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Urbanization is a fundamental trend of the past two centuries, shaping many dimensions of the modern world. To
guide this phenomenon and support growth of cities that are competitive and sustainably provide needed services,
there is a need for information on the extent and nature of urban land cover. However, measuring urbanization is
challenging, especially in developing countries, which often lack the resources and infrastructure needed to
produce reliable data. With the increased availability of remotely sensed data, new methods are available to map
urban land. Yet, existing classification products vary in their definition of “urban” and typically characterize
urbanization in a specific point (or points) in time. Emerging cloud based computational platforms now allow one
to map land cover and land use (LC/LU) across space and time without being constrained to specific classification
products. Here, we highlight the potential use of publicly available remotely sensed data for mapping changes in
the built-up LC/LU in Ho Chi Minh City, Vietnam, in the period between 2000 and 2015. We perform a pixel-
based supervised image classification procedure in Google Earth Engine (GEE), using two sources of reference
data (administrative data and hand-labeled examples). By fusing publicly available optical and radar data as input
to the classifier, we achieve accurate maps of built-up LC/LU in the province. In today's era of big data, an easily
deployable method for accurate classification of built-up LC/LU has extensive applications across a wide range of
disciplines and is essential for building the foundation for a sustainable human society.
1. Introduction

Urbanization is a fundamental trend of the past two centuries and a
key force in shaping many dimensions of the modern world. Between
1950 and 2014, the share of the global population living in urban areas
increased from 30% to 54%; over the next few decades, the global urban
population is projected to expand by an additional 2.5 billion individuals,
primarily in Asia and Africa (UN, 2014). In the next 15 years alone, the
global land area incorporated in cities is projected to grow by 1.2 million
km2 (Seto et al., 2012). While urbanization in rapidly growing nations is
helping lift hundreds of millions of people out of poverty, it is also
associated with immense societal challenges (Henderson, 2002). Unless
guided by policies and appropriate planning, the speed and scale of ur-
banization in developing countries can result in unsustainable settle-
ments that create pressure on ecosystems (Kontgis et al., 2014; Pham
et al., 2015), a failure to effectively provide necessary public services
(Cohen, 2006) and as a result, cities that are unable to compete in a
globalized environment (Venables, 2017).
tt).
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Countries of the Mekong region in Southeast Asia are transforming
from rural to urbanized societies at a pace and scale never previously
witnessed (Archer and Bezdecny, 2016). Vietnam, one of the most
densely populated countries in the Mekong, has been urbanizing rapidly,
both spatially and demographically, putting resources and basic services
in peri-urban regions of the country under mounting strain (Saksena
et al., 2014). The country has identified the promotion of a stable and
sustainable urban development as a key element of its urban system
master plan (Decision No. 445/QD-TTg, 2009) and spends considerable
amounts of resources to generate, at 5-yearly intervals, information on
land use. This information provides the basis for a wide range of policy
decisions. In this paper, we propose a methodology that allows genera-
tion of such information based on satellite imagery in high precision and
at any point in time. Accurate maps of LC/LU will allow monitoring
changes on the ground at a much higher frequency compared to existing
governmental data, which, in turn, may be of great value to policy
makers.

How exactly do we measure urbanization? Previous literature
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characterizes urbanization, alternatively, as an increase in the share of
the population living in cities, the level of non-agricultural employment
or production, the pace of resource consumption, or the presence of
traffic congestion (Yue et al., 2013). Data often come from census counts
that are published infrequently and vary in their resolution and precision,
due, it part, to limited resources for data collection (Keola et al., 2015).

Since the 1970s, terrestrial Earth-observation data have been
collected in various spectral, spatial and temporal resolutions. With the
increased availability of satellite imagery and other types of remotely
sensed data, new methods are being developed to convert these data into
meaningful information about the nature and pace of change of urban
landscapes and human settlements (Ban et al., 2015; CIESIN, 2005; Chen
et al., 2015; Gaughan et al., 2013; Pesaresi et al., 2016b; Potere et al.,
2009; Seto et al., 2011; Taubenb€ock et al., 2012). Reliable and accessible
tools that utilize publicly available satellite data to map and measure
urbanization across both space and timewould help developing countries
to promote a sustainable urban development.

Covering a period of over 40 years, Landsat satellites provide the
longest temporal record of moderate resolution multispectral data of
Earth's surface. Because Landsat satellites have been collecting data from
Earth since 1972, these data are often used for analysis of urbanization
(Patel et al., 2015; Seto et al., 2011). However, the moderate spatial
resolution (30m) of Landsat does not allow one to fully capture the
complex spatial patterns of urban environments (Lu et al., 2010), due, in
part, to the problem of “mixed pixels,” i.e., the spectral reflectance
mixture of different land cover classes within a pixel (Lee and Lathrop,
2005). The launch of the European Space Agency's Copernicus program
Sentinel satellites in the mid-2010s, represents a major advance in the
public availability of remotely sensed data. Sentinel satellites provide
global coverage of radar and multi-spectral imaging instruments for land,
ocean and atmospheric monitoring with high-resolution observations
and a high revisit rate. Although the added value of Sentinel-derived data
for classification of land cover and land use has been shown in past
research (Forkuor et al., 2017; Pesaresi et al., 2016a; Sharma et al.,
2017), the potential combined use of Sentinel-1 and Sentinel-2 data for
urban research remains underexplored.

In this study, we demonstrate the use of different sources of publicly
available remotely sensed data for mapping the built-up land cover and
land use (LC/LU) in one province in Vietnam - Ho Chi Minh City. We
perform the classification in Google Earth Engine (GEE), a cloud-
computing platform for planetary-scale analysis. GEE has been previ-
ously used, for example, to map population (Patel et al., 2015; Trianni
et al., 2015), urban extent (Goldblatt et al., 2016, 2018), and surface
water (Pekel et al., 2016). We show that with publicly available satellite
data and open-access cloud-based computational platforms, it is now
possible to map LC/LU with high precision and high temporal resolution.
We perform supervised pixel-based image classification utilizing two
sources of reference data (ground-truth labeled examples):
high-resolution administrative cadastral data from the Vietnamese gov-
ernment and hand-labeled examples. We use these data to map changes
in the extent of built-up LC/LU in the period between 2000 and 2015 and
evaluate the relation between the extent of built-up LC/LU, population
size and economic development (measured according to the intensity of
light emitted at night). Our objective is not to propose a new classifica-
tion product or to develop a new machine learning approach but to
validate the use of a low-cost, publically available tool for analyzing the
pace of LC/LU change for a wide-range of geographical scales.

To summarize, the objectives of this study are: (1) to present a reli-
able, low-cost tool that uses publicly available satellite data and cloud-
based computational platform to map built-up LC/LU in HCMC, Viet-
nam; (2) to map temporal changes in the extent of built-up land cover in
the province, over the period 2000 to 2015; (3) to evaluate the use of
administrative vector data as reference for supervised image classifica-
tion; and (4) to evaluate the association between the extent of built-up
land cover and the distribution of the population and economic activity
in the province.
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We now provide a description of previous studies utilizing remotely
sensed data for urban research, including in the context of Vietnam
(Section 2). We then turn to describe the study area and the research
methods (Section 3). In section 4 we present and evaluate the results. In
Section 5, we offer a concluding discussion.

2. Background

2.1. Measuring urbanization by means of remote sensing

Urbanization occurs as rural areas are incorporated into cities, typi-
cally through sprawl radiating out from the city center or linearly along
major transportation corridors (Baum-Snow, 2007; Sudhira et al., 2004).
The growth of cities, which often occurs in unplanned and uneven pat-
terns (Sudhira et al., 2004), changes the spatial distribution of population
sub-groups (Rahman et al., 2011), often together with altering LC/LU
patterns (Bhatta, 2009; Schneider et al., 2010) including through the
expansion of built-up areas and impervious surfaces (Bhatta, 2009; Jat
et al., 2008) and the conversion of farmland into urban settlements
(Dewan and Yamaguchi, 2009).

Remotely sensed data, which record the physical characteristics of
Earth, can be used to measure the spatial-physical characteristics of
urban environments, such as impervious surfaces (Lu and Weng, 2006;
Slonecker et al., 2001; Weng, 2012), street networks (Hu et al., 2014; W.
Shi et al., 2014b; Zhang et al., 2002), building footprints (Lu et al., 2014;
Taubenb€ock and Kraff, 2014; Zeng et al., 2013) and urban green spaces
(Feyisa et al., 2014; Rotem-Mindali et al., 2015), and to map urbanization
processes (Patino and Duque, 2013). An extensive body of research has
utilized publicly available remotely sensed data for urban research,
including data acquired by Landsat (Chen et al., 2015; Gaughan et al.,
2013; Goldblatt et al., 2016; Patel et al., 2015), MODIS (Moderate Res-
olution Imaging Spectroradiometer) (Schneider et al., 2010; Wan et al.,
2015), DMSP-OLS (Elvidge et al., 2014; Liu et al., 2012; Xiao et al., 2014;
Zhang and Seto, 2013), VIIRS (Elvidge et al., 2013, 2017) and other HR,
VHR and SAR radar sensors (Ban et al., 2015; Chen et al., 2013).

The accuracy of the classification – or, the successful mapping of LC/
LU by means of machine learning – depends largely on the properties and
characteristics of the input data that are used for classification. These
characteristics include the spatial resolution of the sensors (i.e., the size of
the smallest object that can be identified as an individual entity), their
spectral resolution (i.e., the number of spectral bands, their bandwidths
and locations along the spectrum (Herold et al., 2003) and the temporal
resolution of the acquired data (i.e., the revisit period of the satellite in a
given location on Earth).

Spatial resolution is considered one of the most significant factors in
determining the successful mapping of heterogeneous and fragmented
landscapes (Chen et al., 2004), including complex urban settings (Herold
et al., 2002; Momeni et al., 2016; Rashed and Jürgens, 2010; Sertel and
Akay, 2015). In addition, specific spectral bands, such as thermal bands,
can improve classification performance in urban environments. For
example, because industrial and dense urban areas are warmer than open
farmland and or natural vegetation (Roth et al., 1989), using these bands
as input for classification can increase the separability of these land cover
types.

Yet, choosing which data to use and for which application depends on
the characteristics of the data, its coverage, availability and cost, as well
as on the methods used to interpret and analyze the data (Pohl and
Genderen, 1998). Different sensors record distinct characteristics of the
surface (e.g., brightness, temperature, height, density, texture), but not
always at the same resolution. Because each of these characteristics can
improve our understanding of land cover, data fusion techniques that
exploit the best characteristics of each type of sensor have become a
valuable procedure in remote-sensing analysis (Abdikan et al., 2014),
including for urban applications (Gamba, 2014). For example, urban
settings are often characterized by complex textures, compositions and
heights. These features can be captured by Synthetic Aperture Radar
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(SAR) sensors, such as those on board Sentinel-1 (Koppel et al., 2015).
Furthermore, combining optical and radar data through data fusion (e.g.,
by infusing Sentinel-1 SAR data with Landsat or with Sentinel-2) allows
one to extract information about the reflectance of the surface, in addi-
tion to its geometry and texture (Haack et al., 2000) and to improve the
accuracy of classification of built-up areas (Fonteh et al., 2016; Pesaresi
et al., 2016a). For example, Amarsaikhan et al. (2010) have shown that
multi-source information can significantly improve the interpretation
and classification of land cover types of urban features and improve that
accuracy of urban land cover classification. More generally, data fusion is
the process of combining diverse types of information from a wide va-
riety of sensors to increase the accuracy of the data and its utility (Pohl
and Genderen, 1998), which, in turn, improves decision making and
initiate actions (Goodman et al., 2013). Data fusion can be classified into
three levels: pixel, feature/object, and knowledge/decision (Pohl and
Genderen, 1998), where pixel-based fusion provides the best potential
for keeping the original information of the input images in the merged
output data (Abdikan et al., 2014).

With the increased availability of remotely sensed data, much effort
has been put towards converting these data into meaningful information
about the characteristics of land cover and land use on Earth. However,
until recently, most remote sensing studies have focused on local settings
(Herold, 2009). This is because mapping land cover at a national or
regional scale is challenging due to the lack of high-resolution global
imagery, the spectral heterogeneity and complexity of land, the small and
fragmented spatial configuration which characterizes many cities (Chen
et al., 2015; Herold, 2009), as well as due to the lack of reference data
and other computational constraints. While these studies map the land
cover and land use with high precision in local settings, their trans-
ferability to other regions is unknown and potentially problematic (Kii
and Nakamura, 2017).

In the last decade, several classification products have been devel-
oped to map urban land and the human footprint, globally. The Global
Human Settlement Layer (GHSL) (Pesaresi et al., 2013) characterizes
human settlements and building structures in four points in time (1975,
1990, 2000, 2015) based on optical sensors in a spatial resolution of
0.5–10m. The Global Urban Footprint (GUF) (Esch et al., 2017) of the
German Aerospace Center (DLR) characterizes built-up areas at approx-
imately 12m spatial resolution, based on satellite imagery acquired be-
tween 2011 and 2012. The Global Man-made Impervious Surface (GMIS)
(de Colstoun et al., 2017) estimates global fractional impervious cover
derived from 2010 GLS Landsat data. The Global Land Cover database for
the year 2000 (GLC2000) (Bartholom�e and Belward, 2005) characterizes
22 types of types of land-cover, including artificial surfaces (built-up land
cover), based on data collected from SPOT 4.

While these and other datasets provide essential information about
urbanization, they typically characterize urbanization in a specific point
(or points) in time. Promoting sustainable development requires moni-
toring urbanization in high frequency without being constrained by the
specific characteristics of existing products (e.g., their frequency, spatial
resolution, definition of urbanization, etc.).

As we show in this study, emerging cloud based computational
platforms, such as Google Earth Engine (GEE), allow any user to classify
the land cover in any place in the world and at any point in time. Here, we
demonstrate the use of GEE for mapping the built-up LC/LU in Ho Chi
Ming City, Vietnam across time.
2.2. Urbanization in Vietnam

Vietnam (approximately 330 km2 in size) is one of the most densely
populated countries in the world (96 million people in 2018). The ma-
jority of the population concentrates along the South China Sea and Gulf
of Tonkin, especially in the Mekong Delta (in the south) and the Red
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River Valley (in the north). Over the past few decades, Vietnam has
undergone rapid urbanization (Arouri et al., 2017; Kontgis et al., 2014;
Pham and Yamaguchi, 2011) together with significant changes in land
cover and land use patterns (Pham et al., 2015). Since 1990, the share of
its population living in urban areas increased from 20% to 33.6%, due
primarily to rural-urbanmigration and an increase in non-farm economic
activities (Arouri et al., 2017). By 2025, 450,000 ha of agricultural land
are expected to be converted into urban land to accommodate 52 million
urban dwellers (Decision No. 445/QD-TTg, 2009). These changes impose
immense environmental (B�eland et al., 2006; Dasgupta et al., 2005;
Swetnam et al., 2011; Ziegler et al., 2007) and societal (Castella et al.,
2007; Trincsi et al., 2014) challenges to the country.

In this study, we map built up LC/LU in Ho Chi Minh City (HCMC).
HCMC, 2098.7 km2 in size, is located in the Mekong Delta (Fig. 1). It is
the largest urban agglomeration in the country and the nation's financial
capital and economic hub, due, partly, to its proximity to a deep-water
port (Vietnam Urbanization Review: Technical Assistance Report,
2011). Between 1975 and 2015, the city's population increased from 3.0
million to 8.2 million inhabitants and is expected to reach 9.2 million
inhabitants in 2020 and 10.0 million in 2025 (Triet and Phu, 2014).
Between 1990 and 2012, 660.2 km2 of cropland were converted to urban
areas and the built-up area increased by 4.8 times, with one-third of the
expansion occurring more than 40 km from the city's urban core (Kontgis
et al., 2014). The city's development has taken place in conflict with
‘official’ planning policies, which has created vulnerability to flood risks
from surrounding wetlands (Nguyen et al., 2016). HCMC is one of seven
cities facing the greatest risk from the onset of climate change related
hazards (Maplecroft, 2012). Understanding the rapid urbanization pro-
cesses in HCMC is critical for efficient urban planning (Son et al., 2012)
and for the maintenance of a sustainable development in Vietnam.

Much effort has been put to construct and maintain a digitized, up-to-
date cadastral database (Decision No. 445/QD-TTg, 2009) and to map
the land cover and land use in the country. Currently, two sources pro-
vide official data on the distribution of land-use in Vietnam; one for forest
management (used by the Ministry of Agriculture and Rural Develop-
ment (MARD)) and one for land use planning and management (used by
the General Department of Land Administration (GDLA) of the Ministry
of Natural Resources (MONRE)) (van Dijk et al., 2013). The latter pro-
vides a basis for planning, economic and social development, and the
determination of land prices (Quang Hien et al., 2015). Digital data on
urbanization in Vietnam, however, remain sparse (Saksena et al., 2014),
and there is an increasing need for methods to promote efficient and
accurate cadastral survey and mapping (Bojo, 2011).

3. Methods

3.1. Reference data for supervised image classification

Automatic classification of LC/LU requires reference data for training
and (or) validation, specifically, reference data that mark urban features
are necessary for mapping urban areas. Previous studies utilize census-
based population databases (Stevens et al., 2015), hand-labeled exam-
ples (Goldblatt et al., 2016) and data collected via crowd-source plat-
forms, such as OpenStreetMap (OSM) (Belgiu and Drǎguţ, 2014; Estima
and Painho, 2015) as reference for supervised image classification.
However, because they are expensive to collect, large-scale reference
datasets are scarce (Miyazaki et al., 2011). Here, we use two types of
reference data for supervised pixel-based image classification: GDLA
administrative cadastral data (polygons) and hand-labeled examples
(points).

3.1.1. GDLA land use classification
Administrative cadastral data were obtained from the Vietnam



Fig. 1. Ho Chi Minh City province.

Table 1
Our categorization of GDLA LC/LU as “not-built-up” land cover, “residential” and
“non-residential” land use.

1. Built-up land cover 2. Non built-up land cover

1a. Non-residential Land use
� Telecommunication
� Historical vestige
� Education
� Roads
� Power supply
� Sport activities
� Public services
� Health services
� Cemeteries, graveyard
� Industrial area
� Worship
� Institutions/organizations
� Offices, headquarters and non-profit
agencies

1b. Residential Land use
� Urban residential land
� Urban residential land

� Unused delta land
� Flat annual crop land
� Annual crops
� Perennial crops
� Unused land
� Unused hilly and mountain

land
� Land for irrigation systems
� Rice cultivation
� Paddy rice land for 2 crops/

year
� Remaining rice land
� Water surface
� Agricultural land
� Aquaculture
� Special-use forest
� Production forest
� Rivers, canals, streams
� Agricultural production
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General Department of Land Administration (GDLA) of the Ministry of
Natural Resources and Environment (MONRE) overlaid with cadastral
data.1 The data consists of 72,501 polygons that span Ho Chi Minh City.
Each polygon is marked by its LC/LU type. We categorize LC/LU types as
either “built-up” (BU) or “not-built-up” (NBU). Additionally, we cate-
gorize each type of BU land cover as either “residential” (urban or rural
residential) or as “non-residential” land use (Table 1 and Fig. 2). From the
1 GDLA was established by the Vietnam Government in 1994 and is respon-
sible for the preparation of land legislation and land policies, implementation of
cadastral system, land statistics and current land use and land rights mapping.
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72,501 polygons, we select a random sample of 6300 polygons: 4000 BU
polygons (2000 residential and 2000 non-residential) and 2300 NBU
polygons. These polygons cover 73.2 km2 of built-up areas and 77 km2 of
not-built-up areas.

3.1.2. Hand-labeled examples
GDLA characterizes continuous areas (polygons) of relatively ho-

mogenous LC/LU types. Because we perform classification at the level of
the pixel, there is a risk of “class noise,” i.e., polygons that consist of
pixels that belong to different LC/LU types. We therefore create an
additional reference dataset consisting of 15,945 points, which we hand-
label as one of three classes: “BU residential”, “BU non-residential”, or
“NBU”. We sample these points from across the universe of the 6300
GDLA polygons. We overlay the points with Google Earth high-resolution
base map and manually determine the LC/LU of the points using a visual
interpretation method. First, we label the points as either “built-up” (i.e.,
a paved or human-made surface) or as “not-built-up” (absence of paved
or other human-made surface). Then, we label each “built-up” point as
“residential” or as “non-residential”. Because it is impossible to differ-
entiate visually between residential and non-residential land use, we
determine the land use of each “built-up” point according to the land use
class of the overlapping GDLA polygon. Three graduate students, who
were provided with extensive training and supervised by the researchers,
manually labelled the points. We provided each student an equal pro-
portion of samples. The students labeled each point by a visual inter-
pretation of the most recent available satellite image (typically from
2015 to 2017). 5115 points are labeled as “not built-up”, 4385 points are
labeled as “built-up residential” and 6445 points are labeled as “built-up
non-residential” (Fig. 3 presents the spatial distribution of the hand-
labeled examples).
3.2. Classifiers input

We evaluate four types of inputs to the classifier: (1) Landsat 8; (2)
Sentinel-2; (3) Sentine-1; and (4) Sentinel-2 and Sentinel-1 combined (in



Fig. 2. Our categorization of GDLA cadastral data as built-up residential land-use, built-up non-residential land-use and not-built-up land cover.

Fig. 3. The distribution of the hand-labeled examples (points). 15,945 points were hand-labeled as either “not built-up”, “built-up residential” or as “built-up non-
residential”.
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which each pixel includes the band values of both Sentinel-2 and
Sentinel-1).

3.2.1. Landsat 8
Landsat 8 covers the entire globe every 16 days and collects data with

eleven spectral bands, nine in a spatial resolution of 15m–30m, and two
in a spatial resolution of 100m (Table 2). We apply a standard Top-of-
87
Atmosphere (TOA) calibration to all USGS Landsat 8 Raw Scenes in
2015. We assign a “cloud score“ to each pixel and select the lowest
possible range of cloud scores (less than 10 per cent cloud coverage). The
cloud score is a simple cloud-likelihood score which is determined ac-
cording to the brightness of a pixel, its temperature, and a computed per-
pixel Normalized Difference Snow Index (NDSI). We compute per-band
median values from the accepted pixels. Per-pixel median values are



Table 2
The spectral bands of Landsat 8 and Sentinel-2.

Landsat-8

Spectral band Wavelength
(micrometers)

Resolution
(meters)

B1 Band 1 – Ultra blue 0.43–0.45 30
B2 Band 2 - Blue 0.45–0.51 30
B3 Band 3 - Green 0.53–0.59 30
B4 Band 4 – Red 0.64–0.67 30
B5 Band 5 - Near Infrared (NIR) 0.85–0.88 30
B6 Band 6 - SWIR 1 1.57–1.65 30
B7 Band 7 - SWIR 2 2.11–2.29 30
B8 Band 8 - Panchromatic 0.50–0.68 15
B9 Band 9 – Cirrus 1.36–1.38 30
B10 Band 10 - Thermal Infrared

(TIRS) 1
10.60–11.19 100 (resampled to

30)
B11 Band 11 - Thermal Infrared

(TIRS) 2
11.50–12.51 100 (resampled to

30)

Sentinel 2
Spectral band Wavelength (nm) Resolution

(meters)

B1 Aerosols 443 60
B2 Blue 490 10
B3 Green 560 10
B4 Red 665 10
B5 Red Edge 1 705 20
B6 Red Edge 2 740 20
B7 Red Edge 3 783 20
B8 NIR 842 10
B8a Red Edge 4 865 20
B9 Water vapor 940 60
B11 SWIR 1 1610 20
B12 SWIR 2 2190 20
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insensitive to extreme values, such as very bright or dark pixels, in a stack
of scenes (Flood, 2013). For display purposes, we scale the decimal value
of each pixel to an 8-bit range (0–255).

3.2.2. Sentinel-1
Sentinel-1 is a polar-orbiting, all-weather, day-and-night radar im-

aging mission, which captures the entire Earth every six days. Sentinel-1
carries an advanced synthetic aperture radar (SAR) that includes C-band
imaging, which is well suited for capturing the structure and density of
urban environments (Koppel et al., 2015). We use the VV mode (single
co-polarization, vertical transmit/vertical receive). Each scene is
pre-processed, including speckle noise removal, radiometric calibration
and terrain correction. Sentinel-2 is a wide-swath, high-resolution,
multi-spectral imaging mission. It samples 13 spectral bands: four bands
at 10m, six bands at 20m and three bands at 60m spatial resolution
(Table 2). We select all scenes in 2016 with less than 10 per cent cloud
coverage and calculate per-pixel per-band median value.

3.2.3. Additional spectral indices
Previous studies show that the addition of non-linear spectral indices

as inputs to a classifier improve the classifier's performance (Goldblatt
et al., 2016). Therefore, for each Landsat 8 and Sentinel-2 pixel we
calculate five additional indices, which we use as additional predictors to
the classifier: Normalized Difference Vegetation Index (NDVI) (Pettorelli
et al., 2005), Normalized Difference Water Index (NDWI) (McFeeters,
1996), Urban Index (UI) (Kawamura et al., 1996), Enhanced Vegetation
Index (EVI) (Jiang et al., 2008) and Normalized Difference Built-up Index
(NDBI) (Zha et al., 2003).
3.3. Classifier

We perform per-pixel supervised image classification with Random
Forest as the classifier. Random Forests are tree-based classifiers that
include k decision trees (k predictors). When classifying an example, its
88
variables are run through each of the k tree predictors, and the k pre-
dictions are averaged to obtain a less noisy prediction (by voting on the
most popular class). The learning process of the ‘forest‘ involves some
level of randomness; each tree is trained over an independent random
sample of examples from the training set and each node's binary question
in a tree is selected from a randomly sampled subset of the input vari-
ables. We choose to use Random Forest because previous studies find that
the performance of Random Forest is superior to other classifiers
(Goldblatt et al., 2016), especially when dealing with large-scale, noisy
and high dimensionally dataset, and because the routine is robust to
outliers (Gislason et al., 2006). Random Forests are computationally
lighter than other tree ensemble methods (Jean et al., 2016; Rodri-
guez-Galiano et al., 2012) and can effectively incorporate many cova-
riates with minimum tuning and supervision (Stevens et al., 2015).
Specifically in the remote sensing domain, Random Forests often achieve
high accuracy rates for classification of hyperspectral, multispectral, and
multisource data (Guan et al., 2013). We set the number of trees in the
Random Forest classifier to 20. Previous studies showmixed results as for
the optimal number of trees in the decision tree. The number ranges
between 10 trees (Zhang et al., 2012) and 100 trees (Rodriguez-Galiano
et al., 2012). According to Goldblatt et al. (2016), although the perfor-
mance of Random Forest improves as the number of trees increases, this
pattern holds only up to 10 trees and the performance remains nearly the
same with 50 and with 100 decision trees.

3.4. Accuracy assessment

First, we post process the classified images to remove pixels that were
classified as built-up and that are characterized by a high NDVI value (a
visual inspection shows that a threshold of 0.3 is sufficient to remove
misclassified vegetation pixels). We then assess the accuracy of
classification.

Different approaches can be employed to evaluate the accuracy of a
classification task. An error matrix approach is commonly used to assess,
describe and report the accuracy of classification into categorical classes
(Lu andWeng, 2007). It expresses the number of sample units assigned to
a given category relative to the number of the classified sample units and
can be used to calculate to general types of erros: commission errors (i.e.,
examples that were wrongly classified as belonging to a given class) and
omission errors (examples that were wrongly not classified as belonging to
a given class). In addition, the error matrix can be used to calculate ac-
curacy measures. The most commonly reported statistic for accuracy
assessment is overall accuracy, which implies the ratio between the
number of correctly classified sample units and the number of all sample
units (Congalton and Green, 2008). Producer's accuracy (or, true-positive
rate) and user's accuracy describe the accuracy of individual categories
instead of the overall classification accuracy (i.e., the probability that
true positive and true negative examples are correctly classified,
respectively). True-negative rate (or specificity) describes the percentage of
actual negative examples classified correctly as negative. Although pro-
ducer's and user's accuracies are standard practice in a two-class classi-
fication problem, balanced accuracy rate is also important especially when
dealing with imbalanced two-class datasets (the measure describes the
average between Producer's accuracy and true-negative rate.

We evaluate the accuracy of the classification using confusion ma-
trixes, which compare the predicted (classified) classes of the examples in
the test set with their actual class (resulting in four possible combina-
tions: TP (True-positive), TN (True-negative), FP (False-positive) and FN
(False-negative)). We assess the accuracy of the classification according
to the following performance estimators (we refer to the classes “built
up” (BU) and “built-up residential” as positive and to the classes “not
built-up” (NBU) and “built-up non-residential” as negative):

(1) Producer's accuracy, referred to as True-Positive Rate (TPR) (the
percentage of actual positive examples classified correctly as positive);
(2) True-Negative Rate (TNR) (the percentage of actual negative exam-
ples classified correctly as negative); (3) Balanced Accuracy (the average
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of TPR and TNR); (4) User's accuracy (the percentage of correctly clas-
sified positive examples of all examples predicted as positive):

1. Producer's accuracy (TPR) ¼ TP/(TP þ FN)
2. TNR ¼ TN/(TN þ FP)
3. Balanced Accuracy ¼ (TPR þ TNR)/2
4. User's accuracy ¼ TP/(TP þ FP)

Where TP is the number of the actual positive examples predicted to
be positive; TN is the number of negative examples predicted as negative;
FN is the number of actual positive examples predicted as negative and
FP is the number of actual negative examples predicted as positive.

The performance, or the accuracy, of a classifier refers to the proba-
bility that it will correctly classify a random set of examples. To assure a
“fair” assessment of a classifier's generalization, the data used to train the
classifier (training set) must be separated from the data that are used to
assess its accuracy (test set). Different data splitting heuristics can be
used to assure separation between the training and test sets (Kohavi,
1995), including the holdout method, in which the data is divided into
two mutually exclusive subsets: a training set and a test/holdout set;
bootstraping, in which the dataset is sampled uniformly from the data,
with replacement; and cross-validation, also known as k-fold
cross-validation, in which the data are divided into k subsets (optimally 5
or 10, to allow a less biased estimation (Rodriguez et al., 2010)) with k
“experiments”. The cross-validation procedure ensures that each
example is included exactly once in the test fold and that each example in
the test fold is not used to train the classifier. Averaging the overall ac-
curacy across all k partitions yields k accuracy values, or k hold-out es-
timators, and a variance estimation of the classification error (Arlot and
Celisse, 2010; Salzberg, 1997). Though each of these methods can be
used to assess the performance of a given classifier, cross-validation is a
widely accepted procedure (Refaeilzadeh et al., 2009) that provides a
robust estimate of a classifier's generalization error (Blum et al., 1999).
When the instances are representative of the underlying population and
when sufficient instances are available for training, this procedure results
in an unbiased estimate of the accuracy of the classifier over the popu-
lation (Bradford and Brodley, 2001).

In this study, we adopt a k-fold cross-validation procedure (with k
“experiments”) to estimate the accuracy of the classifiers. In each
experiment, the examples in one of the data folds are left out for testing
and the examples in the remaining k-1 folds are used to train the clas-
sifier. The performance quality of the trained classifier is tested on the
left-out fold, and the overall performance measure is then averaged over
the k folds (over the k experiments). Note, that the examples in the
reference data are divided into five folds and each example—and all
examples—are tested exactly once. The reported matrixes describe the
predicted class against the “real” class of all examples across the five folds
(i.e. across the five experiments).

3.5. Built-up land cover as the distribution of the population

To assess the relation between the extent of built-up land cover and
the distribution of the population in Ho Chi Minh City we really on two
commonly used measures for population distribution: census-based
population counts (according to the 2015 Population and Labor Statis-
tics2) and the intensity of the light emitted at night (as it is measured by
DMSP-OLS and by VIIRS).

Previous studies show that the intensity of light emitted at night
(referred to as nighttime light) is highly correlated with developed land
(Elvidge et al., 2014; Levin and Duke, 2012; Sutton, 2003) and can be
used to infer the extent of urban areas (Bagan and Yamagata, 2015; Small
2 The 2015 Population and Labor statistics of the Statistical Office in Ho Chi
Minh City http://www.pso.hochiminhcity.gov.vn/c/document_library/get_file?
uuid¼7311d5ad-c5a4-4383-8fb4-36c209afa120&groupId¼18.
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and Elvidge, 2013; Zhang and Seto, 2013), as well as economic activity at
the local, regional and national levels (Elvidge et al., 2014; Henderson
et al., 2003; Keola et al., 2015). Thus, the extent and intensity of night-
time light provides a reasonable proxy for estimation of the spatial dis-
tribution of urban areas. Previous studies find a clear association between
the spatial distribution and intensity of nighttime light and urbanization
(Small and Elvidge, 2013), including changes in the distribution of urban
land use, at local, regional, and national levels (Bagan and Yamagata,
2015). The intensity of nighttime light is also related to population dy-
namics (Bagan and Yamagata, 2015; Pandey et al., 2013), economic
activity and GDP (Elvidge et al., 2014; Henderson et al., 2012; Laveesh
Bhandari and Roychowdhury, 2011). We measure the intensity of
nighttime light that is captured by DMSP-OLS and VIIRS.

3.5.1. DMSP-OLS
The Operational Line-scan System of the Defense Meteorological

Satellite Program (DMSP-OLS) has been capturing artificial lighting since
the early 1990's, making it the longest continuous remote sensing
product for global time series analysis of urbanization (Elvidge et al.,
2014). We use version 4 of the DMSP-OLS Nighttime Lights Time Series,
which consists of cloud-free composites made using all the available
archived DMSP-OLS smooth resolution data for calendar years. We use
the “stable lights” band, which contains the lights from cities, towns, and
other sites with persistent lighting, excluding gas flares. Ephemeral
events, such as fires are discarded. The background noise is identified
and replaced with values of zero. Because DMSP-OLS calibrated and
processed data are only available until 2013, we use the data captured by
‘F182013’ satellite.

3.5.2. VIIRS
Since 2012, the Visible Infrared Imaging Radiometer Suite (VIIRS)

sensors have been capturing remotely sensed data, including at night-
time. VIIRS provides several key improvements over DMSP-OLS data
(Small et al., 2013), including a vast reduction in the pixel footprint,
uniform GIFOV (ground instantaneous field of view) from nadir to edge
of scan, lower detection limits, wider dynamic range, finer quantization,
and in-flight calibration (Elvidge et al., 2017). We use the VIIRS Day/-
Night Band (DNB) product, which excludes data impacted by cloud
cover.

We perform the analysis at the geographical level of the district. For
each district in Ho Chi Minh City we calculate the sum of the intensity of
light of all (DSMP-OLS or VIIRS) pixels (referred to as SOL), the total
number of people and the total area of built-up land cover (we apply a
log10 reduction). For all measures, we weight by the area of the district.

4. Results

4.1. Using GDLA as reference for supervised image classification

We begin the analysis with GDLA as reference for the classifier. As
explained above, we use a stratified random sample of 6300 polygons
that we categorize as “built-up residential”, “built-up non-residential” or
“not built-up”. We overlap the polygons with the satellite data (the input)
and assign each pixel with a corresponding label. We evaluate the clas-
sification with four types of inputs to the classifier: Landsat 8 (L8),
Sentinel-1 (SE1), Sentinel-2 (SE2) and a combination of Sentinel-1 and
Sentinel-2 (SE1SE2). Following training, the classifiers predict for each
new example (pixel), the probability (a posterior probability in the range
between 0 and 1) that it is “built-up”. We characterize a pixel as “built-
up” if the probability it is “built-up” exceeds a threshold of 0.5. We find,
that SE1SE2 as input to the classifier results in the best performance,
indicated by a high balanced accuracy of 80% (compared to 75% and
62%, with SE2 and SE1 as input to the classifiers, respectively). Classi-
fication with L8 results in the lowest balanced accuracy (73%) (Table 3).

We also evaluate the performance of the classifiers in differentiating
between residential and non-residential land use. For evaluation

http://www.pso.hochiminhcity.gov.vn/c/document_library/get_file?uuid=7311d5ad-c5a4-4383-8fb4-36c209afa120&amp;groupId=18
http://www.pso.hochiminhcity.gov.vn/c/document_library/get_file?uuid=7311d5ad-c5a4-4383-8fb4-36c209afa120&amp;groupId=18
http://www.pso.hochiminhcity.gov.vn/c/document_library/get_file?uuid=7311d5ad-c5a4-4383-8fb4-36c209afa120&amp;groupId=18
http://www.pso.hochiminhcity.gov.vn/c/document_library/get_file?uuid=7311d5ad-c5a4-4383-8fb4-36c209afa120&amp;groupId=18
http://www.pso.hochiminhcity.gov.vn/c/document_library/get_file?uuid=7311d5ad-c5a4-4383-8fb4-36c209afa120&amp;groupId=18


Table 3
Performance measures and confusion matrixes: classification of built-up vs. not built-up (top) and residential vs. non-residential pixels (bottom) (reference data: GDLA).

L8 SE2 SE1 SE1SE2

built-up and not-built-up

predicted predicted predicted predicted

BU NBU BU NBU BU NBU BU NBU

actual BU 65956 17340 actual BU 63546 16223 actual BU 52495 27274 actual BU 66423 13346

NBU 23343 49906 NBU 22409 50527 NBU 31196 41740 NBU 17316 55620

Overall 73.5% 74.7% 61.7% 79.9%
Producer's 78.4% 79.7% 65.8% 83.3%
TNR 68.1% 69.3% 57.2% 76.3%
Balanced 73.3% 74.5% 61.5% 79.8%
User's 73.0% 73.9% 62.7% 79.3%

residential and non-residential
predicted predicted predicted predicted
Res NRes Res NRes Res NRes Res NRes

actual Res 26073 14206 actual Res 22027 18154 actual Res 27135 13046 actual Res 27942 12239
NRes 16676 23341 NRes 18780 20808 NRes 14349 25239 NRes 13415 26173

Overall 61.5% 65.7% 53.7% 67.8%
TPR 64.7% 67.5% 54.8% 69.5%
TNR 58.3% 63.8% 52.6% 66.1%
Balanced 61.5% 65.6% 53.7% 67.8%
Precision 61.0% 65.4% 54.0% 67.6%
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purposes, we define a “positive” example as “residential” and a “nega-
tive” example as “non-residential”. We find relatively poor performance
when classification is performed with L8 as input to the classifier, indi-
cated by a balanced accuracy of approximately 62%. Classification with
SE1SE2 as input to the classifier outperforms classification with the other
inputs; the balanced accuracy increases from 62% with L8 to 68% with
SE1SE2. Classification with SE1 as a single input to the classifier also
exceeds chance level (a balanced accuracy of 54%).
Table 4
Spectral profile (Sentinel-2) of not-built up (NBU), residential and non-residential pix

NBU Residential Non-Resident

B1 Mean 1454.496 1840.1604 1807.0469
Std. error 1.674642 2.347501 2.701971

B2 Mean 1177.891 1636.931 1604.958
Std. error 2.065869 2.921192 3.940023

B3 Mean 1056.124 1521.83 1509.729
Std. error 2.276774 3.073889 4.601121

B4 Mean 844.3438 1509.181 1468.387
Std. error 3.403674 3.862232 5.760496

B5 Mean 975.7462 1517.389 1517.218
Std. error 3.076735 2.88339 4.834245

B6 Mean 1640.949 1888.244 1988.923
Std. error 9.181004 2.93428 4.695726

B7 Mean 1976.419 2122.081 2278.861
Std. error 12.06896 3.832173 5.394515

B8 Mean 1818.344 1907.858 2091.06
Std. error 11.80957 3.900075 5.278707

B8A Mean 2134.658 2249.111 2474.616
Std. error 14.58746 2474.616 6.116062

B9 Mean �2.216958 �1.400443 -.6386438
Std. error .2062281 .7573329 .2777427

B10 Mean 9.252884 11.72212 11.67983
Std. error .0235133 .0166123 .0164072

B11 Mean 1136.883 2213.7 2278.581
Std. error 10.11071 4.143248 7.215665

NDVI Mean .2783816 .1176607 .1810828
Std. error .0048309 .0017497 .0018252

NDBI Mean -.04239 .1864701 .1966282
Std. error .0048068 .0006194 .0010712

UI Mean -.3445721 .0613311 .0387379
Std. error .0038092 .0008353 .0014767

VV Mean �10.5777 �3.182425 �5.190861
Std. error .0707252 .0347708 .0406931

a Two-sample t-test.
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4.2. Using the hand-labeled examples as reference for supervised image
classification

The classification we perform in this study is at the level of the pixel
(i.e., the classifier is trained with “labeled” pixels and predicts the class of
new pixels). In the previous experiment, we used GDLA as the reference,
where each polygon is characterized by a single LC/LU class, assuming
relatively homogenous pixels within a polygon. Because we assign a label
to each pixel according to the class of an overlapping polygon, there is a
els and a comparison of means.

ial t-testa (BU/NBU) t-testa (Residential/non-residential)

t �1.2eþ02 8.7021
p 0.0000 0.0000
t �1.1eþ02 5.9762
p 0.0000 0.0000
t �98.6353 1.9748
p 0.0000 0.0483
t �1.1eþ02 5.3144
p 0.0000 0.0000
t �1.1eþ02 0.0270
p 0.0000 0.9785
t �39.7245 �16.2751
p 0.0000 0.0000
t �24.2797 �21.5834
p 0.0000 0.0000
t �20.5193 �25.5771
p 0.0000 0.0000
t �21.1651 �27.1744
p 0.0000 0.0000
t �16.1045 �16.7963
p 0.0000 0.0000
t �1.0eþ02 1.7509
p 0.0000 0.0800
t �1.2eþ02 �6.9082
p 0.0000 0.0000
t 31.9971 �24.0065
p 0.0000 0.0000
t �68.0658 �7.2790
p 0.0000 0.0000
t �1.3eþ02 11.7778
p 0.0000 0.0000
t �95.5149 35.1953
p 0.0000 0.0000
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risk of “class noise” (Nettleton et al., 2010) due to the existence of pixels
of different classes within a polygon, which may bias the training and
classification process. To reduce class noise, we perform an additional
experiment using a dataset of 15,945 hand labeled examples (points),
which we label as (1) “not built-up”, (2) “built-up”, (2a) “residential” and
(2b) “non-residential”). We overlay the labeled points with the inputs
(L8, SE1, SE2 and SE1SE2) and assign each pixel with a label according to
the label of the overlapping point (each pixel is associated with exactly
one point).

First, we examine the spectral characteristics (reflectance profile) of
the examined classes, i.e., the average reflectance value of the pixels, per
class and per band. Table 4 presents, as an example, the reflectance
profile of the examined classes according to the spectral reflectance SE2.
Consistent with built-up areas containing structures and impervious
surfaces that are reflective relative to vegetation and undeveloped land of
non-built-up areas, the reflectance of NBU pixels is lower than the
reflectance of BU pixels in all bands. The difference in the reflectance of
BU and NBU pixels is significant (p¼ 0.000) in all bands, and the stan-
dard error bounds of the average reflectance values are relatively small.
The distinction between BU and NBU pixels is also expressed by a
significantly higher NDVI value for NBU than for BU pixels, but by a
significantly lower NDBI and UI value (p< 0.01 for both). As shown in
Fig. 4, the distribution of the NDVI values of NBU regions is to the right of
that of BU regions, while the distribution of the NDBI values of NBU
pixels is a left-skewed and flatter than of BU pixels.

Moreover, we find differences between the spectral profile of resi-
dential and non-residential land use (Table 4). The reflectance is signif-
icantly different (p< 0.05) in all bands, besides B5 and B10, as well as in
all spectral indices (NDVI, NDBI and UI). In addition, there is a significant
difference (P¼ 0.000) between residential and non-residential land use
in the reflectance of SE1`s C-band: the reflectance of residential land use
is significantly (p¼ 0.000) higher than the reflectance of non-residential
land use. Fig. 4 indicates that the distribution of SE1`s C-band of “resi-
dential” pixels is to the right of “non-residential” pixels, probably due to
the existence of taller buildings and higher density which are associated
with residential areas.

A 5-fold cross validation shows that the accuracy of the classification
with the hand-labeled reference data (labeled points) is higher than
classification with GDLA (labeled polygons) as the reference. This is
indicated by a high balanced accuracy of 91% and 94% when classifi-
cation is performed with L8 and SE1SE2 as inputs to the classifier,
respectively (Table 5).

The accuracy of classification with the hand-labeled points exceeds
the accuracy of classification with GDLA also for classification of resi-
dential and non-residential land use. The balanced accuracy ranges be-
tween 71% and 75% for classification with L8 and SE1SE2 as inputs to
the classifiers, respectively (Table 5).
Fig. 4. The histogram of NDVI (Normalized Difference Vegetation Index) (left), NDB
values, for built-up (BU), not built-up (NBU), built-up residential (BU residential) an
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4.3. Mapping the classification

In the last stage of the classification, we use the classifiers that were
trained with the hand-labeled examples to map the predicted class of
each pixel. As clearly illustrated in Fig. 5, the classification captures the
fabric of the built-up land cover and the fine boundaries between built-up
and not built-up land cover. The difference between classification with
L8 and SE1SE2 as inputs to the classifier is also illustrated when mapping
the classifiers' predictions. Fig. 6 shows a comparison between classifi-
cation with L8 and with SE1SE2 as inputs to the classifier. The figure
illustrates that although classification with the two inputs captures the
boundaries between built-up and not-built-up land cover, because of the
higher spatial resolution of SE1SE2 compared to that of L8, classification
with SE1SE2 captures individual structures with higher precision than
classification with L8 as input to the classifier.

We also map the classifier's prediction of residential and non-
residential land use. Fig. 7 presents, as an example, the classification of
residential and non-residential land use (in this example, industrial
areas), in the center of the city (classification with SE1SE2 as input).
Note, that non-residential features appear in the satellite image as
brighter (probably due to different types of structures and roofs) and less
dense than residential features (Fig. 7).

4.4. Mapping urbanization across time

Finally, we map the built-up land cover across time. Because our
hand-labeled examples are collected based on recent imagery, using this
dataset as the reference for classification of historical imagery may result
in “class-noise” due to mislabeled examples (e.g., a “built-up” pixel that
was not “built-up” in a historical image). To cope with the lack of ground
truth data for historic years, we train the classifier (using Random Forest,
with 20 trees) with 2015 Landsat 7 as the input, and classify the built-up
land cover in the historical imagery with the trained classifier (note, that
we use the same feature space in the historical imagery). We find that in
the period between 2000 and 2015, Ho Chi Minh City expanded from the
city center primarily toward Northeast (Fig. 8). As illustrated in Fig. 9,
while the city's central districts showed an increase of less than 10% in
built-up land cover, its peripheral districts (the second and third rings)
showed a more significant change (an increase of more than 70% in built-
up land cover).

4.5. Built-up land cover as the distribution of the population

To understand the relation between the extent of built-up land cover
and the distribution of the population in Ho Chi Minh City, we examine
the correlation between the total area of built-up land cover in each
district and two indicators: population counts (according to the 2015
Population and Labor Statistics2) and the intensity of the light emitted at
night (according to DMSP-OLS and VIIRS). The results show a high and
I (Normalized Difference Built-up Index) (middle) and SE1 C-Band (VV) (right)
d built-up non-residential (BU non-residential) examples.



Table 5
Performance measures and confusion matrixes: classification of built-up vs. not built-up (top) and residential vs. non-residential pixels (bottom) (reference data: hand-
labeled examples).

L8 SE2 SE1 SE1SE2

built-up and not-built-up

predicted predicted predicted predicted

BU NBU BU NBU BU NBU BU NBU

actual BU 10256 574 actual BU 10384 446 actual BU 8932 1898 actual BU 10468 362

NBU 702 4411 NBU 536 4577 NBU 2256 2859 NBU 408 4703

Overall 92.0% 93.8% 73.9% 95.2%
Producer's 94.7% 95.9% 82.5% 96.7%
TNR 86.3% 89.5% 55.9% 92.0%
Balanced 90.5% 92.7% 69.2% 94.3%
User's 93.6% 95.1% 79.8% 96.2%

residential and non-residential
predicted predicted predicted predicted
Res NRes Res NRes Res NRes Res NRes

actual Res 5288 1157 actual Res 5387 1058 actual Res 4147 2298 actual Res 5393 1052
NRes 1717 2668 NRes 1662 2723 NRes 1980 2405 NRes 1466 2919

Overall 73.5% 74.9% 60.5% 76.7%
TPR 82.0% 83.6% 64.3% 83.7%
TNR 60.8% 62.1% 54.8% 66.6%
Balanced 71.4% 72.8% 59.6% 75.1%
Precision 75.5% 76.4% 67.7% 78.6%

Fig. 5. Detection of built-up areas (in blue). Classification with SE1SE2.
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significant correlation between total area of built-up land cover and
population size (around r¼ 0.93, p¼ 0.000, with all inputs to the clas-
sifier) (Table 6 and Fig. 10). Additionally, we find a high and significant
correlation (p¼ 0.000) between the total area of built-up land cover and
the Sum of Light (SOL) measure. The correlation between DMSP-OLS SOL
and built-up cover ranges between r¼ 0.83 and r¼ 0.88 for classificaiton
with L8 and with SE1SE2, respectively. The correlation between VIIRS
SOL and the area of built-up land cover is higher (around r¼ 0.96,
p¼ 0.000, for classificaiton with all inputs to the classifier) (Table 6 and
92
Fig. 11). These results indicate that the extent of built-up land cover is
highly correlated with the distribution of the population, as measured
according to population counts and according to the intensity of light
emitted at night.

5. Discussion

Since the beginning of the 20th century, as the world's population has
grown exponentially from around 1.6 billion in 1900 to around 7.6



Fig. 6. Classification of built-up land cover with L8 (left) and with SE1SE2 (right) as input to the classifier.
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billion today, the global urban population has grown equally dramati-
cally from 220 million in 1900 to 3.9 billion in 2014. By 2050, 66 per
cent of the global population is expected to be urban, with nearly 90 per
cent of the increase concentrated in Asia and Africa (UN, 2014, 2006).

While urbanization in rapidly growing nations is helping lift hundreds
of millions of people out of poverty, it also creates immense societal
challenges by increasing greenhouse-gas emissions, destabilizing fragile
ecosystems, and creating new demands on public services and infra-
structure that impose significant burdens on the environment (Ban et al.,
2015). The rapid expansion of built environments is among the most
irreversible human impacts on the global biosphere (Zhang and Seto,
2011).

Traditionally, data on urbanization has come from census counts and
population surveys, which are often published infrequently, vary in terms
of their resolution and precision, and are subject to the availability of
resources and the capacity to acquire reliable data (Keola et al., 2015),
and to local and national definitions of urbanization (Montgomery,
2008). Significant progress in the availability of remotely sensed data
and machine learning have substantially improved our understanding
about the extent and pace of urbanization. However, developing classi-
fication procedures that are robust and repeatable across space and time
is challenging (Franklin and Wulder, 2002; Ma et al., 2017) and the
majority of studies that utilize remotely sensed data for urban research
have focused on local or regional scales. Although multiple classification
schemes have been developed to map global urbanization (Bartholom�e
and Belward, 2005, p. 200; de Colstoun et al., 2017; Esch et al., 2017;
Pesaresi et al., 2013), they typically map urbanization in specific points
in time and according to a specific definition of ‘urban’. Until recently,
researchers have been limited to the availability and of these products.

Emerging cloud based computational platforms such as Google Earth
Engine (GEE) now provide handy and easy-to-use tools to extract infor-
mation from remotely sensed data. GEE is a cloud-based platform “that
makes it easy to access high-performance computing resources for processing
very large geospatial datasets, without having to suffer the IT pains currently
surrounding either” (Gorelick et al., 2017). Users can now use publicly
available satellite imagery together with any available source of
location-specific reference data to map LC/LU at any location on Earth
and in any point in time.

In this study, we demonstrate the applicability of GEE to map built-up
LC/LU in one province in Vietnam – Ho Chi Minh City (HCMC). We
perform pixel-based supervised image classification using three sources
of publicly available data: Landsat 8, Sentinel-1 and Sentine-2, together
with administrative cadastral data (GDLA) and a dataset of around
16,000 hand-labeled examples as reference. We show that basic off-the-
shelf supervised image classification techniques can be used to accurately
map annual changes in the extent built-up land cover in the province and
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to differentiate between residential and non-residential land use.
The success of mapping complex heterogeneous urban settings largely

depends on the spatial and spectral characteristics of the remotely sensed
data used for classification (Herold et al., 2002; Momeni et al., 2016;
Oltra-Carri�o et al., 2015; Pesaresi et al., 2016a; Rashed and Jürgens,
2010; Small, 2016). Fusing data collected by multiple sources allows one
to capture the characteristics of land cover on Earth and thereby improve
the accuracy of the classification (Amarsaikhan et al., 2007; Joshi et al.,
2016; Pesaresi et al., 2016a; Wang et al., 2017). Here, we show that pixel
based image classification based on publicly available satellite imagery
results in accurate maps of built-up LC/LU in HCMC. As expected, clas-
sification with Sentinel-2 (SE2) as input to the classifier exceeds the ac-
curacy of classification with Ladsat-8 (L8) by up to 2.2%, which we relate
to the spatial and spectral resolution of SE2 compared to L8.

Sentinel-1 (SE1) provides C-Band SAR data, which is useful in char-
acterizing highly dense urban settings. Nevertheless, SAR data is inher-
ently affected by speckle noise, which is caused by the presence of
randomly distributed elemental scatterers within a resolution cell
(Moreira et al., 2013). As a result, SAR response may be more related to
scatterer density than to the actual characteristics of the surface, espe-
cially in high-density urban areas (Dell'Acqua and Gamba, 2003). Here,
we show that fusing moderate-resolution optical and radar data (SE2 and
SE1, respectively) increases the accuracy of the classification (indicated
by a balanced accuracy rate of up to 94%). As pointed out by (Amar-
saikhan et al., 2010), urban areas are complex and diverse in nature, and
many features have similar spectral characteristics, making it difficult to
differentiate among them. The added value of the radar data (SE1) is its
sensitivity to the geometry, texture and density of the surface. We note
that using SAR data at a finer spatial resolution than SE1 may not be
sufficient for pixel-based classification, especially in dense and vertically
heterogeneous urban settings, because the speckle may cause the SAR
returns to be placed in different pixels than the optical reflectance
returns.

Classification accuracy of remotely sensed data is also affected by the
quality of the reference data and their “noise” (Foody et al., 2016; Pel-
letier et al., 2017), as well as by the number of training examples, their
collection strategy and their representativeness of the landscapes (Lu and
Weng, 2007). Although the Vietnamese Government, through GDLA, had
routinely allocated vast amounts of resources to generate land use maps
at 5-yearly intervals, our results show that with the hand-labeled exam-
ples as reference to the classifier, classification improves compared to
classification with GDLA. This is because our hand labeled examples
(points) characterize the LC/LU in an exact location compared to GDLA,
where the LC/LU is characterized as continuous homogenous polygons
where pixels are aggregated into uniform areas. This difference in clas-
sification accuracy can also be viewed in light of the Modifiable Areal



Fig. 7. Classification of residential (yellow) and non-residential (orange) land use.
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Unit Problem (MAUP) (Openshaw and Openshaw, 1984), which arises
“from the imposition of artificial units of spatial reporting on continuous
geographical phenomena resulting in the generation of artificial spatial pat-
terns” (Heywood et al., 1998). Here, the smallest units of analysis are
pixels, arbitrary in size, that typically do not correspond well with
real-world objects (Johnson and Xie, 2013). Pixels can be aggregated to
form larger polygons, which may vary in scale (known as the scale effect)
or in shape, or form (known as the zoning effect) (Fotheringham and
Rogerson, 2008; Jelinski and Wu, 1996). Different aggregation proced-
ures and definitions may cause variation in the analyzed data, and in
turn, in the derived conclusions (Jelinski and Wu, 1996). While our re-
sults using GDLA inherently depend on the scale and form of this specific
data and use of other types of aggregation may generate different results,
they clearly suggest that a revision of the Government's procedures for
data acquisition could not only generate cost savings but also enhance the
quality and frequency of available information and thus may allow new
types of applications to be developed.

Previous studies that utilize remotely sensed data have focused on
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mapping the characteristics of Earth's land cover (Pesaresi et al., 2016a;
Su et al., 2015; Zhang et al., 2002). While land cover denotes the physical
and biotic character of the land surface, land use denotes the human
employment of the land (Meyer and B. L. Turner, 1992). Only a limited
number of studies have explored the use of remotely sensed data for
classification of land use in urban settings (e.g. Hu et al., 2016). In this
study, we show that publicly available remotely sensed data can be used
to differentiate between residential and non-residential built-up land use.
Although classification of land use with GDLA as reference does not result
in highly accurate maps (a balanced accuracy of 68% with SE1SE2 as
input to the classifier), accuracy improves with the hand-labeled exam-
ples as reference (indicated by a balanced accuracy of 75%with SE1SE2).
The addition of SE1 to SE2 as input to the classifier improves the accuracy
of the classification by up to 2.3%.

Finally, we use our hand-labeled examples as reference to train a
classifier with Landsat-7 2015 data as input and map historic changes in
built-up land cover. We find that between 2000 and 2015, as HCMC has
expanded dramatically, some districts show more than 70% increase in



Fig. 8. Annual changes in the extent of built-up land cover, Ho Chi Minh City (top: reference image (Landsat); bottom: classification of built-up land cover (in blue)).

Fig. 9. Percent of change in built-up land cover, per district (Ho Chi Minh city).

Table 6
Correlations between the total area of built-up land cover, total population and
SOL (according to DMSP-OLS and VIIRS), per district.

Total areas classified as “built-up”

L8 SE2 SE2SE1

VIIRS r 0.9609 0.9670 0.9674
p 0.000 0.0000 0.0000
R2 0.923 0.935 0.936

DMSP-OLS r 0.8283 0.8803 0.8784
p 0.0000 0.0000 0.0000
R2 0.686 0.775 0.772

2015 Population count r 0.9369 0.9261 0.9270
p 0.0000 0.0000 0.0000
R2 0.878 0.858 0.859

Fig. 10. Correlation between total built-up land cover and SOL (VIIRS).

Fig. 11. Correlation between total built-up land cover and population size
(per district).
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the built-up land cover in the city's peripheral districts. According to
Kontgis et al. (2014), between 1990 and 2000, the city's urban expansion
was almost exclusively contiguous to urban core communes, while be-
tween 2000 and 2012, new urban land became patchier and discon-
nected from urban core communes. Between 1992 and 2012,
approximately one-third of new urban expansion occurred in locations
distant more than 40 km from the core. These trends are due, in part, to
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significant development in Ho Chi Minh City's periphery in the first
decade of 2000. To illustrate, between 2006 and 2009 the city's pe-
ripheral and rural areas have been the site of 36 housing projects that
convert farming to urban land compared to only 19 projects being built in
the core areas and inner-city districts (Hirsch, 2016).

In parallel to the expansion of the built-up land cover, Ho Chi Minh
City experienced rapid population growth, especially in its peri-urban
and rural districts (Downes et al., 2016). Many studies suggest a close
relationship between the distribution of built-up land cover and the
distribution of the population in a city (Bagan and Yamagata, 2015;
Sudhira et al., 2004; Yin et al., 2005), also as it is measured according to
the intensity of light emitted at night (Huang et al., 2014). The results of
this study show a high and significant correlation between the distribu-
tion of the built-up land cover in Ho Chi Minh City and the distribution of
its population, both, according to population counts and the intensity of
nighttime light. We find, however, a higher correlation between the
distribution of built-up land cover and nighttime light (SOL) as measured
by VIIRS than by DMSP-OLS. This finding is consistent with previous
studies that show that nighttime light data extracted from VIIRS repre-
sents more accurately the distribution of built-up urban areas and the
distribution of the population than nighttime light data extracted from
DMSP-OLS (Chen and Nordhaus, 2015; K. Shi et al., 2014a).

This paper contributes to the existing literature in several aspects.
First, it demonstrates the applicability of publicly available satellite data
for mapping LC/LU with high precision and importantly, at any point in
time. Today, researchers and decision makers no longer need to rely on
classification products that were created for specific locations, specific
points in time or according to a specific definition. As we show, with
basic off-the-shelf supervised image classification algorithms, publicly
available datasets and cloud based computation platforms, extraction of
meaningful information about Earth across space and time becomes
easier and more accessible. Second, a key challenge in any supervised
machine learning is the lack of reference data. We show that existing
administrative cadastral data can be used as reference for classification of
LC/LU across time. Moreover, with modest effort, hand-labeled examples
can be collected and used as reference to improve the accuracy of the
classification. Third, we perform a systematic comparison between three
types of publicly available remotely sensed data as inputs for classifica-
tion (L8, SE1 and SE2) and show the added value of fusing SE1 and SE2
for classification of an urban settings. The study demonstrates that using
SE1 and SE2 combined as input for classification results in highly accu-
rate maps of urbanization. Finally, remote sensing studies have tradi-
tionally focused on mapping land cover rather than land use. This is
because different types of land use are often characterized by similar
spectral reflectance. Here, we show that supervised pixel-based image
classification can also be utilized to differentiate between two types of
built-up land use in an urban environment: residential and non-
residential. This distinction is important, for example, for taxation pur-
poses or for population estimation.

We note three limitation of the study, which merit attention. First,
reference databases are theoretically and ideally, a gold-standard, that
provides the “correct” label for each referenced instance. However, in
practice, reference data are often “noisy”. Class label noise may occur
during data collection or field surveys due to a lack of information, the
subjectivity of human judgment, or human mistakes (Pelletier et al.,
2017). We collected our hand-labeled examples through image inter-
pretation technique performed by graduate students. Idiosyncratic vari-
ation across individuals performing the manual classification is often
difficult to control and may affect the “noise” in the data (Congalton and
Green, 2008) and the reported accuracy of the classification. In addition,
we performed pixel-based classification with a basic Random Forest
classifier. As noted in previous studies, performance of Random Forests is
subject to many parameters, such as the number of examples used for
training (Foody, 2002; Rodriguez-Galiano et al., 2012), the class pro-
portion (Rodriguez-Galiano et al., 2012), the spatial distribution of the
examples (Millard and Richardson, 2015), the number of trees in the
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forest (Zhang et al., 2012) and the input feature space (Goldblatt et al.,
2016). However, other studies suggest that the setting of Random Forest
parameters causes little influence on the classification accuracy (Pelletier
et al., 2016). In addition, the RF classifier achieves better classification
results when multi-dimensional data such as hyperspectral or
multi-source data are used; it also requires the setting of fewer parame-
ters (Belgiu and Dr�aguţ, 2016).

Second, in this study we mapped the built-up land cover in one
province in Vietnam, using reference data collected for one specific re-
gion. These results do not imply the spatial generalization of the model.
Although classification performance often decreases when the land-
scapes characteristics are different from those of the training area (Pel-
letier et al., 2016), Random forest classifiers can also be generalized
spatially and applied across space and time (Goldblatt et al., 2016). The
confusion matrix and the accuracy estimates derived from it provide no
information on the spatial distribution of error (Foody, 2005), and the
results we report here only describe a location specific classification ac-
curacy (within-image accuracy).

Third, we performed pixel-based classification with a Random Forest
classifier. Random Forests are often seen as “black boxes” consisting of
multiple decision trees, and it is hard to examine the individual trees
separately (Prasad et al., 2006). We did not aim here to develop a new
classifier or to improve an existing one. Nor did we aim to perform
in-depth examination of the decision trees and splits in the forests. Our
objective was to highlight the use of off-the-shelf classifiers and input
data for LC/LU classification.

To summarize, in this study we illustrated the applicability of publicly
available satellite data for accurately mapping the built-up land cover
and land use in one province in Vietnam. While many existing classifi-
cation products characterize urbanization, they are typically limited in
their spatial and temporal resolution and characterize urbanization ac-
cording to definitions that may have limited application in other con-
texts. Existing products often do not allow continuous monitoring of
urbanization processes. Cloud-based computation platforms, such as
GEE, now provide an easy solution for LC/LU mapping using publicly
available data and geographically specific reference data. In today's era of
big data, a tractable method of defining and classifying built-up areas has
extensive application. Economics, urban planning, climate modeling,
water-resource management, hazard-response efforts, and urban-eco-
system assessments all use geographic data on urban areas. With
earth's rapidly urbanizing population, having information on urban
extent that is spatially and temporally consistent and defined at high
resolution is both relevant to a wide range of disciplines and essential for
helping society better understand the drivers of urbanization.
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