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1 Introduction

In extensive games there are two notions of mixed strategies. First, a player can ex ante mix

over her strategies, using a so called mixed strategy. Second, at each information set a player

can mix interim over actions at that information set, using a so called behavior strategy. Kuhn’s

Theorem states that in every extensive game with perfect recall, for each mixed strategy there

is a behavior strategy that is equivalent in terms of the probabilities of reaching nodes in the

game tree (Kuhn, 1953, see also Selten, 1975). The use of mixed strategies have been questioned

(see a discussion in Osborne and Rubinstein, 1994, Chapter 3.2). However, even if players do

not actually play mixed strategies, players may ex ante form probabilistic beliefs over strategies

of opponents, so called conjectures. Such a conjecture may be viewed as a mixed strategy.

Similarly, a player may form beliefs over opponents’ actions that they may play at each of their

information sets, and a profile of such beliefs, one for each of the opponent’s information set

can be viewed as a behavior strategy. In any case, it is fair to say that Kuhn’s Theorem is one

of the most fundamental theorems on extensive games. It highlighted the assumption of perfect

recall and facilitated the development of extensive game theory. Almost the entire literature

on extensive games invokes the perfect recall assumption and often invokes in some form or

another Kuhn’s Theorem.

In extensive games with unawareness, the notion of mixed strategy is even less compelling.

A player may not be aware of all actions ex ante. Thus, she may not be able to conceive of

all possible strategies and hence may be unable to mix over them. Yet, given her awareness

ex ante, she conceives of some partial strategies ex ante and be able to mixed over them. It

begs now the question whether for each (partial) mixed strategy there is an equivalent (partial)

behavior strategy. An immediate answer is clouded by several subtleties: First, extensive

games with unawareness feature a forest of game trees rather than just one tree (see Halpern

and Rêgo, 2014, Heifetz, Meier, and Schipper, 2013, Grant and Quiggin, 2013, Feinberg, 2012;

see Schipper 2014 for a review). The relevant information set at a node in one tree may actually

reside in a less expressive tree, signifying the fact that the player to whom this information set

belongs to is unaware of something. These obvious differences in the formalism to standard

extensive games make it non-trivial to define perfect recall in a meaningful way. Yet, the

perfect recall assumption is instrumental for proving Kuhn’s Theorem. In extensive games

with unawareness, perfect recall interacts with other properties on how awareness differs across

trees. In particular, these properties imply that a player’s awareness may not decrease during

play. This property is also crucial for us proving the analogue of Kuhn’s Theorem for extensive

games with unawareness.

There is another challenge that Kuhn’s Theorem faces in extensive games with unawareness.

What is a meaningful notion of two strategies being equivalent to each other? Extensive games

with unawareness allow the game theorist to model differing players’ subjective conceptions of
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the game during the play. Since (partial) strategies are objects of players’ beliefs, the notion

of a strategy reaching a node or an information set is also subjective. A player may believe

that a strategy reaches a particular node or a particular information set even though this node

or information set cannot be realized with this strategy. We formalize these two notions of

a strategy being consistent with a node or information set in an extensive games, show their

relationship, and extend Kuhn’s Theorem to both of these two notions in extensive games with

unawareness.

Kuhn’s Theorem for extensive games with unawareness is crucial for further developing

games with unawareness. This paper is motivated by our work on self-confirming equilibrium

in which we invoke the result to define we believe is a meaningful notion of equilibrium in

games with unawareness, a notion that can be interpreted both as a steady state of concep-

tions and play (see Schipper, 2017). Extensive games with unawareness have been applied to

political campaigning (Schipper and Woo, 2017), persuasion with verifiable disclosure (Heifetz,

Meier, Schipper, 2012; see also Li and Schipper, 2017, for an experiment), and insurance con-

tracts (Filiz-Ozbay, 2012). We have now all game theoretic tools ready to revisit games with

incomplete information and explore how the presence of unawareness may change predictions.

We should state upfront that this paper has nothing to contribute to decision making under

absentmindedness (see Piccione and Rubinstein, 1997, and the special issue on imperfect re-

call in Games and Economic Behavior 1997) beyond the fact that imperfect recall also implies

absentmindedness in extensive games with unawareness. It is conceivable that in some circum-

stances, absentmindedness may be extreme in the sense of becoming unaware of some events

that player had considered previously. Yet, becoming unaware of events is outside current

models of extensive games with unawareness.

The paper is organized as follows: The next section spells out in detail extensive games with

unawareness. Section 3 introduces various notions of strategies. Kuhn’s Theorem is extended

to extensive games with unawareness in Section 4.

2 Extensive Games with Unawareness

In this section, we outline extensive game with unawareness à la Heifetz, Meier, and Schipper

(2013).1 To define an extensive game with unawareness Γ, consider first, as a building block,

1Although there are differences in the formalism between various approaches to extensive games with un-

awareness (Halpern and Rêgo, 2014, Heifetz, Meier, and Schipper, 2013, Grant and Quiggin, 2013, Feinberg,

2012, Rêgo and Halpern, 2012, Ozbay, 2007; see Schipper, 2014, for a brief review), all approaches model un-

awareness that is consistent with the paradigm of “propositional awareness” as in Fagin and Halpern (1988) or

Heifetz, Meier, and Schipper (2006). We use here the approach by Heifetz, Meier, and Schipper (2013) because

information sets in their approach can be interpreted as states of the mind of a player at a history. In their

approach, information sets model both information and awareness rather than just “information if the player
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a finite game with perfect information and possibly simultaneous moves. The major purpose

of this tree is to outline all physical moves. There is a finite set of players I and possibly a

special player “nature” with index 0. We denote by I0 the set of players including nature.

Further, there is a nonempty finite set of “decision” nodes D̄ and a player correspondence

P : D̄ −→ 2I
0 \ {∅} that assigns to each node n ∈ D̄, a nonempty set of “active” players

P (n) ⊆ I0. (That is, we allow for simultaneous moves as in Dubey and Kaneko, 1984, or

in Osborne and Rubinstein, 1994, Chapter 6.3.2) For every decision node n ∈ D̄ and player

i ∈ P (n) who moves at that decision node, there is a nonempty finite set of actions Ai(n).

Moreover, there is a set of terminal nodes Z̄. Each terminal node z ∈ Z̄ is associated with a

vector of payoffs (ui(z))i∈I , one for each player i ∈ I. We require that nodes in N̄ := D̄ ∪ Z̄
constitute a tree denoted by T̄ . That is, nodes in N̄ are partially ordered by a precedence

relation l with which (N̄ ,l) forms an arborescence (that is, the predecessors of each node

in N̄ are totally ordered by l). There is a unique node in N̄ with no predecessors (i.e., the

root of the tree). Finally, for each decision node n ∈ D̄ there is a bijection ψn between the

action profiles
∏

i∈P (n)Ai(n) at n and n’s immediate successors. Any terminal node in Z̄ has

no successors.

Note that so far we treat nature like any other player except that at terminal nodes we do

not assign payoffs to nature.2 We do not need to require that nature moves first or that nature

moves according to a pre-specified probability distribution (although these assumptions can be

imposed in our framework).

Consider now a finite join-semilattice T of subtrees of T̄ .3 A subtree T is defined by a

subset of nodes N ⊆ N̄ for which (N,l) is also a tree (i.e., an arborescence in which a unique

node has no predecessors). Two subtrees T ′, T ′′ ∈ T are ordered, written

T ′ � T ′′

if the nodes of T ′ constitute a subset of the nodes of T ′′.

We require three properties:

1. All the terminal nodes in each tree T ∈ T are in Z̄. That is, we don’t create “new”

terminal nodes.

2. For every tree T ∈ T, every node n ∈ T , and every active player i ∈ P (n) there exists

a nonempty subset of actions AT
i (n) ⊆ Ai(n) such that ψn maps the action profiles

AT (n) =
∏

i∈P (n)A
T
i (n) bijectively onto n’s successors in T .

were aware of it”. It also avoids having to define a separate awareness correspondence that for each history

specifies which histories the player is aware of.
2Alternatively, we could assign at every terminal node the same payoff to nature.
3A join semi-lattice is a partially ordered set in which each pair of elements has a join, i.e., a least upper

bound.
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Figure 1: Property 1

3. For any tree T ∈ T, if for two decision nodes n, n′ ∈ T with i ∈ P (n) ∩ P (n′) it is the

case that Ai(n) ∩Ai(n
′) 6= ∅, then Ai(n) = Ai(n

′).

We illustrate Property 1 in Figure 1. Suppose that the tree the modeling all physical moves

is given by T̄ . Then T ′ is a subtree satisfying Property 1. In contrast, tree T ′′ does not satisfy

Property 1 because it contains a new terminal node. After cutting branches from tree T̄ to

create tree T ′′, there is now a node in T ′′ that was not a terminal node in the original tree T̄ .

Within the family T of subtrees of T̄ , some nodes n appear in several trees T ∈ T. In what

follows, we will need to designate explicitly appearances of such nodes n in different trees as

distinct objects. To this effect, in each tree T ∈ T label by nT the copy in T of the node n ∈ N̄
whenever the copy of n is part of the tree T , with the requirement that if the profile of actions

an ∈ A(n) leads from n to n′, then anT leads also from the copy nT to the copy n′T . For any

T, T ′, T ′′ ∈ T with T � T ′ � T ′′ such that n ∈ T ′′, nT ′ is the copy of n in the tree T ′, nT is

the copy of n in the tree T , and (nT ′)T is the copy of nT ′ in the tree T , we require that “nodes

commute”, nT = (nT ′)T . For any T ∈ T and any n ∈ T , we let nT := n (i.e., the copy of n ∈ T
in T is n itself).

Denote by D the union of all decision nodes in all trees T ∈ T, by Z the union of terminal

nodes in all trees T ∈ T, and by N = D∪Z. Copies nT of a given node n in different subtrees

T are now treated distinct from one another, so that N is a disjoint union of sets of nodes.

In what follows, when referring to a node in N we will typically avoid the subscript indicating

the tree T for which n ∈ T when no confusion arises. For a node n ∈ N we denote by Tn the

tree containing n.4

Denote by NT the set of nodes in the tree T ∈ T. Similarly, denote by DT
i the set of

decision nodes in which player i is active in the tree T ∈ T. Moreover, denote by ZT the set

4Bold capital letters refer to sets of elements across trees.
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of terminal nodes in the tree T ∈ T. Finally, we let Di the set of player i’s decision nodes over

all trees in T. In the case of nature, D0 would be all nodes at which nature moves.

In extensive games with unawareness, information sets model both information and aware-

ness. At decision node n of player i in the tree Tn ∈ T, the player may conceive the feasible

paths to be described by a different (i.e., less expressive) tree T ′ ∈ T. In such a case, her

information set will be a subset of T ′ rather than of Tn and n will not be contained in the

player’s information set at n.

Formally, for each node n ∈ N, define for each active player i ∈ P (n) \ {0} a nonempty

information set hi(n) with the following properties:5

U0 Confined awareness: If n ∈ T and i ∈ P (n), then hi(n) ⊆ T ′ with T ′ � T .

U1 Generalized reflexivity: If T ′ � T , n ∈ T , hi(n) ⊆ T ′ and T ′ contains a copy nT ′ of n,

then nT ′ ∈ hi(n).

I2 Introspection: If n′ ∈ hi(n), then hi(n
′) = hi(n).

I3 No divining of currently unimaginable paths, no expectation to forget currently conceiv-

able paths: If n′ ∈ hi(n) ⊆ T ′ (where T ′ ∈ T is a tree) and there is a path n′, . . . , n′′ ∈ T ′

such that i ∈ P (n′) ∩ P (n′′), then hi(n
′′) ⊆ T ′.

I4 No imaginary actions: If n′ ∈ hi(n), then Ai(n
′) ⊆ Ai(n).

I5 Distinct action names in disjoint information sets: For a subtree T ∈ T, if there a decision

nodes n, n′ ∈ T ∩D with Ai(n) = Ai(n
′), then hi(n

′) = hi(n).

I6 Perfect recall: Suppose that player i is active in two distinct nodes n1 and nk, and there

is a path n1, n2, ..., nk such that at n1 player i takes the action ai. If n′ ∈ hi (nk), n′ 6= nk,

then there exists a node n′1 6= n′ and a path n′1, n
′
2, ..., n

′
` = n′ such that hi (n′1) = hi (n1)

and at n′1 player i takes the action ai.

Properties (I2), (I4), and (I5) are standard for extensive games, and properties (U0), (U1),

and (I6) generalize standard properties of extensive games to our generalized setting. At each

information set of a player, property (I3) confines the player’s anticipation of her future view

of the game to the view she currently holds (even if, as a matter of fact, this view is about to

be shattered as the game evolves).

Central to our extension of Kuhn’s Theorem is the assumption of perfect recall (I6). This

property is illustrated with an example and a counterexample in Figure 2. It is known that in

standard extensive games without unawareness, perfect recall is necessary for the “playability”

of strategies and the existence of Nash equilibrium in behavior strategies; see for instance

5We keep the numbering consistent with Heifetz, Meier, and Schipper (2013).
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Figure 2: Perfect Recall
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Wichardt (2008). Since standard extensive games are special cases of extensive games with

unawareness, such arguments apply also to extensive games with unawareness.

Figure 3 illustrates with an example and a counterexample each both U0 and U1.

Figure 3: Properties U0 and U1
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We denote by Hi the set of player i’s information sets in all trees. For an information set

hi ∈ Hi, we denote by Thi
the tree containing hi. For two information sets hi, h

′
i in a given tree

T, we say that hi precedes h′i (or that h′i succeeds hi) if for every n′ ∈ h′i there is a path n, ..., n′

in T such that n ∈ hi. We denote it by hi  h′i.

The following property is implied by I2 and I4 (see Heifetz, Meier, and Schipper, 2013,

Remark 1): If n′, n′′ ∈ hi where hi = hi (n) is an information set for some n ∈ Di, then

Ai(n
′) = Ai(n

′′). Hence, if n ∈ hi we write also Ai(hi) for Ai(n).

Properties U0, U1, I2, and I6 imply no absent-mindedness. This follows directly from

Heifetz, Meier, and Schipper (2013, Remark 2).

No Absent-mindedness: No information set hi contains two distinct nodes n, n′ on the
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same path in some tree.

The Perfect recall property I6 and no absent-mindedness guarantee that with the precedence

relation  player i’s information sets Hi form an arborescence: For every information set

h′i ∈ Hi, the information sets preceding it {hi ∈ Hi : hi  h′i} are totally ordered by  .

Perfect recall can be interpreted as players do not forget their experience throughout the

game. This can be made explicit. For any player i ∈ I and decision node of that player n ∈ Di,

let Ei(n) denote the record of player i’s experience along the path to n (not including hi(n)).

I.e., Ei(n) is the sequence of pairs (hi, ai) of player i’s information sets and the action taken at

these information sets in order of how they are encountered along the path to n. Perfect recall

is now characterized as follows:

Remark 1 An extensive game with unawareness satisfies perfect recall (I6) if and only if for

any player i ∈ I, n ∈ Di, n
′ ∈ hi(n) implies Ei(n

′) = Ei(n).

Proof. “⇒”: Consider the non-trivial case n′ 6= n. Suppose by contradiction that Ei(n
′) 6=

Ei(n). Then there exists a path n1, n2, ..., nk with n = nk for which there is no path n′1, n
′
2, ..., n

′
`

with n′ = n′` such that hi(n1) = hi(n
′
1) and the action taken at n′1 along the path n′1, n

′
2 is the

action taken at n1 along the path n1, n2. But this contradicts I6.

“⇐”: Suppose not. Then for any two nodes n1 and nk with n1 6= nk with the path

n1, n2, ..., nk such that at n1 player i takes action ai along the path, n′ ∈ hi(nk), n′ 6= nk, there

is no node n′1 6= n′ and a path n′1, n
′
2, ..., n

′
` = n′ such that hi(n

′
1) = hi(n1) and player i takes

action ai at n′1 along the path. But this just means that player’s records of experience are

different in nodes n and n′, i.e., Ei(n
′) 6= Ei(n), a contradiction. �

Confined awareness (U0) and Perfect recall (I6) imply that a player cannot become unaware

during the play (see Heifetz, Meier, and Schipper, 2013, Remark 6).

DA Awareness may only increase along a path: If there is a path n, . . . , n′ in some subtree T ′′

such that player i is active in n and n′, and hi (n) ⊆ T while hi (n′) ⊆ T ′, then T ′ � T .

To model unawareness proper, we impose as in Heifetz, Meier, and Schipper (2013) addi-

tional properties. They parallel properties of static unawareness structures in Heifetz, Meier,

and Schipper (2006):

U4 Subtrees preserve ignorance: If T � T ′ � T ′′, n ∈ T ′′, hi(n) ⊆ T and T ′ contains the copy

nT ′ of n, then hi(nT ′) = hi(n).

U5 Subtrees preserve knowledge: If T � T ′ � T ′′, n ∈ T ′′, hi(n) ⊆ T ′ and T contains the

copy nT of n, then hi(nT ) consists of the copies that exist in T of the nodes of hi(n).

8



It is known that U5 implies U3, see Heifetz, Meier, and Schipper (2013, Remark 3):

U3 Subtrees preserve awareness: If n ∈ T ′, n ∈ hi(n), T � T ′, and T contains a copy nT of

n, then nT ∈ hi(nT ).

Properties U3 to U5 are illustrated in Figure 4 with an example and counterexample each.

Figure 4: Properties U3 to U5
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For trees T, T ′ ∈ T we denote by T � T ′ whenever for some node n ∈ T and some player

i ∈ P (n) it is the case that hi(n) ⊆ T ′. Denote by ↪→ the transitive closure of�. That is, T ↪→
T ′′ if and only if there is a sequence of trees T, T ′, . . . , T ′′ ∈ T satisfying T � T ′� · · ·� T ′′.

An extensive game with unawareness Γ consists of a join-semilattice T of subtrees of a tree

T̄ satisfying properties 1–3 above, along with information sets hi(n) for every n ∈ T with T ∈ T

and i ∈ P (n), and payoffs satisfying properties U0, U1, U4, U5, and I2-I7 above.

For any extensive game with unawareness Γ with set of trees T, for any tree T ∈ T, the T -

partial game is the join-semisublattice of trees including T and also all trees T ′ in Γ satisfying

T ↪→ T ′, with information sets as defined in Γ. A T -partial game is a extensive game with

unawareness, i.e., it satisfies all properties 1–3, U0, U1, U4, U5, and I2-I7 above.

We denote by HT
i the set of player i’s information sets in the T -partial game, T ∈ T. This
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set contains not only i’s information sets in the tree T but also in all trees T ′ ∈ T with T ↪→ T ′.

3 Strategies

For any collection of sets (Xi)i∈I0 we denote by

X :=
∏
i∈I0

Xi, X−i :=
∏

j∈I0\{i}

Xj

with typical elements x and x−i respectively. For any collection of sets (Xi)i∈I0 and any tree

T ∈ T, we denote by XT
i the set of objects in Xi restricted to the tree T and analogously for

XT and XT
−i, where “restricted to the tree T” will become clear from the definitions below.

A pure strategy for player iinI,

si ∈ Si :=
∏

hi∈Hi

A(hi)

specifies an action of player i at each of her information sets hi ∈ Hi. We let

s0 ∈ S0 :=
∏

n∈D0

A0(n)

denote the “strategy” of nature, with D0 denoting the “decision” nodes of nature.

With the strategy si, at node n ∈ DTn
i define player i’s action at n to be si(hi(n)), for i ∈ I.

Thus, by U1 and I4 the strategy si specifies what player i ∈ I does at each of her active nodes

n ∈ DTn
i , both in the case that n ∈ hi(n) and in the case that hi(n) is a subset of nodes of a

tree which is distinct from the tree Tn to which n belongs. In the first case, when n ∈ hi(n),

we can interpret si(hi(n)) as the action chosen by player i in node n. In the second case, when

n /∈ hi(n), si(hi(n)) cannot be interpreted as the action chosen “consciously” by player i in n

since she is not even aware of Tn. Instead, her state of mind at n is given by her information set

hi(n) in a tree lower than Tn (denoted by Thi(n)). Thus, si(hi(n)) is the physical move of player

i in n in tree Tn induced by her “consciously” chosen action at her information set hi(n) in tree

Thi(n) (with Tn � Thi(n)). As an example, consider the game in Figure 5. The information set

at node n in tree Tn lies in the lower tree Th(n) that misses action “middle”. This is indicated

by the blue arrow and disk. When the player chooses “left” in Th(n) (as indicated by the red

solid line beside the left edge), it induces also an action “left” at node n in tree Tn (as indicated

by the red dashed line beside the left edge).

In an extensive game with unawareness Γ the tree T̄ ∈ T represents the physical paths in

the game; every tree in T that contains an information set represents the subjective view of the

feasible paths in the mind of a player, or the view of the feasible paths that a player believes

that another player may have in mind, etc. Moreover, as the actual play in T̄ unfolds, a player
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Figure 5: Action induced by a strategy
n

h(n)

Tn

Th(n)

may become aware of paths of which she was unaware earlier, and the way she views the game

may be altered. Thus, in an extensive game with unawareness, a strategy cannot be conceived

as an ex ante plan of action. Formally, a strategy of player i is a list of answers to the questions

“what would player i ∈ I do if hi were the set of nodes she considered as possible?”, for hi ∈ Hi

(and analogous for nature). A strategy of a player becomes meaningful as an object of beliefs

of other players. How “much” of a player’s strategy other players can conceive depend on their

awareness given by the tree in which their information set is located. This leads to the notion

of T -partial strategy. For a strategy si ∈ Si and a tree T ∈ T, we denote by sTi the strategy

in the T -partial game induced by si (i.e., sTi (hi) = si (hi) for every information set hi ∈ HT
i of

player i in the T -partial game). (Recall that HT
i not only contains information sets in the tree

T but also in trees T ′ ∈ T with T ′ � T .)

A mixed strategy of player i, σi ∈ ∆(Si), specifies a probability distribution over player i’s set

of pure strategies. With this notation, we let σ0 the probability distribution over “strategies” of

nature. As mentioned already in the introduction, we don’t consider mixed strategies necessarily

as an object of choice of players but rather a conjecture over how a player would play.

A behavior strategy for player i ∈ I,

βi ∈ Bi :=
∏

hi∈Hi

∆(Ai(hi))

is a collection of independent probability distributions, one for each of player i’s information

sets hi ∈ Hi, where βi(hi) specifies a mixed action in ∆(Ahi
). With the behavior strategy βi, at

node n ∈ DTn
i define player i’s mixed action at n to be βi(hi(n)). Thus, the behavior strategy

βi specifies the mixed action of player i ∈ I at each of her active decision nodes n ∈ DTn
i , both

in the case that n ∈ hi(n) and in the case that hi(n) is a subset of nodes of a tree which is

distinct from the tree Tn to which n belongs. It may be the case that Ai(n) ⊃ Ai(hi(n)). Yet,

we have automatically that βi does not assign probabilities to actions in An \ Ahi(n). (I.e., at

the decision node n of the richer tree Tn player i may have more actions than she is aware of

at hi(n). In such a case, she is unable to use actions that she is unaware of.) With respect to

nature, we let β0 ∈ B0 =
∏

n∈D0
∆(A0(n)).
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We say that a strategy profile s = (sj)j∈I ∈ S reaches a node n ∈ T if the players’ actions

and nature’s moves
(
sTj (hj (n′))

)
j∈P (n′)

in nodes n′ ∈ T lead to n. Notice that by property

(I4) (“no imaginary actions”), sTj (hj (n′))j∈I is indeed well defined: even if hj (n′) * T for

some n′ ∈ T ,
(
sTj (hj (n′))

)
j∈P (n′)

is a profile of actions which is actually available in T to the

active players j ∈ P (n′) and possibly nature at n′. We say that a strategy profile s ∈ S reaches

the information set hi ∈ Hi if s reaches some node n ∈ hi. We say that the strategy si ∈ Si
reaches the information set hi if there is a strategy profile s−i ∈ S−i of the other players (and

possibly nature) such that the strategy profile (si, s−i) reaches hi. Analogously, we say that

the strategy profile s−i ∈ S−i reaches the information set hi if there exists a strategy si ∈ Si
such that the strategy profile (si, s−i) reaches hi. For each player i ∈ I, denote by Hi(s) the

set of information sets of i that are reached by the strategy profile s. This set may contain

information sets in more than one tree.

We extend the definitions of information set reached to mixed and behavior strategies in

the obvious way by considering nodes/information sets reached with strict positive probability.

4 Kuhn’s Theorem

In extensive games without unawareness but with perfect recall, Kuhn’s Theorem asserts that

for every mixed strategy profile there is an equivalent behavior strategy profile. Kuhn’s Theorem

can be extended to extensive games with unawareness using a notion of equivalence based on

the notion of reaching nodes. For any node n, any player i ∈ I0, and any opponents’ profile of

strategies s−i (including nature if any), let ρ(n | βi, s−i) and ρ(n | σi, s−i) denote the probability

that (βi, s−i) and (σi, s−i) reach node n, respectively. For any player i ∈ I0, a mixed strategy σi

and a behavior strategy βi are equivalent if for every profile of opponents’ strategies s−i ∈ S−i
and every node n ∈ N of the extensive game with unawareness ρ(n | σi, s−i) = ρ(n | βi, s−i).

Let Si(n) be the set of all strategies of player i that reach n. That is, if n ∈ T then si ∈ Si(n)

if and only there exist s−i ∈ S−i such that the profile (sTj (hj(n
′)))j∈P (n′) in n′ ∈ T lead to n.

In the following, we adapt for better comparison a textbook proof of Kuhn’s Theorem (e.g.,

Maschler, Solan, and Zamir, 2013, Chapter 6) to the more complicated set up of extensive

games with unawareness. It allows us to show which modifications are necessary as compared

to standard games, and emphasizes that the basic idea of proof remains the same. We start

with a lemma that is crucial for the proof of the main theorem.

Lemma 1 Consider an extensive game with unawareness Γ. If Γ satisfies perfect recall (i.e.,

I6), then for any player i ∈ I, n ∈ N with hi(n) ∈ Hi, and n′ ∈ hi(n), Si(n) = Si(n
′).

Note the difference to standard games. First, extensive games with unawareness involve
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forests of trees rather than just trees. Second, the perfect recall property applies now to infor-

mation sets across trees. Third, the sets Si(n) are different from corresponding sets in standard

games because n may be in a tree different from the tree “housing” the information set hi(n) of

player i at n. This is significant because strategies are defined for each information set (rather

than decision node) of player i.

Proof of Lemma 1. Since Γ satisfies perfect recall, we have by Remark 1 that n′ ∈ hi(n)

implies Ei(n
′) = Ei(n). Thus, the same information sets of player i are reached along the path

to n that are reached along the path to n′ (even though the information sets might appear in a

subtree lower than the one containing the path to n). Moreover, at each of those information

sets the same action is required to move along the path to n as to move along to the path to

n′. Hence, any strategy reaching n also reaches n′ and vice versa. �

We are now ready to state an extension of Kuhn’s Theorem to extensive games with un-

awareness.

Theorem 1 In every extensive game with unawareness, if player i has perfect recall, then for

every mixed strategy of player i there exists an equivalent behavior strategy.

Proof. The theorem is proved in three steps. The first step defines the candidate of the

behavior strategy. The second step shows that it is well-defined. The third step shows it to be

equivalent to the mixed strategy.

Let σi be a mixed strategy of player i.

First, we define a candidate for the equivalent behavior strategy. Let n ∈ Di. Since n ∈ Di

we have Ai(n) 6= ∅. For any action ai ∈ Ai(n) of player i at n, define Si(n, ai) := {si ∈ Si(n) :

si(hi(n)) = ai}. That is, any strategy in Si(n, ai) reaches n and also prescribes action ai at

information set hi(n). This definition makes sense: First, recall that strategies ascribe actions to

information sets (rather than nodes). Moreover, by definition of Γ there is an information set of

player i at n that we denote by hi(n). There are two cases: First, n ∈ hi(n). In this case, for any

n′ ∈ hi(n) we have Ai(n) = Ai(n
′) (Heifetz, Meier, and Schipper, 2013, Remark 1). Thus, we

write Ai(hi(n)) for actions available at any node in hi(n). Second, n /∈ hi(n). (That’s the case

when n is in a tree more expressive than hi(n).) By I4 (No imaginary actions), for any n′ ∈ hi(n)

we have Ai(n
′) ⊆ Ai(n). Note also that Ai(n

′) 6= ∅ since n′ ∈ Di. If ai ∈ Ai(n) \ Ai(n
′), then

Si(n, ai) = ∅ since no strategy of player i can ascribe an action to n that is not available at

hi(n). Hence, in the following we consider sets Si(n, ai) for ai ∈ Ai(hi(n)).

If player i’s mixed strategy assigns strict positive probability to strategies reaching n, i.e.,
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if
∑

si∈Si(n)
σi(si) > 0, then define for each action ai ∈ Ai(hi(n)),

βi(hi(n))(ai) :=

∑
si∈Si(n,ai)

σi(si)∑
si∈Si(n)

σi(si)
. (1)

Otherwise, if
∑

si∈Si(n)
σi(si) = 0, define βi(hi(n)) in an arbitrary way provided that it consti-

tutes a probability measure over actions available at hi(n). E.g., for all ai ∈ Ai(hi(n)),

βi(hi(n))(ai) :=
1

|Ai(hi(n))|
. (2)

Second, we want to show that βi is well-defined. I.e., for each of player i’s information sets

hi ∈ Hi, βi(hi) is a probability measure on Ai(hi). Moreover, βi is independent of player i’s

decision nodes. For the latter, it suffices to demonstrate it for the case
∑

si∈Si(n)
σi(si) > 0.

Since Γ has perfect recall, i.e., Γ satisfies I6, we have by Lemma 1 that for any n′ ∈ hi(n),

Si(n
′) = Si(n). Again, since n′ ∈ hi(n), Si(n, ai) = Si(n

′, ai) for all ai ∈ Ai(hi). Observe that

both the numerator and the denominator of the left-hand side of Equation (1) are independent

of nodes in hi(n).

To show that for all n ∈ Di, βi(hi(n)) is a probability measure over Ai(hi(n)), note first

that, in the case of
∑

si∈Si(n)
σi(si) = 0, this follows directly from Equation (2).

If
∑

si∈Si(n)
σi(si) > 0, then Equation (1) defines a probability distribution over Ai(hi). To

see this note that since σi(si) ≥ 0 for all si ∈ Si, both the numerator and the denominator

are nonnegative and hence βi(hi)(ai) ≥ 0 for all ai ∈ Ai(hi). For any n ∈ Di and ai, a
′
i ∈

Ai(hi(n)) with ai 6= a′i, Si(n, ai)∩Si(n, a′i) = ∅. Moreover,
⋃

ai∈Ai(hi(n))
Si(n, ai) = Si(n). Thus,∑

ai∈Ai(hi(n))

∑
si∈Si(n,ai)

σi(si) =
∑

si∈Si(n)
σi(si). If follows that

∑
ai∈Ai(hi)

βi(hi)(ai) = 1.

The third and last step is to show that the behavior strategy βi is equivalent to the mixed

strategy σi. Fix a node n ∈ Di ∪ Z and let n1i , n
2
i , ..., n

L
i be a sequence of decision nodes of

player i along the path from the root to n, not including n. By definition of Γ, there exist an

information set of player i for each of the decision nodes n1i , n
2
i , ..., n

L
i . If L = 0, then player

i has no information sets on the path from the root to n (not including n). In such a case,

Si(n) = Si and we naturally define ρ(n | βi, s−i) = 1. Also, in this case ρ(n | σi, s−i) =∑
si∈Si(n)

σi(si) = Σsi∈Siσi(si) = 1. Hence, βi and σi are equivalent in this case.

Suppose now the case L > 0. Let a
n`
i

i ∈ Ai(hi(n
`
i)) denote the action of player i at node n`i ,

` = 1, ..., L, that leads to n`+1
i in the case ` = 1, ..., L− 1 and to n in the case ` = L.

We have

ρ(n | βi, s−i) =

L∏
`=1

βi(hi(n
`
i))(a

n`
i

i ). (3)

Assume that σi reaches n. By definition of βi,

ρ(n | βi, s−i) =

L∏
`=1

∑
si∈Si(n`

i ,a
n`
i

i )
σi(si)∑

si∈Si(n`
i)
σi(si)

, (4)
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which is well-defined since σi is assumed to reach n and therefore also to reach n1i , ..., n
L
i .

Note that Si(n
`+1
i ) = Si(n

`
i , a

`
i). Thus∑

si∈Si(n`
i ,a

`
i)

σi(si) =
∑

si∈Si(n
`+1
i )

σi(si)

and

ρ(n | βi, s−i) =
L∏

`=1

∑
si∈Si(n

`+1
i ) σi(si)∑

si∈Si(n`
i)
σi(si)

, (5)

(where we take nL+1 = n) is the telescopic product for which the numerator of the `-th term of

the product equals to the denominator of the ` + 1-th term of the product. Adjacent product

terms cancel each other out. Thus,

ρ(n | βi, s−i) =

∑
si∈Si(n)

σi(si)∑
si∈Si(n1

i )
σi(si)

. (6)

Since n1i is in player i’s first information set on the path towards n, we have Si(n1) = Si. Hence,

ρ(n | βi, s−i) =

∑
si∈Si(n)

σi(si)∑
si∈Si

σi(si)
. (7)

Since trivially any strategy of player i reaches her first information set, we have Σsi∈Siσi(si) = 1.

Thus,

ρ(n | βi, s−i) =

∑
si∈Si(n)

σi(si)

1
= ρi(n | σi, s−i). (8)

This completes the proof of the theorem. �

4.1 Equivalence in Realization of Nodes

In extensive games with unawareness there are two distinct notions of a strategy profile being

consistent with a node. The first notion we introduced already at the end of Section 3 and

called it a “strategy profile reaching a node”. While a player may expect a strategy profile

to reach a node, it can be the case in games with unawareness that a different node actually

occurs. This is because the player is unaware of actions that a player with more awareness

may take (since each player just considers the partial strategies consistent with her awareness

level). This begs the question whether strategies that are equivalent with respect to nodes

reached are also equivalent with respect to nodes that actually occur. Note that both notions

of a node being consistent with a strategy are relevant. The notion of a strategy reaching a

node is relevant for extensive rationalizability (extended to extensive games with unawareness

by Heifetz, Meier, and Schipper, 2013) whereas the notion of a node occurring with a strategy
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is crucial for self-confirming equilibrium (as extended to extensive games with unawareness by

Schipper, 2017).

We say that node n ∈ T̄ in the upmost tree T̄ occurs with strategy profile s = (sj)j∈I ∈ S
if the players’ actions and nature’s moves (sj (hj(n

′)))j∈P (n′) in nodes n′ ∈ T̄ lead to n ∈ T̄ .

We extend the notion to any node in any tree by saying that node n ∈ T occurs with strategy

profile s = (sj)j∈I ∈ S if there is n′ ∈ T̄ s.t. n′T = n occurs with s. This is well-defined because

T is a join semi-lattice. In particular, for any T ∈ T and n ∈ T there is a node n′ ∈ T̄ such

that n′T = n.

We say that information set hi ∈ Hi occurs with strategy profile s ∈ S if some node n ∈ Di

with hi(n) = hi occurs with s. Note that for this definition we do not require n ∈ hi.

Figure 6: Illustration of Occur vs. Reached

1

22

1

22

The following two examples will help to clarify the definition and its difference to the notion

of a strategy reaching a node/information set. Consider first the example in Figure 6. There

are two trees, T̄ � T . There are two players, 1 and 2. Player 1 moves first. If he moves left

in tree T̄ , then player 2 remains unaware of her middle action. This is shown in Figure 6 by

the blue arrow and disk (i.e., information set h in T ) upon player 1 moving left. Otherwise,

if player 1 moves right in tree T̄ , player 2 becomes aware of middle (i.e., information set h′′).

(Player 1’s initial information sets are indicated by disks with green intermitted boundaries.)

Consider the strategy of player 1 indicated by the red intermitted edges. This strategy reaches

only nodes n′′′ and n′. Yet, the nodes that occur with this strategy are n′′′ and n. Thus, this

example shows that the nodes reached may differ from nodes occurring. Note though that the

nodes occurring with a strategy are not disjoint from the nodes reached with the strategy and

that this intersection contains a node in the upmost tree T̄ . In terms of information sets, the
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strategy reaches only h′ but the only information set occurring with this strategy is h. Thus,

the example demonstrates that the information sets reached by a strategy may be even disjoint

from the information sets occurring.

Figure 7: Another Illustration of Occur vs. Reached

1

22

1

2

The example in Figure 6 has the feature that if an information set is reached (resp., occurs)

with a strategy then also a node in this information set is reached (resp., occurs). With respect

to the notion of occurring, this may not be the case in general as the next example shows. In

Figure 7 there are also two trees, T̄ and T . Obviously, tree T̄ is more expressive than T as it

contains also the right action for player 1 (and all actions that follow). Player 2 is unaware of

player 1’s right action and remains unaware of it even if player 1 takes the right action. This is

indicated by the blue information set belonging to player 2 in tree T . Even in the case in which

player 1 chooses right and node n′ occurs, player 2’s information set is given by h. With respect

to nodes, the strategy indicated by the red dashed line reaches only n′ and n′′. Yet, only n′

occurs with this strategy. With respect to information set h, it is both reached by the strategy

and occurs with the strategy. Note though that h occurs with the strategy despite the fact that

its only element, node n′′ does not occur with the strategy. This is not a defect of the notion of

a node/information set occurring but simply reflects the fact that in a game with unawareness

the history occurring may not be in the occurring state of mind of a player. Note though that

a player is not deluded either as she just misses an important fact rather than “making things

up”.

We summarize the examples:

Remark 2 In an extensive game with unawareness, if s reaches n then it is not necessarily

the case that n occurs with s. Similarly, if n occurs with s then it is not necessarily the case
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that s reaches n. Moreover, information set h may occur with a strategy s even though n with

h = {n} does not occur with s.

For the upmost tree T̄ the following observation follows directly from the definitions:

Remark 3 Consider an extensive game with unawareness with the upmost tree T̄ . A strategy

profile s reaches n ∈ T̄ if and only if n occurs with s.

The observation means that the notions of node reached and node occurring with a strategy

really depend on how these notions apply to less expressive trees T ≺ T̄ . The notion of

“reached” invokes the T -partial strategies to determined which node in T is reached and is thus

a more subjective notion (from the point of view of a player who considers tree T and lower

trees). The notion of “occur” invokes actions induced by the strategies in the highest possible

tree. Thus it models the “actual” or “objective” play.

The following corollary follows now directly from the fact that any standard extensive game

(i.e., without unawareness) just features one tree.

Corollary 1 In a standard extensive game (i.e., without unawareness), a strategy profile s

reaches n if and only if n occurs with s.

We say that node n (resp., information set hi) occurs with strategy si ∈ Si if there is a

strategy profile s−i ∈ S−i of the other players (and possibly nature) such that n (resp., hi)

occurs with strategy profile (si, s−i). Analogously, we say that node n (resp., information set

hi) occurs with strategy profile s−i ∈ S−i if there exists a strategy si ∈ Si such that n (resp.,

hi) occurs with strategy profile (si, s−i).

We extend the definitions of information sets occurring to behavior and mixed strategies in

the obvious way by considering nodes/information sets occurring with strict positive probability.

Let N(s) denote the set of nodes in N that are reached with strategy profile s. Moreover,

denote by O(s) the set of nodes in N that occur with strategy profile s. We can now relate the

notions of a node being reached and a node occurring with the following lemma:

Lemma 2 Consider an extensive games with unawareness. For any player i ∈ I0 and strategies

si, s
′
i ∈ Si, if N(si, s−i) = N(s′i, s−i) then O(si, s−i) = O(s′i, s−i) for any s−i ∈ S−i. The

converse does not necessarily hold.

Proof. For all s−i ∈ S−i, if N(si, s−i) = N(s′i, s−i) then N(si, s−i) ∩ T̄ = N(s′i, s−i) ∩ T̄ .

By Remark 3 O(si, s−i) ∩ T̄ = N(si, s−i) ∩ T̄ and O(s′i, s−i) ∩ T̄ = N(s′i, s−i) ∩ T̄ . Hence,

O(si, s−i) ∩ T̄ = O(s′i, s−i) ∩ T̄ . By definition of node occurring, O(si, s−i) = O(s′i, s−i).
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For the converse, we show a counterexample. Consider the extensive with unawareness in

Figure 6. Further, let s1 ascribe action “left” in tree T̄ and “right” in tree T . Moreover, let s′1
ascribe action “left” both in tree T̄ and T . Then information set h occurs both with s1 and s′1.

In fact, O(s1, s−1) = O(s′1, s−1) for any s1 ∈ S1. Yet, only strategy s′1 reaches h in T while s1

reaches h′ in T . �

For any node n, any player i ∈ I0, and any opponents’ profile of strategies s−i (including

nature if any), let o(n | βi, s−i) and o(n | σi, s−i) denote the probability that node n occurs

with (βi, s−i) and (σi, s−i), respectively.

Remark 4 In an extensive game with unawareness, it is not necessarily the case that for each

tree T ∈ T, o(· | σi, s−i) defines a distribution over terminal nodes Z ⊆ T . E.g., in the example

of Figure 7, no terminal node of T occurs with the strategy of player 1 indicated by the red

dashed line. Thus, o(· | σi, s−i) may not only be subadditive but may even assign zero to the set

of all terminal histories in a given game tree. It is though a probability distribution over nodes

in the upmost tree T̄ .

We use the notion of a node occurring to define another notion of equivalence between

strategy that we dub realization-equivalent. For any player i ∈ I0, a mixed strategy σi and a

behavior strategy βi are realization-equivalent if for every profile of opponents’ strategies s−i ∈
S−i and every node n ∈ N of the extensive game with unawareness o(n | σi, s−i) = o(n | βi, s−i).
Since information sets can be viewed as functions of nodes, realization-equivalent strategies are

also realization-equivalent with respect to the probability of information sets occurring. This is

relevant because information sets model also the player’s state of mind. We like to assure that

strategies are also equivalent with respect to the states of mind that may arise along the play.

Remark 5 If two strategies are realization-equivalent then also the same information sets occur

with the same probabilities with both strategies.

Lemma 3 In any extensive game with unawareness and perfect recall, if µi and βi are equiva-

lent to each other, then they are also realization-equivalent.

Proof. For any σi ∈ ∆(Si), βi ∈ Bi, s−i ∈ S−i, T ∈ T, n ∈ T , o(n | σi, s−i) = ρ(n′ | σi, s−i)
and o(n | βi, s−i) = ρ(n′ | βi, s−i) for n′ ∈ T̄ such that (n′)T = n. Let βi be equivalent to σi.

Then the conclusion follows from Theorem 1. �

Theorem 1 and Lemma 3 now imply immediately the following corollary:

Corollary 2 In every extensive game with unawareness, if player i has perfect recall, then for

every mixed strategy of player i there exists an realization-equivalent behavior strategy.
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4.2 T-Partial Games and T-Partial Strategies

We return to the fact that in extensive games with unawareness, strategies may only partially

be an object of choice.

Let ST
i (n) be the set of all T -partial strategies of player i that reach n. For this definition

to make sense, note that Tn � T . That is, if si ∈ ST
i (n) with T � Tn if and only if there exist

s−i ∈ ST
−i such that the profile (sTn

j (hj(n
′)))j∈P (n′) in n′ ∈ Tn leads to n.

Note that a T -partial game is an extensive game with unawareness in which the join of the

join-semilattice of trees is T . Thus, Lemma 1 implies immediately

Corollary 3 Consider an extensive game with unawareness Γ. If Γ satisfies perfect recall (i.e.,

I6), then for any player i ∈ I, n ∈ N with hi(n) ∈ Hi, and n′ ∈ hi(n), ST
i (n) = ST

i (n′) for any

T � Tn.

This corollary is relevant because we view strategies of a player as objects of beliefs of

other players. Yet, their beliefs are bounded by their awareness. That is, if player i arrives at

information set hi, then his awareness level is given by Thi
, the tree that contains information

set hi. Thus, he forms beliefs about player j’s Thi
-partial strategies.

Theorem 1 implies now immediately the version for T -partial strategies.

Corollary 4 In every extensive game with unawareness, if player i has perfect recall, then for

every T -partial mixed strategy of player i there exists an equivalent T -partial behavior strategy,

for T ∈ T.

The original Kuhn Theorem is now a corollary for T being a least expressive tree or T being

singleton.

It is possible to also define a notion of node occurring with a T -partial strategy profile. Yet,

such a definition is not very meaningful as the notion of a node occurring aims to characterize

nodes that actually (or “objectively”) occur. To determine such nodes, it is crucial consider

which nodes are reached in the upmost tree T̄ . T -partial strategies, with T ≺ T̄ , are by

definition silent on it. Yet, every T -partial strategy can be extended to a strategy on the entire

join-semilattice of trees T. Such an extension is typically not unique. The nodes occurring will

then depend which extension is considered.
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