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a b s t r a c t

Demand response (DR) can expand the customer participation in the electricity market and lead by
changing its pattern from a simple function to an interactive relation. There are various methods to
evaluate the successful implementation of DR program, the most important of which is determination
of customer baseline load (CBL). In fact, CBL is the expected pattern of customer consumption in the
absence of DR programs. Fewworks have been done in the field of calculation of CBL in residential sector,
while most of them have paid little attention to the impact of changes in weather conditions on these
calculations.

In this paper, a new method is presented for the calculation of CBL for customers in residential sector
in the context of a smart grid, considering the impact of weather changes. The results clearly show the
high impact of changes in weather conditions on the calculation of CBL, and also show the extent of
effect of buildings’ improved insulation on this parameter. It is also indicated that implementing DR
programs can increase thewillingness of customers in residential sector to improve the insulations of their
buildings.

© 2016 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Until recent years, the activities ofwholesale electricitymarkets
were limited to electricity power generation companies, whowere
competing to gain a higher share of the market and increase
their profits. The demand side had little activity due to lack of
adaptability to this new environment. This inactivity in demand
side led to the greed of supply side which resulted in an increase
in prices. This price increase alerted the demand side and caused
it to look for strategies to come out of this passivity, which in turn
led to the emergence of a broad discussion in electricity markets
called the Demand Side Management (DSM).

Demand response program is one of the DSM techniques. De-
mand response is the process of managing consumers’ consump-
tion in response to the supply conditions with the aim of reducing
electricity costs and improving system reliability (Yin et al., 2010).

Environmental issues such as increased emission of pollutants
along with the rapid growth of energy demand and rising fuel
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costs have recently diverted more attention to renewable energy
sources. But electricity generation through wind or solar energy
sources often comes with some degrees of uncertainty. DR
programs can help tackling these uncertainties (Brahman et al.,
2015).

Demand response is a key component in smart grids (Li and Ho
Hong, 2014). Smart grid enables bidirectional flows of energy and
uses two-way communication between consumers and suppliers
(Pereira et al., 2015).

There are various methods to check the successful implemen-
tation of DR programs and customer baseline load (CBL) is the
most important method in this regard. In fact, CBL is the pattern of
customers’ expected consumption in the absence of DR programs.
Therefore, CBL must be determined first, and then the amount
of consumption is determined after implementing DR programs.
Comparing these two values will determine the success rate of DR
programs. Determination of the amount of reduced demand com-
paredwith CBL is one of themost important issues in DR programs.

So it can be said that CBL is an important measuring
criterion for evaluating the performance of load management
programs (Gonzalez Cabrera and Gutierrez Alcaraz, 2013). As a
result, accurate calculation of CBL is an important step in the
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Fig. 1. Load reduction in CBL after the implementation of DR program.

implementation of DR programs. For example, if CBL is obtained
lower than its actual value, therewill be no incentive for consumers
to participate in DR programs.

Overall, there are two different methods to calculate CBL:

1. Day Matching Method.
2. Regression Analysis.

The first one, which is a statistical method, is based on using
short historical periods for prediction (Park et al., 2014).

Authors of Ref. Won et al. (2009) have used statistical methods
to calculate the value of CBL in South Korea. In Coughlin et al.
(2009) a statistical analysis on the performance of differentmodels
is performed for the calculation of CBL of buildings that participate
in DR programs.

New England ISO uses the data related to five similar days prior
to the current date to calculate CBL, while California ISO (CAISO)
uses the data related to three similar days prior to the current
date for this purpose. In South Korea, the data related to four most
energy intensive days among last five days is used to calculate CBL
(Coughlin et al., 2008).

Ref. Park et al. (2014) has presented a framework for the
estimation of CBL in order to be used for DR programs in a
smart grid. The method presented in this reference is based on
unsupervised learning technique in data mining.

Ref. Avci et al. (2013) has also provided amethod for calculating
CBL. In that method, CBL characteristics are used to find better
matches in previous time periods in terms of power consumption.
In Coughlin et al. (2008), regression models have been used to
determine CBL. Thatmodel has used the relation between electrical
loads and temperature. Ref. Gonzalez Cabrera and Gutierrez
Alcaraz (2013) has presented a CBLmodel based on decomposition
method.

The procedure employed in the present paper is a new dynamic
method based on a combination of statistical and regression
methods in the context of a smart grid. In this method, regression
model is based on the technique being used for energy audits of
the buildings.
Fig. 2. Electrical loads of residential sector.

The remaining of this paper is organized as follows: problem
statement is described in Section 2. Section 3 presents the method
of calculating customer baseline load (CBL). In Section 4, the impact
of demand response programs on customer incentives to improve
quality of the building is investigated. Section 5 provides numerical
results and Section 6 outlines conclusions.

2. Problem statement

Retail companies are relatively new elements in the power
industry which in fact act as intermediary agent between
wholesale markets and consumers. Competition between retail
companies results in providing higher flexibility for consumers in
choosing their retail company to supply their electrical energy.
Therefore, retail companies are constantly looking for increase in
their customers’ satisfaction. In general, consumers can be divided
into two main groups based on their behavior toward electric
energy costs. The first group is quite sensitive to the price of electric
power, while the other group is less sensitive.

Consumers of the first group impose a higher risk to the re-
tail companies because they are more likely to switch retailers in
case of being dissatisfied by the high price of electrical energy.
Therefore, retail companies apply various strategies to increase
customers’ satisfaction. Implementation of DR programs is one of
these strategies. As mentioned earlier, for themarket to determine
the reduction of customer load caused by implementation of DR
programs, customer baseline load (CBL) must be constantly calcu-
lated and compared with customers’ consumption. Overall, con-
sumers’ electrical energy consumption, affected by DR programs is
as follows:

Dt = CBLt + Dother
t

Dt = Consumption at time t [MW ]

Dother
t = Increase or decrease relative to

CBL Consumption at time t [MW ].

(1)

The negative values of Dother indicate the success of DR
programs. This reduction is the basis of monetary benefits.
Fig. 1 shows the manner of load reduction in CBL after the
implementation of DR programs.

3. Method of calculating customer baseline load

The first step to calculate CBL is to identify and collect
appropriate relevant data. The method presented in this paper
focuses more on current loads, unlike conventional methods that
pay less attention to these loads. As Fig. 2 shows, Electrical loads
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Fig. 3. Energy consumption throughout different years in the UK (Haney et al., 2011).
can be divided into two categories: non-flexible loads (NFL) and
flexible loads (FL).

Loads such as lighting, electronic systems, and cooking
appliances are non-flexible loads which are largely unchanged
in terms of amount and time of consumption. Flexible loads are
those, the size and time of which can be controlled to a large
extent. These loads can be divided into two categories based on
their characteristics: Deferrable loads (DL), and Loads based on
temperature (BT). Loads caused by appliances such as washing
machines and dishwashers are deferrable loads, and loads caused
by HVAC (heating, ventilating, and air conditioning) are based
on temperature. Air conditioners compose a large share of total
electrical energy consumption in buildings (Pérez-Lombard et al.,
2008).

Temperature-based flexible loads have large fluctuations be-
cause of their intrinsic characteristics. Fig. 3 shows the electrical
power consumption in the residential sector for different years
(Haney et al., 2011).

As can be seen in Fig. 3, these loads (unlike the other loads)
have large fluctuations and the most important reason behind this
issue is the climatic changes throughout different years. But the
other loads have a constant rate and time of consumption and the
steady increase in the loads of lighting and electronic devices is
mainly related to increased use of devices such as mobile phones,
computers, etc. in the last two decades. Therefore, determining
the pattern of these loads is relatively simple compared with
deferrable flexible loads. As a result, these loads pose no problem
in this issue.

Also Ref. Haney et al. (2011) has presented the large extent of
this share compared with other loads in the residential sector of
different countries.

Therefore, given the magnitude and fluctuating nature of these
loads, they create many challenges in the process of determining
CBL.

According to these discussions, the following equations can be
used to calculate CBL per hour:

Dt = DFL
t + DNFL

t = DBT
t + DDL

t + DNFL
t

FL—Flexible Loads NFL—Non Flexible Loads
DL—Deferrable loads BT—Based On Temperature.

(2)

And accordingly:

DSR
t = DDL

t + DNFL
t = Steady Rhythm (SR). (3)

Therefore, DSR has a fixed rate which can be easily obtained
through examining historical data. For temperature-based loads,
however, the conditions are different, since variations in tem-
perature have significant impact on their values, therefore the
temperature-based loads impose the greatest challenge in this
field.

3.1. Calculation of DBT

This article has assumed a smart grid where information is
exchanged freely between retailer companies and consumers,
or in the absence of a smart grid, several different load type
buildings are considered in the study network, which are equipped
with instruments for recording data about electrical power
consumption. Fig. 4 shows an overview of the communications
between retailer companies and customers in the context of a
smart grid.

In this system, the retailer company acquires the size of electric
power consumption (DBT ) in HVAC system from smart thermostats
installed in the houses with regard to the changes in temperature.
These data then will be converted to the form of (1T , DBT ) and
will be plotted in the form of power consumption scatter diagram
(Fig. 5). Horizontal axis of this diagram represents the differences
between the outside temperature and the desired temperature
for indoor environments and its vertical axis shows customers’
electric power consumption related to HVAC systems (DBT ). In this
paper, customers’ electric power consumption for HVAC systems
(DBT ) which is influenced by the temperature difference between
indoors and outdoors (1T ) is called dependent variable (response
variable). 1T variable which affects the response variable is called
explanatory variable (independent variable).

Shape of the scatter diagram can indicate a relationship or
lack of relationship between two variables. When a variable
increases by the increase of other variable there can be a positive
correlation between those two variables, and when a variable
decreases by the increase of other variable there can be a negative
correlation between them. Shape of the scatter diagram cannot
definitively show the relationship or lack of relationship between
two variables. In other words, if a scatter diagram indicates a
correlation between two variables, there may or may not actually
be a correlation between those two variables, and both may be
increased or decreased by a third factor. Therefore, it is important
to note that correlation does not necessarily mean causation.

Fig. 5 indicates that DBT increases with the increase of 1T
variable. With the help of regression, we will seek to obtain a
pattern or mathematical relation between these variables, so that
we can determine the quantity of an unknown variable (DBT ) with
the help of the known variable (1T ). To start, we must estimate
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Fig. 4. Communications between retailer companies and customers.
Fig. 5. Scatter diagram of recorded power consumptions related to air conditioners
(DBT ) versus the temperature difference (1T ).

a linear relationship between these two variables, and scatter
diagram can give us an initial idea in this regard. The estimated
equation can be written as follows:

DBT
t = β11Tt + β0. (4)

In this equation, β0 and β1 are the intercept and slope
respectively. In regression applications these variable are called
regression coefficients. The most common way for estimating
these values is the least-squares regression method. We use this
method to estimate regression coefficients. As shown in Fig. 6, this
method gives us a line in which the sum of the squares of vertical
distances from the points to the regression line is minimized.

In this method, parameters are obtained by minimizing the
following function:

SSE =

N
i=1

(DBT
i −

∧

Di
BT )

SSE = Sum of Squared Errors

N = number of observerd observed data (DBT
i , 1T ).

(5)
Fig. 6. The least squares method for calculation of regression line.

It is obvious that coefficients should be estimated in a way
that would result in minimum SSE for all points of (1T , DBT ).
Calculating the derivative of that equation will result in following
formula:

β1 =
SSxy
SSxx

and β0 = DBT
i − β11Ti

where

SS1T1T =


(1Ti − 1Ti)2 =


1T 2

i −
1
N


1Ti

2

SSxy =


(1Ti − 1Ti)(DBT

i − DBT
i )

=


1TiDBT

i −
1
N


1Ti

 
DBT
i


.

(6)

Regression can also be calculated with the help of softwares
such as SPSS.

As a result, these equations can help us obtain baseline load
and are also useful in predicting the future load and purchasing
electrical energy.

3.2. Proposed method for calculating CBL

As mentioned earlier, to determine the reduction of customer
load caused by implementation of DR programs, customer baseline
load (CBL) must be constantly calculated and compared with
customers’ consumption. In many markets, the calculation of
customer base load (CBL) is based on the average consumption
of customers in the last 2, 4, 5, 8, or 10 similar days (Faria
et al., 2013; Yamaguchi et al., 2009). In this study, we use the
average consumption of last 5 similar days. The method presented
in this paper is based on modification of values obtained from
conventional methods with regard to weather conditions.



78 R. Sharifi et al. / Energy Reports 2 (2016) 74–81
This method has six steps. The first three steps are common
in most conventional methods (Faria et al., 2013) and the only
difference of this method is the number of considered days. But
the last three steps are the innovative approach of the presented
method. This approach is the modification of CBL with regard to
weather conditions which play an important role because of the
power consumption of air conditioning equipment.

According to the above discussion, the algorithm of method
presented in this paper for the working days are as follows:

Step one: the data of last 10 days will be collected for the
calculation of customers baseline load.

Step two: 5 days will be selected from the 10 days mentioned
above. These 5 dayswill be selected by eliminating 5 days including
holidays and days with lower consumption.

Step three: For each hour of the day, power consumption of 5
selected days will be averaged. This average value will represent
the customers’ baseline load in working days.

DAve
t =

D1
t + D2

t + D3
t + D4

t + D5
t

5
. (7)

Step four: For each hour of the day, temperature of 5 selected
days will be averaged.

T Ave
t =

T 1
t + T 2

t + T 3
t + T 4

t + T 5
t

5
. (8)

Step five (modification): in this step, power consumption
values will be modified with respect to temperature values. This
modification will be performed according to Eq. (4). It can be
said that, for each degree of temperature change, the size of air
conditioning loads will change by β1.

Step six (calculation of CBL): According to the previous five
steps, CBL can be obtained as follows:

CBLt = DAve
t + (Tt − T Ave

t )β1

CBLt = Customer Baseline Load for t
Tt = Air temperature for t.

(9)

The process of calculating CBL for holidays is similar to that for
working days, except that only last four holidayswill be considered
and the one with lower consumption will be eliminated.

4. Quality of the building thermal insulation and demand
response programs

With help of the obtained model (Eq. (9)), It is shown that the
size of electrical power consumption related to changes inweather
conditions depends on the size of β1 ∗ 1T , and the increase or
decrease in these two parameters has a significant impact on the
increase or decrease of electric power consumption. In the case of
1T , this factor is dependent on weather conditions.

On the other hand, the size of heat loss Q is proportional to
the temperature difference between indoors and outdoors. This
loss mainly depends on the thermal insulation quality of buildings,
and can be calculated using the following equation for walls and
windows (Rautiainen et al., 2009):

Q = UA ∗ 1T (10)

where U is the heat transfer coefficient and A is the area of the
wall. So power loss is proportional to the multiplication of UA
and temperature difference. This equation for the ground floor is
equal to multiplying coefficient of proportionality F by floor area
P . For natural ventilation and air conditioning, multiplication of
mass flow rate and specific heat of the air gives the power loss.
The amount of power required for heating of flow with mass flow
rate
◦

m and with specific heat capacity of CP is equal to
◦

m Cp1T . So
the total heat loss is:

Q = UA ∗ 1T + FP ∗ 1T +
◦

m CP ∗ 1T

= (UA + FP +
◦

m CP) ∗ 1T . (11)

Here, a factor called Building Load Coefficient (BLC) is defined
as:

BLC =


UA +


FP +

◦

m CP

BLC = Building Load Coefficient.
(12)

In fact, the building load coefficient is the amount of heat load
for each degree of temperature difference between indoor and
outdoor. Then we can write:

Q = BLC ∗ 1T . (13)

Comparing Eqs. (4) and (13) shows that β1 is equivalent to BLC,
except that β1 is related to all buildings in the studied network,
but BLC is for a specific building. BLC value is unique for each
building and depends on the quality of thermal insulation and
other specifications. β1 value can be obtained by the following
equation.

β1 =

N
i=1

BLC i

N = the number of residential customers
BLC i = BLC for ith residential customers.

(14)

According to the above equation, it can be concluded that
β1 somehow represents an overall assessment on the quality of
insulations in all costumers’ building in that certain network.

So the impact of building insulation quality on the electric
power consumed by air conditioning systems is formulated.
Higher quality of insulation in buildings reduces BLC value
and consequently reduces β1. Therefore, implementing demand
response programs and its benefits for consumers, will encourage
them to take actions such as using double glazed windows to
improve the insulation quality of their buildings.

5. Numerical results

Nord Pool is the northern Europe electricity market shared
by Norway, Denmark, Sweden and Finland. This market is the
first multinational electrical energy trade market in the world. It
includes different regions, and NO1 is one of its most important
regions which is tasked with supplying electric power to the
Norwegian capital Oslo.

In this study, it is to perform load management programs for
the city of Oslo from the start of August 2014. So as mentioned
in the previous sections, Customer Baseline Load (CBL) must be
calculated for each hour to determine the success rate of this
program. Therefore, According to the first step of the proposed
method, the data related to power consumption and weather
conditions in last ten days should be collected to calculate CBL.

The data related toNO1 region required for this part of paper are
acquired from Nord Pool Spot (2014) and Weather service (2014).
These data, which are related to the time interval from July 22 to
July 31, 2014 (summer) for the hour between 17 and 18 o’clock, are
shown in Table 1.

According to the second step, 5 days of these 10 days must be
eliminated. These 5 days should be July 26–27 for being holidays
and July 29–31 for their lower consumption compared to the other
days. Data related to the remaining five days are shown in Table 2.



R. Sharifi et al. / Energy Reports 2 (2016) 74–81 79
3000

2500

2000

1500

1000

500

0
80 100 120 140 160

C
us

to
m

er
 B

as
e 

L
in

e

or Building Load Coefficient (BLC)β1

180

Fig. 7. Sensitivity analysis based on the first scenario.
Table 1
Data collected from NO1 region.

Date Hour Consumption (MWh) Temp (°C)

22-Jul Tue 17–18 1758.3 30
23-Jul Wed 17–18 1932.9 30
24-Jul Thu 17–18 1848.5 30
25-Jul Fri 17–18 1895.3 30
26-Jul Sat 17–18 1826.4 29
27-Jul Sun 17–18 1957.4 18
28-Jul Mon 17–18 1907.4 26
29-Jul Tue 17–18 1747.6 26
30-Jul Wed 17–18 1732.7 24
31-Jul Thu 17–18 1696.2 21

Table 2
Data gathered from the second step.

Date Consumption (MWh) Temp (°C)

22-Jul Tue 1758.3 30
23-Jul Wed 1932.9 30
24-Jul Thu 18.48.5 30
25-Jul Fri 1895.3 30
28-Jul Mon 1907.4 26

Average DAve
t = 1868.48 T Ave

t = 29.2 °C

According to the third step, DAve
t must be calculated:

DAve
t =

D1
t + D2

t + D3
t + D4

t + D5
t

5

=
1758.3 + 1932.9 + 1848.5 + 1895.3 + 1907.4

5
= 1868.48. (15)

Nowas the fourth step, the average temperature for the selected
days must be obtained:

T Ave
t =

T 1
t + T 2

t + T 3
t + T 4

t + T 5
t

5

=
30 + 30 + 30 + 30 + 26

5
= 29.2 °C. (16)

In the fifth step, value of third step must be modified with
respect to the air temperature. Finally as the last step, the average
power consumption is obtained as follows:

CBLt = DAve
t + (Tt − T Ave

t )β1 = 1868.48 + (Tt − 29.2)β1. (17)
CustomerBaseline LoadModels for residential sector in a smart-
grid is a new subject of research and to the best of the authors’
knowledge; few papers have been presented in this area. The
literature review shows that in the last few years, growing number
of researchers have shown interest in this topic, but unfortunately,
there is still no other work whose results can be compared with
those obtained here. On the other hand, validating the model
with experimental data requires us to implement a model-sized
smart grid thatwould possess the characteristics and requirements
stated in the paper, something that is currently impossible due to
novelty subject of smart grid and lack of proper infrastructure to
implement this model at this time. This paper aims to provide an
infrastructure study for smart grids, which considering their rapid
growth (LyonsHardcastle, 2012),will be certainly achievable in the
next few years.

Validity of the proposed model was assessed by a sensitivity
analysis (SA). Sensitivity analysis is the study of how the variation
(uncertainty) in the output of a statistical model can be attributed
to different variations in the inputs of the model (Saltelli et al.,
2008). In the other words, it is a method for systematically
changing variables in a model to correctly predict the resulting
impact on the outputs.

To validate the presented model via sensitivity analysis, two
following scenarios are assumed. In the first scenario of sensitivity
analysis, we check the how the variation in the output CBL with
respect to variations of input β1 at the constant temperature
of Tt = 35 °C. It is clear that the value of β1 increases
with the decrease of insulation quality. On the other hand,
a decrease in insulation quality increases the energy loss and
consequently the increased power consumption, which in turn
increases the customer baseline load (CBL). So it is reasonable to
expect the proposed model in this paper to correctly predict this
behavior. Validity of this argument is proved by sensitivity analysis
conducted on the model; results of this analysis is shown in Fig. 7.

In the second scenario of sensitivity analysis, we check the
how the variation in the output CBL with respect to variations
of temperature for a fixed β1 = 120. As temperature increases,
the cooling system is expected to require more power, which in
turn leads to an increased baseline load. The proposed model is
expected to adequately predict this behavior and Fig. 8, which
shows the results of sensitivity analysis, demonstrates the validity
of this argument.

According to the obtained results, the effect of β1 on changes in
customers baseline load is successfully determined. Fig. 9 shows
variation of CBL with respect to the variations in the temperature,
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Fig. 8. Sensitivity analysis based on the second scenario.
Fig. 9. Changes in CBL with respect to changes in temperature and β1 .
for different values of β1, from 80 to 180 megawatt hours per
degree centigrade. Therefore, based on these results one can
say that using conventional methods of CBL calculation, without
considering weather changes, greatly reduces the accuracy of
calculation and can cause problems in the implementation of DR
programs.

6. Conclusion and future work

In this paper, a dynamic method was presented for calculating
CBL for customers of residential sector by considering the impact
of weather conditions on power consumption. Unlike the most
common models, that use statistical methods such as the average
consumption of the last few days to determine CBL, the proposed
method uses a dynamic model based on a combination of linear
regression and statistical models for this purpose.

The results clearly indicated the high impact of changes in
weather conditions on the calculation of CBL, and also showed
the extent of effect of improved insulation in the buildings on this
parameter.

As mentioned in the paper, average of demand values is used
here which can reduce the model accuracy. Although this is a
common method of CBL calculating in most of the electricity
markets but however it cannot return a completely accurate and
error-free result. Working on this issue is considered as the future
work.
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