 

As noted before, the type of service supply chains modelled in this paper, are small 

service supply chains, representing only the tasks which are done inside the 

pharmacy and the ER of a hospital. To better observe the bullwhip effect in 

healthcare service supply chains, the chains should be modelled more generally. 

Thus modelling the hospital as a stage in healthcare service supply chains along 

with the insurance company and other related firms is recommended. Also 

analyzing the relationships between medication delivery errors and variability of 

backlogs and capacities is a good direction for future research. The impact of 

medication delivery errors on bullwhip effect is not considered in this paper. 

Modelling hospital’s service supply chain in a way to show the relationships between 

medication delivery errors and the backlog and capacity variations is 

recommended.  
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