# ECONSTOR 

Ahmed, Rashid; Akhtar, Munir; Shehzad, Farrukh

## Article <br> Designs balanced for neighbor effects in circular binary blocks of size ten

Pakistan Journal of Commerce and Social Sciences (PJCSS)

## Provided in Cooperation with:

Johar Education Society, Pakistan (JESPK)

Suggested Citation: Ahmed, Rashid; Akhtar, Munir; Shehzad, Farrukh (2011) : Designs balanced for neighbor effects in circular binary blocks of size ten, Pakistan Journal of Commerce and Social Sciences (PJCSS), ISSN 2309-8619, Johar Education Society, Pakistan (JESPK), Lahore, Vol. 5, Iss. 2, pp. 266-272

This Version is available at: https://hdl.handle.net/10419/188029

## Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

## Terms of use:

Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.


# Designs Balanced For Neighbor Effects in Circular Binary Blocks of Size Ten 

Rashid Ahmed (Corresponding Author) Government Higher Secondary School Mitroo, Vehari<br>Email: rashid701@hotmail.com<br>Munir Akhtar<br>COMSATS Institute of Information Technology Wah Campus, Pakistan.<br>Email: munir_stat@yahoo.com<br>Farrukh Shehzad<br>National College of Business Administration and Economics, Lahore, Pakistan Email: fshehzad.stat @ gmail.com


#### Abstract

Neighbor balanced designs are more useful to remove the neighbor effects in experiments where the performance of a treatment is affected by the treatments applied to its adjacent plots. These designs ensure that treatment comparisons will be less affected by neighbor effects as possible. In literature, these designs are available in circular blocks of size 3,5 , $6,8,9$. In this article, neighbor balanced designs are constructed in circular binary blocks of size ten. A catalogue of these designs is also compiled.


Keywords: Binary blocks, Circular blocks, Neighbor effects, Neighbor balanced designs.

## 1. Introduction

Rees (1967) introduced neighbor designs in serology and constructed these designs in complete blocks for all odd $v$, number of treatments. A design ( $v, \mathrm{k}, \lambda^{\prime}$ ) in which each pair of distinct treatments appears $\lambda^{\prime}$ times as neighbors is called neighbor balanced design, where $v$ is number of treatments, k is block size and $\lambda^{\prime}$ is number of times each pair of distinct treatments appears as neighbors. Neighbor balanced designs ensure that treatment comparisons will be less affected by neighbor effects because these designs are a tool for local control in biometrics, agriculture, horticulture and forestry. These designs are, therefore, useful for the cases where the performance of a treatment is affected by the treatments applied to its neighboring plots. Neighbor designs were initially used in serology. Rees (1967) presented a technique used in virus research which requires the arrangement in circles of samples from a number of virus preparations such that over the whole set, a sample from each virus preparation appears next to a sample from every other virus preparation. Experiments in agriculture, horticulture and forestry often show neighbor effects, (see Azais et al., 1993). The design strategy of a statistical experiment is influenced, to a large extent, by the nature of dependence that exists among the observations. Neighbor designs are relatively robust to neighbor effects. Rees (1967) generated neighbor designs for $\mathrm{k} \leq 10$ and $v$ odd up to 41 .

Other references are: Lawless (1971), Hwang (1973), Bermond and Faber (1976), Dey and Chakravarty (1977), Azais et al. (1993), Ai et al. (2007), Ahmed and Akhtar (2008), Akhtar and Ahmed (2009), Ahmed and Akhtar (2009), Iqbal et al. (2009). Jacroux (1998) constructed neighbor designs for all $v$ in linear blocks of size 3. Ahmed et al. (2009) generated these designs in circular blocks of size nine. Akhtar et al. (2010) presented a catalogue of nearest neighbor balanced designs in blocks of size five. Neighbor designs in circular blocks of size 8 are presented by Ahmed et al. (2010). Ahmed and Akhtar (2011) constructed these designs in circular blocks of size six. In this article, neighbor designs are constructed in circular binary blocks of size 10. A block is called binary if no treatment appears more than once in the block.

## 2. Construction of Neighbor Design (ND) for $k=10$

2.1 $N D$ for $v=10 i$

Theorem 2.1. ND with $\lambda^{\prime}=2$ can be generated for $v=10 i ; i(>1)$ integer in $\mathrm{k}=10$ by developing the following $i$ initial blocks cyclically $\bmod (v-1)$.

$$
I_{j}=(0,5 j-4,10 j-7,15 j-9,20 j-10,25 j-10,20 j-6,15 j-3,10 j-1,5 j) \bmod (v-1) ; j=1,2, \ldots, i-1
$$

$$
I_{i}=(0, m-3,2 m-5, m-7,2 m-7, m-8,2 m-9, m-12,2 m-15, \infty) \bmod (v-1) ; \quad m=(v-2) / 2
$$

Proof. Combined set of forward and backward differences between neighboring elements takes all the values from 1 to $2 m$ twice. It is, therefore, ND with $\lambda^{\prime}=2$.

Example 2.1. ND for $v=30$ and $\mathrm{k}=10$ is generated by developing the following three initial blocks cyclically mod 29.

$$
\begin{array}{rlr}
\mathrm{I}_{1} & =(0,1,3,6,10,15,14,12,9,5), & \mathrm{I}_{2}=(0,6,13,21,1,11,5,27,19,9,10) \\
\mathrm{I}_{3} & =(0,11,23,7,21,6,19,2,13, \infty) \\
2.2 \text { ND for } v & =20 i+1 ; \text { i integer } &
\end{array}
$$

ND can be generated for $v=20 i+1 ; i$ integer in $\mathrm{k}=10$ by developing $i$ initial blocks cyclically $\bmod v$.
Example 2.2. ND for $v=41$ and $\mathrm{k}=10$ is generated by developing the following two initial blocks cyclically mod 41 .

$$
\mathrm{I}_{1}=(0,1,3,6,10,15,21,28,36,9), \quad \mathrm{I}_{2}=(0,10,22,33,5,30,4,21,39,20)
$$

2.3 ND for $v=10 i+1 ; i(>1)$ odd

ND with $\lambda^{\prime}=2$ can be generated for $v=10 i+1 ; i(>1)$ odd in $\mathrm{k}=10$ by developing $i$ initial blocks cyclically $\bmod (v-1)$.
Example 2.3. ND for $v=31$ and $\mathrm{k}=10$ is generated by developing the following three initial blocks cyclically mod 31.

$$
\mathrm{I}_{1}=\mathrm{I}_{2}=(0,1,3,6,10,15,21,28,5,14), \mathrm{I}_{3}=(0,11,23,3,16,1,13,26,5,15)
$$

2.4 ND when HCF of $v$ and $k$ is 5

ND with $\lambda^{\prime}=4$ can be generated for $\mathrm{k}=10$ when HCF of $v$ and k is 5 by developing $v / 5$ initial blocks (two of these blocks contain $\infty$ ) cyclically $\bmod (v-1)$.
Example 2.4. ND is generated for $v=35$ and $\mathrm{k}=10$ by developing the following seven initial blocks cyclically mod 34 .

$$
\begin{array}{ll}
I_{1}=I_{2}=I_{3}=I_{4}=(0,1,3,6,10,15,21,28,2,11), & I_{5}=(0,10,22,1,15,30,12,29,5,17), \\
I_{6}=(0,10,22,1,15,30,12,25,5, \infty), & I_{7}=(0,10,22,1,15,30,12,27,9, \infty)
\end{array}
$$

2.5 ND when HCF of $v-1$ and $k$ is 5

ND with $\lambda^{\prime}=4$ can be generated for $\mathrm{k}=10$ when HCF of $v-1$ and k is 5 by developing $(v-1) / 5$ initial blocks cyclically $\bmod v$.
Example 2.5. ND is generated for $v=36$ and $\mathrm{k}=10$ by developing the following seven initial blocks cyclically mod 36 .

$$
\begin{aligned}
& \mathrm{I}_{1}=\mathrm{I}_{2}=\mathrm{I}_{3}=\mathrm{I}_{4}=(0,2,3,6,10,15,21,28,1,11), \quad \mathrm{I}_{5}=\mathrm{I}_{6}=(0,8,20,33,11,26,6,23,5,13), \\
& \mathrm{I}_{7}=(0,24,2,23,3,20,8,22,1,17)
\end{aligned}
$$

2.6 ND when HCF of $v$ and $k$ is 2

ND with $\lambda^{\prime}=10$ can be generated for $\mathrm{k}=10$ when HCF of $v$ and k is 2 by developing $v / 2$ initial blocks (five of these blocks contain $\infty$ ) cyclically $\bmod (v-1)$.

Example 2.6. ND is generated for $v=32$ and $\mathrm{k}=10$ by developing the following 16 initial blocks cyclically mod 31 .

$$
\begin{aligned}
& \mathrm{I}_{1}=\mathrm{I}_{2}=\mathrm{I}_{3}=\mathrm{I}_{4}=\mathrm{I}_{5}=\mathrm{I}_{6}=\mathrm{I}_{7}=\mathrm{I}_{8}=\mathrm{I}_{9}=\mathrm{I}_{10}=(0,1,3,6,10,15,21,28,5,14), \\
& \mathrm{I}_{11}=(0,10,21,2,15,30,9,20,1,16), \\
& \mathrm{I}_{12}=\mathrm{I}_{13}=\mathrm{I}_{14}=\mathrm{I}_{15}=(0,10,21,2,15,30,9,20,1, \infty), \quad \mathrm{I}_{16}=(0,13,26,8,21,3,18,2,17, \infty)
\end{aligned}
$$

2.7 ND when HCF of $v-1$ and $k$ is 2 ; $(v-1) / 2$ even

ND with $\lambda^{\prime}=5$ can be generated for $\mathrm{k}=10 ;(v-1) / 2$ even when HCF of $v-1$ and k is 2 by developing $(v-1) / 4$ initial blocks cyclically $\bmod v$.
Example 2.7. ND is generated for $v=33$ and $\mathrm{k}=10$ by developing the following eight initial blocks cyclically mod 33 .

$$
\begin{aligned}
& \mathrm{I}_{1}=\mathrm{I}_{2}=\mathrm{I}_{3}=\mathrm{I}_{4}=\mathrm{I}_{5}=(0,1,4,6,10,15,21,28,3,12), \\
& \mathrm{I}_{6}=\mathrm{I}_{7}=(0,10,21,2,15,30,13,23,1,14), \quad \mathrm{I}_{8}=(0,23,12,25,6,21,4,19,2,17
\end{aligned}
$$

2.8 ND when HCF of $v-1$ and $k$ is 2 ; $(v-1) / 2$ odd

ND with $\lambda^{\prime}=10$ can be generated for $\mathrm{k}=10 ;(v-1) / 2$ odd when HCF of $v-1$ and k is 2 by developing $(v-1) / 2$ initial blocks cyclically mod $v$.
Example 2.8. ND is generated for $v=39$ and $\mathrm{k}=10$ by developing the following 19 initial blocks cyclically mod 39 .

$$
\begin{aligned}
& \mathrm{I}_{1}=\mathrm{I}_{2}=\mathrm{I}_{3}=\mathrm{I}_{4}=\mathrm{I}_{5}=\mathrm{I}_{6}=\mathrm{I}_{7}=\mathrm{I}_{8}=\mathrm{I}_{9}=\mathrm{I}_{10}=(0,1,3,6,10,15,21,28,36,9), \\
& \mathrm{I}_{11}=\mathrm{I}_{12}=\mathrm{I}_{13}=\mathrm{I}_{14}=\mathrm{I}_{15}=(0,10,21,34,9,24,1,18,36,16), \\
& \mathrm{I}_{16}=\mathrm{I}_{17}=(0,10,21,34,9,24,2,20,30,11), \quad \mathrm{I}_{18}=(0,10,21,34,9,24,2,20,1,14), \\
& \mathrm{I}_{19}=(0,26,12,27,10,28,8,23,1,19)
\end{aligned}
$$

2.9 ND for $v$ odd prime ( $v>19$ )
$N D$ can be generated with $\lambda^{\prime}=10$ for $v($ prime $)=10 i i+1$ and $k=10$ by developing the following (v-1)/2 initial blocks cyclically mod $v$.

$$
\mathrm{I}_{j}=(0, j, 2 j, 3 j, \ldots, 9 j) \bmod v ; j=1,2, \ldots, i .
$$

3. Catalog of ND for $\mathrm{k}=10$ for $v=5 i$ and $v=5 i+1$, where $4 \leq i \leq 20$. (Inclusion of some existing designs in the catalogue is possible)

| $v$ | $\lambda^{\prime}$ | Initial Blocks |
| :---: | :---: | :---: |
| 20 | 2 | (0,6,13,2,11, $, 9,16,3, \infty)$, where $\infty=19$ |
| 21 | 1 | (0,1,3,6,10,15,8,14,2,10) |
| 25 | 4 | $(0,23,1,22,2,21,3,19,4,11),(0,14,2,16,4,18,6,20,8, \infty)$, where $\infty=24$ |
| 26 | 4 | $\begin{aligned} & (0,25,1,24,2,23,3,21,4,11),(0,25,1,24,2,23,3,21,4,11), \\ & (0,25,1,24,2,23,3,21,4,11),(0,25,1,24,2,23,3,21,4,11) \text {, } \\ & (0,14,1,17,3,19,5,15,25,13) \end{aligned}$ |
| 40 | 2 | $\begin{aligned} & (0,1,3,6,10,15,14,12,9,5),(0,6,13,21,30,1,34,27,19,10), \\ & (0,11,23,36,11,26,15,3,29,15),(0,16,33,12,31,11,29,7,23, \infty), \text { where } \infty=39 \end{aligned}$ |
| $v$ | $\lambda^{\prime}$ | Initial Blocks |
| 45 | 4 | $(0,43,41,1,4,10,5,12,20,11),(0,43,41,1,4,10,5,12,20,11)$, <br> $(0,43,41,1,4,10,5,12,20,11),(0,43,41,1,4,10,5,12,20,11)$, <br> $(0,34,2,33,3,32,4,21,39,20),(0,34,2,33,3,32,4,21,39,20)$, <br> $(0,34,2,33,3,32,4,21,39,20),(0,34,2,33,3,32,4,21,39, \infty)$, <br> $(0,19,39,16,38,15,37,14,35, \infty)$, |
| 46 | 4 | $(0,45,1,44,2,43,3,41,4,11),(0,45,1,44,2,43,3,41,4,11)$, $(0,45,1,44,2,43,3,41,4,11),(0,45,1,44,2,43,3,41,4,11)$, $(0,36,2,35,3,33,4,32,5,20),(0,36,2,35,3,33,4,32,5,20)$, $(0,36,2,35,3,33,4,32,5,20),(0,36,2,35,3,33,4,32,5,20)$, $(0,24,1,26,2,27,3,24,45,23)$ |
| 50 | 2 | $(0,1,3,6,10,15,14,12,9,5),(0,6,13,21,30,35,34,27,19,10)$, $(0,11,23,36,1,11,5,42,29,15),(0,16,33,2,21,36,25,8,39,20)$, $(0,21,43,17,41,16,39,12,33, \infty), \quad$ where $\infty=49$ |
| 51 | 2 | $\begin{aligned} & (0,50,1,49,2,48,3,46,4,11),(0,50,1,49,2,48,3,46,4,11), \\ & (0,41,2,40,3,38,4,37,5,20),(0,41,2,40,3,38,4,37,5,20), \\ & (0,29,1,28,2,32,3,27,4,25) \end{aligned}$ |
| 55 | 4 | $(0,53,51,1,4,10,5,12,20,11),(0,53,51,1,4,10,5,12,20,11)$, <br> $(0,53,51,1,4,10,5,12,20,11),(0,53,51,1,4,10,5,12,20,11)$, <br> $(0,44,2,43,3,42,4,21,39,20),(0,44,2,43,3,42,4,21,39,20)$, <br> $(0,44,2,43,3,42,4,21,39,20),(0,44,2,43,3,42,4,21,39,20)$, <br> $(0,33,12,44,22,49,16,37,5,27),(0,23,47,18,44,16,41,11,34, \infty)$, <br> $(0,23,47,18,44,16,41,11,34, \infty)$, <br>  |
| 56 | 4 | ( $0,55,1,54,2,53,3,51,4,11),(0,55,1,54,2,53,3,51,4,11)$, ( $0,55,1,54,2,53,3,51,4,11),(0,55,1,54,2,53,3,51,4,11)$, ( $0,46,2,45,3,43,4,42,5,20),(0,46,2,45,3,43,4,42,5,20)$, ( $0,46,2,45,3,43,4,42,5,20),(0,46,2,45,3,43,4,42,5,20)$, ( $0,35,1,34,2,33,3,32,4,25),(0,35,1,34,2,33,3,32,4,25)$, ( $0,33,1,31,2,34,4,38,5,27$ ) |
| 60 | 2 | ( $0,1,3,6,10,15,14,12,9,5),(0,6,13,21,30,40,34,27,19,10)$, <br> ( $0,11,23,36,50,6,54,42,29,15$ ), ( $0,16,33,51,11,31,15,57,39,20$ ), <br> $(0,21,43,7,31,56,35,13,49,25),(0,26,53,22,51,21,49,17,43, \infty)$, where $\infty=59$ |
| 61 | 1 | $\begin{aligned} & (0,1,3,6,10,15,21,28,36,45),(0,51,1,50,2,49,3,47,4,23), \\ & (0,41,1,40,3,39,4,31,59,30) \end{aligned}$ |
| 65 | 4 | $(0,63,61,1,4,10,5,12,20,11),(0,63,61,1,4,10,5,12,20,11)$, $(0,63,61,1,4,10,5,12,20,11),(0,63,61,1,4,10,5,12,20,11)$, $(0,54,2,53,3,52,4,21,39,20),(0,54,2,53,3,52,4,21,39,20)$, |


|  |  | $(0,54,2,53,3,52,4,21,39,20),(0,54,2,53,3,52,4,21,39,20)$, $(0,43,21,45,4,30,5,32,60,31),(0,43,21,45,4,30,5,32,60,31)$, $(0,43,21,45,4,30,5,32,60,31),(0,43,21,45,4,30,5,32,60, \infty)$, $(0,29,59,26,58,24,56,22,52, \infty)$, where $\infty=64$ |
| :---: | :---: | :---: |
| 66 | 4 | ( $0,65,1,64,2,63,3,61,4,11$ ), ( $0,65,1,64,2,63,3,61,4,11$ ), ( $0,65,1,64,2,63,3,61,4,11$ ), ( $0,65,1,64,2,63,3,61,4,11$ ), ( $0,45,1,44,2,43,3,41,4,31),(0,45,1,44,2,43,3,41,4,31)$, ( $0,45,1,44,2,43,3,41,4,31),(0,45,1,44,2,43,3,41,4,31)$ ), (0,56,2,55,3,53,4,52,5,20), (0,56,2,55,3,53,4,52,5,20), ( $0,56,2,55,3,53,4,52,5,20),(0,56,2,55,3,53,4,52,5,20)$, (0,34,1,37,3,39,5,35,65,33) |
| $v$ | $\lambda^{\prime}$ | Initial Blocks |
| 70 | 2 | $(0,1,3,6,10,15,14,12,9,5),(0,6,13,21,30,40,34,27,19,10)$, $(0,11,23,36,50,65,54,42,29,15),(0,16,33,51,1,21,5,57,39,20)$, $(0,21,43,66,21,46,25,3,49,25),(0,26,53,12,41,2,45,18,59,30)$, $(0,31,63,27,61,26,59,22,53, \infty), \quad$ where $\infty=69$ $(0,7$, |
| 71 | 2 | $(0,70,1,69,2,68,3,66,4,11),(0,70,1,69,2,68,3,66,4,11)$, $(0,50,1,49,2,48,3,46,4,31),(0,50,1,49,2,48,3,46,4,31)$, $(0,61,2,60,3,58,4,57,5,20),(0,61,2,60,3,58,4,57,5,20)$, $(0,39,1,38,2,43,4,38,5,35)$ |
| 75 | 4 | $(0,73,71,1,4,10,5,12,20,11),(0,73,71,1,4,10,5,12,20,11)$, $(0,73,71,1,4,10,5,12,20,11),(0,73,71,1,4,10,5,12,20,11)$, ( $0,64,2,63,3,62,4,21,39,20$ ), ( $0,64,2,63,3,62,4,21,39,20$ ), ( $0,64,2,63,3,62,4,21,39,20),(0,64,2,63,3,62,4,21,39,20)$, (0,53,3,55,4,30,5,32,60,31), (0,53,3,55,4,30,5,32,60,31), ( $0,53,3,55,4,30,5,32,60,31),(0,53,3,55,4,30,5,32,60,31)$, $(0,30,60,18,50,13,57,27,69,37),(0,33,67,28,64,26,61,21,54, \infty)$, $(0,33,67,28,64,26,61,21,54, \infty)$, where $\infty=74$ |
| 76 | 4 | $(0,75,1,74,2,73,3,71,4,11),(0,75,1,74,2,73,3,71,4,11)$, <br> $(0,75,1,74,2,73,3,71,4,11),(0,75,1,74,2,73,3,71,4,11)$, <br> $(0,55,1,54,2,53,3,51,4,31),(0,55,1,54,2,53,3,51,4,31)$, <br> $(0,55,1,54,2,53,3,51,4,31),(0,55,1,54,2,53,3,51,4,31)$, <br> $(0,66,2,65,3,63,4,62,5,20),(0,66,2,65,3,63,4,62,5,20)$, <br> $(0,66,2,65,3,63,4,62,5,20),(0,66,2,65,3,63,4,62,5,20)$, <br> $(0,66,2,45,3,44,4,43,5,41),(0,46,2,45,3,44,4,43,5,41)$, <br> $(0,43,1,41,2,44,4,48,5,37)$ |
| 80 | 2 | ( $0,1,3,6,10,15,14,12,9,5$ ), ( $0,6,13,21,30,40,34,27,19,10$ ), ( $0,11,23,36,50,65,54,42,29,15$ ), ( $0,16,33,51,70,11,74,57,39,20$ ), ( $0,21,43,66,11,36,15,72,49,25)$ ) ( $0,26,53,2,31,61,35,8,59,30$ ), $(0,31,63,17,51,7,55,23,69,35),(0,36,73,32,71,31,69,27,63, \infty)$, where $\infty=79$ |
| 81 | 1 | $\begin{aligned} & (0,80,1,79,2,78,3,77,4,13),(0,71,1,70,3,69,4,21,39,20), \\ & (0,60,1,59,2,58,3,57,4,33) \end{aligned}$ |
| 85 | 4 | ( $0,83,81,1,4,10,5,12,20,11),(0,83,81,1,4,10,5,12,20,11)$, $(0,83,81,1,4,10,5,12,20,11),(0,83,81,1,4,10,5,12,20,11)$, ( $0,74,2,73,3,72,4,21,39,20$ ), ( $0,74,2,73,3,72,4,21,39,20$ ), ( $0,74,2,73,3,72,4,21,39,20),(0,74,2,73,3,72,4,21,39,20)$, ( $0,63,41,65,4,30,5,32,60,31),(0,63,41,65,4,30,5,32,60,31)$, $(0,63,41,65,4,30,5,32,60,31),(0,63,41,65,4,30,5,32,60,31)$, |


|  |  | $(0,54,2,53,3,52,4,41,79,40),(0,54,2,53,3,52,4,41,79,40)$, $(0,54,2,53,3,52,4,41,79,40),(0,54,2,53,3,52,4,41,79, \infty)$, $(0,39,79,36,78,35,77,34,75, \infty), \quad$ where $\infty=84$ |
| :---: | :---: | :---: |
| 86 | 4 | ( $0,85,1,84,2,83,3,81,4,11),(0,85,1,84,2,83,3,81,4,11)$, $(0,85,1,84,2,83,3,81,4,11),(0,85,1,84,2,83,3,81,4,11)$ ), ( $0,65,1,64,2,63,3,61,4,31),(0,65,1,64,2,63,3,61,4,31)$, (0,65,1,64,2,63,3,61,4,31), ( $0,65,1,64,2,63,3,61,4,31$ ), ( $0,76,2,75,3,73,4,72,5,20$ ), ( $0,76,2,75,3,73,4,72,5,20$ ), ( $0,76,2,75,3,73,4,72,5,20$ ), ( $0,76,2,75,3,73,4,72,5,20$ ), (0,56,2,55,3,53,4,52,5,40), (0,56,2,55,3,53,4,52,5,40), $(0,56,2,55,3,53,4,52,5,40),(0,56,2,55,3,53,4,52,5,40)$, (0,44,1,46,2,47,3,44,85,43) |
| $v$ | $\lambda^{\prime}$ | Initial Blocks |
| 90 | 2 | $(0,1,3,6,10,15,14,12,9,5),(0,6,13,21,30,40,34,27,19,10)$, $(0,11,23,36,50,65,54,42,29,15),(0,16,33,51,70,1,74,57,39,20)$, $(0,21,43,66,1,26,5,72,49,25),(0,26,53,81,21,51,25,87,59,30)$, $(0,31,63,7,41,76,45,13,69,35),(0,36,73,22,61,12,65,28,79,40)$, $(0,41,83,37,81,36,79,32,73, \infty)$, |
| 91 | 2 | $\begin{aligned} & (0,90,1,89,2,88,3,86,4,11),(0,90,1,89,2,88,3,86,4,11), \\ & (0,70,1,69,2,68,3,66,4,31),(0,70,1,69,2,68,3,66,4,31) \\ & (0,81,2,80,3,78,4,77,5,20),(0,81,2,80,3,78,4,77,5,20) \\ & (0,61,2,60,3,58,4,57,5,40),(0,61,2,60,3,58,4,57,5,40) \\ & (0,49,1,48,2,52,3,47,4,45) \end{aligned}$ |
| 95 | 4 | $\begin{aligned} & (0,93,91,1,4,10,5,12,20,11),(0,93,91,1,4,10,5,12,20,11), \\ & (0,93,91,1,4,10,5,12,20,11),(0,93,91,1,4,10,5,12,20,11), \\ & (0,84,2,83,3,82,4,21,39,20),(0,84,2,83,3,82,4,21,39,20), \\ & (0,84,2,83,3,82,4,21,39,20),(0,84,2,83,3,82,4,21,39,20), \\ & (0,73,51,75,4,30,5,32,60,31),(0,73,51,75,4,30,5,32,60,31) \text {, } \\ & (0,73,51,75,4,30,5,32,60,31),(0,73,51,75,4,30,5,32,60,31), \\ & (0,64,2,63,3,62,4,41,79,40),(0,64,2,63,3,62,4,41,79,40), \\ & (0,64,2,63,3,62,4,41,79,40),(0,64,2,63,3,62,4,41,79,40), \\ & (0,53,12,64,22,69,16,57,5,47),(0,43,87,38,84,36,81,31,74, \infty) \text {, } \\ & (0,43,87,38,84,36,81,31,74, \infty), \end{aligned}$ |
| 96 | 4 | $(0,95,1,94,2,93,3,91,4,11),(0,95,1,94,2,93,3,91,4,11)$, $(0,95,1,94,2,93,3,91,4,11),(0,95,1,94,2,93,3,91,4,11)$, $(0,75,1,74,2,73,3,71,4,31),(0,75,1,74,2,73,3,71,4,31)$, $(0,75,1,74,2,73,3,71,4,31),(0,75,1,74,2,73,3,71,4,31)$, $(0,86,2,85,3,83,4,52,5,20),(0,86,2,85,3,83,4,52,5,20)$, $(0,86,2,85,3,83,4,52,5,20),(0,86,2,85,3,83,4,52,5,20)$, $(0,66,2,65,3,63,4,62,5,40),(0,66,2,65,3,63,4,62,5,40)$, $(0,66,2,65,3,63,4,62,5,40),(0,66,2,65,3,63,4,62,5,40)$, $(0,55,1,54,2,53,3,52,4,45),(0,55,1,54,2,53,3,52,4,45)$, $(0,53,1,51,2,54,4,58,5,47)$ |
| 100 | 2 | ( $0,1,3,6,10,15,14,12,9,5),(0,6,13,21,30,40,34,27,19,10)$, $(0,11,23,36,50,65,54,42,29,15),(0,16,33,51,70,90,74,57,39,20)$, $(0,21,43,66,90,16,94,72,49,25),(0,26,53,81,11,41,15,87,59,30)$, $(0,31,63,96,31,66,35,3,69,35),(0,36,73,12,51,91,55,18,79,40)$, $(0,41,83,27,71,17,75,33,89,45),(0,46,93,42,91,41,89,37,83, \infty)$, where $\infty=99$ |


| 101 | 1 | $(0,100,1,99,2,98,3,96,4,11),(0,91,2,90,3,88,4,87,5,20)$, <br> $(0,80,1,79,2,78,3,76,4,31),(0,71,2,70,3,78,4,77,5,40)$, <br> $(0,60,1,59,2,58,3,56,4,51)$ |
| :--- | :--- | :--- |

## References

Ahmed, R. and Akhtar, M. (2008). Construction of neighbor balanced block designs. Journal of Statistical Theory and Practice, 2, 551-558.
Ahmed, R. and Akhtar, M. (2009). On construction of one dimensional all order neighbor balanced designs by cyclic shifts. Pakistan Journal of Statistics, 25(2), 121-126.
Ahmed, R., Akhtar, M. and Arshad, H. M. (2009). Designs balanced for neighbor effects in blocks of size nine. World Applied Science Journal, 7(4); 498-505.

Ahmed, R., Akhtar, M. and Yasmin, F. (2010). Neighbor balanced designs in circular blocks of eight units. World Applied Science Journal, 8(1), 43-49.
Ahmed, R. and Akhtar, M. (2011). Designs balanced for neighbor effects in circular blocks of size six. Journal of Statistical Planning and Inference, 141, 687-691.
Ai, M.Y., Ge, G. and Chan, L.Y. (2007). Circular neighbor-balanced designs universally optimal for total effects. Science in China Series A: Mathematics, 50, 821-828.
Akhtar, M. and Ahmed, R. (2009). Circular binary block second and higher order neighbor designs. Communication in Statistics-Simulation and Computation, 38, 821828.

Akhtar, M., Ahmed, R. and Yasmin, F. (2010). A catalogue of nearest neighbor balanceddesigns in circular blocks of size five. Pakistan Journal of Statistics. 26 (2), 397-405.
Azais, J. M., Bailey, R. A. and Monod, H. (1993). A catalogue of efficient neighbour designs with border plots. Biometrics, 49, 4, 1252-61.

Bermond, J. C. and Faber, V. (1976). Decomposition of the complete directed graph into k-circuits. Journal of Combinatorial Theory, Series B, 21, 146-155.
Dey, A. and Chakravarty, R. (1977). On the construction of some classes of neighbor designs. Journal of Indian Society of Agricultural Statistics, 29, 97-104.

Hwang, F. K. (1973). Constructions for some classes of neighbor designs. Annals of Statistics, 1(4), 786-790.
Iqbal, I., Tahir, M.H., Ghazali, S.S.A. (2009). Circular neighbor-balanced designs using cyclic shifts. Science in China Series A: Mathematics, 52(10), 2243-2256.

Jacroux, M. (1998). On the construction of efficient equineighbored incomplete block designs having block size 3. Sankhya Series B, 60(3), 488-495.
Lawless, J. F. (1971). A note on certain types of BIBDs balanced for residual effects. Annals of Mathematical Statistics, 42, 1439-1441.

Rees, D. H. (1967). Some designs of use in serology. Biometrics, 23, 779-791.

