ECONSTOR

Khan, M. Shuaib; Aleem, M.; Iqbal, Zafar; Pasha, A. T.

Article
 Reliability and quantile analysis of Pareto distribution

Pakistan Journal of Commerce and Social Sciences (PJCSS)

Provided in Cooperation with:

Johar Education Society, Pakistan (JESPK)

Suggested Citation: Khan, M. Shuaib; Aleem, M.; Iqbal, Zafar; Pasha, A. T. (2009) : Reliability and quantile analysis of Pareto distribution, Pakistan Journal of Commerce and Social Sciences (PJCSS), ISSN 2309-8619, Johar Education Society, Pakistan (JESPK), Lahore, Vol. 2, pp. 44-52

This Version is available at: https://hdl.handle.net/10419/187989

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

Reliability and Quantile Analysis of Pareto Distribution

M. Shuaib Khan, M. Aleem (Corresponding author), Zafar Iqbal
Department of statistics, The Islamia university of Bahawalpur. Pakistan
E-Mail: draleemiub@hotmail.com

A.T. Pasha

Department of Computer Science, B.Z U Multan. Pakistan

Abstract

This paper presents the reliability and Quantile analysis of the Pareto distribution. The main interests are in the relationship between β and various percentiles lives that describe the spread of the values in a set of data. Here these quantiles models are presented graphically and mathematically.

Key Words: Pareto distribution, Quantile analysis, percentile life.

1. Introduction

Pareto distribution is one of the most important distribution in statistical theory that describe the allocation of wealth among individuals (Lorenz, 1905). This distribution has also many applications for wind data. This distribution has many applications in Socio-economic problems, like population studies, in natural resources problems; size of firms, distribution of income over populations, pareto distribution curves gives a good fit to the data towards the extremes cases (primal .M, 2000).

2. Pareto Model Analysis

2.1 Pareto Probability Distribution

The Pareto probability distribution has two parameters α and β. It can be used to represent the fatigue probability density function (PDF) is given by:

$$
\begin{equation*}
f_{P}(t)=\frac{\beta}{\alpha}\left(\frac{\alpha}{t}\right)^{\beta}, \quad \alpha>0, \beta>0, t \geq \alpha \tag{2.1}
\end{equation*}
$$

Fig2.1 The Pareto PDF

Where β is the shape parameter representing the different pattern of the Pareto PDF and is positive, η is a scale parameter and is also positive. It can be seen from the pareto probability density graph that different patterns shows a small amount of variations, and then decreases steadily as $t \rightarrow \infty$. This distribution is not limited to describing wealth or income distribution, but to many situations in which an equilibrium is found in the distribution of the "small" to the "large". Fig. 2.1 shows the steadily decreasing shapes of the Pareto PDF with the value of $\alpha=1$ and $\beta(=0.5,0.8,1,1.5,2)$.

Fig2.2 The Pareto CDF

2.2 Pareto Cumulative Distribution Function

The cumulative distribution function of the Pareto distribution is denoted by $F_{P}(t)$ and is defined as:

$$
\begin{equation*}
F_{P}(t)=1-\left(\frac{\alpha}{t}\right)^{\beta} \tag{2.2}
\end{equation*}
$$

It can be seen from the pareto cumulative distribution graph that different patterns of unreliability shows an increasing pattern as $t \rightarrow \infty$. It is important to note that as shape parameter increases the patterns of unreliability is increases. It is also important to note that there is no unreliability pattern between zero and one. Fig. 2.1 shows the increasing shapes of the Pareto CDF with the value of $\alpha=1$ and $\beta(=0.5,0.8,1,1.5,2)$.

Fig2.3 The Pareto RF

2.3 Pareto Reliability Function

The reliability function of the Pareto distribution is denoted by $R_{P}(t)$ and is defined as:

$$
\begin{equation*}
R_{P}(t)=\left(\frac{\alpha}{t}\right)^{\beta} \tag{2.3}
\end{equation*}
$$

It can be seen from the pareto reliability graph that different patterns of reliability shows decreasing pattern as $t \rightarrow \infty$. It is important to note that as shape parameter increases then the patterns of reliability is decreases. It is also important to note that there is no reliability pattern between zero and one. Fig. 2.1 shows the decreasing shapes of the Pareto RF with the value of $\alpha=1$ and $\beta(=0.5,0.8,1,1.5,2)$.

Fig2.4 The Pareto HF

2.4 Pareto Hazard Function

The Hazard function of the Pareto distribution is denoted by $H_{P}(t)$ and is defined as:

$$
\begin{equation*}
H_{P}(t)=\frac{\frac{\beta}{\alpha}\left(\frac{\alpha}{t}\right)^{\beta}}{\left(\frac{\alpha}{t}\right)^{\beta}} \tag{2.4}
\end{equation*}
$$

It can be seen from the pareto hazard graph that different patterns of hazard shows decreasing pattern as $t \rightarrow \infty$. It is important to note that as shape parameter increases then the patterns of hazard is decreases. It is also important to note that there is no hazard pattern between zero and one. Fig. 2.1 shows the decreasing shapes of the Pareto HF with the value of $\alpha=1$ and $\beta(=0.5,0.8,1,1.5,2)$.

3. Quantile Analysis of the Pareto distribution

One of the important properties of the Pareto distribution is the percentile life or B-life in engineering terminology is defined as

$$
\begin{equation*}
t_{p}=\frac{\alpha}{(1-p)^{\frac{1}{\beta}}} \tag{3.1}
\end{equation*}
$$

Fig. 3.1 shows the relationship between β and various values of $\mathrm{B}-l i v e s$ ($\mathrm{B}-0.01, \mathrm{~B}-0.1, \mathrm{~B}-1, \mathrm{~B}-2$ and $\mathrm{B}-$ 3 lives) for $\alpha=1000$. It is clear that the larger the value of β, the smaller the B -lives for the same value of α. The simulated results of the percentile life are shown in table A.

Fig. 3.1 β vs B-lives for $\alpha=1000$

We obtain the maximum value of $\mathrm{B}-3$ life is 35401.33 for $\beta=0.1$ and the minimum value of $\mathrm{B}-3$ life is 1073.941 for $\beta=5$. We obtain the maximum value of $\mathrm{B}-2$ life is 9313.226 for $\beta=0.1$ and the minimum value of B-2 life is 1045.64 for $\beta=5$. We obtain the maximum value of $\mathrm{B}-1$ life is 2867.972 for $\beta=0.1$ and the minimum value of $\mathrm{B}-1$ life is 1021.296 for $\beta=5$. The relationship between β and percentile life for $\alpha=1000$ is shown in Fig. 3.1. Here we note that as $\beta \rightarrow \infty$ then percentile life has a minimum value asymptotically.

Fig. 3.2β vs B-25 life for $\alpha=1000$

The first Quartle life (B-25 percentile) of the Pareto distribution is defined as

$$
\begin{equation*}
B_{25 p}=\frac{\alpha}{\left(1-\frac{1}{4}\right)^{\frac{1}{\beta}}} \tag{3.2}
\end{equation*}
$$

For B-25 life mean this is the life for which the unit will have a failure probability of 25%. In fig 3.2 the shape parameter is taken along x-axis and its percentile life is taken along y-axis. In this percentile life the maximum life is 17757.73 for $\beta=0.1$ and the minimum value of median life is 1059.224 for $\beta=5$. The relationship between β and B-25 life for $\alpha=1000$ is shown in Fig. 3.2. Here we note that as $\beta \rightarrow \infty$ then B25 life has a minimum value asymptotically.

Fig. 3.3β vs B-50 life for $\alpha=1000$

The second Quartile life ($50^{\text {th }}$ percentile) of the Pareto distribution is defined as

$$
\begin{equation*}
B_{50 P}=\frac{\alpha}{\left(1-\frac{1}{2}\right)^{\frac{1}{\beta}}} \tag{3.3}
\end{equation*}
$$

This is the life by which 50% of the units will be expected to have failed, and so it is the life at which 50% of the units would be expected to still survive. We obtain the maximum value of median life is 1024000 for $\beta=0.1$ and the minimum value of median life is 1148.698 for $\beta=5$. The relationship between β and $\mathrm{B}-50$ life for $\alpha=1000$ is shown in Fig. 3.3. Here we note that as $\beta \rightarrow \infty$ then $\mathrm{B}-50$ life has a minimum value asymptotically.

Fig. 3.4β vs B-75 life for $\alpha=1000$

The upper Quartile life ($75^{\text {th }}$ percentile) of the Pareto distribution is defined as

$$
\begin{equation*}
B_{75 P}=\frac{\alpha}{\left(1-\frac{3}{4}\right)^{\frac{1}{\beta}}} \tag{3.4}
\end{equation*}
$$

This is the life by which 75% of the units will be expected to have failed, and so it is the life at which 25% of the units would be expected to still survive. We obtain the maximum value of upper quartile life is 1048576000 for $\beta=0.1$ and the minimum value of upper quartile life is 1319.50791 for $\beta=5$. The relationship between β and B-75 life for $\alpha=1000$ is shown in Fig. 3.4. Here we note that as $\beta \rightarrow \infty$ then B-75 life has a minimum value asymptotically.

4. Summary and conclusions

The quantile comprehensive study of the Pareto quantile modeling is predicted for finding the life time of the wealth distribution study. These properties $\beta^{\text {of }}$ the Pareto distribution for Quantile analysis are used for measuring fatigue data. These patterns of $\beta^{\text {and various B-lives are helpful for finding the life of Socio- }}$ economic problems.

Reference

Khan, M.S. Pasha, G.R. Pasha, A.H (2007). Reliability and Quantile Analysis of Weibull Distribution. Journal of Statistics, 14, 31-51.
Khan, M.S. Pasha, G.R., Pasha, A.H. (2007). Quantile Analysis of the Inverse Weibull Distribution. Presented at $3^{\text {rd }}$ National Conference on Statistical Sciences (ISSOS) May 28-29, Lahore
Khan, M.S. Pasha, G.R. (2009). Quantile Analysis of the Generalized Exponential Distribution. Presented in $5^{\text {th }}$ International Conference on Statistical Sciences: Mathematics, Statistics and applications on January 23-25, 2009 at NCBA\&E, Lahore

Lorenz, M. O. (1905). Methods of measuring the concentration of wealth. Publications of the American Statistical Association. 9, 209-219.
Liu, Chi-chao, (1997). A Comparison between the Weibull and Lognormal Models used to Analyze Reliability Data. University of Nottingham, UK.
Mukhopadhyay .parimal (2000). Mathematical Statistics. (2 ${ }^{\text {nd }}$ Edition).
M. Hänler, U. Ritschel1, and I. Warnke (1998). Pareto distribution for extreme loads on wind turbines. Windrad Engineering GmbH, Querstr. 7, 18230 Zweedorf, Germany

Appendix

Table A. Relationship Between β vs B-lives for Pareto Distribution

2.5	1000.4	1004.028	1043.045	1093.362	1153.349	1121.955	1319.508	1741.10113
2.6	1000.385	1003.873	1041.356	1089.615	1147.038	1117	1305.512	1704.36079
2.7	1000.371	1003.729	1039.794	1086.157	1141.225	1112.432	1292.685	1671.0336
2.8	1000.357	1003.596	1038.346	1082.956	1135.853	1108.207	1280.887	1640.67071
2.9	1000.345	1003.472	1036.999	1079.984	1130.875	1104.288	1269.999	1612.89796
3	1000.334	1003.356	1035.744	1077.217	1126.248	1100.642	1259.921	1587.40105
3.1	1000.323	1003.247	1034.571	1074.636	1121.937	1097.243	1250.566	1563.91412
3.2	1000.313	1003.146	1033.473	1072.221	1117.91	1094.066	1241.858	1542.21083
3.3	1000.303	1003.05	1032.443	1069.958	1114.141	1091.089	1233.733	1522.09732
3.4	1000.294	1002.96	1031.474	1067.832	1110.604	1088.295	1226.135	1503.40665
3.5	1000.286	1002.876	1030.561	1065.832	1107.281	1085.667	1219.014	1485.99429
3.6	1000.278	1002.796	1029.699	1063.946	1104.151	1083.191	1212.326	1469.73449
3.7	1000.27	1002.72	1028.885	1062.165	1101.198	1080.854	1206.034	1454.51739
3.8	1000.263	1002.648	1028.114	1060.48	1098.408	1078.645	1200.103	1440.24654
3.9	1000.257	1002.58	1027.384	1058.885	1095.768	1076.553	1194.503	1426.83698
4	1000.25	1002.516	1026.69	1057.371	1093.265	1074.57	1189.207	1414.21356
4.1	1000.244	1002.454	1026.031	1055.934	1090.89	1072.687	1184.192	1402.30958
4.2	1000.238	1002.396	1025.403	1054.566	1088.633	1070.896	1179.434	1391.06562
4.3	1000.233	1002.34	1024.805	1053.264	1086.485	1069.192	1174.916	1380.42861
4.4	1000.227	1002.287	1024.235	1052.022	1084.439	1067.567	1170.62	1370.35098
4.5	1000.222	1002.236	1023.69	1050.837	1082.487	1066.017	1166.529	1360.79
4.6	1000.218	1002.187	1023.169	1049.705	1080.623	1064.537	1162.629	1351.70714
4.7	1000.213	1002.141	1022.67	1048.622	1078.842	1063.121	1158.908	1343.06759
4.8	1000.208	1002.096	1022.193	1047.586	1077.138	1061.766	1155.353	1334.83985
4.9	1000.204	1002.053	1021.735	1046.592	1075.506	1060.468	1151.953	1326.9953
5	1000.2	1002.012	1021.296	1045.64	1073.941	1059.224	1148.698	1319.50791

