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Abstract 

 
The paper illustrates and evaluates a Kalman filtering method for forecasting German real 
GDP at monthly intervals. German real GDP is produced at quarterly intervals but analysts 
and decision makers often want monthly GDP forecasts. Quarterly GDP could be regressed 
on monthly indicators, which would pick up monthly feedbacks from the indicators to GDP, 
but would not pick up implicit monthly feedbacks from GDP onto itself or the indicators. An 
efficient forecasting model which aims to incorporate all significant correlations in monthly-
quarterly data should include all significant monthly feedbacks. We do this with estimated 
VAR(2) models of quarterly GDP and up to three monthly indicator variables, estimated 
using a Kalman-filtering-based maximum-likelihood estimation method. Following the 
method, we estimate monthly and quarterly VAR(2) models of quarterly GDP, monthly 
industrial production, and monthly, current and expected, business conditions. The business 
conditions variables are produced by the Ifo Institute from its own surveys. We use early in-
sample data to estimate models and later out-of-sample data to produce and evaluate 
forecasts. The monthly maximum-likelihood-estimated models produce monthly GDP 
forecasts. The Kalman filter is used to compute the likelihood in estimation and to produce 
forecasts. Generally, the monthly German GDP forecasts from 3 to 24 months ahead are 
competitive with quarterly German GDP forecasts for the same time-span ahead, produced 
using the same method and the same data in purely quarterly form. However, the present 
mixed-frequency method produces monthly GDP forecasts for the first two months of a 
quarter ahead which are more accurate than one-quarter-ahead GDP forecasts based on the 
purely-quarterly data. Moreover, quarterly models based on purely-quarterly data generally 
cannot be transformed into monthly models which produce equally accurate intra-quarterly 
monthly forecasts. 

JEL classification: E37, C32. 

Keywords: mixed-frequency data, VAR models, maximum-likelihood estimation, Kalman 
filter. 

 
Stefan Mittnik 

University of Munich 
Akademiestr. 1 
80799 Munich 

Germany 
finmetrics@stat.uni-muenchen.de 

Peter Zadrozny 
Bureau of Labor Statistics 
2 Massachusetts Ave., NE 
Washington, DC 20212 

USA 
zadrozny_p@bls.gov 

The opinions expressed in the paper are the authors’ and do not reflect any official positions 
of the Bureau of Labor Statistics.  



2 Stefan Mittnik and Peter Zadrozny

1 Introduction

This paper illustrates and evaluates a Kalman–filtering method for forecast-
ing German real GDP at monthly intervals. Like U.S. real GDP, German real
GDP is produced and publicly released at quarterly intervals, although both
U.S. and German economic analysts and business decision makers often want
monthly GDP forecasts. Quarterly GDP could be regressed on monthly indi-
cators organized quarterly. Thus, one could: (i) organize all observations on
variables at quarterly intervals, with GDP automatically being quarterly and
monthly indicators being made quarterly as first–, second–, and third–month
quarterly observations; (ii) regress quarterly GDP on the monthly indicators
organized quarterly; and, (iii) compute monthly GDP forecasts as the esti-
mated regression evaluated at particular values of the monthly indicators. This
description is purposely simple to illustrate the general point that a regres-
sion can pick up feedbacks of monthly variables onto quarterly variables but it
cannot pick up implicit intra-quarterly monthly feedbacks from quarterly to
monthly variables. To avoid this problem, we use a Kalman-filtering method
developed by Zadrozny [10] for any number of variables observed at any mix-
ture of frequencies and illustrated in a similar context of forecasting quarterly
U.S. real GNP at monthly intervals using a monthly indicator. The method
can account for any possible feedbacks, from any variable at any frequency
to any other variable at the same or other frequency. The method involves
estimating a multivariate time-series model of all variables being considered.
The model operates at the highest observed frequency, monthly in this case,
and, thus, produces forecasts of any variable at monthly intervals, regardless
of the interval at which the variable is observed. Here, data are set up at the
highest monthly frequency so that unobserved intra–quarterly monthly val-
ues of quarterly GDP are marked as missing. Maximum likelihood estimation
(MLE) is used to estimate VAR(2) models. The Kalman filter is used in two
ways. First, the Kalman filter is used to compute the likelihood function, un-
der Gaussian or normality assumptions, which is maximized with respect to
unknown model parameters. Second, given an estimated model, the Kalman
filter is used to produce forecasts of variables, at the higher monthly frequency
at which the model operates, any number of months ahead. In both cases, the
Kalman filter is applied in a “missing data” form in order to “properly skip
over” missing values. Details of these computations are discussed by Zadrozny
[10]. The method allows models as general as vector autoregressive moving–
average (VARMA) models, although previous and current experience indicates
that purely VAR models often suffice for forecasting a variable with the help
of other variables, when no restrictions on coefficients, indicated by statistical
analysis or economic reasoning, are imposed on the forecasting model.

2 Description of Data

The data, obtained from the Ifo Institute in Munich, Germany, comprise quar-
terly German real GDP and three monthly indicators of the German economy:
German real industrial production (PRD), current German real business con-
ditions (CUR) and expected (6 months in the future) German real business
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conditions (EXP). The business conditions variables are produced by the Ifo
Institute from its own surveys of German business firms. The monthly data
cover January 1970 to December 2003 and the quarterly GDP data cover the
same period, quarter 1 1970 to quarter 4 2003.

The four variables and their filtered values are displayed in figures 1–9.
Figures 1–3 are monthly time plots and figures 4–9 are quarterly time plots.
In the monthly graphs, the monthly variables are displayed as continuous
lines, with no missing values, and quarterly GDP is displayed as a broken
or dashed line, with missing intra–quarterly monthly values. Because each
quarter’s GDP is fully assigned to the third month of the quarter, GDP is
treated as unobserved or missing in the first two intra–quarterly months of a
quarter.

There are no missing values after the data are aggregated into quarterly
form, so all displayed lines in the quarterly graphs are continuous. GDP is au-
tomatically in quarterly form. There are two ways, called “stock” and “flow,”
for aggregating monthly values to quarterly values. “Stock” means monthly
values are skip sampled in the third month of each quarter, so that the value
in the third month of a quarter becomes the quarterly value and the values
in the first two months of the quarter are discarded. “Flow” means monthly
values are aggregated into quarterly form by averaging the monthly values in
a quarter. Also, monthly PRD is detrended and deseasonalized in two possible
ways, called “AD filtered” and “AD/AMA filtered,” to be discussed. Thus,
the four ways considered for converting monthly–quarterly data to purely–
quarterly data are called stock–AD–filtered, stock–AD/AMA–filtered, flow–
AD–filtered, and flow– AD/AMA–filtered.

The variables are graphed in original and filtered forms. Henceforth, we
use subscript t to denote months, e.g., PRDt means PRD in month t, and
for now let Lk denote the monthly lag operator applied k times in succession
to a monthly variable, e.g., L12PRDt = PRDt−12. We know that the annual
differencing operator, defined for monthly time intervals as AD(L) = 1 - L12,
is the product of a single monthly difference, MD(L) = 1 - L, times a single
annual sum, AS(L) = 1 + L + . . . + L11, or AD(L) = MD(L)AS(L). Fre-
quency analysis shows that multiplying a variable by MD(L) eliminates its
linear deterministic (polynomial) and linear stochastic (unit–root autoregres-
sive) trends and multiplying the variable by AS(L) eliminates its deterministic
(harmonic) seasonality, although a variable can have additional stochastic sea-
sonality which cannot be removed by AS(L). This appears to be the case with
PRDt, which is discussed below.

Figure 1 displays the four variables in original monthly form. We see that
GDPt follows an upward trend with additional, relatively small, seasonal vari-
ations about the trend. PRDt also follows an upward trend, with relatively
larger seasonal variations about the trend, plus more easily seen cyclical vari-
ations. CURt and EXPt both display no apparent trends or seasonality, only
cyclical variations. Because in original form the variables are compatible only
as GDPt with PRDt and CURt with EXPt, there is little hope of obtaining
MLE of a VAR model of the four variables in original form, namely GDPt,
PRDt, CURt, and EXPt. Therefore, to obtain MLE of a VAR model of the
four variables, we first linearly filtered GDPt and PRDt to eliminate their
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trends and seasonality, so that the resulting four variables display only cycli-
cal variations and are compatible.

As seen in the figures, the main difference between monthly data versus
quarterly data and quarterly-stock data versus quarterly–flow data is smooth-
ness versus noisiness, where “noisiness” means unpredictable high–frequency
random variation and “smoothness” means absence of noisiness. As expected,
monthly data are noisier than quarterly data and quarterly–stock data are
noisier than quarterly–flow data. We expect smoother data to produce better
GDP forecasts. Summary table 8 shows that smoother quarterly data produce
better long–term GDP forecasts than noisier monthly data, but that choosing
stocks instead of flows or AD instead of AD/AMA filtering has insignificant
effect on GDP forecast accuracy.

3 Transformation of Data

We filtered GDPt and PRDt, respectively, using the single quarterly difference,
QD(L) = 1 - L3, and MD(L), graphed the results, and visually determined
that QD(L) and MD(L) remove trends from GDPt and PRDt. Because GDPt

is observed only in the third month of a quarter, the shortest time interval
over which it can be differenced to remove trend is the quarter. Then, in
effect, we filtered QD(L)GDPt and MD(L)PRDt using AS(L). Actually, we
restarted the filtering and directly annually differenced GDPt and PRDt using
AD(L), which amounts to the same operation. Then, we graphed the results
and visually determined that AD(L) removes trends and seasonality from
GDPt and PRDt. Although we do not display the intermediate QD(L)- and
MD(L)–filtered results, figure 2 displays the final monthly AD–filtered GDPt

and PRDt, denoted AD(GDPt) and AD(PRDt), and the original unfiltered
CURt and EXPt. Because AD(GDPt), AD(PRDt), CURt, and EXPt display
only cyclical variations, in this mixed form the four variables are compatible
and suitable for estimating a VAR model.

AD filtered means GDPt and PRDt are filtered using only AD(L) and
CURt and EXPt are unfiltered. Initial model estimation resulted in PRDt

residuals with a significantly negative autocorrelation coefficient at the annual
lag, indicating AD(L) does not remove all seasonality from PRDt. Therefore,
we extended AD(L) to an “airline model,” with an additional estimated annual
(seasonal) first–order moving–average term, to remove any remaining signifi-
cant stochastic seasonality from PRDt. We denote airline–model filtered PRDt

by AD/AMA(PRDt), where AMA refers to annual moving average. The term
“airline model” comes from Box and Jenkins [1] and is often the “default”
model in a search for the best ARIMA seasonal–adjustment model.

We extended monthly AD(PRDt) to monthly AD/AMA(PRDt) as fol-
lows. We supposed AD(PRDt) is generated by the seasonal–adjustment model
AD(PRDt) =

(
1− φ1L− φ2L2 − φ3L3

)−1 (
1 + θL12

)
εt, where the nonsea-

sonal AR(3) component
(
1− φ1L− φ2L2 − φ3L3

)−1
accounts for cyclical-

ity, the seasonal MA(1) component 1 + θL12 accounts for stochastic sea-
sonality, and εt is a white–noise disturbance distributed NIID

(
0, σ2

ε

)
. Note



Forecasting Quarterly German GPD 5

that both the univariate seasonal–adjustment models and the multivariate
VAR models for GDP forecasting were estimated using mean–adjusted and
standardized data (divided by standard deviation after mean adjustment).
The data and the estimated AR(3) component are stationary, which means
that 1 − φ1λ − φ2λ

2 − φ3λ
3 = 0 implies |λ| > 1, and the seasonal MA(1)

is estimated as invertible, which means that |θ| < 1. AD/AMA(PRDt)
is defined as

(
1 + θL12

)−1
AD(PRDt) and is approximated by four terms:

AD/AMA(PRDt) = missing, for t = 1, . . . , 48, and AD/AMA(PRDt) =
PRDt−

(
1 + θ̂

)
PRDt−12+θ̂

(
1 + θ̂

)
PRDt−24−θ̂2

(
1 + θ̂

)
PRDt−36+θ̂3

(
1 + θ̂

)

PRDt−48, for t = 49, . . . , 408, where monthly θ̂ = −.5033 is estimated jointly
with the AR parameters, using MLE.

Similarly, we extended quarterly AD(PRDs) to quarterly AD/AMA(PRDs),
using the analogous model AD(PRDs) =

(
1− φ1L− φ2L2 − φ3L3

)−1(
1 + θL4

)
εs, where subscript s denotes quarters and L now denotes the quarterly lag
operator. AD/AMA(PRDs) is defined as

(
1 + θL4

)−1
AD(PRDs) and is ap-

proximated by four terms: AD/AMA(PRDs) = missing, for s = 1, . . . , 16,
and AD/AMA(PRDs) = PRDs −

(
1 + θ̂

)
PRDs−4 + θ̂

(
1 + θ̂

)
PRDs−8 − θ̂2

(
1 + θ̂

)
PRDs−12+θ̂3

(
1 + θ̂

)
PRDs−16, for s = 17, . . . , 136, where θ̂ = −.6769

using quarterly stock data and θ̂ = −.5041 using quarterly flow data.
Both monthly and quarterly AD–filtered data comprise AD(GDP), AD

(PRD), CUR, and EXP and monthly and quarterly AD/AMA–filtered data
comprise AD(GDP), AD/AMA(PRD), CUR, and EXP. Because AD/AMA
(PRD) is smoother than AD(PRD), as seen for example in the quarterly fig-
ures 4–9, we might expect more accurate GDP forecasts using AD/AMA(PRD).
But, because this was not always the case, we did not further extend the
AD/AMA model and filter to a more detailed seasonal–adjustment model
and filter (cf., Flaig [4]). Thus, present forecasting results indicate some sea-
sonal adjustment is necessary to put all variables in compatible cyclical form
in order to estimate a forecasting model, but table 8 shows that a more thor-
ough seasonal adjustment does not necessarily improve short– or long–term
forecasts. Of course, a government statistical agency responsible for produc-
ing seasonally–adjusted data is obliged to produce thoroughly adjusted data,
whatever the consequences in subsequent applications.

Because log–form data are often more homogeneous (have more constant
variances or homoskedasticity), hence, are often easier to fit, we also con-
sidered log–form data. Because non–missing original values of GDPt and
PRDt values are positive, these variables were transformed directly to nat-
ural logs. However, because values of CURt and EXPt are negative, zero,
or positive fractions, they were indirectly transformed into logs as follows.
For example, consider CURt and suppose dt, ut, and it denote the frac-
tions of survey respondents who, respectively, said current business condi-
tions declined, are unchanged, or improved. Then, CURt = it − dt, such
that ut is ignored. However, because dt + ut + it = 1 and assuming ut = 0,
it/dt = (1 + CURt)/(1 − CURt) > 0, so that ln [(1 + CURt) / (1− CURt)] is
well defined and can be considered the “log” of CURt and similarly for EXPt.
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Thus, we computed AD–filtered ln(GDPt) and ln(PRDt), as in the unlogged
cases, and unfiltered ln(CURt) and ln(EXPt). Resulting graphs of monthly,
original and filtered, log–form data were very close to those in figures 1–3.
Also, monthly model estimates were very similar, regardless whether the data
were log transformed or not. Thus, we did not conduct further analysis with
the log–form data.

4 Estimation of VAR Models

In principle, we searched for the best combination of monthly indicators for
forecasting GDP (we now denote filtered GDP and PRD more simply as
“GDP” and “PRD,” without AD or AD/AMA). In practice, we restricted the
search to three of seven possibilities: models of GDP, PRD, CUR, and EXP;
models of GDP, PRD, and CUR; and, models of GDP and PRD. First, we
dropped EXP because it is considered the less informative Ifo variable and
is somewhat redundant statistically, given CUR. Then, we dropped CUR to
see what difference using any Ifo variables makes in forecasting GDP. Finally,
we kept PRD because it is often the first choice of a monthly indicator when
forecasting GDP.

We aimed for “adequate” estimated VAR models, by which we mean the
following. As usual, our ideal was models with minimum numbers of parame-
ters and zero–mean, constant–variance, and independently–distributed resid-
uals. For each of the three variable sets, we estimated unrestricted VAR(1)
models, whose residuals showed significant serial correlations, and, then, esti-
mated unrestricted VAR(2) models, whose residuals showed mostly insignifi-
cant correlations except for a few higher-lag correlations which could not be
accounted for with lower–order VAR models. Thus, we accepted estimated
VAR(2) models as adequately fitting the three sets of variables. In reach-
ing this conclusion, we inspected graphs of residual own– and cross–serial
correlations, evaluated p values of Ljung–Box Q statistics [6] and evaluated
information criteria. Although Ljung–Box Q statistics were developed to test
for significant residual own-serial correlations, we also used them to test for
significant residual cross–serial correlations. We did not test for significance
of individual estimated parameters or remove any.

For the eighteen final estimated VAR(2) models, in table 1 we report only
R2

e (the usual R–squared called “estimation R squared,” which is distinguished
in section 5 from R2

f,h, called “forecasting R squared”). We do not report es-
timated parameters because, as usual in VAR models, they are very imprecise
and, thus, provide little reliable information about feedbacks among variables.
We also computed implied estimated AR characteristic roots which were all
expectedly and firmly stationary. Although R2

e does not account for degrees
of freedom used in estimation, only pertains to individual variables, and does
not pertain to complete estimated models, nevertheless, higher values of R2

e

are generally associated with more accurate GDP forecasts as seen by com-
paring table 1 with tables 2–8. We used “in sample” data from January 1970
to December 1993 to estimate models and “out of sample” data from January
1994 to December 2003 to produce and evaluate GDP forecasts.
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We implemented the MLE using a FORTRAN 77 program, compiled the
program using the Lahey–Fujitsu FORTRAN 95 complier version 5.6, and
executed the program on a personal computer with a Pentium 4 central pro-
cessor, running at about 2 gigahertz speed and controlled by the Windows XP
operating system. Using a 10−8 convergence criterion, estimating the largest
models, with 4 variables and 42 parameters, took about 4000 iterations or less
than 20 minutes from start to finish. We started all iterations by setting pa-
rameter values to .01. If iterations stalled (reached a point in parameter space
where the likelihood function appeared flat in all directions so that no further
moves were made, even though convergence was not achieved), we restarted
them at the last parameter values. Sometimes we restarted the iterations sev-
eral times before achieving convergence. Thus, the MLE was not automatic
and needed intervention.

5 Evaluation of GDP Forecasts

For the GDP forecasts, we define normalized root mean squared forecast error

for h–period–ahead forecasts as NRMSFEh =
√(∑T

t=1 e2
t/h−h

)
/T÷ out–of–

sample standard deviation of GDP, where et|t−h = GDPt−GDPt|t−h = error
of forecasting GDPt in period t − h, for out–of–sample periods t = 1, . . . T ,
missing values of et|t−h are dropped from the summation, and T is re-
duced correspondingly. For every variable, we define estimation R–squared
as the usual R2

e = 1 − in–sample variance of a variable’s residual in an es-
timated model ÷ in–sample variance of the variable and define forecasting
R–squared as R2

f,h = 1 − NRMSFE2
h, for h ≥ 1. First, generally, R2

f,h ≤ R2
e

and, equivalently, NRMSFEh ≥
√

1− R2
e, for h ≥ 1. R2

f,h
∼= R2

e and

NRMSFEh
∼=

√
1− R2

e, for h ≥ 1, suggest that the data generating pro-
cess has changed not at all or insignificantly between the in– and out–of–
sample periods, so that out–of–sample forecasts should be maximally accu-

rate. Alternately, R2
f,h << R2

e and NRMSFEh >>
√

1− R2
e , for h ≥1, sug-

gest that the data generating process has changed significantly between in–
and out–of–sample periods, where << and >> denote “much less than” and
“much greater than”. Second, an efficient forecast, which fully exploits avail-
able information, is orthogonal to its forecast error, so that R2

f,h > 0 and
NRMSFEh < 1, for h ≥ 1. Because the last conditions are necessary, but not
sufficient, for efficiency, R2

f,h ≤ 0 and NRMSFEh ≥ 1, for h ≥ 1, imply that
a forecast is inefficient, but R2

f,h > 0 and NRMSFEh < 1, for h ≥ 1, do not
imply that the forecast is efficient.

Tables 1–7 show that R2
e is significantly greater than any R2

f,h, which sug-
gests that the data generating process of the German economy changed signif-
icantly after 1993. This is what we expect as a result of the immediate political
and evolving economic unification of Germany in 1990. We produced nonre-
cursive forecasts based on fixed models estimated using fixed in-sample data.
Recursive forecasts based on models reestimated using recursively updated
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in–sample data should reduce the differences between R2
e and R2

f,h. Table 8
shows that monthly–long–term GDP forecasts are inefficient, certainly rela-
tive to quarterly–long–term GDP forecasts. Thus, we disregard these forecasts
and further evaluate only the remaining three cases.

We can compare forecasts “internally” by comparing in–sample R2
e and

out–of–sample R2
f,h based on the same estimated model of interest, or, we

can compare forecasts “externally” by comparing out–of–sample R2
f,h and

NRMSFEh for the model of interest and competing “external” models. Ex-
ternal comparisons are costly to the extent that competing models must be
developed, although both comparisons should be made. For simplicity, we fo-
cus on internal comparisons and report external comparisons only in terms
of Theil U statistics for essentially costless “naive” forecasts. By definition,
Theil U = NRMSFEh of the forecast of interest ÷ NRMSFEh of the naive
forecast, where the naive forecast is the last observed value of the variable of
interest at least h periods ago Doan [3]. A Theil U value < 1 implies that the
forecasts of interest are better than the naive forecasts. As hoped, this occurs
in almost all cases in tables 2–7. Although we focus on NRMSFEh and R2

f,h,
conclusions based on Theil U would be the same.

We used the following test to determine whether using the Ifo variables,
CUR and EXP, results in better monthly or quarterly GDP forecasts. In
the undiscarded, monthly–short–term and quarterly, cases in table 8, we let
ρ denote the total number of variables in the 50%–best–forecasting models
divided by the total number of variables in the 50%–worst–forecasting models.
Thus, .636 ≤ ρ ≤ 1.571; because using 2, 3, or 4 variables means using 0, 1,
or 2 Ifo variables, higher values of ρ imply that using Ifo variables produces
better GDP forecasts; and, if ρ is uniformly distributed, its bottom quartile
spans [.636, .870], its middle quartiles span [.870, 1.338], and its top quartile
spans [1.338, 1.571]. Thus, if ρ is in the lowest quartile, the middle quartiles,
or the highest quartile, we conclude, respectively, that using Ifo variables
significantly reduces, insignificantly changes, or significantly improves GDP–
forecast accuracy.

We used analogous tests to determine which filtering and aggregation
methods produced better GDP forecasts. We assigned 0 to AD filtering, 1 to
AD/AMA filtering, 0 to stock aggregation, and 1 to flow aggregation (analo-
gous tests follow from reverse assignments). For each classification, we let ϕ
denote the sum of the numerical values in the 50%–best–forecasting models di-
vided by 3 in monthly cases or divided by 6 in quarterly cases. Then, 0 ≤ ϕ ≤ 1
and, if ϕ is uniformly distributed, its bottom quartile spans [0.0, .25], its mid-
dle quartiles span [.25, ,75], and its top quartile spans [.75, 1.0]. Thus, for a
particular classification, if ϕ is in the lowest quartile, the middle quartile, or
the highest quartile, we conclude, respectively, that choosing the zero option
significantly improves GDP forecasting accuracy, choosing either option in-
significantly affects GDP forecasting accuracy, and choosing the unit option
significantly improves GDP forecasting accuracy.

Recall that we are forecasting AD–filtered GDP. We could transform the
forecasts of filtered GDP back to the original form of GDP by unnormal-
izing the forecasts using the standard deviation and mean of filtered GDP
and undifferencing the result. Frequently, the backtransformed original-form
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forecasts are more accurate, because the restored trends and seasonalities are
purely deterministic, hence, perfectly predictable.

6 Conclusions

NRMSFEh and R2
f,h of the filtered GDP forecasts in tables 2–7 are summa-

rized in table 8 and imply the following six general conclusions.
1. Monthly GDP forecasts are feasible. Estimating a monthly VAR model

of quarterly-observed German GDP and monthly–observed indicators of the
German economy, using Kalman–filtering–based MLE to produce monthly
GDP forecasts, is feasible only if the variables are in compatible cycli-
cal form and not too many parameters are estimated. We estimated unre-
stricted VAR(2) models of 2–4 variables, with 15–42 parameters, using 408
monthly and 96 quarterly in–sample periods. Estimating monthly models us-
ing monthly–quarterly data seems essential for producing accurate monthly
GDP forecasts, especially short–term forecasts, because, even though we
can transform quarterly models estimated with purely–quarterly data into
monthly models, generally, such transformed models are not expected to pro-
duce accurate monthly forecasts.

2. Monthly models produce better short-term GDP forecasts. Monthly
models 1–3 produce better short–term GDP forecasts (1–3 months ahead)
than the best quarterly–short–term GDP forecasts (1 quarter ahead) pro-
duced by model 14. Both monthly– and quarterly–short–term GDP forecasts
are not inefficient (NRMSFEh < 1). The greater accuracy of the monthly–
short–term GDP forecasts should provide sufficient motivation for estimating
monthly models, using quarterly–observed GDP and monthly–observed indi-
cators, for producing monthly–short–term GDP forecasts.

3. Quarterly models produce better long–term GDP forecasts. Every
monthly model produced inefficient monthly–long–term GDP forecasts (av-
erage NRMSFEh of 1–24 months ahead > 1) which should be disregarded.
Every quarterly model produced not inefficient, hence, at least tentatively
acceptable, quarterly long–term GDP forecasts (average NRMSFEh of 1–8
quarters ahead < 1).

4. Ifo variables improve long-term GDP forecasts. After disregarding
monthly–long–term GDP forecasts, we have monthly–short–term, quarterly–
short–term, and quarterly–long–term cases in table 8. In these cases, ρ is, re-
spectively, 1.125, 1.400, and 1.118, which implies that using the Ifo variables
insignificantly improves monthly–short–term or quarterly–long–term GDP
forecasts, but significantly improves quarterly–short–term GDP forecasts (use
of ρ is explained in section 5).

5. Aggregation and filtering choices insignificantly affect GDP forecasts.
In the monthly–short–term case in table 8, the filtering ϕ = 0, which implies
that AD filtering produces significantly better GDP forecasts, and the aggre-
gation ϕ is irrelevant. In the quarterly cases, the aggregation ϕ = .500 and
.667, and the filtering ϕ = .500 and .333, which implies that how we aggregate
or filter has no significant effect on GDP forecasts (use of ϕ is explained in
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section 5). Thus, choosing AD filtering makes a difference — improves GDP
forecasts — only in the monthly–short–term case.

6. Extensions to mixed-frequency forecasting with larger models. We
might want to estimate larger models, with more variables and more pa-
rameters, but the present experience suggests that the present models are at
the limit of what MLE can handle, especially with mixed–frequency data. To
estimate larger models with mixed–frequency data, we should not use MLE,
but should use a noniterative finite–step estimation method. For example,
Chen and Zadrozny [2] developed and illustrated the extended Yule–Walker
(XYW) method, a linear 2–step GMM method (Hansen [5]) for estimating a
VAR model with mixed–frequency data. Being linear and 2–step, the XYW
method can be implemented automatically and should be able to handle much
larger models than MLE can handle. Mittnik [7], [8], [9] developed and illus-
trated a linear 2–step method for estimating a state–space model with single–
frequency data and using the estimated model for forecasting. Extending this
method to mixed–frequency data could be more attractive, because, although
the two methods have comparable numerical properties, state–space models
are more general. Often, a low–dimensional state–space model can fit data
well, which even a many–lag VAR model cannot.
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Fig. 1. Monthly, Original Variables
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Fig. 2. Monthly, AD Filtered
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Fig. 3. Monthly, AD/AMA Filtered
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Fig. 4. Quarterly, Stocks, Original Variables
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Fig. 5. Quarterly, Stocks, AD Filtered



16 Stefan Mittnik and Peter Zadrozny

AD(GDP)

71 78 85 92 99
-4

-3

-2

-1

0

1

2

3

4

AD/AMA(PRD)

71 78 85 92 99
-4

-3

-2

-1

0

1

2

3

4

CUR

71 78 85 92 99
-4

-3

-2

-1

0

1

2

3

4

EXP

71 78 85 92 99
-4

-3

-2

-1

0

1

2

3

4

 
Fig. 6. Quarterly, Stocks, AD/AMA Filtered
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Fig. 7. Quarterly, Flows, Original Variables
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Fig. 8. Quarterly, Flows, AD Filtered
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Fig. 9. Quarterly, Flows, AD/AMA Filtered
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Table 1. R2
e of Estimated VAR(2) Models

Model GDP PRD CUR EXP

1 mon, 4 vars, AD .804 .522 .966 .904
2 mon, 3 vars, AD .812 .478 .958 —
3 mon, 2 vars, AD .850 .488 — —

4 mon, 4 vars, AD/AMA .783 .608 .966 .903
5 mon, 3 vars, AD/AMA .780 .592 .959 —
6 mon, 2 vars, AD/AMA .516 .567 — —

7 qrt, 4 vars, stocks, AD .735 .239 .882 .606
8 qrt, 3 vars, stocks, AD .663 .201 .867 —
9 qrt, 2 vars, stocks, AD .592 .145 — —

10 qrt, 4 vars, stocks, AD/AMA .734 .553 .882 .606
11 qrt, 3 vars, stocks, AD/AMA .663 .530 .867 —
12 qrt, 2 vars, stocks, AD/AMA .592 .499 — —

13 qrt, 4 vars, flows, AD .725 .715 .912 .626
14 qrt, 3 vars, flows, AD .685 .682 .900 —
15 qrt, 2 vars, flows, AD .606 .600 — —

16 qrt, 4 vars, flows, AD/AMA .721 .822 .911 .632
17 qrt, 3 vars, flows, AD/AMA .690 .802 .901 —
18 qrt, 2 vars, flows, AD/AMA .597 .739 — —

Tables 1–8 display estimation R–squared
(
R2

e

)
, forecasting R–squared(

R2
f,h

)
, normalized root mean squared forecast error (NRMSFEh), and

Theil U statistics, for h ≥ 1 forecast periods ahead, all defined in section 5.
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Table 2. GDP Forecast Accuracy, Monthly, AD Filtered

Model 1: VAR(2) of 4 variables AD(GDP), AD(PRD), CUR, EXP

months ahead NRMSFEh R2
f,h Theil U

1 .723 .477 .724
2 .802 .357 .796
3 .852 .274 .846
4 .947 .103 .787
5 .993 .014 .824
6 1.02 -.404 .846
9 1.22 -.488 .900
12 1.36 -.850 .795
18 1.30 -.690 .756
24 1.16 -.346 .671

average 1-24 months 1.18 -.392 .781

Model 2: VAR(2) of 3 variables AD(GDP), AD(PRD), CUR

months ahead NRMSFEh R2
f,h Theil U

1 .731 .466 .725
2 .846 .284 .839
3 .917 .159 .910
4 1.02 -.040 .847
5 1.12 -.254 .934
6 1.15 -.323 .958
9 1.39 -.932 1.02
12 1.54 -1.37 .896
18 1.46 -1.13 .852
24 1.33 -.769 .771

average 1-24 months 1.32 -.742 .872

Model 3: VAR(2) of 2 variables AD(GDP), AD(PRD)

months ahead NRMSFEh R2
f,h Theil U

1 .711 .494 .705
2 .799 .362 .792
3 .920 .154 .913
4 .959 .080 .797
5 .962 .075 .799
6 1.02 -.040 .846
9 1.07 -.144 .785
12 1.17 -.369 .684
18 1.25 -.563 .656
24 1.11 -.232 .644

average 1-24 months 1.08 -.166 .719
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Table 3. GDP Forecast Accuracy, Monthly, AD/AMA Filtered

Model 4: VAR(2) of 4 variables AD(GDP), AD/AMA(PRD), CUR, EXP

months ahead NRMSFEh R2
f,h Theil U

1 .820 .328 .813
2 .816 .334 .810
3 .821 .326 .814
4 .932 .131 .774
5 .993 .014 .792
6 .981 .038 .815
9 1.18 -.392 .873
12 1.31 -.716 .763
18 1.27 -.613 .740
24 1.12 -.254 .649

average 1-24 months 1.15 -.323 .761

Model 5: VAR(2) of 3 variables AD(GDP), AD/AMA(PRD), CUR

months ahead NRMSFEh R2
f,h Theil U

1 .814 .337 .808
2 .870 .243 .863
3 .882 .222 .875
4 .966 .067 .802
5 1.07 -.145 .888
6 1.06 -.124 .882
9 1.23 -.513 .906
12 1.34 -.796 .783
18 1.33 -.769 .774
24 1.19 -.416 .691

average 1-24 months 1.21 -.464 .804

Model 6: VAR(2) of 2 variables AD(GDP), AD/AMA(PRD)

months ahead NRMSFEh R2
f,h Theil U

1 .935 .126 .927
2 1.02 -.040 1.01
3 .997 .006 .989
4 1.11 -.232 .923
5 1.23 -.513 .936
6 1.13 -.277 .939
9 1.10 -.210 .808
12 1.06 -.124 .617
18 1.09 -.188 .634
24 1.07 -.145 .623

average 1-24 months 1.07 -.145 .729
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Table 4. GDP Forecast Accuracy, Quarterly, Stocks, AD Filtered

Model 7: VAR(2) of 4 variables AD(GDP), AD(PRD), CUR, EXP

quarters ahead NRMSFEh R2
f,h Theil U

1 .812 .341 .872
2 .822 .324 .730
3 .846 .284 .648
4 .876 .233 .512
6 .928 .139 .512
8 .977 .045 .510

average 1-8 quarters .889 .210 .600

Model 8: VAR(2) of 3 variables AD(GDP), AD(PRD), CUR

quarters ahead NRMSFEh R2
f,h Theil U

1 .765 .415 .821
2 .751 .436 .687
3 .764 .416 .610
4 .788 .379 .482
6 .837 .299 .482
8 .877 .231 .480

average 1-8 quarters .807 .349 .565

Model 9: VAR(2) of 2 variables AD(GDP), AD(PRD))

quarters ahead NRMSFEh R2
f,h Theil U

1 .845 .286 .907
2 .837 .299 .759
3 .842 .291 .674
4 .856 .267 .533
6 .889 .210 .533
8 .919 .155 .530

average 1-8 quarters .871 .241 .625
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Table 5. GDP Forecast Accuracy, Quarterly, Stocks, AD/AMA Filtered

Model 10: VAR(2) of 4 variables AD(GDP), AD/AMA(PRD), CUR, EXP

quarters ahead NRMSFEh R2
f,h Theil U

1 .811 .342 .870
2 .790 .376 .729
3 .823 .323 .647
4 .858 .264 .512
6 .931 .133 .511
8 .991 .018 .509

average 1-8 quarters .883 .220 .599

Model 11: VAR(2) of 3 variables AD(GDP), AD/AMA(PRD), CUR

quarters ahead NRMSFEh R2
f,h Theil U

1 .780 .392 .837
2 .760 .422 .700
3 .768 .410 .622
4 .786 .382 .492
6 .838 .298 .492
8 .888 .211 .489

average 1-8 quarters .812 .341 .576

Model 12: VAR(2) of 2 variables AD(GDP), AD/AMA(PRD)

quarters ahead NRMSFEh R2
f,h Theil U

1 .844 .288 .906
2 .825 .319 .758
3 .828 .314 .673
4 .842 .291 .532
6 .881 .224 .532
8 .918 .157 .530

average 1-8 quarters .863 .255 .624
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Table 6. GDP Forecast Accuracy, Quarterly, Flows, AD Filtered

Model 13: VAR(2) of 4 variables AD(GDP), AD(PRD), CUR, EXP

quarters ahead NRMSFEh R2
f,h Theil U

1 .786 .382 .844
2 .752 .434 .706
3 .752 .434 .627
4 .769 .409 .496
6 .848 .281 .496
8 .913 .166 .493

average 1-8 quarters .814 .337 .581

Model 14: VAR(2) of 3 variables AD(GDP), AD(PRD), CUR

quarters ahead NRMSFEh R2
f,h Theil U

1 .734 .461 .787
2 .709 .497 .659
3 .712 .493 .585
4 .748 .440 .463
6 .842 .291 .463
8 .918 .157 .460

average 1-8 quarters .793 .371 .542

Model 15: VAR(2) of 2 variables AD(GDP), AD(PRD)

quarters ahead NRMSFEh R2
f,h Theil U

1 .825 .319 .885
2 .800 .360 .741
3 .805 .352 .658
4 .827 .316 .520
6 .874 .236 .520
8 .912 .168 .517

average 1-8 quarters .849 .279 .609
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Table 7. GDP Forecast Accuracy, Quarterly, Flows, AD/AMA Filtered

Model 16: VAR(2) of 4 variables AD(GDP), AD/AMA(PRD), CUR, EXP

quarters ahead NRMSFEh R2
f,h Theil U

1 .762 .419 .818
2 .736 .458 .685
3 .767 .412 .608
4 .823 .323 .481
6 .901 .188 .481
8 .905 .181 .478

average 1-8 quarters .834 .304 .563

Model 17: VAR(2) of 3 variables AD(GDP), AD/AMA(PRD), CUR

quarters ahead NRMSFEh R2
f,h Theil U

1 .819 .329 .879
2 .850 .278 .736
3 .869 .245 .653
4 .872 .240 .517
6 .882 .222 .516
8 .923 .148 .514

average 1-8 quarters .874 .236 .605

Model 18: VAR(2) of 2 variables AD(GDP), AD/AMA(PRD)

quarters ahead NRMSFEh R2
f,h Theil U

1 .818 .331 .877
2 .803 .355 .734
3 .809 .346 .652
4 .828 .314 .516
6 .877 .231 .516
8 .920 .154 .513

average 1-8 quarters .851 .276 .604
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Table 8. GDP Forecast Accuracy, Rankings of All Models

Monthly short term: NRMSFEh and R2
f,h of GDP forecasts 1 month ahead

rank NRMSFEh R2
f,h variables model

1 .711 .494 2 vars, AD 3
2 .723 .477 4 vars, AD 1
3 .731 .466 3 vars, AD 2
4 .814 .337 3 vars, AD/AMA 5
5 .820 .328 4 vars, AD/AMA 4
6 .935 .126 2 vars, AD/AMA 6

Monthly long term: average NRMSFEh and R2
f,h of GDP forecasts 1–24 mons. ahead

rank NRMSFEh R2
f,h variables model

1 1.07 -.145 2 vars, AD/AMA 6
2 1.08 -.166 2 vars, AD 3
3 1.15 -.323 4 vars, AD/AMA 4
4 1.18 -.392 4 vars, AD 1
5 1.21 -.464 3 vars, AD/AMA 5
6 1.32 -.742 3 vars, AD 2

Quarterly short term: NRMSFEh and R2
f,h of GDP forecasts 1 quarter ahead

rank NRMSFEh R2
f,h variables model

1 .734 .461 3 vars, flows, AD 14
2 .762 .419 4 vars, flows, AD/AMA 16
3 .765 .415 3 vars, stocks, AD 8
4 .780 .392 3 vars, stocks, AD/AMA 11
5 .786 .382 4 vars, flows, AD 13
6 .811 .342 4 vars, stocks, AD/AMA 10
7 .812 .341 4 vars, stocks, AD 7
8 .818 .331 2 vars, flows, AD/AMA 18
9 .819 .329 3 vars, flows, AD/AMA 17
10 .825 .319 2 vars, flows, AD 15
11 .844 .288 2 vars, stocks, AD/AMA 12
12 .845 .286 2 vars, stocks, AD 9

Quarterly long term: average NRMSFEh and R2
f,h of GDP forecasts 1-8 qrts. ahead

rank NRMSFEh R2
f,h variables model

1 .793 .371 3 vars, flows, AD 14
2 .807 .349 3 vars, stocks, AD 8
3 .812 .341 3 vars, stocks, AD/AMA 11
4 .814 .337 4 vars, flows, AD 13
5 .834 .304 4 vars, flows, AD/AMA 16
6 .849 .279 2 vars, flows, AD 15
7 .851 .276 2 vars, flows, AD/AMA 18
8 .863 .255 2 vars, stocks, AD/AMA 12
9 .871 .241 2 vars, stocks, AD 9
10 .874 .236 3 vars, flows, AD/AMA 17
11 .883 .220 4 vars, stocks, AD/AMA 10
12 .889 .210 4 vars, stocks, AD 7
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